江苏省南通市2014年中考数学真题试题(含解析)

合集下载

2014江苏省南通中考数学试卷(余中华)

2014江苏省南通中考数学试卷(余中华)

2014年江苏省南通中考数学试卷数 学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应.....位置..上) 1.(2014年江苏省南通市,1,3分)-4的相反数是A .4B .-4C .14D .-14【答案】A【考点解剖】本题考查了相反数的概念,解题的关键是掌握求相反数的方法.【解题思路】求-4的相反数,只需将负号换成正号,即可得到-4的相反数.【解答过程】-4与+4只有符号不同,绝对值相等,因此这两个数互为相反数.【易错点津】此类问题容易出错的地方是混淆相反数、倒数和绝对值的概念.【方法规律】求一个数的相反数,只需改变这个数的符号,不改变其绝对值即可.也可以在这个数前面添加“-”号,如a 的相反数是-a .【试题难度】★【关键词】相反数.2.(2014年江苏省南通市,2,3分)如图,∠1=40°,如果CD ∥BE ,那么∠B 的度数为A .160°B .140°C .60°D .50°【答案】B【考点解剖】本题考查了相交线和平行线的性质,解题的关键是由∠1=40°,求得∠B 的同位角或同旁内角.【解题思路】由∠1=40°,求得∠1的邻补角或对顶角,根据两直线平行,同位角相等(同旁内角互补)可以求出∠B 的度数.【解答过程】∵CD ∥BE ,∴∠B =∠AFD ,∵∠1+∠AFD =180°,∠1=40°,∴∠AFD =140°,∴∠B =140°.故本题答案为B .【易错点津】此类问题容易出错的地方是在计算的时候出错.【方法规律】“对顶角和邻补角的性质、平行线的性质”建立起两直线位置关系与角度相等或互补之间的关系,因此当图形中出现相交线和平行线的时候,要解决的问题常与角度的计算相关.【试题难度】★【关键词】相交线;对顶角;平行线的性质.3.(2014年江苏省南通市,3,3分)已知一个几何体的三视图如图所示,则该几何体是A .圆柱B .圆锥C .球D .棱柱 1C AB EDF【答案】A【考点解剖】本题考查了几何体的三视图,解题的关键是从三视图中获取物体的形状和数量关系.【解题思路】根据主视图和俯视图长度相等,主视图和左视图高度相等,俯视图和左视图宽度相等进行判断.【解答过程】从主视图和左视图可以看出这个几何体是柱体,从俯视图可以看出这个几何体不是棱柱,是圆柱.所以本题选A.【方法规律】由视图到立体图形,根据视图想像出视图所反映的立体形状,我们称为读图.读图的一般规律:1、长、宽、高的关系:主视图和俯视图长度相等,主视图和左视图高度相等,俯视图和左视图宽度相等.2、上下、前后、左右的关系:读图时,可从主视图上分清物体各部分的上下和左右位置;从俯视图上分清物体各部分的左右和前后位置;从左视图上分清物体各部分的上下和前后位置.【试题难度】★★★★★【关键词】三视图;4.(2014年江苏省南通市,4,3x的取值范围是A.x≥12B.x≥-12C.x>12D.x≠12【答案】C【考点解剖】本题考查了二次根式的意义,解题的关键是知道分式有意义和二次根式有意义的条件.2x-1≥00.【解答过程】由题意,210210xx-≥⎧⎨-≠⎩,解得x>12.【易错点津】此类问题容易出错的地方是二次根式有意义和分式有意义只考虑其中一种情况,或者两种情况不能综合起来,得出最终的答案.【方法规律】确定式子中二次根式的被开方数字母取值范围的思路(1)如果二次根式的被开方数是整式,只要满足被开方数是非负数;(2)被开方数是分式,首先要确保分式有意义,即分母不等于0;其次要保证分式的值不小于0,即分子等于0或分子分母同号.根据以上要求,可列出关于字母的不等式组,根据不等式组的解集确定字母的取值范围。

2014年江苏省南通市中考数学模拟试卷011

2014年江苏省南通市中考数学模拟试卷011

2014年江苏省南通市中考数学模拟试卷011一、选择题(本大题共l0小题.每小题3分.共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑) .26.(3分)(2011•无锡)一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那. C D .7.(3分)(2011•无锡)如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA :OC=0B :OD ,则下列结论中一定正确的是( )10.(3分)(2011•无锡)如图,抛物线y=x 2+1与双曲线y=的交点A 的横坐标是1,则关于x 的不等式+x 2+1<0的解集是( )二、填空题(本大题共8小题,每小题2分,共l6分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处)11.(2分)(2012•南平)计算:=_________.12.(2分)(2011•无锡)我市去年约有50 000人参加中考,这个数据用科学记数法可表示为_________人.13.(2分)(2012•常德)在函数中,自变量x的取值范围是_________.14.(2分)(2011•无锡)写出一个大于1且小于2的无理数_________.15.(2分)(2011•无锡)正五边形的每一个内角都等于_________°.16.(2分)(2011•无锡)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_________cm.17.(2分)(2011•无锡)如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD 的周长为_________cm.18.(2分)(2011•无锡)如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD=_________°.三、解答题(本大题共10小题.共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)(2011•无锡)计算:(1);(2)a(a﹣3)+(2﹣a)(2+a).20.(8分)(2011•无锡)(1)解方程:x2+4x﹣2=0;(2)解不等式组.21.(8分)(2011•无锡)如图,在▱ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.22.(7分)(2011•无锡)一不透明的袋子中装有4个球,它们除了上面分别标有的号码l、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.求第二次取出球的号码比第一次的大的概率.(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)23.(8分)(2011•无锡)某区共有甲、乙、丙三所高中,所有高二学生参加了一次数学测试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四类情况之一:A﹣﹣概念错误;B﹣﹣计算错误;C﹣﹣解答基本正确,但不完整;D﹣﹣解答完全正确.各校出现这四类情况的人数分别占本校高二学生数的百分比如下表所示.根据以上信息,解答下列问题:(1)求全区高二学生总数;(2)求全区解答完全正确的学生数占全区高二学生总数的百分比m(精确到0.01%);(3)请你对表中三校的数据进行对比分析,给丙校高二数学老师提一个值得关注的问题,并说明理由.24.(9分)(2011•无锡)如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B处时,往后测得山头C 的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.25.(10分)(2011•无锡)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)求y与x之间的函数关系式;(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?26.(6分)(2011•无锡)如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.(1)请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.27.(10分)(2011•无锡)如图,已知O(0,0)、A(4,0)、B(4,3).动点P从O点出发,以每秒3个单位的速度,沿△OAB的边0A、AB、B0作匀速运动;动直线l从AB位置出发,以每秒1个单位的速度向x轴负方向作匀速平移运动.若它们同时出发,运动的时间为t秒,当点P运动到O时,它们都停止运动.(1)当P在线段OA上运动时,求直线l与以P为圆心、1为半径的圆相交时t的取值范围;(2)当P在线段AB上运动时,设直线l分别与OA、OB交于C、D,试问:四边形CPBD是否可能为菱形?若能,求出此时t的值;若不能,请说明理由,并说明如何改变直线l的出发时间,使得四边形CPBD会是菱形.28.(10分)(2011•无锡)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%+600×15%=265(元).方法二:用“月应纳税额x适用税率﹣速算扣除数”计算,即2600×15%﹣125=265(元).(1)请把表中空缺的“速算扣除数”填写完整;(2)甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?(3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不变,那么乙今年3月所缴税款的具体数额为多少元?2014年江苏省南通市中考数学模拟试卷011参考答案与试题解析一、选择题(本大题共l0小题.每小题3分.共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑).26.(3分)(2011•无锡)一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那. C D .7.(3分)(2011•无锡)如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA :OC=0B:OD ,则下列结论中一定正确的是( )10.(3分)(2011•无锡)如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式+x2+1<0的解集是()y=与抛物线的不等式y=时,时,||∴的不等式+x二、填空题(本大题共8小题,每小题2分,共l6分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处)11.(2分)(2012•南平)计算:=2.∴12.(2分)(2011•无锡)我市去年约有50 000人参加中考,这个数据用科学记数法可表示为 5.0×104人.13.(2分)(2012•常德)在函数中,自变量x的取值范围是x≥4.14.(2分)(2011•无锡)写出一个大于1且小于2的无理数.的无理数是15.(2分)(2011•无锡)正五边形的每一个内角都等于108°.16.(2分)(2011•无锡)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=5cm.CD=ABEF=×17.(2分)(2011•无锡)如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD 的周长为8cm.18.(2分)(2011•无锡)如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD=65°.三、解答题(本大题共10小题.共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)(2011•无锡)计算:(1);(2)a(a﹣3)+(2﹣a)(2+a).)20.(8分)(2011•无锡)(1)解方程:x2+4x﹣2=0;(2)解不等式组.±,﹣,21.(8分)(2011•无锡)如图,在▱ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.22.(7分)(2011•无锡)一不透明的袋子中装有4个球,它们除了上面分别标有的号码l、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.求第二次取出球的号码比第一次的大的概率.(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)种,所以概率为.23.(8分)(2011•无锡)某区共有甲、乙、丙三所高中,所有高二学生参加了一次数学测试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四类情况之一:A﹣﹣概念错误;B﹣﹣计算错误;C﹣﹣解答基根据以上信息,解答下列问题:(1)求全区高二学生总数;(2)求全区解答完全正确的学生数占全区高二学生总数的百分比m(精确到0.01%);(3)请你对表中三校的数据进行对比分析,给丙校高二数学老师提一个值得关注的问题,并说明理由.÷=1200×=480×=32024.(9分)(2011•无锡)如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B处时,往后测得山头C 的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.×=3千米.×千米,BE=,CD===之间的距离25.(10分)(2011•无锡)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)求y与x之间的函数关系式;(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?,=2326.(6分)(2011•无锡)如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.(1)请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.、×+2×+2×+4××π27.(10分)(2011•无锡)如图,已知O(0,0)、A(4,0)、B(4,3).动点P从O点出发,以每秒3个单位的速度,沿△OAB的边0A、AB、B0作匀速运动;动直线l从AB位置出发,以每秒1个单位的速度向x轴负方向作匀速平移运动.若它们同时出发,运动的时间为t秒,当点P运动到O时,它们都停止运动.(1)当P在线段OA上运动时,求直线l与以P为圆心、1为半径的圆相交时t的取值范围;(2)当P在线段AB上运动时,设直线l分别与OA、OB交于C、D,试问:四边形CPBD是否可能为菱形?若能,求出此时t的值;若不能,请说明理由,并说明如何改变直线l的出发时间,使得四边形CPBD会是菱形.相交时,,<;∴,即,(t=t=时,,=,得(t==,即×(t==,即直线点迟28.(10分)(2011•无锡)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%+600×15%=265(元).方法二:用“月应纳税额x适用税率﹣速算扣除数”计算,即2600×15%﹣125=265(元).(1)请把表中空缺的“速算扣除数”填写完整;(2)甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?(3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不变,那么乙今年3月所缴税款的具体数额为多少元?。

南通市2014年数学A卷(终稿命题组提供)

南通市2014年数学A卷(终稿命题组提供)

南通市2014年初中毕业、升学考试试卷数 学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题..卡相应位置.....上) 1. -4的相反数是A .4B .-4C .14 D .-142.如图,∠1=40°,如果CD ∥BE ,那么∠B 的度数为A .160°B .140°C .60°D .50°3. 已知一个几何体的三视图如图所示,则该几何体是A .圆柱B .圆锥C .球D .棱柱 4. x 的取值范围是A .x ≥12 B .x ≥―12 C .x >12 D .x ≠125. 点P (2,―5)关于x 轴对称的点的坐标为A .(―2,5)B .(2,5)C .(―2,―5) D .(2,―5)ACD BE1(第2题)(第3题)6. 化简211x xx x+--的结果是 A .x +1 B .x -1 C .-x D .x 7. 已知一次函数y=kx -1,若y 随x 的增大而增大,则它的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 8. 若关于x 的一元一次不等式组10,0x x a -<⎧⎨->⎩无解,则a 的取值范围是A .a ≥1B .a >1C .a ≤-1D .a <-19. 如图,△ABC 中,AB =AC =18,BC =12.正方形DEFG 的顶点E ,F 在△ABC 内,顶点D ,G 分别在AB ,AC 上,AD =AG ,DG =6.则点F 到BC 的距离为 A .1 B .2C .6 D .610.如图,一个半径为r 的圆形纸片在边长为a (a >)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“接触不到的部分”的面积是 A .3πr 2Br 2C .π)r 2D .πr 2二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上) 11.我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 ▲ 吨. 12.因式分解a 3b -ab = ▲ .13.若关于x 的方程x 2-6x +m =0有两个相等的实数根,则实数m = ▲ .·(第10题)ABDGEF(第9题)14.已知抛物线y=ax 2+bx +c 与x 轴的公共点是(-4,0),(2,0),则这条抛物线的对称轴是直线▲ .15.如图,四边形ABCD 中,AB ∥DC ,∠B =90°,连接AC ,∠DAC =∠BAC .若BC =4cm ,AD =5cm ,则AB = ▲ cm .16.在如图所示(A ,B ,C 三个区域)的图形中随机地撒一把豆子,豆子落在 ▲ 区域的可能性最大(填A 或B 或C ).17.如图,点A ,B ,C ,D 在⊙O 上,点O 在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD= ▲ 度.18.已知实数m ,n 满足m -n 2=1,则代数式m 2+2n 2+4m -1的最小值等于 ▲ .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)计算:(1) (-2)2+)0(12)-1; (2) [x (x 2y 2-xy )-y (x 2-x 3y )]÷x 2y .20.(本小题满分8分)如图,正比例函数y =-2x 与反比例函数y =kx的图象相交于A (m ,2),B 两点. (1)求反比例函数的表达式及点B 的坐标; (2)结合图象直接写出当-2x >kx时,x 的取值范围.(第16题)(第20题)ABCD(第15题)(第17题)·O ABCD如图,海中有一灯塔P ,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A 处测得灯塔P 在北偏东60°方向上,航行40分钟到达B 处,测得灯塔P 在北偏东30°方向上,如果海轮不改变航线继续向东航行,有没有触礁的危险?22.(本小题满分9分)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现.老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组,A :0.5≤x <1,B :1≤x <1.5,C :1.5≤x <2,D :2≤x <2.5,E :2.5≤x <3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是 ▲ ; (2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.P北东(第21题)60° 30° (第22题)DE A BC40%盒中有x 个黑球和y 个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是25;若往盒中再放进1个黑球,这时取得黑球的概率变为12. (1)填空:x = ▲ ,y = ▲ ;(2)小王和小林利用x 个黑球和y 个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王获胜,若颜色不同则小林获胜,求两个人获胜的概率各是多少?24.(本小题满分8分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .点M 在⊙O 上,MD 恰好经过圆心O ,连接MB . (1)若CD =16,BE =4,求⊙O 的直径; (2)若∠M =∠D ,求∠D 的度数.25.(本小题满分9分)如图①,底面积为30cm 2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”.现向容器内匀速注水,注满为止.在注水过程中,水面高度h (cm)与注水时间t (s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为 ▲ cm ,匀速注水的水流速度为 ▲ cm 3/s ;(2)若“几何体”的下方圆柱的底面积为15cm 2,求“几何体”上方圆柱的高和底面积.(第25题)h图②图①ABCDMO .E(第24题)如图,点E 是菱形ABCD 对角线CA 的延长线上任意一点,以线段AE 为边作一个菱形AEFG ,且菱形AEFG ∽菱形ABCD ,连接EB ,GD . (1)求证EB =GD ;(2)若∠DAB =60°,AB =2,AGGD 的长.27.(本小题满分13分)如图,矩形ABCD 中,AB =3,AD =4,E 为AB 上一点,AE =1.M 为射线AD 上一动点,AM =a (a 为大于0的常数).直线EM 与直线CD 交于点F ,过点M 作MG ⊥EM ,交直线BC 于点G . (1)若M 为边AD 的中点,求证△EFG 是等腰三角形; (2)若点G 与点C 重合,求线段MG 的长;(3)请用含a 的代数式表示△EFG 的面积S ,并指出S 的最小整数值.28.(本小题满分13分)如图,抛物线y =-x 2+2x +3与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,抛物线的对称轴DF 与BC 相交于点E ,与x 轴相交于点F . (1)求线段DE 的长;(2)设过点E 的直线与抛物线相交于点M (x 1,y 1),N (x 2,y 2),试判断当|x 1-x 2|的值最小时,直线MN 与x 轴的位置关系,并说明理由; (3)设点P 为x 轴上一点,∠DAO +∠DPO =∠当tan ∠α=4时,求点P 的坐标.(第27题)A BDCEMF(第26题)ABDEFG。

江苏省南通市2014年中考数(扫描版)(附答案)

江苏省南通市2014年中考数(扫描版)(附答案)

南通市2014年中考数学试卷最后一题解析【试题】如图,抛物线y=-x 2+2x+3与x 轴相交于A 、B 两点,与y 轴交于C ,顶点为D ,对称轴与BC 交于E.(1) 求DE 的长,(2) 设过E 的直线与抛物线y=-x 2+2x+3与x 轴相交于M (x 1,y 1),N (x 2,y 2)试判断当21x x -的值最小时,直线MN 与x 轴的位置关系, (3) 设P 为x 轴上的一点,∠DAO+∠DPO=∠α,当tan ∠α=4时,求P 的坐标.【解析】(1)略(2)∵E 的坐标为(1,2)∴用待定系数法得直线MN 的解析式为y=(2-b )x+b点M ,N 的坐标是方程组⎩⎨⎧++-=+-=32)2(2x x y b x b y 的解,用代入法将方程组化为关于x 的一元二次方程,得x 2-bx+b -3=0,由韦达定理得,x 1+ x 2=b ,x 1x 2= b -3, ∵21x x -=221)(x x -=212214)(x x x x -+=)3(42--b b =8)2(2+-b , ∴当b=2时,21x x -最小值=22.∵b=2,∴直线MN 的解析式为y=2,∴直线MN ∥x轴.(4) 有三种解法: ① 如图1,这里数学机智灵活的同学易发现tan ∠DOH=4,又∵tan ∠α=4,∴∠DOH=∠α,应用三角形外角定理与∠DAO+∠DPO=∠α,得∠DPO=∠ADO ,显然△ADP ∽△AOD ,从而得AD 2=AO ·AP 1,而AD 2=20,AO=1,因此AP 1=20,∴OP 1=19,由对称性OP 2=17,∴P 1(19,0) P 2(-17,0)②③如图2,应用三角形外角定理转化出∠α.延长AD ,过P 1作P 1F ⊥AF 于F ,显然∠FD P 1=∠α,AD=25,∵tan ∠α=4,设DF=m ,则P 1F=4m ,△ADH ∽△A P 1F ,则mm +=52424 解得m=25,∴AF=45,P 1F=85,在直角三角形AF P 1中由勾股定理得,AP 1=20, 以下与方法①相同.③如图3,如果高中生来解很简单,应用三角公式tan (β+γ)=γβγβtan tan 1tan tan -+ ∵∠α=∠β+∠γ,tan ∠α=4,tan ∠β=2 tan ∠γ=14HP ,将以上条件代入三角公式tan (β+γ)=γβγβtan tan 1tan tan -+,可解得H P 1=18,以下与方法①相同.。

江苏省南通市2014年中考数学试卷解析

江苏省南通市2014年中考数学试卷解析

江苏省南通市2014年中考数学试卷一、选择题(本大题共10小题,每小题3 分》,共30分)1 . ( 3 分)(2014?南通) -4的相反数( )A . 4B. - 4C. 1D. 11.4-[4考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答. 解答:解:-4的相反数4.故选A .点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.3. ( 3分)(2014?南通)已知一个几何体的三视图如图所示,则该几何体是()2. ( 3分)(2014?南通)如图, ■ nCB EA . 160° B. 140仁40 °如果CD// BE,那么/ B 的度数为(C. 60°D . 50°考点:平行线的性质. 专题:计算题.分析:先根据邻补角的定义计算出/2=140 °解答:解:如图,•••/ 1=40°,•••/ 2=180° - 40°=140°, •/ CD// BE,•••/ B=Z 2=140°.2=180° -Z 1=140°,然后根据平行线的性质得/ B=Z同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.A.圆柱B.圆锥C.球D.棱柱考点:由三视图判断几何体分析:主视图、左视图、俯视 图是分别从物体正面、左面和上面看所得到的图形,从而得出 答案. 解答:解:俯视图为圆的几何体为球, 圆锥,圆柱,再根据其他视图,可知此几何体为圆柱. 故选A . 点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于 0,分母不等于0列式计算即可得解. 解答:解:由题意得,2x - 1> 0,1解得x>N 故选C.点评:本题考查的知识点为:分式有意义,分母不为0; 二次根式的被开方数是非负数.考点:关于x 轴、y 轴对称的点的坐标.分析:根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P (x , y )关于x 轴的对称点P'的坐标是(x ,- y ),进而得出答案.解答:解:•••点P (2, - 5)关于x 轴对称,•••对称点的坐标为:(2, 5). 故选:B .点评:此题主要考查了关于 x 轴对称点的坐标性质,正确记忆坐标变化规律是解题关键.2 ..6. ( 3分)(2014?南通)化简区一1 1 _尺的结果是( )A . x+1B. x - 1C. - xD . x考点:分式的加减法. 专题:计算题.x 的取值范围是(A.-B. _C. ID.: x >■x A Yx>-x 壬5. ( 3分)(2014?南通)点 P (2,- 5)关于x 轴对称的点的坐标为(A . ( - 2, 5)B. (2, 5)C. ( - 2,- 5) D . (2,- 5)分析 解答将分母化为同分母,通分,再将分子因式分解,约分. 22Xri X XX解: X 一 1 1 一 x=艾一 1 —瓦一14. ( 3分)(2014?南通)若 则=x,故选D.点评:本题考查了分式的加减运算. 分式的加减运算中,如果是同分母分式,那么分母不变, 把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.7. (3分)(2014?南通)已知一次函数y=kx- 1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限考点:一次函数图象与系数的关系.分析:根据一次函数y=kx- 3且y随x的增大而增大”得到k v 0,再由k的符号确定该函数图「象所经过的象限. 解答:解:T一次函数y=kx- 1且y随x的增大而增大,••• k v 0,该直线与y轴交于y轴负半轴,•••该直线经过第一、三、四象限.故选:C.点评:本题考查了一次函数图象与系数的关系.函数值y随x的增大而减小? k v 0;函数值y随x的增大而增大? k>0;一次函数y=kx+b图象与y轴的正半轴相交? b>0 ,一次函数y=kx+b图象与y轴的负半轴相交? b v 0,一次函数y=kx+b图象过原点? b=0.& (3分)(2014?南通)若关于x的一元一次不等式组1’一了>°无解,则a的取值范围是()A. a>1B. a> 1C. a<- 1D. a v- 1考点:解一元一次不等式组.分析:将不等式组解出来,根据不等式组解答:一.一…解:解丘- 得,p-1<0|x-a>0无解,求出a的取值范围.r K<lI A》,卜-YO…一无解,••• a>1故选A.点评:本题考查了解一元一次不等式组,会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.9. (3 分)(2014?南通)如图,△ ABC中,AB=AC=18, BC=12,正方形DEFG的顶点E,F到BC的距离为(AC上,AD=AG, DG=6,则点考点:相似三角形的判定与性质;等腰三角形的性质;勾股定理;正方形的性质分析:首先过点A作AM丄BC于点M,交DG于点N,延长GF交BC于点H,易证得△ ADG ABC,然后根据相似三角形的性质以及正方形的性质求解即可求得答案.解答:解:过点A作AM丄BC于点M,交DG于点N,延长GF交BC于点H,•/ AB=AC, AD=AG,•AD:AB=AG: AB,•••/ BAC=Z DAG,•△ ADG^^ ABC,•••/ ADG=Z B,•DG// BC,•••四边形DEFG是正方形,•FG丄DG,•FH丄BC, AN 丄DG,•/ AB=AC=18, BC=12,1•BM=:BC=6,•AM=」・"ll2「,ANDG•R••• AN=6 ::,••• MN=AM - AN=6 . ■:,• FH=MN- GF=6 :': - 6.故选D.点评:此题考查了相似三角形的判定与性质、正方形的性质、等腰三角形的性质以及勾股定理•此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10. (3分)(2014?南通)如图,一个半径为r的圆形纸片在边长为a (--…」_ )的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片不能接触到的部分”的面积是B.3r考点:扇形面积的计算;等边三角形的性质;切线的性质.专题:计算题.分析:过圆形纸片的圆心01作两边的垂线,垂足分别为D, E,连AO1,则在Rt A ADO1中,可求得二四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.解答:解:如图,当圆形纸片运动到与/ A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D, E,连AO1,贝U Rt A ADO1 中,/ O1AD=30 , O1D=r, ‘一r ....让^。

南通2014中考数学试题及答案

南通2014中考数学试题及答案

南通2014中考数学试题及答案各位考生在考场上奋笔疾书,2014中考数学真题即将揭开真面目。

中考网会在第一时间以最快的速度将2014中考数学真题呈现给大家,一旦中考真题及答案发布,将在此表页的头条显示,如果您需要查找的真题及答案没有显示,请按crtl+F5进行刷新。

请大家密切关注。

2014年南通中考数学试题及答案发布入口中考注意事项:超常考场发挥小技巧认真审题,每分必争审题是生命线。

审题是正确答题的前导。

从一个角度看,审题甚至比做题更重要。

题目审清了,解题就成功了一半。

认真审准题,才能正确定向,一举突破。

每次考试,总有一些考生因为审题失误而丢分。

尤其是那些似曾相识的题,那些看似很简单的题,考试要倍加细心,以防“上当受骗”。

我曾给学生一副对联:似曾相识“卷”归来,无可奈何“分”落去。

横批:掉以轻心。

越是简单、熟悉的试题,越要倍加慎重。

很多学生看题犹如“走马观花”,更不思考命题旨意,待到走出考场才恍然大悟,但为时已晚矣。

考试应努力做到简单题不因审题而丢分。

“两先两后”,合理安排中考不是选拔性考试,在新课改背景下,试卷的难度理应不会太大。

基础题和中等难度题的分值应占到80%。

考生拿到试卷,不妨整体浏览,此时大脑里的思维状态由启动阶段进入亢奋阶段。

只要听到铃声一响就可开始答题了。

解题应注意“两先两后”的安排:1.先易后难一般来说,一份成功的试卷,题目的排列应是遵循由易到难,但这是命题者的主观愿望,具体情况却因人而异。

同样一个题目,对他人来说是难的,对自己来说也许是容易的,所以当被一个题目卡住时就产生这样的念头,“这个题目做不出,下面的题目更别提了。

”事实情况往往是:下面一个题目反而容易!由此,不可拘泥于从前往后的顺序,根据情况可以先绕开那些难攻的堡垒,等容易题解答完,再集中火力攻克之。

2.先熟后生通览全卷后,考生会看到较多的驾轻就熟的题目,也可能看到一些生题或新型题,对前者——熟悉的内容可以采取先答的方式。

江苏省南通市中考数学真题试卷(解析卷)

江苏省南通市中考数学真题试卷(解析卷)

江苏省南通市2014年初中毕业生学业考试试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(2014•南通)﹣4的相反数()A.4 B.﹣4 C.14D.﹣142.(2014•南通)如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160°B.140°C.60°D.50°【考点】平行线的性质,邻补角的定义。

【解答】如图,∵∠1=40°,∴∠2=180°﹣40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选B。

【答案】B【点评】本题考查了平行线的性质定理,邻补角的定义。

解决本题的关键是先根据邻补角的定义计算出∠2=180°﹣∠1=140°,然后根据平行线的性质得∠B=∠2=140°.平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等。

3.(2014•南通)已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱【考点】由三视图判断几何体【解答】俯视图为圆的几何体为球,圆锥,圆柱,再根据左视图与主视图,可知此几何体为圆柱.故选A。

【答案】A【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形。

4.(2014•南通)若121x在实数范围内有意义,则x的取值范围是()A.x≥12B.x≥﹣12C.x>12D.x≠12【考点】分式有意义的条件,二次根式有意义的条件。

【解答】由题意得,2x﹣1>0,解得x>12。

故选C。

【答案】C【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数。

5.(2014•南通)点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5)C.(﹣2,﹣5)D.(2,﹣5)6.(2014•南通)化简211x xx x+--的结果是()A.x+1 B.x﹣1 C.﹣x D. x 【考点】分式的加减法【解答】()2221111111x xx x x x x xxx x x x x x--+=-===------,故选D。

江苏省南通市中考数学试卷

江苏省南通市中考数学试卷

2014年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)3.已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱6.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x 8.(3分)若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥1B.a>1 C.a≤﹣1 D.a<﹣1 9.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1B.2C.12﹣6 D.6﹣6 10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.D.πr214.(3分)已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线_________.15.(3分)如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB=_________cm.17.(3分)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_________°.18.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于_________.三、解答题(本大题共10小题,共96分)19.计算:(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.21.(8分)如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P 在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?23.盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x=_________,y=_________;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?24.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.25.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为_________cm,匀速注水的水流速度为_________cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.26.如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.27.如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.(1)若M为边AD中点,求证:△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.28.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.。

南通市2014年中考数学试题及答案(图片版)

南通市2014年中考数学试题及答案(图片版)

江苏省南通市2014年中考数学试卷参考答案一、选择题1-5 ABACB 6-10 DCADC二、填空题11.6.75×10412.ab(a+1)(a﹣1)13.914.x=﹣115.816.A17.60°18.﹣12三、解答题解:(1)原式=4+1﹣2﹣2=1;(2)原式=[x2y(xy﹣1)﹣x2y(1﹣xy)]÷x2y=[x2y(2xy﹣2)]÷x2y19.=2xy﹣2.解:(1)把A(m,2)代入y=﹣2x得﹣2m=2,解得m=﹣1,所以A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,所以反比例函数解析式为y=﹣,点A与点B关于原点对称,所以B点坐标为(1,﹣2);20.(2)当x<﹣1或0<x<1时,﹣2x>.21.解:过P作PD⊥AB.AB=18×=12海里.∵∠PAB=30°,∠PBD=60°∴∠PAB=∠APB∴AB=BP=12海里.在直角△PBD中,PD=BP•sin∠PBD=12×=6海里.∵6>8∴海轮不改变方向继续前进没有触礁的危险.22.解:(1)C组的人数是:50×40%=20(人),B组的人数是:50﹣3﹣20﹣9﹣1=7(人),把这组数据按从小到大排列为,由于共有50个数,第25、26位都落在1.5≤x<2范围内,则中位数落在C 组;故答案为:C;(2)根据(1)得出的数据补图如下:(3)符合实际.设中位数为m,根据题意,m的取值范围是1.5≤m<2,∵小明帮父母做家务的时间大于中位数,∴他帮父母做家务的时间比班级中一半以上的同学多.23.解:(1)根据题意得:,解得:;故答案为:2,3;(2)画树状图得:∵共有20种等可能的结果,两球颜色相同的有8种情况,颜色不同的有12种情况,∴P(小王胜)==,P(小林胜)==.24.解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.25.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体”的高度为11cm,水从满过由两个实心圆柱组成的“几何体”到注满用了42s﹣24s=18s,设匀速注水的水流速度为xcm3/s,则18•x=30•3,解得x=5,即匀速注水的水流速度为5cm3/s;故答案为14,5;(2)“几何体”下方圆柱的高为a,则a•(30﹣15)=18•5,解得a=6,所以“几何体”上方圆柱的高为11cm﹣6cm=5cm,设“几何体”上方圆柱的底面积为Scm2,根据题意得5•(30﹣S)=5•(24﹣18),解得S=24,即“几何体”上方圆柱的底面积为24cm2.26.(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DA B=60°,∴∠PAB=30°,∴BP AB=1,AP==,AE=AG=,∴EP=2,∴EB===,∴GD=.。

南通市中考数学试卷及答案.doc

南通市中考数学试卷及答案.doc

南通市2014年中考数学试卷最后一题解析【试题】如图,抛物线y=-x 2+2x+3与x 轴相交于A 、B 两点,与y 轴交于C ,顶点为D ,对称轴与BC 交于E.(1) 求DE 的长,(2) 设过E 的直线与抛物线y=-x 2+2x+3与x 轴相交于M (x 1,y 1),N (x 2,y 2)试判断当21x x -的值最小时,直线MN 与x 轴的位置关系,(3) 设P 为x 轴上的一点,∠DAO+∠DPO=∠α,当tan ∠α=4时,求P 的坐标.【解析】(1)略(2)∵E 的坐标为(1,2)∴用待定系数法得直线MN 的解析式为y=(2-b )x+b点M ,N 的坐标是方程组⎩⎨⎧++-=+-=32)2(2x x y b x b y 的解,用代入法将方程组化为关于x 的一元二次方程,得x 2-bx+b -3=0,由韦达定理得,x 1+ x 2=b ,x 1x 2= b -3, ∵21x x -=221)(x x -=212214)(x x x x -+=)3(42--b b =8)2(2+-b ,∴当b=2时,21x x -最小值=22.∵b=2,∴直线MN 的解析式为y=2,∴直线MN ∥x 轴. (4) 有三种解法:① 如图1,这里数学机智灵活的同学易发现tan ∠DOH=4,又∵tan ∠α=4,∴∠DOH=∠α,应用三角形外角定理与∠DAO+∠DPO=∠α,得∠DPO=∠ADO ,显然△ADP ∽△AOD ,从而得AD 2=AO ·AP 1,而AD 2=20,AO=1,因此AP 1=20,∴OP 1=19,由对称性OP 2=17,∴P 1(19,0) P 2(-17,0)②③如图2,应用三角形外角定理转化出∠α.延长AD ,过P 1作P 1F ⊥AF 于F ,显然∠FD P 1=∠α,AD=25,∵tan ∠α=4,设DF=m ,则P 1F=4m ,△ADH ∽△A P 1F ,则mm +=52424解得m=25,∴AF=45,P 1F=85,在直角三角形AF P 1中由勾股定理得,AP 1=20,以下与方法①相同.③如图3,如果高中生来解很简单,应用三角公式tan (β+γ)=γβγβtan tan 1tan tan -+ ∵∠α=∠β+∠γ,tan ∠α=4,tan ∠β=2 tan ∠γ=14HP ,将以上条件代入三角公式tan (β+γ)=γβγβtan tan 1tan tan -+,可解得H P 1=18,以下与方法①相同.。

最新初中中考数学题库 2014南通市中考数学试卷及答案

最新初中中考数学题库 2014南通市中考数学试卷及答案

南通市2014年中考数学试卷最后一题解析【试题】如图,抛物线y=-x 2+2x+3与x 轴相交于A 、B 两点,与y 轴交于C ,顶点为D ,对称轴与BC 交于E.(1) 求DE 的长,(2) 设过E 的直线与抛物线y=-x 2+2x+3与x 轴相交于M (x 1,y 1),N (x 2,y 2)试判断当21x x -的值最小时,直线MN 与x 轴的位置关系,(3) 设P 为x 轴上的一点,∠DAO+∠DPO=∠α,当tan ∠α=4时,求P 的坐标.【解析】(1)略(2)∵E 的坐标为(1,2)∴用待定系数法得直线MN 的解析式为y=(2-b )x+b 点M ,N 的坐标是方程组⎩⎨⎧++-=+-=32)2(2x x y b x b y 的解,用代入法将方程组化为关于x 的一元二次方程,得x 2-bx+b -3=0,由韦达定理得,x 1+ x 2=b ,x 1x 2= b -3, ∵21x x -=221)(x x -=212214)(x x x x -+=)3(42--b b =8)2(2+-b ,∴当b=2时,21x x -最小值=22.∵b=2,∴直线MN 的解析式为y=2,∴直线MN ∥x 轴. (4) 有三种解法:① 如图1,这里数学机智灵活的同学易发现tan ∠DOH=4,又∵tan ∠α=4,∴∠DOH=∠α,应用三角形外角定理与∠DAO+∠DPO=∠α,得∠DPO=∠ADO ,显然△ADP ∽△AOD ,从而得AD 2=AO ·AP 1,而AD 2=20,AO=1,因此AP 1=20,∴OP 1=19,由对称性OP 2=17,∴P 1(19,0) P 2(-17,0)②③如图2,应用三角形外角定理转化出∠α.延长AD ,过P 1作P 1F ⊥AF 于F ,显然∠FD P 1=∠α,AD=25,∵tan ∠α=4,设DF=m ,则P 1F=4m ,△ADH ∽△A P 1F ,则mm +=52424 解得m=25,∴AF=45,P 1F=85,在直角三角形AF P 1中由勾股定理得,AP 1=20,以下与方法①相同.③如图3,如果高中生来解很简单,应用三角公式tan (β+γ)=γβγβtan tan 1tan tan -+ ∵∠α=∠β+∠γ,tan ∠α=4,tan ∠β=2 tan ∠γ=14HP ,将以上条件代入三角公式tan (β+γ)=γβγβtan tan 1tan tan -+,可解得H P 1=18,以下与方法①相同.。

江苏省南通市2014年中考数学真题试题(解析版)

江苏省南通市2014年中考数学真题试题(解析版)

江苏省南通市2014年中考数学真题试题(解析版)一、选择题(本大题共10小题,每小题3分,共30分) 1.﹣4的相反数【 】A. 4B. 4-C.14 D. 14-2.如图,∠1=40°,如果CD ∥BE ,那么∠B 的度数为【 】A. 160°B. 140°C. 60°D. 50°考点:1.平角的定义;2.平行线的性质.3.已知一个几何体的三视图如图所示,则该几何体是【 】A. 圆柱B. 圆锥C. 球D. 棱柱 【答案】A .【解析】4在实数范围内有意义,则x 的取值范围是【 】 A. 1x 2≥ B. 1x 2≥- C. 1x >2 D. 1x 2≠5.点P (2,﹣5)关于x 轴对称的点的坐标为【 】A. (﹣2,5)B. (2,5)C. (﹣2,﹣5)D. (2,﹣5)6.化简2x x x 11x+--的结果是【 】 A. x 1+ B. x 1- C. x - D. x考点:1.分式的加减法;2. 提公因式法因式分解.7.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则它的图象经过【 】A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限考点:一次函数图象与系数的关系.8.若关于x 的一元一次不等式组x 1<0x a >0-⎧⎨-⎩无解,则a 的取值范围是【 】A. a 1≥B. a >1C. a 1≤-D. a <1-9.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为【】A. 1B. 2C. 6D. 6故选D .考点:1.等腰三角形的性质;2.正方形的性质;3. 相似三角形的判定和性质;4.平行的判定和性质;5. 勾股定理;6.转换思想的应用.10.如图,一个半径为r 的圆形纸片在边长为a (a ≥)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是【 】A.2r3πB.()2r 3π C. ()2r π D. 2r π故选C .考点:1.面动问题;2. 等边三角形的性质;3. 切线的性质;4.扇形和三角形面积的计算;5.转换思想的应用.二、填空题(本大题共8小题,每小题3分,共24分)11.我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为▲ 吨.【答案】104.【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).因此,∵67500一共5位,∴67500=6.75×104.考点:科学记数法.- = ▲ .12.因式分解3a b ab-+=有两个相等的实数根,那么m= ▲ .13.如果关于x的方程2x6x m0考点:1.抛物线与x轴的交点;2. 抛物线的轴对称性质.15.如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB= ▲ cm.【答案】8.【解析】考点:1.直角梯形的性质;2.矩形的判定和性质;3.勾股定理;4. 平行的性质;5.等腰三角形的判定.16.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在▲ 区域的可能性最大(填A或B或C).17.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= ▲ °.考点:1.圆内接四边形的性质;2.圆周角定理;3. 平行四边形的性质.18.已知实数m ,n 满足2m n 1-=,则代数式22m 2n 4m 1++-的最小值等于 ▲ .考点:1.配方法的应用;2. 偶次幂的非负数的性质;3.整体思想的应用. 三、解答题(本大题共10小题,共96分) 19.(10分)计算:(1)()12122-⎛⎫-+- ⎪⎝⎭⎝⎭; (2)()()22232x x y xy y x x y x y ⎡⎤---÷⎣⎦. 【答案】(1)1;(2)2xy 2-.【解析】考点:1. 有理数的乘方;2.零指数幂;3.二次根式化简;4.负整数指数幂;5. 整式的混合运算.20.(8分)如图,正比例函数y=﹣2x与反比例函数kyx=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2x>kx时,x的取值范围.【答案】(1)2yx=-,(1,﹣2);(2)x<﹣1或0<x<1.【解析】∵点A与点B关于原点对称,∴B点坐标为(1,﹣2).(2)当x<﹣1或0<x<1时,﹣2x>kx.考点:1.反比例函数与一次函数的交点问题;2.曲线上点的坐标与方程的关系;3.数形结合思想的应用.21.(8分)如图,海中有一灯塔P,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?【答案】海轮不改变方向继续前进没有触礁的危险,理由见解析.【解析】考点:1.解直角三角形的应用(方向角问题);2. 锐角三角函数定义;3.特殊角的三角函数值;4.实数的大小比较.22.(8分)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤x<1B.1≤x<1.5C.1.5≤x<2D.2≤x<2.5E.2.5≤x<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是▲ ;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.(2)根据(1)得出的数据补图如下:(3)符合实际.设中位数为m,根据题意,m的取值范围是1.5≤m<2,∵小明帮父母做家务的时间大于中位数,∴他帮父母做家务的时间比班级中一半以上的同学多.考点:1.频数分布直方图;3.扇形统计图;4.频数、频率和总量的关系;5.中位数.23.(8分)盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是25;若往盒中再放进1个黑球,这时取得黑球的概率变为12.(1)填空:x= ▲ ,y= ▲ ;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?(2)画树状图得:∵共有20种等可能的结果,两球颜色相同的有8种情况,颜色不同的有12种情况,∴P(小王胜)=82205=,P(小林胜)=123205=.考点:1.列表法或树状图法;2.概率公式;3.方程组的应用.24.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.【答案】(1)20;(2)30°.【解析】考点:1.垂径定理;2.勾股定理;3.圆周角定理;4.直角三角形两锐角的关系;5.方程思想的应用.25.(9分)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为▲ cm,匀速注水的水流速度为▲ cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.【答案】(1)14,5;(2)24cm2.【解析】答:“几何体”上方圆柱的底面积为24cm2.考点:1.一次函数和一元一次方程的应用;2.直线上点的坐标与方程的关系.26.(10分)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,GD的长.(2)如答图,连接BD交AC于点P,则BP⊥AC,考点:1. 菱形的性质;2.相似多边形的性质;3.全等三角形的判定和性质;4.勾股定理;5.含30度角直角三角形的性质.27.(13分)如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.(1)若M为边AD中点,求证:△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.长度,然后用含a的代数式表示△EFG的面积S,指出S的最小整数值.又∵∠MCD+∠MFD=90°,∠AME+∠AEM=90°,∴∠AME=∠MCD. ∵∠MAE=∠CDM=90°,∴△MAE ∽△CDM. ∴DM CD AE AM =,即4a 31a-=,解得a=1或3.代入CM=CM=或.∵点G 与点C 重合,∴MG=或.(3)①当点M 在AD 上时,如答图2,过点M 作MN ⊥BC 交BC 于点N ,∵AB=3,AD=4,AE=1,AM=a 。

南通市2014年初中毕业、升学考试数学试卷

南通市2014年初中毕业、升学考试数学试卷

南通市2014年初中毕业、升学考试试卷数学一、选择题(共10题,每小题3分) 1. -4的相反数是A. 4 B. -4 C.41 D.41- 2.如图,∠1=40°,如果CD ∥BE ,那么∠B 的度数为A. 160° B. 140° C. 60° D. 50° 3.已知一个几何体的三视图如图所示,则该几何体是 A. 圆柱 B. 圆锥 C. 球 D. 棱柱 4.若121-x 在实数范围内有意义,则x 的取值范围是A. 21≥x B. 21-≥x C. 21φx D. 21≠x 5.点P (2,-5)关于x 轴对称的点的坐标为A. (-2,5) B. (2,5) C. (-2,,5) D. (2,,5)6.化简xxx x -+-112的结果是 A. X +1 B. X -1 C. -x D. x7.已知一次函数1-=kx y ,若y 随x 的增大而增大,则它的图像经过A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限 8.若关于x 的一元一次不等式组⎩⎨⎧--01φπa x x 无解,则a 的取值范围是A. 1≥a B. a >1 C. A ≤-1 D. a <-19.如图,△ABC 中,AB=AC=18,BC=12,正方形DEFG 的顶点E 、F 在△ABC 内,顶点D 、G 分别在AB ,AC 上,AD=AG ,DG=6,则点F 到BC 的距离为 A. 1B. 2 C.6212- D. 626-10.如图,一个半径为r 的圆形纸片在边长为a (r a 32>)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“接触不到的部分”的面积是(第2题)EDCBA(第3题)(第9题)G FE DCBAA.23r πB.2333r π- C. ()233r π-D. 2r π二、填空题(共8题,每题3分)11.我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 吨。

江苏省南通市2014年中考数学试题(word版,含解析)

江苏省南通市2014年中考数学试题(word版,含解析)

江苏省南通市2014年中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2014•南通)﹣4的相反数()A. 4 B.﹣4 C.D.﹣考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣4的相反数4.故选A.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2014•南通)如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A. 160°B. 140°C. 60°D. 50°考点:平行线的性质.专题:计算题.分析:先根据邻补角的定义计算出∠2=180°﹣∠1=140°,然后根据平行线的性质得∠B=∠2=140°.解答:解:如图,∵∠1=40°,∴∠2=180°﹣40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选B.点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.3.(3分)(2014•南通)已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,从而得出答案.解答:解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆柱.故选A.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.4.(3分)(2014•南通)若在实数范围内有意义,则的取值范围是()A.≥B.≥﹣C.>D.≠考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,2﹣1>0,解得>.故选C.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.(3分)(2014•南通)点P(2,﹣5)关于轴对称的点的坐标为()A.(﹣2,5)B.(2,5)C.(﹣2,﹣5)D.(2,﹣5)考点:关于轴、y轴对称的点的坐标.分析:根据关于轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(,y)关于轴的对称点P′的坐标是(,﹣y),进而得出答案.解答:解:∵点P(2,﹣5)关于轴对称,∴对称点的坐标为:(2,5).故选:B.点评:此题主要考查了关于轴对称点的坐标性质,正确记忆坐标变化规律是解题关键.6.(3分)(2014•南通)化简的结果是()A. +1 B.﹣1 C.﹣D.考点:分式的加减法.专题:计算题.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===,故选D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.7.(3分)(2014•南通)已知一次函数y=﹣1,若y随的增大而增大,则它的图象经过()A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限考点:一次函数图象与系数的关系.分析:根据“一次函数y=﹣3且y随的增大而增大”得到<0,再由的符号确定该函数图象所经过的象限.解答:解:∵一次函数y=﹣1且y随的增大而增大,∴<0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.点评:本题考查了一次函数图象与系数的关系.函数值y随的增大而减小⇔<0;函数值y随的增大而增大⇔>0;一次函数y=+b图象与y轴的正半轴相交⇔b>0,一次函数y=+b图象与y轴的负半轴相交⇔b<0,一次函数y=+b图象过原点⇔b=0.8.(3分)(2014•南通)若关于的一元一次不等式组无解,则a的取值范围是()A. a≥1 B. a>1 C. a≤﹣1 D. a<﹣1考点:解一元一次不等式组.分析:将不等式组解出,根据不等式组无解,求出a的取值范围.解答:解:解得,,∵无解,∴a≥1.故选A.点评:本题考查了解一元一次不等式组,会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014•南通)我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 6.75×104吨.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将67500用科学记数法表示为:6.75×104.故答案为:6.75×104.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2014•南通)因式分解a3b﹣ab=ab(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.分析:此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差继续分解.解答:解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1).故答案是:ab(a+1)(a﹣1).点评:本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.(3分)(2014•南通)如果关于的方程2﹣6+m=0有两个相等的实数根,那么m=9.考点:根的判别式.分析:因为一元二次方程有两个相等的实数根,所以△=b2﹣4ac=0,根据判别式列出方程求解即可.解答:解:∵关于的方程2﹣6+m=0有两个相等的实数根,∴△=b2﹣4ac=0,即(﹣6)2﹣4×1×m=0,解得m=9点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.(3分)(2014•南通)已知抛物线y=a2+b+c与轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线=﹣1.考点:抛物线与轴的交点.分析:因为点A和B的纵坐标都为0,所以可判定A,B是一对对称点,把两点的横坐标代入公式=求解即可.解答:解:∵抛物线与轴的交点为(﹣1,0),(3,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线==﹣1,即=﹣1.故答案是:=﹣1.点评:本题考查了抛物线与轴的交点,以及如何求二次函数的对称轴,对于此类题目可以用公式法也可以将函数化为顶点式求解,也可以用公式=求解,即抛物线y=a2+b+c与轴的交点是(1,0),(2,0),则抛物线的对称轴为直线=.点评:此题考查了梯形的性质、等腰三角形的判定与性质、矩形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.(3分)(2014•南通)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在A区域的可能性最大(填A或B或C).考点:几何概率.分析:根据哪个区域的面积大落在那个区域的可能性就大解答即可.解答:解:由题意得:S A>S B>S C,故落在A区域的可能性大,故答案为:A.点评:本题考查了几何概率,解题的关键是了解那个区域的面积大落在那个区域的可能性就大.17.(3分)(2014•南通)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=60°.考点:圆周角定理;平行四边形的性质.专题:压轴题.分析:由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后又三角形外角的性质,即可求得∠OAD+∠OCD的度数.解答:解:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,∵∠AOC=2∠ADC,∴∠B=2∠ADC,∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∴3∠ADC=180°,∴∠ADC=60°,∴∠B=∠AOC=120°,∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,∴∠OAD+∠OCD=(∠1+∠2)﹣(∠ADO+∠CDO)=∠AOC﹣∠ADC=120°﹣60°=60°.故答案为:60°.点评:此题考查了圆周角定理、圆的内接四边形的性质、平行四边形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.三、解答题(本大题共10小题,共96分)19.(10分)(2014•南通)计算:(1)(﹣2)2+()0﹣﹣()﹣1;(2)[(2y2﹣y)﹣y(2﹣3y)]÷2y.考点:整式的混合运算;零指数幂;负整数指数幂.分析:(1)先求出每一部分的值,再代入求出即可;(2)先算括号内的乘法,再合并同类项,最后算除法即可.解答:解:(1)原式=4+1﹣2﹣2=1;(2)原式=[2y(y﹣1)﹣2y(1﹣y)]÷2y=[2y(2y﹣2)]÷2y=2y﹣2.点评:本题考查了零指数幂,负整数指数幂,二次根式的性质,有理数的混合运算,整式的混合运算的应用,主要考查学生的计算和化简能力.20.(8分)(2014•南通)如图,正比例函数y=﹣2与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2>时,的取值范围.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)先把A(m,2)代入y=﹣2可计算出m,得到A点坐标为(﹣1,2),再把A 点坐标代入y=可计算出的值,从而得到反比例函数解析式;利用点A与点B关于原点对称确定B点坐标;(2)观察函数图象得到当<﹣1或0<<1时,一次函数图象都在反比例函数图象上方.解答:解:(1)把A(m,2)代入y=﹣2得﹣2m=2,解得m=﹣1,所以A点坐标为(﹣1,2),把A(﹣1,2)代入y=得=﹣1×2=﹣2,所以反比例函数解析式为y=﹣,点A与点B关于原点对称,所以B点坐标为(1,﹣2);(2)当<﹣1或0<<1时,﹣2>.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.21.(8分)(2014•南通)如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?考点:解直角三角形的应用-方向角问题.分析:易证△ABP是等腰三角形,过P作PD⊥AB,求得PD的长,与6海里比较大小即可.解答:解:过P作PD⊥AB.AB=18×=12海里.∵∠PAB=30°,∠PBD=60°∴∠PAB=∠APB∴AB=BP=12海里.在直角△PBD中,PD=BP•sin∠PBD=12×=6海里.∵6>8∴海轮不改变方向继续前进没有触礁的危险.点评:本题主要考查了方向角含义,正确作出高线,转化为直角三角形的计算是解决本题的关键.22.(8分)(2014•南通)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤<1B.1≤<1.5C.1.5≤<2D.2≤<2.5E.2.5≤<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是C;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.考点:频数(率)分布直方图;扇形统计图;中位数.专题:图表型.分析:(1)可根据中位数的概念求值;(2)根据(1)的计算结果补全统计图即可;(3)根据中位数的意义判断.解答:解:(1)C组的人数是:50×40%=20(人),B组的人数是:50﹣3﹣20﹣9﹣1=7(人),把这组数据按从小到大排列为,由于共有50个数,第25、26位都落在1.5≤<2范围内,则中位数落在C组;故答案为:C;(2)根据(1)得出的数据补图如下:(3)符合实际.设中位数为m,根据题意,m的取值范围是1.5≤m<2,∵小明帮父母做家务的时间大于中位数,∴他帮父母做家务的时间比班级中一半以上的同学多.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)(2014•南通)盒中有个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:=2,y=3;(2)小王和小林利用个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?考点:列表法与树状图法;概率公式.分析:(1)根据题意得:,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两球颜色相同、颜色不同的情况,再利用概率公式即可求得答案.解答:解:(1)根据题意得:,解得:;故答案为:2,3;(2)画树状图得:∵共有20种等可能的结果,两球颜色相同的有8种情况,颜色不同的有12种情况,∴P(小王胜)==,P(小林胜)==.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.。

2014年江苏省南通市中考数学试卷

2014年江苏省南通市中考数学试卷

绝密★启用前------------- 江苏省南通市 2014 年初中毕业、升学考试在----------------数 学本试卷满分 150 分 , 考试时间 120 分钟 ._--------------------第Ⅰ卷( 选择题 共30分)此____一、选择题 ( 本大题共 10 小题 , 每题 3 分 , 共 30 分 . 在每题给出的四个选项中, 只有___ 一项为哪一项切合题目要求的)_____1. 4 的相反数是__--------------------_卷 ()号 _11生_A . 4B . 4C.D.考 __44__2.如图,1 40 , 假如 CD ∥BE , 那么B 的度数为__ ()_______--------------------___上___ _ __ __ __ __ _ A. 160B. 140C. 60D. 50 ___ ___3. 已知一个几何体的三视图如下图, 则该几何体是()名 __ --------------------姓 __ 答 A.圆柱__ B. 圆锥__ _C. 球__D. 棱柱__1_在实数范围内存心义 , 则 x 的取值范围是_ 4. 若 __--------------------2x1__题()__1 11 1 校学A . x ≥B . x ≥-C. x >D. x2 222业5. 点 P(2, 5) 对于 x 轴对称的点的坐标为毕( )--------------------2,5) B . (2,5)C. (2, 5)D. (2, 5)无 A . (x 2x6. 化简的结果是x 1 1 x()A . x 1B . x 1C. xD. x--------------------第 1页(共 8页)效数学试卷7. 已知一次函数 y kx1, 若 y 随 x 的增大而增大 , 则它的图象经过()A . 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限D. 第二、三、四象限8. 若对于 x 的一元一次不等式组x < 0, 无解 , 则 a 的取值范围是1x >a ()A . a ≥1B . a > 1C. a ≤ 1D . a < 19.如图, △ABC 中 , AB AC 18 , BC 12 , 正方形 DEFG 的极点 E ,F 在△ABC 内,极点 D ,G 分别在 AB , AC 上, ADAG , DG6 ,则点 F 到 BC 的距离为 ( )A . 1B. 2C. 12 2 6D.6 2610. 如图 , 一个半径为 r 的圆形纸片在边长为a(a >2 3r ) 的等边三角形内随意运动 , 则在该等边三角形内, 这个圆形纸片“接触不到的部分”的面积是()π 23 3 π 2A . rB.r33C. (3 3 π)r 2D. πr 2第Ⅱ卷( 非选择题 共 120 分)二、填空题 ( 本大题共 8小题,每小 3分,共 24 分 . 把答案填写在题中的横线上 )11. 我国第一艘航母“辽宁舰”最大排水量为67 500 吨 , 这个数据用科学记数法可表示为 吨 .12. 因式分解 a 3b ab.13. 若对于 x 的方程 x 2 6 x m 0 有两个相等的实数根 , 则实数 m .14. 已知抛物线 y ax 2bxc 与 x 轴的公共点是 ( 4,0) , (2,0) , 则这条抛物线的对称轴是直线 .15. 如图,四边形 ABCD 中,AB ∥DC , B 90 ,连结AC , DACBAC ,若BC4 cm , AD5 cm , 则 ABcm .数学试卷第 2页(共 8页)16. 在如下图( A , B , C 三个地区 ) 的图形中随机地撒一把豆子, 豆子落在 区域的可能性最大 (填 A 或 B 或 C ).17.如图,点 A , B , C , D 在O 上,点O 在D 的内部 ,四边形 OABC 为平行四边形,则OAD OCD度.18. 已知实数 m , n 知足 m n21 , 则代数式 m22n24m 1 的最小值等于. 三、解答题 ( 本大题共 10 小题 , 共 96 分. 解答应写出文字说明、证明过程或演算步骤 )19.( 本小题满分10 分)(1) ( 2)2( 2 3 ) 04 (1) 1;22( 2) [ x( x 2 y 2 xy) y(x 2 x 3 y)] x 2 y .20.( 本小题满分 8 分)如图 , 正比率函数 y2x 与反比率函数 yk A(m,2) , B 两点 .的图象订交于( 1) 求反比率函数的表达式及点B 的坐标; x数学试卷第3页(共 8页)( 2) 联合图象直接写出当 - 2 x > k时 , AB 的取值范围 .x21.( 本小题满分 8 分)如图 , 海中有一灯塔 P , 它的四周 8 海里内有暗礁, 海轮以 18 海里 /时的速度由西向东航行 , 在 A 处测得灯塔 P 在北偏东 60 方向上,航行 40 分钟抵达 B 处 , 测得灯塔 P 在北偏东 30 方向上,假如海轮不改变航线持续向东航行, 有没有触礁的危险?22.( 本小题满分 9 分)九年级 ( 1) 班展开了为期一周的“敬老爱亲”社会活动, 并依据学生做家务的时间来评论他们在活动中的表现 , 老师检查了全班 50 名学生在此次活动中做家务的时间, 并将统计的时间 ( 单位:小时 ) 分红 5 组 . A . ≤x <1, B. 1≤x <, C. ≤ x <2 D.2≤ x <, E.≤x <3 , 制作成两幅不完好的统计图( 如图 ).请依据图中供给的信息 , 解答以下问题:( 1) 此次活动中学生做家务时间的中位数所在的组是 ;( 2) 补全频数散布直方图;( 3) 该班的小明同学这一周做家务2 小时 , 他以为自己做家务的时间比班里一半以上的同学多 , 你以为小明的判断切合实质吗?请用适合的统计知识说明原因.数学试卷 第 4页(共 8页)------------- 在 ----------------_--------------------_此___23.( 本小题满分 8 分)__盒中有 x 个黑球和 y 个白球 , 这些球除颜色外无其余差异. 若从盒中随机取一个球 , 它___21__是黑球的概率是;若往盒中再放进 1 个黑球 , 这时获得黑球的概率变成._5_2_--------------------, y_;号卷( 1) 填空: x_( 2) 小王和小林利用 x 个黑球和 y 个白球进行摸球游戏 . 商定:从盒中随机摸取一个,生_考__接着从剩下的球中再随机摸取一个 , 若两球颜色同样则小王获胜 , 若颜色不一样则小林__胜 , 求两个人获胜的概率各是多少?_____ __ ____--------------------__上_____ ___ _ __ ____ _ __ 名 __姓__--------------------__答__ _____ __ _ __--------------------__题_校学 24.( 本小题满分8 分) 业毕如图 , AB 是 O 的直径 ,弦 CD AB 于点 E ,点M 在 O 上 , MD 恰巧经过圆心 O,连结 MB .--------------------4 ,求 O 的直径;无( 1) 若CD 16, BE(2)若 MD , 求 D 的度数 .-------------------- 数学试卷第 5页(共 8页)效25.( 本小题满分 9 分 )如图 1, 底面积为 30 cm 2 的空圆柱形容器内水平搁置着由两个实心圆柱构成的“几何体” , 现向容器内匀速灌水 , 注满为止 . 在灌水过程中 , 水面高度 h(cm) 与灌水时间 t(s) 之间的关系如图 2 所示 .请依据图中供给的信息, 解答以下问题:( 1) 圆柱形容器的高为cm , 匀速灌水的水流速度为cm 3 / s ;( 2) 若“几何体”的下方圆柱的底面积为 15 cm 2 , 求“几何体”上方圆柱的高和底面积 .26.( 本小题满分 10 分 )如图 , 点 E 是菱形 ABCD 对角线 CA 的延伸线上随意一点, 以线段 AE 为边作一个菱形 AEFG , 且 菱形 AEFG 菱形 ABCD , 连结 EB , GD .( 1) 求证: EB GD ;( 2) 若 DAB60 , AB 2, AG3,求GD 的长.数学试卷 第 6页(共 8页)27.( 本小题满分 13 分 ) 28.( 本小题满分13 分)如图 , 矩形ABCD中, AB 3,AD 4,E为AB上一点,AE 1, M 为射线 AD 上一如图 , 抛物线yx2 2 x 3 与x轴订交于A,B两点, 与 y 轴交于C,极点为 D ,抛动点 , AM a ( a 为大于0的常数 ), 直线EM与直线CD交于点F,过点M作物线的对称轴DF 与BC订交于点 E ,与x轴订交于点 F .MG EM ,交直线 BC于点 G. ( 1) 求线段DE的长;( 1) 若 M 为边 AD 中点,求证:△EFG是等腰三角形;( 2) 设过点E的直线与抛物线订交于点M ( x1 , y1 ) , N ( x2 , y2 ) ,试判断当 | x1 x2 | 的值( 2) 若点 G 与点 C 重合,求线段 MG 的长;最小时 , 直线MN与 x 轴的地点关系 , 并说明原因;( 3) 请用含 a 的代数式表示△EFG的面积S, 并指出S的最小整数值 . ( 3) 设P为 x 轴上的一点 , DAO DPO , 当tan 4时,求点P的坐标.数学试卷第7页(共 8页)数学试卷第8页(共8页)。

2014年江苏省南通市中考数学试卷【word版】(含答案和解析)

2014年江苏省南通市中考数学试卷【word版】(含答案和解析)

江苏省中考模拟数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣4的相反数()A.4B.﹣4 C.D.﹣2.(3分)(如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160°B.140°C.60°D.50°3.(3分)(已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱4.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠5.(3分)点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5)C.(﹣2,﹣5)D.(2,﹣5)6.(3分)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x7.(3分)已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限8.(3分)若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥1 B.a>1 C.a≤﹣1 D.a<﹣19.(3分)如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1B.2C.12﹣6 D.6﹣610.(3分)如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.D.πr2二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为_________吨.12.(3分)因式分解a3b﹣ab=_________.13.(3分)如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=_________.14.(3分)已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线_________.15.(3分)如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB=_________cm.16.(3分)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在_________区域的可能性最大(填A或B或C).17.(3分)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= _________°.18.(3分)已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于_________.三、解答题(本大题共10小题,共96分)19.(10分)计算:(1)(﹣2)2+()0﹣﹣()﹣1;(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.20.(8分)如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2x>时,x的取值范围.21.(8分)如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?22.(8分)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:≤x<1 B.1≤x<1.5 C.1.5≤x<2 D.2≤x<2.5 E.2.5≤x<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是_________;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.23.(8分)盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x=_________,y=_________;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?24.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.25.(9分)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为_________cm,匀速注水的水流速度为_________cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.26.(10分)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.27.(13分)如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a (a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.(1)若M为边AD中点,求证:△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.28.(14分)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x 轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.2014年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.A2.B3.A4.C5.B6.D7.C8.A9.分析:首先过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,易证得△ADG∽△ABC,然后根据相似三角形的性质以及正方形的性质求解即可求得答案.解答:解:过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,∵AB=AC,AD=AG,∴AD:AB=AG:AB,∵∠BAC=∠DAG,∴△ADG∽△ABC,∴∠ADG=∠B,∴DG∥BC,∵四边形DEFG是正方形,∴FG⊥DG,∴FH⊥BC,AN⊥DG,∵AB=AC=18,BC=12,∴BM=BC=6,∴AM==12,∴,∴,∴AN=6,∴MN=AM﹣AN=6,∴FH=MN﹣GF=6﹣6.故选D.分析:过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.解答:解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,.∴.由.∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为=.故选C.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 6.75×104吨.12.(3分)因式分解a3b﹣ab=ab(a+1)(a﹣1).13.(3分)如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=9.14.(3分)已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线x=﹣1.15.(3分)如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB=8cm.16.(3分)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在A区域的可能性最大(填A或B或C).17.(3分)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= 60°.18.(3分)已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于﹣12.分析:已知等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.解答:解:∵m﹣n2=1,即n2=m﹣1,∴原式=m2+2m﹣2+4m﹣1=m2+6m+9﹣12=(m+3)2﹣12≥﹣12,则代数式m2+2n2+4m﹣1的最小值等于﹣12,故答案为:﹣12.三、解答题(本大题共10小题,共96分)19.(10分)计算:解答:解:(1)原式=4+1﹣2﹣2=1;(2)=2xy﹣2.20.分析:(1)先把A(m,2)代入y=﹣2x可计算出m,得到A点坐标为(﹣1,2),再把A点坐标代入y=可计算出k的值,从而得到反比例函数解析式;利用点A与点B关于原点对称确定B点坐标;(2)观察函数图象得到当x<﹣1或0<x<1时,一次函数图象都在反比例函数图象上方.解答:解:(1)把A(m,2)代入y=﹣2x得﹣2m=2,解得m=﹣1,所以A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,所以反比例函数解析式为y=﹣,点A与点B关于原点对称,所以B点坐标为(1,﹣2);(2)当x<﹣1或0<x<1时,﹣2x>.21.解答:解:过P作PD⊥AB.AB=18×=12海里.∵∠PAB=30°,∠PBD=60°∴∠PAB=∠APB∴AB=BP=12海里.在直角△PBD中,PD=BP•sin∠PBD=12×=6海里.∵6>8∴海轮不改变方向继续前进没有触礁的危险.点评:本题主要考查了方向角含义,正确作出高线,转化为直角三角形的计算是解决本题的关键.22.解答:解:(1)C组的人数是:50×40%=20(人),B组的人数是:50﹣3﹣20﹣9﹣1=7(人),把这组数据按从小到大排列为,由于共有50个数,第25、26位都落在1.5≤x<2范围内,则中位数落在C组;故答案为:C;(2)根据(1)得出的数据补图如下:(3)符合实际.设中位数为m,根据题意,m的取值范围是1.5≤m<2,∵小明帮父母做家务的时间大于中位数,∴他帮父母做家务的时间比班级中一半以上的同学多.23.解答:解:(1)根据题意得:,解得:;故答案为:2,3;(2)画树状图得:∵共有20种等可能的结果,两球颜色相同的有8种情况,颜色不同的有12种情况,∴P(小王胜)==,P(小林胜)==.24.解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.25.分析:(1)根据图象,分三个部分:满过“几何体”下方圆柱需18s,满过“几何体”上方圆柱需24s﹣18s=6s,注满“几何体”上面的空圆柱形容器需42s﹣24s=18s,再设匀速注水的水流速度为xcm3/s,根据圆柱的体积公式列方程,再解方程;(2)根据圆柱的体积公式得a•(30﹣15)=18•5,解得a=6,于是得到“几何体”上方圆柱的高为5cm,设“几何体”上方圆柱的底面积为Scm2,根据圆柱的体积公式得5•(30﹣S)=5•(24﹣18),再解方程即可.解答:解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体”的高度为11cm,水从满过由两个实心圆柱组成的“几何体”到注满用了42s﹣24s=18s,设匀速注水的水流速度为xcm3/s,则18•x=30•3,解得x=5,即匀速注水的水流速度为5cm3/s;故答案为14,5;(2)“几何体”下方圆柱的高为a,则a•(30﹣15)=18•5,解得a=6,所以“几何体”上方圆柱的高为11cm﹣6cm=5cm,设“几何体”上方圆柱的底面积为Scm2,根据题意得5•(30﹣S)=5•(24﹣18),解得S=24,即“几何体”上方圆柱的底面积为24cm2.点评:本题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.26.解答:(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,∴BP AB=1,AP==,AE=AG=,∴EP=2,∴EB===,∴GD=.27.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠MDF=90°,∵M为边AD中点,∴MA=MD在△MAE和△MDF中,∴△MAE≌△MDF(ASA),∴EM=FM,又∵MG⊥EM,∴EG=FG,∴△EFG是等腰三角形;(2)解:如图1,∵AB=3,AD=4,AE=1,AM=a∴BE=AB﹣AE=3﹣1=2,BC=AD=4,∴EM2=AE2+AM2,EC2=BE2+BC2,∴EM2=1+a2,EC2=4+16=20,∵CM2=EC2﹣EM2,∴CM2=20﹣1﹣a2=19﹣a2,∴CM=.(3)解:如图2,作MN⊥BC,交BC于点N,∵AB=3,AD=4,AE=1,AM=a∴EM==,MD=AD﹣AM=4﹣a,∵∠A=∠MDF=90°,∠AME=∠DMF,∴△MAE∽△MDF∴=,∴=,∴FM=,∴EF=EM+FM=+=,∵AD∥BC,∴∠MGN=∠DMG,∵∠AME+∠AEM=90°,∠AME+∠DMG=90°,∴∠AME=∠DMG,∴∠MGN=∠AME,∵∠MNG=∠MAE=90°,∴△MNG∽△MAE∴=,∴=,∴MG=,∴S=EF•MG=××=+6,即S=+6,当a=时,S有最小整数值,S=1+6=7.28.解解:由抛物线y=﹣x2+2x+3可知,C(0,3),令y=0,则﹣x2+2x+3=0,解得:x=﹣1,x=3,∴A(﹣1,0),B(3,0);∴顶点x=1,y=4,即D(1,4);∴DF=4设直线BC的解析式为y=kx+b,代入B(3,0),C(0,3)得;,解得,∴解析式为;y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),∴EF=2,∴DE=DF﹣EF=4﹣2=2.(2)设直线MN的解析式为y=kx+b,∵E(1,2),∴2=k+b,∴k=2﹣b,∴直线MN的解析式y=(2﹣b)x+b,∵点M、N的坐标是的解,整理得:x2﹣bx+b﹣3=0,∴x1+x2=b,x1x2=b﹣3;∵|x1﹣x2|====,∴当b=2时,|x1﹣x2|最小值=2,∵b=2时,y=(2﹣b)x+b=2,∴直线MN∥x轴.(3)如图2,∵D(1,4),∴tan∠DOF=4,又∵tan∠α=4,∴∠DOF=∠α,∵∠DOF=∠DAO+∠ADO=∠α,∵∠DAO+∠DPO=∠α,∴∠DPO=∠ADO,∴△ADP∽△AOD,∴AD2=AO•AP,∵AF=2,DF=4,∴AD2=AF2+DF2=20,∴OP=19,∴P1(19,0),P2(﹣17,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省南通市2014年中考数学真题试题
一、选择题(本大题共10小题,每小题3分,共30分)
D
2.(3分)(2014•南通)如图,∠1=40°,如果CD∥BE,那么∠B的度数为()
3.(3分)(2014•南通)已知一个几何体的三视图如图所示,则该几何体是()
4.(3分)(2014•南通)若在实数范围内有意义,则x的取值范围是()x≥>≠

′的坐标是(
6.(3分)(2014•南通)化简的结果是()
=﹣
7.(3分)(2014•南通)已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过
8.(3分)(2014•南通)若关于x的一元一次不等式组无解,则a的取值范围是
将不等式组解出来,根据不等式组
解:解
无解,
9.(3分)(2014•南通)如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC 内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()
2﹣
∴BM=
∴AM==12

∴AN=6
AN=6
GF=6
10.(3分)(2014•南通)如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()
D
.由
E=120°,得
∴圆形纸片不能接触到的部分的面积为=.
二、填空题(本大题共8小题,每小题3分,共24分)
11.(3分)(2014•南通)我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 6.75×104吨.
学记数法—表示较大的数.
12.(3分)(2014•南通)因式分解a3b﹣ab= ab(a+1)(a﹣1).
13.(3分)(2014•南通)如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m= 9 .
14.(3分)(2014•南通)已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线x=﹣1 .
x=
=
15.(3分)(2014•南通)如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB= 8 cm.
∴AE=c
16.(3分)(2014•南通)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在 A 区域的可能性最大(填A或B或C).
17.(3分)(2014•南通)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=60 °.
∴∠B=∠AOC,
18.(3分)(2014•南通)已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于﹣12 .
三、解答题(本大题共10小题,共96分)
19.(10分)(2014•南通)计算:
(1)(﹣2)2+()0﹣﹣()﹣1;
(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.
20.(8分)(2014•南通)如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,
2),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)结合图象直接写出当﹣2x>时,x的取值范围.
可计算出



AB=18×=12
中,PD=BP•sin∠PBD=12×=6

22.(8分)(2014•南通)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:
A.0.5≤x<1
B.1≤x<1.5
C.1.5≤x<2
D.2≤x<2.5
E.2.5≤x<3;并制成两幅不完整的统计图(如图):
请根据图中提供的信息,解答下列问题:
(1)这次活动中学生做家务时间的中位数所在的组是 C ;
(2)补全频数分布直方图;
(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.
∵小明帮父母做家务的时间大于中位数,
23.(8分)(2014•南通)盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.
(1)填空:x= 2 ,y= 3 ;
(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?
)根据题意得:

解得:
===.
24.(8分)(2014•南通)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.
(1)若CD=16,BE=4,求⊙O的直径;
(2)若∠M=∠D,求∠D的度数.

)∵∠M=∠BOD,∠M=∠D,
∴∠D=
25.(9分)(2014•南通)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所
示.
请根据图中提供的信息,解答下列问题:
(1)圆柱形容器的高为14 cm,匀速注水的水流速度为 5 cm3/s;
(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.
26.(10分)(2014•南通)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.
(1)求证:EB=GD;
(2)若∠DAB=60°,AB=2,AG=,求GD的长.
AB=1EP=2
∴BP=
=AE=AG=
∴EP=2
∴EB==
∴GD=
27.(13分)(2014•南通)如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.
(1)若M为边AD中点,求证:△EFG是等腰三角形;
(2)若点G与点C重合,求线段MG的长;
(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.
MN⊥BC,交
∴CM=
=,即,
CM=
CM=3.
∴EM=
=,
=
∴FM=
+=
∴∠AME=∠DMG
=,
=
∴MG=
EF•MG=×+6
+6
时,
28.(14分)(2014•南通)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.
(1)求线段DE的长;
(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;
(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.
的坐标即可表示出直线
=,
,因为
,解得
的坐标是的解,
=,
最小值=2
∵AF=。

相关文档
最新文档