陕西师范大学 概率论课后题答案

合集下载

概率论·课后答案(绝对详解)

概率论·课后答案(绝对详解)

i习题一3 设,,B A 为二事件,化简下列事件:B B B A B BA B A B A B A =⋃=⋃⋃=⋃⋃)()())()(1(B B A B B A A A B A B A =⋃⋃⋃=⋃⋃)())()(2(4 电话号码由5个数字组成,每个数字可能是从0到9这10个数字中的任一个,求电话号码由5个不同数字组成的概率。

3024.010302410427210678910445==⋅=⋅⋅⋅⋅=p5 n 张奖券中有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。

答案:.1k n k mn C C --6 从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”的概率是多少?解;将这五双靴子分别编号分组},,,,{};,,,,{5432154321b b b b b B a a a a a A ==,则C 表示:“至少有两只配成一双”;从5双不同的鞋子中任取4只,其可能选法有.45C不能配对只能是:一组中选i 只,另一组中选4-i 只,且编号不同,其可能选法为)0,1,2,3,4(;455=--i C C i i i41045341523251235451)(1)(C C C C C C C C C C P C P ++++-=-= 2113218177224161247720104060401011234789105453245224551=-=⋅⋅-=⋅++++-=⋅⋅⋅⋅⋅⋅⋅+⋅+⋅⋅+⋅⋅+-= 7在[—1,1]上任取一点,求该点到原点的距离不超过51的概率。

答案:518在长度为a 的线段内任取两点,将其分成三段,求它们可以构成三角形的概率。

,0,0a y a x <<<<且a y x <+<0,又41222,,=⎪⎪⎪⎩⎪⎪⎪⎨⎧<<>+⇒⎪⎩⎪⎨⎧--<---<--->+P ay a x a y x y x a x y y x a y x y x a y x 9在区间)1,0(内任取两个数,求这两个数的积小于41的概率。

概率论课后习题答案pdf

概率论课后习题答案pdf

概率论课后习题答案pdf概率论课后习题答案pdf概率论是数学中的一门重要学科,研究的是随机事件发生的规律性。

在学习概率论的过程中,课后习题是巩固知识、提高应用能力的重要途径。

然而,对于一些复杂的概率题目,学生可能会遇到困惑和难以解答的情况。

因此,提供一份概率论课后习题答案pdf对于学生来说是非常有益的。

一、基础概率题1. 一个标准的扑克牌中,红桃和黑桃的数量各有多少张?答案:扑克牌一共有52张,其中红桃和黑桃各有13张。

2. 从一副标准扑克牌中,随机抽取两张牌,求两张牌都是红桃的概率。

答案:首先,从52张牌中抽取第一张红桃的概率为13/52。

然后,从剩下的51张牌中抽取第二张红桃的概率为12/51。

因此,两张牌都是红桃的概率为(13/52) * (12/51) = 1/17。

二、条件概率题1. 一家电子产品公司生产的手机中,10%的手机存在质量问题。

现在从该公司生产的手机中随机选择一个,发现该手机存在质量问题。

求该手机是该公司生产的概率。

答案:设事件A表示选择的手机存在质量问题,事件B表示该手机是该公司生产的。

根据条件概率的定义,我们需要求解P(B|A)。

根据题意,P(A) = 0.1,即选择的手机存在质量问题的概率为0.1。

又因为只有该公司生产的手机存在质量问题,所以P(A|B) = 1。

根据条件概率的公式,有P(B|A) = P(A|B) * P(B) / P(A) = 1 * P(B) / 0.1 = 10 * P(B)。

由于概率的取值范围在0到1之间,所以P(B)的取值范围也在0到0.1之间。

因此,该手机是该公司生产的概率为10 * P(B),其中0 <= P(B) <= 0.1。

三、随机变量题1. 设随机变量X表示一次抛掷一枚骰子的结果,求X的期望。

答案:一枚骰子的结果有1、2、3、4、5、6六种可能,每种可能出现的概率为1/6。

根据期望的定义,期望E(X) = (1/6) * 1 + (1/6) * 2 + (1/6) * 3 + (1/6) * 4 + (1/6) * 5 + (1/6) * 6 = 3.5。

概率论课后习题答案

概率论课后习题答案

习题1解答1. 写出下列随机试验的样本空间Ω:(1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数;(3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标.解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为{|0,1,2,,100}ii n nΩ==.(2)设在生产第10件正品前共生产了k 件不合格品,样本空间为{10|0,1,2,}k k Ω=+=,或写成{10,11,12,}.Ω=(3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的是正品,样本空间可表示为{00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=.(3)取直角坐标系,则有22{(,)|1}x y x y Ω=+<,若取极坐标系,则有{(,)|01,02π}ρθρθΩ=≤<≤<.2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件. (1)A 发生而B 与C 不发生; (2)A 、B 、C 中恰好发生一个; (3)A 、B 、C 中至少有一个发生; (4)A 、B 、C 中恰好有两个发生; (5)A 、B 、C 中至少有两个发生; (6)A 、B 、C 中有不多于一个事件发生.解:(1)ABC 或A B C --或()A B C -;(2)ABC ABC ABC ;(3)AB C 或ABCABCABCABCABCABCABC ;(4)ABC ABCABC .(5)AB AC BC 或ABC ABC ABCABC ;(6)ABCABCABCABC .3.设样本空间{|02}x x Ω=≤≤,事件{|0.51}A x x =≤≤,{|0.8 1.6}B x x =<≤,具体写出下列事件:(1)AB ;(2)A B -;(3)A B -;(4)A B .解:(1){|0.81}AB x x =<≤; (2){|0.50.8}A B x x -=≤≤;(3){|00.50.82}A B x x x -=≤<<≤或; (4){|00.5 1.62}AB x x x =≤<<≤或.4. 一个样本空间有三个样本点, 其对应的概率分别为22,,41p p p -, 求p 的值. 解:由于样本空间所有的样本点构成一个必然事件,所以2241 1.p p p ++-=解之得1233p p =-=-,又因为一个事件的概率总是大于0,所以3p =- 5. 已知()P A =0.3,()P B =0.5,()P A B =0.8,求(1)()P AB ;(2)()P A B -;(3)()P AB .解:(1)由()()()()P AB P A P B P AB =+-得()()()()030.50.80P AB P A P B P A B =+-=+-=.(2) ()()()0.300.3P A B P A P AB -=-=-=. (3) ()1()1()10.80.2.P AB P AB P AB =-=-=-=6. 设()P AB =()P AB ,且()P A p =,求()P B . 解:由()P AB =()1()1()1()()()P AB P AB P AB P A P B P AB =-=-=--+得()()1P A P B +=,从而()1.P B p =-7. 设3个事件A 、B 、C ,()0.4P A =,()0.5P B =,()0.6P C =,()0.2P AC =,()P BC =0.4且AB =Φ,求()P A B C .解:()()()()()()()()0.40.50.600.20.400.9.P A B C P A P B P C P AB P AC P BC P ABC =++---+=++---+=8. 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:依题意可知,基本事件总数为34个.以,1,2,3i A i =表示事件“杯子中球的最大个数为i ”,则1A 表示每个杯子最多放一个球,共有34A 种方法,故34136().416A P A ==2A 表示3个球中任取2个放入4个杯子中的任一个中,其余一个放入其余3个杯子中,放法总数为211343C C C 种,故211343239().416C C C P A == 3A 表示3个球放入同一个杯子中,共有14C 种放法,故14331().416C P A ==9. 在整数0至9中任取4个,能排成一个四位偶数的概率是多少?解:从0至9 中任取4个数进行排列共有10×9×8×7种排法.其中有(4×9×8×7-4×8×7+9×8×7)种能成4位偶数. 故所求概率为4987487987411098790P ⨯⨯⨯-⨯⨯+⨯⨯==⨯⨯⨯. 10. 一部五卷的文集,按任意次序放到书架上去,试求下列事件的概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中.解:(1)第一卷出现在旁边,可能出现在左边或右边,剩下四卷可在剩下四个位置上任意排,所以5/2!5/!42=⨯=p .(2)可能有第一卷出现在左边而第五卷出现右边,或者第一卷出现在右边而第五卷出现在左边,剩下三卷可在中间三人上位置上任意排,所以 10/1!5/!32=⨯=p .(3)p P ={第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁边}2217551010=+-=. (4)这里事件是(3)中事件的对立事件,所以 10/310/71=-=P .(5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以5/1!5/!41=⨯=P . 11. 把2,3,4,5诸数各写在一X 小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率.解:末位数可能是2或4.当末位数是2(或4)时,前两位数字从剩下三个数字中选排,所以 23342/1/2P A A =⨯=.12. 一幢10层楼的楼房中的一架电梯,在底层登上7位乘客.电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有两位及两位以上乘客在同一层离开的概率.解:每位乘客可在除底层外的9层中任意一层离开电梯,现有7位乘客,所以样本点总数为79.事件A “没有两位及两位以上乘客在同一层离开”相当于“从9层中任取7层,各有一位乘客离开电梯”.所以包含79A 个样本点,于是7799)(A A P =.13. 某人午觉醒来,发觉表停了, 他打开收音机,想听电台报时, 设电台每正点是报时一次,求他(她)等待时间短于10分钟的概率.解:以分钟为单位, 记上一次报时时刻为下一次报时时刻为60, 于是这个人打开收音机的时间必在),60,0(记 “等待时间短于10分钟”为事件,A 则有(0,60),Ω=)60,50(=A ,⊂Ω于是)(A P 6010=.61= 14. 甲乙两人相约812-点在预定地点会面。

概率论第六章课后习题答案

概率论第六章课后习题答案

概率论第六章课后习题答案概率论第六章课后习题答案概率论是一门研究随机现象的数学分支,它在解决实际问题中具有广泛的应用。

第六章是概率论中的重要章节,主要涉及随机变量及其概率分布、数学期望和方差等内容。

在课后习题中,我们将通过解答一些典型问题,进一步加深对这些概念的理解。

1. 随机变量X的概率分布函数为F(x) ={ 0, x < 0{ 1/4, 0 ≤ x < 1{ 1/2, 1 ≤ x < 2{ 3/4, 2 ≤ x < 3{ 1, x ≥ 3(1) 求随机变量X的概率密度函数f(x)。

(2) 求P(0.5 ≤ X ≤ 2.5)。

解:(1) 概率密度函数f(x)是概率分布函数F(x)的导数。

根据导数的定义,我们可以得到:f(x) ={ 0, x < 0{ 1/4, 0 ≤ x < 1{ 1/2, 1 ≤ x < 2{ 1/4, 2 ≤ x < 3{ 0, x ≥ 3(2) P(0.5 ≤ X ≤ 2.5) = F(2.5) - F(0.5) = 3/4 - 1/4 = 1/2 2. 设随机变量X的概率密度函数为f(x) ={ c(1 - x^2), -1 ≤ x ≤ 1{ 0, 其他(1) 求常数c的值。

(2) 求P(|X| > 0.5)。

解:(1) 概率密度函数f(x)的积分值等于1。

我们可以计算:∫[-1,1] c(1 - x^2) dx = 1解这个积分方程,可得c = 3/4。

(2) P(|X| > 0.5) = 1 - P(|X| ≤ 0.5)= 1 - ∫[-0.5,0.5] c(1 - x^2) dx= 1 - 3/4 ∫[-0.5,0.5] (1 - x^2) dx= 1 - 3/4 [x - x^3/3] |[-0.5,0.5]= 1 - 3/4 [(0.5 - 0.5^3/3) - (-0.5 + 0.5^3/3)] = 1 - 3/4 [0.5 - 0.5/3 - (-0.5 + 0.5/3)]= 1 - 3/4 [1/3]= 1 - 1/4= 3/43. 设随机变量X的概率密度函数为f(x) ={ kx^2, 0 ≤ x ≤ 2{ 0, 其他(1) 求常数k的值。

《概率论与数理统计》习题册答案(西农版).

《概率论与数理统计》习题册答案(西农版).

第一章随机事件与概率§1.1 随机试验随机事件一、选择题1.设 B 表示事件“甲种产品畅销” , C 表示事件“乙种产品滞销” ,则依题意得 A=BC .于是对立事件 A B C甲产品滞销或乙产品畅销,故选 D.2. 由 A B B A B B A AB,故选 D.也可由文氏图表示得出.二写出下列随机试验的样本空间1. 3,4,,20 2 0,100 3.{( x, y, z) | x0, y0, z0, x y z 1}, x, y, z 分别表示折后三段长度。

三、( 1)任意抛掷一枚骰子可以看作是一次随机试验,易知共有 6 个不同的结果 . 设试验的样本点i" 出点 i点 ", i1,2,3,4,5,6 ;则 A2, 4,6, B 3 ,6(2)A1,3,5,B1,2,4,5,A B2,3,4,6,AB6,A B 1 , 5四、( 1) ABC ;( 2) ABC ;( 3)“ A、B 、C不都发生”就是“A、B、C 都发生”的对立事件,所以应记为ABC (; 4)A B C (; 5“) ABC、、中最多有一事件发生”就是“ A、B、C中至少有二事件发生”的对立事件,所以应记为:AB AC BC .又这个事件也就是“ A、 B、C 中至少有二事件不发生”,即为三事件AB、 AC、BC 的并,所以也可以记为AB AC BC.§ 1.2随机事件的概率一、填空题1. 试验的样本空间包含样本点数为10 本书的全排列10!,设A指定的 3本书放在一起,所以 A 中包含的样本点数为8! 3!,即把指定的 3 本书捆在一起看做整体,与其他三本书全排,然后这指定的 3 本书再全排。

故 P( A)8! 3! 1 。

10!152. 样本空间样本点 n 7! 5040 ,设事件A表示这7 个字母恰好组成单词SCIENCE ,则P( A)2!2!1 7!1260二、求解下列概率1.C520.36C31C75 5! C31 A750.375 (1); (2)A86C82C86 6!2.A1240.4271 14123. 由图 1.1 所示,样本点为随机点M 落在半圆0y2ax x2 ( a为正常数 ) 内,所以样本空间测度可以用半圆的面积S 表示。

《概率论》数学3章课后习题详解

《概率论》数学3章课后习题详解

概率论第三章习题参考解答1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为ξ0 1 P1/32/3因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3+2η, ξ与η的分布律如下表所示:: 求周长的期望值, 用两种方法计算, 一种是利用矩形长与宽的期望计算, 另一种是利用周长的分布计算.解: 由长和宽的分布率可以算得E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×0.2=29.9E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得E ζ=2(E ξ+E η)=2×(29.9+20)=99.8而如果按ζ的分布律计算它的期望值, 也可以得E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8 验证了期望的性质.4. 连续型随机变量ξ的概率密度为⎩⎨⎧><<=其它)0,(10)(a k x kx x aϕ又知Eξ=0.75, 求k 和a 的值。

解: 由性质⎰+∞∞-=1)(dx x ϕ得111)(|10110=+=+==++∞∞-⎰⎰a kx a k dx kx dx x a aϕ即k =a +1(1)又知75.022)(|10211=+=+===+++∞∞-⎰⎰a kx a k dx kx dx x x E a a ϕξ得k =0.75a +1.5(2)由(1)与(2)解得0.25a =0.5, 即a =2, k =36. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较.解: (1) 15个数的平均数为(90+50+150+110+90+90+110+90+50+110+90+70+50+70+150)/15 = 91.33 (2) 按上表计算期望值为(10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/188 =96.177. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值解: 假设种子甲的每公顷产量数为, 种子乙的每公顷产量数为, 则 E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=49598. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有E ξi =10, Dξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此∑==1001i i ξξ,则ξ的数学期望和标准差为gD D D kgg E E E i ii i i i i i 1011001)(1000101001001100110011001=⨯==⎪⎭⎫⎝⎛====⨯==⎪⎭⎫ ⎝⎛=∑∑∑∑====ξξξσξξξξ9. 已知100个产品中有10个次品,求任意取出的5个产品中次品数的期望值.解: 假设ξ为取出5个产品中的次品数, 又假设ξi 为第i 次取出的次品数, 即, 如果第i 次取到的是次品, 则ξi =1否则ξi =0, i =1,2,3,4,5, ξi 服从0-1分布,而且有 P {ξi =0}=90/100, P {ξi =1}=10/100, i =1,2,3,4,5因此, E ξi =10/100=1/10, 因为∑==51i iξξ因此有5.010155151=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i E E E ξξξ10. 一批零件中有9个合格品和3个废品, 在安装机器时, 从这批零件中任取一个, 如果取出的是废品就不再放回去. 求取得第一个合格品之前, 已经取出的废品数的数学期望和方差. 解: 假设在取到第一个合格品之前已取出的废品数为ξ, 则可算出0045.02201101112123}3{041.02209109112123}2{2045.0119123}1{75.0129}0{==⋅⋅====⋅⋅===⋅=====ξξξξP P P P因此有319.009.0409.0)(409.090045.04041.02045.03.030045.02041.02045.0222===-==⨯+⨯+==⨯+⨯+=ξξξξξE E D E E11. 假定每人生日在各个月份的机会是同样的, 求3个人中生日在第一个季度的平均人数. 解: 设三个随机变量ξi ,(i =1,2,3), 如果3个人中的第i 个人在第一季度出生, 则ξi =1, 否则ξi =0, 则ξi 服从0-1分布, 且有 P (ξi =1)=1/4, 因此E ξi =1/4, (i =1,2,3)设ξ为3个人在第一季度出生的人数, 则ξ=ξ1+ξ2+ξ3, 因此Eξ=E (ξ1+ξ2+ξ3)=3Eξi =3/4=0.7512. ξ有分布函数⎩⎨⎧>-=-其它1)(x e x F xλ, 求E ξ及D ξ. 解: 因ξ的概率密度为⎩⎨⎧>='=-其它)()(x e x F x xλλϕ, 因此 ()λλλϕξλλλλλ11)(0=-=+-=-===∞+-∞+-∞+-+∞-+∞-+∞∞-⎰⎰⎰⎰xx xxxe dx e xe e xd dx ex dx x x E()2220222222)(|λξλλϕξλλλλ==+-=-===⎰⎰⎰⎰∞+-∞+-+∞-+∞-+∞∞-E dx xe ex e d x dx ex dx x x E x x x x22222112)(λλλξξξ=-=-=E E D13. ⎪⎩⎪⎨⎧<-=其它1||11)(~2x x x πϕξ, 求E ξ和D ξ.解: 因φ(x )是偶函数, 因此Eξ=0,则D ξ=Eξ2-(Eξ)2=Eξ2 因此有⎰⎰-===+∞∞-1222212)(dx xx dx x x E D πϕξξ令θθθd dx x cos ,sin ==则上式=2112sin 21212cos 2sin 12||20202022=+=+=⎰⎰ππππθπθπθθπθθπd d 即D ξ=1/2=0.516. 如果ξ与η独立, 不求出ξη的分布直接从ξ的分布和η的分布能否计算出D (ξη), 怎样计算?解: 因ξ与η独立, 因此ξ2与η2也独立, 则有[]()()222222)()()(ηξηξξηξηξηE E E E E E D -=-=17. 随机变量η是另一个随机变量ξ的函数, 并且η=e λξ(λ>0), 若E η存在, 求证对于任何实数a 都有λξλξEe ea P a⋅≤≥-}{.证: 分别就离散型和连续型两种情况证. 在ξ为离散型的情况: 假设P (ξ=x i )=p i , 则λξλξλλλξEe e e E p e p ep a P a a i i a x ax i a x ax i i i i i --∞=-≥-≥==≤≤=≥∑∑∑][){)(1)()(在ξ为连续型的情况假设ξ的概率密度为φ(x ), 则λξλξλλλϕϕϕξEe e Ee dx x e dx x edx x a P a a a x aa x a--+∞∞--+∞-+∞==≤≤=≥⎰⎰⎰)()()()()()(}{证毕.18. 证明事件在一次试验中发生次数的方差不超过1/4.证: 设ξ为一次试验中事件A 发生的次数, 当然最多只能发生1次, 最少为0次, 即ξ服从0-1分布, P {ξ=1}=P (A )=p , P {ξ=0}=1-p =q ,则4121412124141)1(222≤⎪⎭⎫ ⎝⎛--=-⋅+-=-=-=p p p p p p p D ξ19. 证明对于任何常数c , 随机变量ξ有 D ξ=E (ξ-c )2-(Eξ-c )2证: 由方差的性质可知D (ξ-c )=Dξ, 而2222)()()]([)()(c E c E c E c E c D ---=---=-ξξξξξ证毕.20. (ξ,η)的联合概率密度φ(x ,y )=e -(x +y )(x ,y >0), 计算它们的协方差cov (ξ,η). 解: 由φ(x ,y )=e -(x +y )(x ,y >0)可知ξ与η相互独立, 因此必有cov (ξ,η)=0.21. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求ξ与η的协方差.,P {ξ=2}=P {η=2}=2/3, P {ξ=1}=P {η=1}=1/3, E ξ=E η=35322311=⨯+⨯38314312312},{)(2121=⨯+⨯+⨯====∑∑==i j j i ijP E ηξξη则913538)(),cov(22-=-=⋅-=ηξξηηξE E E22. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 求ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: ξ与的联合分布表及各边缘分布计算表如下表所示: 因此1212260121=⨯+⨯+⨯-=ξE 1225125412512=⨯+⨯=ξE 144275144251225)(22=-=-=ξξξE E D 3613311121311270=⨯+⨯+⨯=ηE 1083731121912=+⨯=ηE 129627512961691237129616910837)(22=-⨯=-=-=ηηηE E D 36133112131)(-=-⨯-=ξηE则4322211236171336131253613)(),cov(-=⨯⨯-=⋅--=⋅-=ηξξηηξE E E 相关系数804.027522127543236122211296275144275432221),cov(-=-=⨯⨯⨯-=⨯-==ηξηξρD D, 计算ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: 由上表的数据的对称性可知与η的边缘分布一样, 算出为 P (ξ=-1)=P (η=-1)=3/8 P (ξ=0)=P (η=-0)=2/8P (ξ=1)=P (η=1)=3/8 由对称性可知Eξ=Eη=0831831=⨯+⨯-. 081818181)(=+--=ξηE 因此cov (ξ,η)=E (ξη)-E (ξ)E (η)=0 则ρ=0而P (ξ=0,η=0)=0≠P {ξ=0}P {η=0}=1/16因此ξ与η不独立. 这是一个随机变量间不相关也不独立的例子.24. 两个随机变量ξ与η, 已知Dξ=25, Dη=36, ρξη=0.4, 计算D (ξ+η)与D (ξ-η). 解:374.065236252),cov(2)]()[()]([)(854.065236252),cov(2)]()[()]([)(2222=⨯⨯⨯-+=-+=-+=---==---=-=⨯⨯⨯++=++=++=-+-==+-+=+ξηξηρηξηξηξηξηηξξηξηξηξρηξηξηξηξηηξξηξηξηξD D D D D D E E E E E D D D D D D D E E E E E D《概率论与数理统计》复习资料一、填空题(15分)题型一:概率分布的考察 【相关公式】(P379)【相关例题】 1、设(,)XU a b ,()2E X =,1()3D Z =,则求a ,b 的值。

概率论第四、五章课后习题答案

概率论第四、五章课后习题答案

第四章 随机变量的数字特征2.某产品的次品率为0.1,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1,就去调整设备。

以X 表示一天中调整设备的次数,试求E (X )。

(设诸产品是否为次品是相互独立的。

)解:先求检验一次,决定需要调整设备的概率。

设抽检出次品件数为Y ,则Y ~b (10,0.1).记需调整设备一次的概率为p ,则2639.01.09.01109.01}1{}0{1)1(910=⨯⨯⎪⎪⎭⎫ ⎝⎛--==-=-=>=Y P Y P Y P p 又因各次检验结果相互独立,故)2639.0,4(~b X X 的分布律为于是0556.12639.0444)1(43)1(62)1(41)(43223=⨯==⨯+-⨯+-⨯+-⨯=p pp p p p p p X E以后将会知道若X ~b (n ,p ),则np X E =)(.6.(1)设随机变量X 的分布律为求)53(),(),(22+XE X E X E(2)设)(~λπX ,求)11(+X E解:(1)E (X )=(-2)⨯0.4+0⨯0.3+2⨯0.3=-0.2 由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2⨯0.4+02⨯0.3+22⨯0.3=2.8E (3X 2+5)=[3⨯ (-2)2+5]⨯0.4+[3⨯ 02+5]⨯0.3+[3⨯22+5]⨯0.3=13.4如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3⨯2.8+5=13.4(2)因)(~λπX ,故!}{k ek X P k λλ-==)1(1)1()1!(!)!1()!1(}{11)11(1100λλλλλλλλλλλλλλλλ--∞=-∞=-∞=+-∞=-∞=-=-=-==+=+==+=+∑∑∑∑∑eeej ej ek ek ek X P k X E j jj jk k k k k7. (1)设随机变量X 的概率密度为⎩⎨⎧≤>=-0,00,)(x x e x f x求(I)Y =2X ;(II) Y =e -2X 的数学期望(2)设随机变量n X X X ,,2,1 相互独立,且都服从(0,1)上的均匀分布,(I)求},,max{2,1n X X X U =的数学期望;(II)求},,min{2,1n X X X V =的数学期望。

概率论第7-10章课后习题答案

概率论第7-10章课后习题答案

习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计.【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)ee eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知 1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=.(2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L nx θθ==+=∏知 11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑【解】 0.094x =- 0.101893s = 9n =0.094.EX x ==-由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有 ˆσ=于是 ˆ0.101890.0966σ=== 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为和.5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:,,,,,,,,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计.【解】(1) ()2E X θ=,令()E X X =,则ˆ2X θ=且ˆ()2()2()E E X E X θθ===, 所以θ的矩估计值为ˆ220.6 1.2x θ==⨯=且ˆ2X θ=是一个无偏估计.(2) 似然函数8811(,)i i L f x θθ=⎛⎫== ⎪⎝⎭∏,i =1,2, (8)显然L =L (θ)↓(θ>0),那么18max{}i i x θ≤≤=时,L =L (θ)最大,所以θ的极大似然估计值ˆθ=. 因为E(ˆθ)=E (18max{}i i x ≤≤)≠θ,所以ˆθ=18max{}ii x ≤≤不是θ的无偏计. 6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i i i XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 【解】令 1,i i i Y X X +=-i =1,2,…,n -1,则 21()()()0,()2,i i i i E Y E X E X D Y μμσ+=-=-==于是 1222211ˆ[()](1)2(1),n ii E E k Yk n EY n k σσ-===-=-∑那么当22ˆ()E σσ=,即222(1)n k σσ-=时, 有 1.2(1)k n =-7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】(1)11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量. (2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=,今随机抽取6枚,测得其长度(单位mm )如下:试求μ的置信概率为的置信区间.【解】n =6,σ2=,α==,0.25214.95, 1.96,a x u u ===,μ的置信度为的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L【解】由σ2已知可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为的置信区间.(2) 求σ2的置信概率为的置信区间.【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19) 2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫±-=±= ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪⎪--⎝⎭⎝⎭ 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=-所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0nn ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L n x θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本(1) 求θ的矩估计量ˆθ; (2) 求ˆ()D θ.【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ=13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑其他.由d ln 20ln (),d Ln L θθ=>↑知 那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时 所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤= 14. 设总体X 的概率分布为其中θ(0<θ<12)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值.【解】813ˆ(1)()34,()4 28ii x E X E X x x x θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== (2) 似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,272θ=. 由于71,122> 所以θ的极大似然估计值为7ˆ2θ-= 15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量; (3) 当β=2时,求α的极大似然估计量. 【解】当α=1时,11,1;(,)(,1,)0,1.x x f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时, 2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i n i i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏其他显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=. 16.从正态总体X ~N (,62)中抽取容量为n 的样本,如果其样本均值位于区间(,)内的概率不小于,问n 至少应取多大2/2()d zt z t ϕ-=⎰z【解】26~ 3.4,XN n ⎛⎫⎪⎝⎭,则~(0,1),X Z N = {1.4 5.4}33210.95333Z P X PP Z ΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛⎫⎛⎛⎫=-=-≥- ⎪ ⎪⎝⎭⎝⎭⎝⎭于是0.975Φ≥ 1.96≥, ∴ n ≥35.17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 为样本值x 1,x 2,…,x n 中小于1的个数.求:(1) θ的矩估计;(2) θ的最大似然估计. 解 (1) 由于121(;)d d (1)d EX xf x x x x x x θθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-. 令32X θ-=,解得32X θ=-, 所以参数θ的矩估计为32X θ=-.似然函数为1()(;)(1)nN n N i i L f x θθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令 d ln ()0,d L θθ=得 Nnθ=,所以θ的最大似然估计为Nnθ=. 18. 19. 习题八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N ,.现在测了5炉铁水,其含碳量(%)分别为问若标准差不改变,总体平均值有无显著性变化(α=) 【解】0010/20.0250.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55) 3.851,0.108.H H n Z Z x x Z Z Z αμμμμασ==≠=======-===-> 所以拒绝H 0,认为总体平均值有显著性变化.2. 某种矿砂的5个样品中的含镍量(%)经测定为:设含镍量服从正态分布,问在α=下能否接收假设:这批矿砂的含镍量为. 【解】设0010/20.0050.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)0.344,0.013(4).H H n t n t x s x t t t αμμμμα==≠===-====-===<所以接受H 0,认为这批矿砂的含镍量为.3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为(克),样本方差s 2=(g 2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=).【解】设0010/20.02520.025: 1.1;: 1.1.36,0.05,(1)(35) 2.0301,36,1.008,0.1,6 1.7456,1.7456(35) 2.0301.H H n t n t n x s x t t t αμμμμα==≠===-=========<=所以接受H 0,认为这堆香烟(支)的重要(克)正常.4.某公司宣称由他们生产的某种型号的电池其平均寿命为小时,标准差为小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短设电池寿命近似地服从正态分布(取α=).【解】0100.050.05:21.5;:21.5.21.5,6,0.05, 1.65, 2.9,20,(2021.5)1.267,2.91.65.H H n z x x z z z μμμασ≥<======-===->-=- 所以接受H 0,认为电池的寿命不比该公司宣称的短.5.测量某种溶液中的水分,从它的10个测定值得出x =(%),s =(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=下检验.(1) H 0:μ=(%);H 1:μ<(%).(2)0:H σ' =(%);1:H σ'<(%). 【解】(1)00.050.050.5;10,0.05,(1)(9) 1.8331,0.452,0.037,(0.4520.5) 4.10241,0.037(9) 1.8331.n t n t x s x t t t αμα===-====-===-<-=-所以拒绝H 0,接受H 1. (2)2222010.95222220220.95(0.04),10,0.05,(9) 3.325,0.452,0.037,(1)90.0377.7006,0.04(9).n x s n s ασαχχχσχχ-=======-⨯===>所以接受H 0,拒绝H 1.6.某种导线的电阻服从正态分布N (μ,20.005).今从新生产的一批导线中抽取9根,测其电阻,得s =欧.对于α=,能否认为这批导线电阻的标准差仍为【解】00102222/20.0251/20.975222220.025220:0.005;:0.005.9,0.05,0.008,(8)(8)17.535,(8)(8) 2.088,(1)80.00820.48,(8).(0.005)H H n s n s αασσσσαχχχχχχχσ-===≠=======-⨯===> 故应拒绝H 0,不能认为这批导线的电阻标准差仍为.7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到: 第一批棉纱样本:n 1=200,x =0.532kg, s 1=0.218kg ; 第二批棉纱样本:n 2=200,y =0.57kg, s 2=0.176kg.设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异(α= 【解】01211212/2120.0250.0250.025:;:.200,0.05,(2)(398) 1.96,0.1981,1.918;(398).w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=======-< 所以接受H 0,认为两批强度均值无显著差别.8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为(%2)与(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=下检验方差齐性的假设222201:;:.A B A B H H σσσσ=≠【解】221212/2120.0250.9750.02521225,0.05,0.4322,0.5006,(1,1)(4,4)9.6,11(4,4)0.1042,(4.4)9.60.43220.8634.0.5006n n s s F n n F F F s F s αα=====--========那么0.9750.025(4,4)(4,4).F F F << 所以接受H 0,拒绝H 1.9. 10. 11. 12. 习题九1 灯泡厂用4种不同的材料制成灯丝,检验灯线材料这一因素对灯泡寿命的影响.若灯泡寿命服从正态分布,不同材料的灯丝制成的灯泡寿命的方差相同,试根据表中试验结果记录,在显著性水平下检验灯泡寿命是否因灯丝材料不同而有显著差异试验批号1 2 3 4 5 6 78灯丝材料水平A 1 A 2 A 3 A 4 1600 15814615101610 1640 15501520 1650 1640 1600 15301680 1700 1620 15701700 1750 1640 16001720 166016801800 1740182014,26;====∑ri i r n n2442..11===-∑∑T iji j T S x n ==, 242...11==-∑A i i iT S T n n =.=, =-E T A S S S =,0.05/(1)44360.7/3 2.15/()151350.8/22(3,22) 3.05.-===-=>A E S r F S n r F F ,故灯丝材料对灯泡寿命无显著影响. 表9-1-1方差分析表 方差来源 平方和S 自由度 均方和S F 值因素影响 3 误差 22 总和252. 一个年级有三个小班,他们进行了一次数学考试,现从各个班级随机地抽取了一些试在显著性水平下检验各班级的平均分数有无显著差异.设各个总体服从正态分布,且方差相等.【解】13,40,====∑ri i r n n232..11in T iji j T S x n ===-∑∑=.9=, 232...11==-∑A i i iT S T n n ==-E T A S S S 0.05/(1)167.70.465/()360.8(2,37) 3.23.-===-=>A E S r F S n r F F 故各班平均分数无显著差异.3. 下面记录了3位操作工分别在不同机器上操作3天的日产量. 【解】由已知r =4,s =3,t =3........,,,ij i j T T T T 的计算如表9-3-1.表9-3-122 (111)22 (12)2.....122....111106510920.25144.75,11092310920.25 2.75,110947.4210920.2527.17,173.50=====⨯===-=-==-=-==-=-=⎛⎫-=--= ⎪⎝⎭∑∑∑∑∑∑∑rstT ijki j k r A i i s B j j r s ij A B A B i j T S x rst T S T st rst T S T rt rst T T S S S t rst ,41.33.⨯=---=E T A B A B S S S S S表9-3-2得方差分析表 0.050.050.05(3,24) 3.01,(2,24) 3.40,(6,24) 2.51.===F F F接受假设01H ,拒绝假设0203,H H .即机器之间无显著差异,操作之间以及两者的交互作用有显著差异.4. 为了解3种不同配比的饲料对仔猪生长影响的差异,对3种不同品种的猪各选3头进行试验,分别测得其3个月间体重增加量如下表所示,取显著性水平α=,试分析不同饲料与不同品种对猪的生长有无显著影响假定其体重增长量服从正态分布,且各种配比的方差【解】由已知r =s =3,经计算x =52, 1.x =, 2.x =533.x =, .1x =52, .2x =57, .3x =47,2112.12.1()162;()8.73,()150,3.27.r sT ij i j rA i i rB j j E T A B S x x S s x x S r x x S S S S =====-==-==-==--=∑∑∑∑由于0.050.05(2,4) 6.94,(2,4).A B F F F F =>< 因而接受假设01H ,拒绝假设02H .即不同饲料对猪体重增长无显著影响,猪的品种对猪体重增长有显著影响.5.研究氯乙醇胶在各种硫化系统下的性能(油体膨胀绝对值越小越好)需要考察补强剂(A )、防老剂(B )、硫化系统(C )3个因素(各取3个水平),根据专业理论经验,交互作用全忽略,根据选用L 9(34)表作9次试验及试验结果见下表:试作最优生产条件的直观分析,并对3因素排出主次关系. 给定α=,作方差分析与(1)比较.【解】(1) 对试验结果进行极差计算,得表9-5-1.由于要求油体膨胀越小越好,所以从表9-5-1的极差j 的大小顺序排出因素的主次顺序为:主→次B ,A ,C最优工艺条件为:223A B C .(2) 利用表9-5-1的结果及公式2211==-∑r j ij i T S T r P,得表9-5-2.表9-5-2中第4列为空列,因此40.256==e S S ,其中2=e f ,所以eeS f =方差分析表如表9-5-3.由于0.05(2,2)19.00=F ,故因素C 作用较显著,A 次之,B 较次,但由于要求油体膨胀越小越好,所以主次顺序为:BAC ,这与前面极差分析的结果是一致的.6. 某农科站进行早稻品种试验(产量越高越好),需考察品种(A ),施氮肥量(B ),氮、磷、钾肥比例(C ),插植规格(D )4个因素,根据专业理论和经验,交互作用全忽略,早(1) 试作出最优生产条件的直观分析,并对4因素排出主次关系.(2) 给定α=,作方差分析,与(1)比较.【解】被考察因素有4个:A ,B ,C ,D 每个因素有两个水平,所以选用正交表L 8(27),进行极差计算可得表9-6-1.表9-6-1从表9-6-1的极差R j 的大小顺序排出因素的主次为:,,,→主次B C A D最优方案为:1222A B C D(2) 利用表9-6-1的结果及公式2211n j ij i T s T r P==-∑得表9-6-2.表9-6-2表9-6-2中第1,3,7列为空列,因此s e =s 1+s 3+s 7=,f e =3,所以ees f =.而在上表中其他列中j ejes s f f <.故将所有次均并入误差,可得 ΔΔ18.895,7.===e T e s s f整理得方差分析表为表9-6-3.由于0.05(1.7) 5.59=F ,故4因素的影响均不显著,但依顺序为:,,,→主次B C A D 与(1)中极差分析结果一致.习题十1. 在硝酸钠(NaNO 3)的溶解度试验中,测得在不同温度x (℃)下,溶解于100份水中的硝酸钠份数的数据如下,试求关于的线性回归方程.【解】经计算得,9999211112234,811.3,10144,24628.6,110144(234)4060,9124628.6234811.33534.8.9ii ii i i i i i xx xy xy x x y S S =========-==-⨯⨯=∑∑∑∑故^^^811.32340.8706,67.5078,99xyxx S b a b S ===-⨯=从而回归方程:^67.50780.8706.y x =+(2) 取α=,检验儿子的身高y 与父亲身高x 之间的线性相关关系是否显著. (3) 若父亲身高70英寸,求其儿子的身高的置信度为95%的预测区间. 【解】经计算得,9999922111112291603,604.6,40569,40584.9,40651.68140569(603)168,9140584.9603604.676.7,9140651.68(604.6)35.9956.9ˆˆˆ(1)0.4565,/9/ii ii i i i i i i i xx xy yy xy i ii xx xy x x y y S S S S b a x b x S ============-==-⨯⨯==-====-⨯∑∑∑∑∑∑91936.5891,i ==∑故回归方程:ˆ36.58910.4565.yx =+20.05(2) 35.0172,35.995635.01720.9784,250.5439(1,7) 5.59./2xyxxS Q Q Q Q S Q F F Q n ===-=-===>=-回剩总回回剩故拒绝H 0,即两变量的线性相关关系是显著的.0.025222/2ˆ(3)36.58910.45657068.5474,0.9784ˆ0.05,(7) 2.3646,0.3739,2760370()11911 1.0792,9168()1ˆ(2)1 2.36460.3739 1.079xxxxyQtnx xn Sx xt nn Sαασσ=+⨯======-⎛⎫-⎪-⎝⎭++=++=--++=⨯⨯剩给定故20.9540.=从而其儿子的身高的置信度为95%的预测区间为±=,.3.随机抽取了10个家庭,调查了他们的家庭月收入x(单位:百元)和月支出y(单位:x20 15 20 25 16 20 18 19 22 16y18 14 17 20 14 19 17 18 20 13(2) 求y与x的一元线性回归方程.(3) 对所得的回归方程作显著性检验.(α=)【解】(1) 散点图如右,从图看出,y与x之间具有线性相关关系.(2) 经计算可得10101010102211111191,170,3731,3310,2948,82.9,63,58.170191ˆˆ0.7600,0.76 2.4849,1010i i i i i ii i i i ixx xy yyxyxxx y x x y yS S SSb aS================-⨯=∑∑∑∑∑故从而回归方程:ˆ 2.48490.76.y x=+题3图20.05(3) 47.8770,5847.87710.1230,37.8360(1,8)7.57./2xyxxSQ Q Q QSQF FQ n===-=-===>=-回剩总回回剩故拒绝H0,即两变量的线性相关关系是显著的.4.设y 为树干的体积,x 1为离地面一定高度的树干直径,x 2为树干高度,一共测量了31棵树,数据列于下表,作出y 对x 1,x 2的二元线性回归方程,以便能用简单分法从x 1和x 2估【解】根据表中数据,得正规方程组01201201231411.72356923.9,411.75766.5531598.713798.85,235631598.718027472035.6.b b b bb b b b b ++=⎧⎪++=⎨⎪++=⎩解之得,b 0=,b 1=,b 2=. 故回归方程:^y =++.5.一家从事市场研究的公司,希望能预测每日出版的报纸在各种不同居民区内的周末发行量,两个独立变量,即总零售额和人口密度被选作自变量.由n =25个居民区组成的随机样本所给出的结果列表如下,求日报周末发行量y 关于总零售额x 1和人口密度x 2的线性回归8910111213141516171819202122232425【解】类似于习题4,可得正规方程组01201201225 739.5 1576.6 98.2,739.5 22429.15 47709.1 2968.58,1576.6 47709.1 101568 6317.95.b b bb b bb b b++=⎧⎪++=⎨⎪++=⎩解之得,b0=,b1=,b2=.故回归方程:ˆy=++.浓度x抗压强度y(2) 以模型y=b0+b1x1+b2x2+ε,ε~N(0,σ2)拟合数据,其中b0,b1,b2,σ2与x无关,求回归方程ˆy=ˆb+1ˆb x+2ˆb x2.【解】散点图如下图.题6图122根据上表中数据可得正规方程组01201201215 300 6750 450.5,300 6750 165000 9155,6750 165000 4263750 207990.b b b b b b b b b ++=⎧⎪++=⎨⎪++=⎩解之得:b 0=,b 1=,b 2=.故y 关于x 1与x 2的回归方程:=+从而抗压强度y 关于浓度x 的回归方程: ˆy=+。

1—7章概率论课后习题及答案

1—7章概率论课后习题及答案

第一章 随机事件及其概率§1.1-2 随机试验、随机事件1. 多项选择题:⑴ 以下命题正确的是 ( ) A .()()AB AB A =; B .,A B AB A ⊂=若则;C .,A B B A ⊂⊂若则;D .,A B A B B ⊂=若则.⑵某学生做了三道题,以i A 表示“第i 题做对了的事件”)3,2,1(=i ,则该生至少做对了两道题的事件可表示为 ( ) A .123123123A A A A A A A A A ; B .122331A A A A A A ; C .122331A A A A A A ; D .123123123123A A A A A A A A A A A A .2. A 、B 、C 为三个事件,说明下述运算关系的含义:⑴ A ; ⑵ B C ; ⑶ AB C ; ⑷ A B C ; ⑸ AB C ; ⑹ABC .3. 一个工人生产了三个零件,以i A 与i A )3,2,1(=i 分别表示他生产的第i 个零件为正 品、次品的事件.试用i A 与i A )3,2,1(=i 表示以下事件:⑴ 全是正品;⑵ 至少有一个零件是次品;⑶ 恰有一个零件是次品;⑷ 至少有两个零件是次品.§1.3-4 事件的概率、古典概型1. 多项选择题:⑴ 下列命题中,正确的是 ( ) A .B B A B A =;B .B A B A =;C .C B A C B A = ;D .()∅=)(B A AB . ⑵ 若事件A 与B 相容,则有 ( ) A .()()()P AB P A P B =+; B .()()()()P A B P A P B P AB =+-;C .()1()()P A B P A P B =--;D .()1()()P A B P A P B =-.⑶ 事件A 与B 互相对立的充要条件是 ( ) A .()()()P AB P A P B = ; B .()0()1P AB P AB ==且;C .AB A B =∅=Ω且;D . AB =∅.2. 袋中有12只球,其中红球5只,白球4只,黑球3只. 从中任取9只,求其中恰好有4只红球,3只白球,2只黑球的概率.3. 求寝室里的六个同学中至少有两个同学的生日恰好同在一个月的概率.4. 10把钥匙中有三把能打开门,今任取两把,求能打开门的概率.5. 将三封信随机地放入标号为1、2、3、4的四个空邮筒中,求以下概率:(1) 恰有三个邮筒各有一封信;(2)第二个邮筒恰有两封信;(3)恰好有一个邮筒有三封信.6. 将20个足球球队随机地分成两组,每组10个队,进行比赛.求上一届分别为第一、二名的两个队被分在同一小组的概率.§1.5 条件概率1. 多项选择题:⑴ 已知0)(>B P 且∅=21A A ,则( )成立.A .1(|)0P AB ≥; B .1212(()|)(|)(|)P A A B P A B A B =+;C .12(|)0P A A B =;D . 12(|)1P A A B =.⑵ 若0)(,0(>>B P A P )且)(|(A P B A P =),则( )成立.A .(|)()PB A P B =;B .(|)()P A B P A =;C .,A B 相容;D .,A B 不相容.2. 已知61)|(.41)|(,31)(===B A P A B P A P ,求)(B A P3. 某种灯泡能用到3000小时的概率为0.8,能用到3500小时的概率为0.7.求一只已用到了3000小时还未坏的灯泡还可以再用500小时的概率.4.两个箱子中装有同类型的零件,第一箱装有60只,其中15只一等品;第二箱装有40只,其中15只一等品.求在以下两种取法下恰好取到一只一等品的概率:⑴将两个箱子都打开,取出所有的零件混放在一堆,从中任取一只零件;⑵从两个箱子中任意挑出一个箱子,然后从该箱中随机地取出一只零件.5.某市男性的色盲发病率为7 %,女性的色盲发病率为0.5 % .今有一人到医院求治色盲,求此人为女性的概率.(设该市性别结构为男:女=0.502:0.498)6.袋中有a只黑球,b只白球,甲、乙、丙三人依次从袋中取出一只球(取后不放回),分别求出他们各自取到白球的概率.§1.6 独立性1. 多项选择题 :⑴ 对于事件A 与B ,以下命题正确的是( ).A .若B A 、互不相容,则B A 、也互不相容;B .若B A 、相容,则B A 、也相容;C .若B A 、独立,则B A 、也独立;D .若B A 、对立,则B A 、也对立. ⑵ 若事件A 与B 独立,且0)(,0)(>>B P A P , 则( )成立.A .(|)()PB A P B =;B .(|)()P A B P A =;C .B A 、相容;D .B A 、不相容.2. 已知C B A 、、互相独立,证明C B A 、、也互相独立.3. 一射手对同一目标进行四次独立的射击,若至少射中一次的概率为8180,求此射手每次射击的命中率.*4. 设C B A 、、为互相独立的事件,求证B A AB B A -、、 都与C 独立.5. 甲、乙、丙三人同时各用一发子弹对目标进行射击,三人各自击中目标的概率分别是0.4、0.5、0.7.目标被击中一发而冒烟的概率为0.2,被击中两发而冒烟的概率为0.6,被击中三发则必定冒烟,求目标冒烟的概率.6. 甲、乙、丙三人抢答一道智力竞赛题,他们抢到答题权的概率分别为0.2、0.3、0.5 ;而他们能将题答对的概率则分别为0.9、0.4、0.4.现在这道题已经答对,问甲、乙、丙三人谁答对的可能性最大.7. 某学校五年级有两个班,一班50名学生,其中10名女生;二班30名学生,其中18名女生.在两班中任选一个班,然后从中先后挑选两名学生,求(1)先选出的是女生的概率;(2)在已知先选出的是女生的条件下,后选出的也是女生的概率.第二章 一维随机变量及其分布§2.1 离散型随机变量及其概率分布1.填空题:⑴ 当c = 时()/,(1,,)P X k c N k N ===是随机变量X 的概率分布,当c = 时()(1)/,(1,,)P Y k c N k N ==-=是随机变量Y 的概率分布; ⑵ 当a = 时)0,,1,0(!)(>===λλ k k a k Y P k是随机变量Y 的概率分布;⑶ 进行重复的独立试验,并设每次试验成功的概率都是0.6. 以X 表示直到试验获得成功时所需要的试验次数,则X 的分布律为; ⑷ 某射手对某一目标进行射击,每次射击的命中率都是,p 射中了就停止射击且至多只 射击10次. 以X 表示射击的次数,则X 的分布律为; ⑸ 将一枚质量均匀的硬币独立地抛掷n 次,以X 表示此n 次抛掷中落地后正面向上的次数,则X 的分布律为 .2.设在15只同类型的零件中有2只是次品,从中取3次,每次任取1只,以X 表示取出的3只中次品的只数. 分别求出在 ⑴ 每次取出后记录是否为次品,再放回去;⑵ 取后不放回,两种情形下X 的分布律.3.一只袋子中装有大小、质量相同的6只球,其中3只球上各标有1个点,2只球上各标有2个点,1只球上标有3个点.从袋子中任取3只球,以X 表示取出的3只球上点数的和. ⑴ 求X 的分布律;⑵ 求概率(46),(46),(46),(46)P X P X P X P X <≤≤<<<≤≤.4.某厂有7个顾问,假定每个顾问贡献正确意见的可能性都是6.0. 现在为某件事的可行与否个别地征求每个顾问的意见,并按多数顾问的意见作决策.求作出正确决策的概率.5.袋子中装有5只白球,3只黑球,从中任取1只,如果是黑球就不放回去,并从其它地方取来一只白球放入袋中,再从袋中取1只球. 如此继续下去,直到取到白球为止. 求直到取到白球为止时所需的取球次数X 的分布律.§2.2 连续型随机变量及其概率分布1.多项选择题:以下函数中能成为某随机变量的概率密度的是 ( )A .⎪⎩⎪⎨⎧<<=它其20,0,cos )(πx x x f ;B .⎪⎩⎪⎨⎧<<=它其πx x x f 0,0,2cos )( ; C .⎪⎩⎪⎨⎧<<-=它其22,0,cos )(ππx x x f ; D .⎩⎨⎧<<=它其10,0,)(x xe x f x . 2.设随机变量X 的概率分布律如右,求X 的分布函数及)32(),30(),2(≤≤<<≤X P X P X P .3.设一只袋中装有依次标有数字-1、2、2、2、3、3的六只球,从此袋中任取一只球,并以X 表示取得的球上所标有的数字.求X 的分布律与分布函数.4.设连续型随机变量X 的概率密度如右,试求:⑴ 系数A ;⑵ X 的分布函数;⑶ (0.10.7)P X <<5.设连续型随机变量X ⑴ 系数k ;⑵ X 的概率密度;⑶ (||0.5)P X <.6.设连续型随机变量X 的分布函数为()arctan ()F x A B x x R =+∈,试求:⑴ 系数A 与B ;⑵ X 的概率密度;⑶ X 在区间(,)a b 内取值的概率.(),011,1F x kx x x ⎧⎪=≤≤⎨⎪≥⎩,§2.31.设离散型随机变量X 的分布律如右,求12,22,12+=-=+=X W X V X U 的分布律.2.设随机变量X 的概率密度为,0,0,)(<≥⎩⎨⎧=-x x e x f x 求随机变量X e Y =的概率密度.3.设随机变量X 在区间(0,)π上服从均匀分布,求:⑴ 随机变量2ln Y X =-的概率密度;⑵ 随机变量sin Z X =的分布函数与概率密度.4.设连续型随机变量X 的概率密度为2/2()()x f x e x R -=∈,求||Y X =的密度.*5.设1()F x 与2()F x 分别为两个随机变量的分布函数,证明:当0,0a b ≥≥且1a b +=时,)()()(21x bF x aF x +=φ可以作为某个随机变量的分布函数.§2.4 一维随机变量的数字特征1.一批零件中有9件合格品与3件次品,往机器上安装时任取一件,若取到次品就弃置一边. 求在取到合格品之前已取到的次品数的期望、方差与均方差.2.设随机变量X 的概率密度为||()0.5,,x f x e x -=-∞<<+∞求,EX DX .3.设随机变量X 的概率密度为2(1),01(),0,x x f x -≤≤⎧=⎨⎩其它求EX 与DX .4.某路公汽起点站每5分钟发出一辆车,每个乘客到达起点站的时刻在发车间隔的5分钟内均匀分布.求每个乘客候车时间的期望(假定汽车到站时,所有候车的乘客都能上车).5.某工厂生产的设备的寿命X(以年计)的概率密度为/400.25,()0,x xef xx->⎧=⎨<⎩,工厂规定,出售的设备若在一年之内损坏可以调换.若出售一台设备可赢利100元,调换一台设备厂方需花费300元,试求厂方出售一台设备净赢利的数学期望.*6.某工厂计划开发一种新产品,预计这种产品出售一件将获利500元,而积压一件将损失2000元. 而且预测到这种产品的销售量Y(件)服从指数分布(0.0001)E. 问要获得利润的数学期望最大,应生产多少件产品?第三章 多维随机变量及其分布§3.1 二维随机变量1.设随机变量),(Y X 只取下列数组中的值:)0,0(、)1,1(-、)31,1(-、)0,2(且相应的概率依次为61、31、121、125.求随机变量),(Y X 的分布律与关于X 、Y 的边缘分布律.2.一只口袋中装有四只球,球上分别标有数字1、2、2、3. 从此袋中任取一只球,取后不放回,再从袋中任取一只球.分别以X 与Y 表示第一次、第二次取到的球上标有的数字,求X 与Y 的联合分布律与关于X 、Y 的边缘分布律.3.设随机变量),(Y X 的概率密度,其它+∞≤≤+∞≤≤⎩⎨⎧=+-y x ce y x f y x 0,0,0,),()(2 试求:⑴ 常数c ;⑵ ),(Y X 的分布函数),(y x F ;⑶ }1{≤+Y X P .4.设随机变量),(Y X 的概率密度为 4.8(2),01,0(,)0,y x x y xf x y -≤≤≤≤⎧=⎨⎩,其它求关于X 、Y 的边缘概率密度.5.设随机变量),(Y X 在G 上服从均匀分布,其中G 由x 轴、y 轴及直线12+=x y 所围成,试求:⑴ ),(Y X 的概率密度),(y x f ;⑵ 求关于X 、Y 的边缘概率密度.*6.设某班车起点站上车的人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为(01),p p <<乘客中途下车与否相互独立,并以Y 表示在中途下车的人数.求:⑴ 在发车时有n 个乘客的条件下,中途有m 人下车的概率;⑵ (,)X Y 的分布律.§1.设随机变量X 与Y 相互独立右表给出二维随机变量),(Y X 律及边缘分布律中的部分数值.试将 其余数值填入表中的空白处.2.设随机变量),(Y X 分布律如右:⑴ a 、b 、c 时X 与Y 相互独立?⑵写出),(Y X 的分布律与边缘分布律.3.设随机变量X 在1、2、3、4四个整数中等可能地取值,而随机变量Y 在X ~1中等可能地取一个整数.求:⑴=X 2时Y ,的条件分布律;⑵=Y 1时X ,的条件分布律.4.设随机变量),(Y X 的概率密度为其它0,0,0,),()(>>⎩⎨⎧=+-y x e y x f y x .⑴ 求)|(|x y f X Y ;⑵ 求)|(|y x f Y X ;⑶ 说明X 与Y 的独立性.*5. 箱子中装有12只开关(其中2只是次品),从中取两次,每次取一只,并定义随机变量如下:0,1,X ⎧=⎨⎩若第一次取出的是正品若第一次取出的是次品; 0,1,Y ⎧=⎨⎩若第二次取出的是正品若第二次取出的是次品 ,试在放回抽样与不放回抽样的两种试验中,求关于X 与Y 的条件分布律,并说明X 与Y 的独立性.* 6.设随机变量),(Y X 的概率密度为,||,10(,)0,cy x x f x y <--<<⎧=⎨⎩,其它求参数c 与条件概率密度)|(,)|(||y x f x y f Y X X Y .§3.31. 设),(Y X 的分布律如右,求 ⑴0|3{,}2|2{====X Y P Y X P ⑵ ),max(Y X V =的分布律;⑶ ),min(Y X U =的分布律;⑷ Y X W +=的分布律.2.设X 与Y 是相互独立的随机变量,它们分别服从参数为1λ、2λ的泊松分布. 证明Y X Z +=服从参数为21λλ+的泊松分布.3.设随机变量X 与Y 相互独立,且都服从参数为0.25p =的两点分布,记随机变量Z 为1,0,X Y Z X Y +⎧=⎨+⎩为奇数,非为奇数求X 与Z 的联合分布律与EZ .4.设随机变量X 与Y 相互独立,其概率密度分别为321100,,(),(),32000,0,yxX Y x y e e f x f y x y --⎧⎧≥≥⎪⎪==⎨⎨<<⎪⎪⎩⎩求随机变量U X Y =+的概率密度.5.某种商品一周的需求量X 是一个随机变量,其概率密度为⎩⎨⎧≤>=-0,0,)(x x xe x f x .设各周的需求量是相互独立的,试求:⑴ 两周;⑵ 三周的需求量的概率密度.6.设某种型号的电子管的寿命(以小时记)近似地服从(1160)E 分布. 随机地选取4只,将其串联在一条线路中,求此段线路的寿命超过180小时的概率。

概率论课后习题答案第一章

概率论课后习题答案第一章

2008年4月第一章1.1 解⑴记9件合格品分别为正1正2�6�7正9记不合格品为次则Ω正1正2正1正3正1正4�6�7正1正9正1次正2正3正2正4�6�7正2正9正2次正3正4�6�7正3正9正3次�6�7 正8正9正8次正9次A正1次正2次正3次�6�7正9次⑵记2个白球分别为w1w23个黑球分别为b1b2b34个红球分别为r1r2r3r4。

则Ωw1w2b1b2b3r1r2r3r4 ⅰA w1w2。

ⅱB r1r2r3r4。

1.2 解⑴事件ABC表示该生是三年级男生但不是运动员。

⑵ABCC等价于CAB表示全系运动员都是三年级的男生。

⑶当全系运动员都是三年级学生时。

⑷当全系女生都在三年级并且三年级学生都是女生时。

1.3 解⑴1niiA⑵22221222211nCDniCDiCDCDnCDACDCD ⑶11nnijijjiAA⑷原事件即“至少有两个零件是合格品”可表为1nijijijAA。

1.4 解1—4显然5和6的证法分别类似于课文第10—12页1.5式和1.6式的证法。

1.5 解样本点总数为28A8×7。

所得分数为既约分数必须分子分母或为71113中的两个或246812中的一个和71113中的一个组合所以事件A“所得分数为既约分数”包含28A218A×15A3×22×3×52×3×6个样本点。

于是PA23698714。

1.6 解样本点总数为5310。

所取三条线段能构成一个三角形这三条线段必须是3、5、7或5、7、9。

所以事件A“所取三条线段能构成一个三角形”包含3个样本点于是PA310。

17解显然样本点总数为13事件A“恰好组成MATHEMATICIAN”包含3222个样本点。

所以3222481313PA 18解任意固定红“车”的位置黑“车”可处在9×10-189个不同位置当它处于和红“车”同行或同列的9817个位置之一时正好互相“吃掉”。

概率论课后习题答案学版

概率论课后习题答案学版

概率论课后习题答案学版概率作业答案:第一章1―5节一(1) 仅A 发生; AB C (2) A、B、C都发生; ABC (4) A、B、C 不都发生; ABC(3) A、B、C都不发生; A B C(5) A不发生,且B、C中至少有一发生; A( B C )(6) A、B、C中至少有一个发生;A B C(7) A、B、C中恰有一个发生;AB C A BC A B C (8) A、B、C中至少有两个发生;ABC A BC AB C ABC 或AB BC AC(9) A、B、C中最多有一个发生。

A B C AB C A BC A B C 或AB BC AC 或A B B C A C概率作业答案:第一章1―5节二、单项选择题1.以A表示事件“甲种产品畅销,乙种产品滞销”则其对立事件A 为( ) (A “甲种产品滞销,乙种) 产品畅销”; (B “甲、乙两种产品均畅) 销”; (C“甲、乙两种产品均滞) 销”; (D “甲种产品滞销或乙种) 产品畅销” 答案:A2.对事件A、B有B A, 则下述结论正确的是( ) ( A) A与B必同时发生;( B ) A发生,B必发生;(C ) B发生,A必发生;( D ) B 不发生,A必不发生。

答案:C3.对于任意两个事件A、B,与A B B不等价的是( ) ( A)A B;( B)B A;(C ) AB ;( D) A B .概率作业答案:第一章1―5节3.对于任意两个事件A、B,与A B B不等价的是( ) ( A) A B;( B) B A;(C ) AB ;( D) A B .A AB B, B A , AB AA , B B A B, 推不出A B= , 答案选D4.设A、B为任意两个事件,则下列各选项中错误的是( ) ( A)若AB , 则A ,B 可能不相容;( B )若AB , 则A , B 也可能相容; (C )若AB , 则A , B 也可能相容;(D )若AB , 则A , B一定不相容;.( A) AB , B A , A A B , 令B A , A B A A , A正确(B )若B A,AB , 则A B A A B , A B A B A , B 也对.__________概率作业答案:第一章1―5节对(C)令B A , 则AB , 但A B A A A .C也对正确答案; D。

概率论课后答案1-7章(修改版)

概率论课后答案1-7章(修改版)

第1章 随机变量及其概率1,写出下列试验的样本空间:连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{Λ=S ;(3)},,,,{ΛTTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。

(1)4只中恰有2只白球,1只红球,1只黑球。

(2)4只中至少有2只红球。

(3)4只中没有白球。

解: (1)所求概率为338412131425=C C C C ; (2) 所求概率为165674952014124418342824==++C C C C C C ; (3)所求概率为16574953541247==C C 。

8,(1)设,1.0)(,3.0)(,5.0)(===AB P B P A P ,求)|(),|(),|(B A A P A B P B A P ⋃,)|(),|(AB A P B A AB P ⋃.(2)袋中有6只白球,5只红球,每次在袋中任取1只球,若取到白球,放回,并放入1只白球;若取到红球不放回也不放入另外的球。

《概率论与数理统计教程》课后习题解答答案1-8章

《概率论与数理统计教程》课后习题解答答案1-8章

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。

(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 ,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,, A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1 ,2 ,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。

则 {1 ,2 ,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) A {1 ,2 } (ⅱ) B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC 成立? (3)什么时候关系式B C 是正确的? (4) 什么时候B A 成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2) C ABC 等价于AB C ,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i 1)。

用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。

解 (1)ni i A 1; (2) n i i n i i A A 11; (3) n i ni j j j i A A 11)]([ ;(4)原事件即“至少有两个零件是合格品”,可表示为 nji j i jiAA 1,;1.4 证明下列各式:(1)A B B A ; (2)A B B A (3) C B A )()(C B A ; (4) C B A )()(C B A(5) C B A )( )(C A )(C B (6)ni i ni i A A 11证明 (1)—(4)显然,(5)和(6)的证法分别类似于课文第10—12页(1.5)式和(1.6)式的证法。

概率论课后习题答案1~7章

概率论课后习题答案1~7章

习题一1. 略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件: (1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3. 略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB). 【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0, P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)=14+14+13-112=347. 从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】p=5332131313131352C C C C/C8. 对一个五人学习小组考虑生日问题:(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率;(3)求五个人的生日不都在星期日的概率.【解】(1)设A1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P(A1)=517=(17)5 (亦可用独立性求解,下同)(2)设A2={五个人生日都不在星期日},有利事件数为65,故P(A2)=5567=(67)5(3) 设A3={五个人的生日不都在星期日}P(A3)=1-P(A1)=1-(17)59. 略.见教材习题参考答案.10.一批产品共N件,其中M件正品.从中随机地取出n件(n<N).试求其中恰有m件(m≤M)正品(记为A)的概率.如果:(1)n件是同时取出的;(2)n件是无放回逐件取出的;(3)n件是有放回逐件取出的.【解】(1)P(A)=C C/Cm n m nM N M N--(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n N种,n次抽取中有m次为正品的组合数为C m n种.对于固定的一种正品与次品的抽取次序,从M件正品中取m件的排列数有P m M种,从N-M件次品中取n-m件的排列数为P n mN M--种,故P(A)=C P PPm m n mn M N MnN--由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P(A)=C CCm n mM N MnN--可以看出,用第二种方法简便得多.(3)由于是有放回的抽取,每次都有N种取法,故所有可能的取法总数为N n种,n次抽取中有m次为正品的组合数为C m n种,对于固定的一种正、次品的抽取次序,m次取得正品,都有M种取法,共有M m种取法,n-m次取得次品,每次都有N-M种取法,共有(N-M)n-m种取法,故()C ()/m m n mnnP A M N M N-=-此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为()C 1mn mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13. 一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故232322()()()35P A A P A P A =+=14. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1)1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3)2112()0.80.30.20.70.38P A A A A =⨯+⨯=15. 掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率. 【解】(1)223151115()()22232p C ==(2)1342111C ()()22245/325p ==16. 甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212333()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617. 从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】4111152222410C C C C C 131C 21p =-=18. 某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1)()0.1()0.2()0.5P AB p B A P A ===(2)()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19. 已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半). 【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.50.05200.50.050.50.002521⨯==⨯+⨯21. 两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P ==22. 从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1. (1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+-0.70.510.70.60.54-==+-24. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球} 由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P (A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知 (1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27. 在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知111120()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28. 某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率. 【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29. 某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得()()(|)(|)()()(|)()(|)()P AD P A P D A P A D P D P A P D A P B P D B P C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30. 加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31. 设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为(0.8)0.1n ≤故 n ≥11 至少必须进行11次独立射击.32. 证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】(|)(|)P A B P A B =即()()()()P AB P AB P B P B = 亦即()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B =故A 与B 相互独立.33. 三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34. 甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835. 已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1)3101100C (0.35)(0.65)0.5138kk k k p -===∑(2)10102104C (0.25)(0.75)0.2241k k k k p -===∑36. 一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1)2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1)111p n =-(2)23!(3)!,3(1)!n p n n -=>-(3)12(1)!13!(2)!;,3!!n n p p n n n n --''===≥38. 将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率 【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】11P 1,1,2,,P k n k n p k n n--===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====,24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ).【证】 ()[()]()P A P A B C P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42. 将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此213319()1()()181616P A P A P A =--=--=或12143323C C C 9()416P A ==43. 将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率. 【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22nn n P A =-44. 掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45. 设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246. 证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得 ()(),()()P AC P BC P C P C ≥即有()()P AC P BC ≥同理由(|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故()()()()()()P A P AC P AC P BC P BC P B =+≥+=47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率. 【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki kki j ki i i n P A n nP A A nn P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j n n kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k k n n k n n nn n n n--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+ 111(1)C (1)n n k nn n+---- 48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品}由题知(),()m nP B P B m n m n==++1(|),(|)12r P A B P A B == 则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrr m m m n m n m n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少? 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

《概率论与数理统计》课后习题答案chapter1

《概率论与数理统计》课后习题答案chapter1
解:令,即 ,即
13. 乘以什么常数将使变成概率密度函数? 解:令
即 即 14. 随机变量,其概率密度函数为
() 试求;若已知,求.
解:
, 若,由正态分布的对称性 可知 .
15. 设连续型随机变量的概率密度为 以表示对的三次独立重复试验中“”出现的次数,试求概率.
解: 。
16. 设随机变量服从[1,5]上的均匀分布,试求. 如果 (1); (2). 解:的概率密度为 (1) (2) 17. 设顾客排队等待服务的时间(以分计)服从的指数分布。某顾
(1)
(2) 3. 从家到学校的途中有3个交通岗,假设在各个交通岗遇到红灯的 概率是相互独立的,且概率均是0.4,设为途中遇到红灯的次数,试求 (1)的概率分布; (2) 的分布函数。 解: (1) 列成表格
(2) 4. 试求习题1.3中第11题的分布函数,并画出
的曲线。 解:
5. 设连续型随机变量的分布函数为 试求:(1)的值; (2); (3)概率密度函数.
7. 已知事件相互独立,求证与也独立。 证明:因为、、相互独立,
与独立。 8. 甲、乙、丙三机床独立工作,在同一段时间内它们不需要工人照
顾的概率分别为0.7,0.8和0.9,求在这段时间内,最多只有一台机床需 要工人照顾的概率。
解: 令分别表示甲、乙、丙三机床不需要工人照顾, 那么 令表示最多有一台机床需要工人照顾, 那么
4. 设自动生产线在调整以后出现废品的概率为p=0.1,当生产过程中 出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试 求
(1)的概率分布; (2)。 解: (1) (2) 5. 一张考卷上有5道选择题,每道题列出4个可能答案,其中有1个答 案是正确的。求某学生靠猜测能答对至少4道题的概率是多少? 解:因为学生靠猜测答对每道题的概率为,所以这是一个,的独立重 复试验。

概率论习题解答

概率论习题解答

证明: 记
F1(x) = 1(0,∞)(x),
1 F (x) = F (x) − 3 F1(x).

F2(x)
=
3 2
F
(x),

F1

F2
分别是离散型和连续型分布函数,

1
2
F (x) = 3 F1(x) + 3 F2(x),
即 F 可以写成离散型和连续型分布函数的线性组合.
§3.2.4 练习题
练习3.2.1 向目标进行 20 次独立的射击, 假定每次命中率均为 0.2. 试求至少命中 19 次的概率.

{ξ x} =
Ak
k:ak x
练习3.1.5 若 F 为 ξ 的分布函数, 试证明如下等式
P(ξ = x) = F (x) − F (x−), P(ξ > x) = 1 − F (x), P(a < ξ b) = F (b) − F (a).
证明: 由概率的上连续性得 (
F (x) − F (x−) = P(ξ x) − lim P ξ
练习3.2.8 广义 Bernoulli 实验中假定一实验有 r 个可能结果 A1, A2, · · · , Ar, 并且 P(Ai) = pi > 0, p1 + p2 + · · · + pr = 1. 现将此实验独立地重复 n 次.求 A1 恰出现入 k1 次, · · · , Ar 恰出现 kr 次(ki 0, k1 + k2 + · · · + kr = n)的概率.
设 D = {a1, a2, · · · }, 定义
{
p(x) =
dF (x) dx
,

概率课后习题答案(全)

概率课后习题答案(全)

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.解答:设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1, 且F(-∞)=0,F(+∞)=1,(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1). 解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数. 解答:fY(y)={fX(y-dc)⋅1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.试求Y=X2的分布律.解答:所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.。

概率论第7~10章课后习题集答案解析

概率论第7~10章课后习题集答案解析

习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计.【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)e e eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=. (2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n. 1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L nx θθ==+=∏知 11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑4.从一批炒股票的股民一年收益率的数据中随机抽取10人的收益率数据,结果如下:1-求这批股民的收益率的平均收益率及标准差的矩估计值. 【解】 0.094x =- 0.101893s = 9n =0.094.EX x ==-由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有ˆσ=于是ˆ0.101890.0966σ===所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966.5.随机变量X服从[0,θ]上的均匀分布,今得X的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计.【解】(1) ()2E Xθ=,令()E X X=,则ˆ2Xθ=且ˆ()2()2()E E X E Xθθ===,所以θ的矩估计值为ˆ220.6 1.2xθ==⨯=且ˆ2Xθ=是一个无偏估计.(2) 似然函数8811(,)iiL f xθθ=⎛⎫== ⎪⎝⎭∏,i=1,2, (8)显然L=L(θ)↓(θ>0),那么18max{}iixθ≤≤=时,L=L(θ)最大,所以θ的极大似然估计值ˆθ=0.9.因为E(ˆθ)=E(18max{}iix≤≤)≠θ,所以ˆθ=18max{}iix≤≤不是θ的无偏计.6.设X1,X2,…,X n是取自总体X的样本,E(X)=μ,D(X)=σ2,2ˆσ=k1211()ni iiX X-+=-∑,问k为何值时2ˆσ为σ2的无偏估计.【解】令1,i i iY X X+=-i=1,2,…,n-1,则21()()()0,()2,i i i iE Y E X E X D Yμμσ+=-=-==于是1222211ˆ[()](1)2(1),niiE E k Y k n EY n kσσ-===-=-∑那么当22ˆ()Eσσ=,即222(1)n kσσ-=时,有 1.2(1)k n =-7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】(1)11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量. (2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ?【解】由σ2已知可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间.【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19) 2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫±-=±= ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪ ⎪--⎝⎭⎝⎭11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=-所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0nn ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L n x θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本(1) 求θ的矩估计量ˆθ; (2) 求ˆ()D θ.【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ=13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑其他.由d ln 20ln (),d Ln L θθ=>↑知那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时 所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤= 14. 设总体X 的概率分布为其中θ(0<θ<2)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值.【解】813ˆ(1)()34,()4 28ii x E X E X x x x θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== (2) 似然函数86241(,)4(1)(12).i i L P x θθθθ===--∏ 2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,2θ=. 由于71,122> 所以θ的极大似然估计值为 7ˆ2θ-=15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本 (1) 当α=1时,求β的矩估计量; (2) 当α=1时,求β的极大似然估计量; (3) 当β=2时,求α的极大似然估计量. 【解】当α=1时,11,1;(,)(,1,)0, 1.x x f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时, 2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i n i i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏其他显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=. 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰z【解】26~ 3.4,X N n⎛⎫⎪⎝⎭,则~(0,1),X Z N = {1.4 5.4}33210.95333Z P X PP Z ΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛⎫⎛⎛⎫=-=-≥- ⎪ ⎪⎝⎭⎝⎭⎝⎭于是0.975Φ≥则 1.963≥, ∴ n ≥35.17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 为样本值x 1,x 2,…,x n 中小于1的个数.求:(1) θ的矩估计; (2) θ的最大似然估计. 解 (1) 由于 121(;)d d (1)d EX xf x x x x x x θθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-. 令32X θ-=,解得32X θ=-, 所以参数θ的矩估计为32X θ=-.似然函数为1()(;)(1)nN n N i i L f x θθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令d ln ()0,d L θθ=得 Nnθ=, 所以θ的最大似然估计为Nnθ=.18.19.习题八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(α=0.05)?【解】0010/20.0250.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55)3.851,0.108.H Hn Z ZxxZZZαμμμμασ==≠=======-===->所以拒绝H0,认为总体平均值有显著性变化.2. 某种矿砂的5个样品中的含镍量(%)经测定为:3.24 3.26 3.24 3.27 3.25设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25. 【解】设0010/20.0050.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)0.344,0.013(4).H Hn t n tx sxtttαμμμμα==≠===-====-===<所以接受H 0,认为这批矿砂的含镍量为3.25.3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s 2=0.1(g 2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).【解】设0010/20.02520.025: 1.1;: 1.1.36,0.05,(1)(35) 2.0301,36,1.008,0.1,6 1.7456,1.7456(35) 2.0301.H H n t n t n x s x t t t αμμμμα==≠===-=========<=所以接受H 0,认为这堆香烟(支)的重要(克)正常.4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05).【解】0100.050.05:21.5;:21.5.21.5,6,0.05, 1.65, 2.9,20,(2021.5)1.267,2.91.65.H H n z x x z z z μμμασ≥<======-===->-=- 所以接受H 0,认为电池的寿命不比该公司宣称的短.5.测量某种溶液中的水分,从它的10个测定值得出x =0.452(%),s =0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验.(1) H 0:μ=0.5(%);H 1:μ<0.5(%).(2)0:H σ' =0.04(%);1:H σ'<0.04(%).00.050.050.5;10,0.05,(1)(9) 1.8331,0.452,0.037,(0.4520.5)4.10241,0.037(9) 1.8331.n t n tx sxtt tαμα===-====-===-<-=-所以拒绝H0,接受H1.(2)2222010.9522222220.95(0.04),10,0.05,(9) 3.325,0.452,0.037,(1)90.0377.7006,0.04(9).nx sn sασαχχχσχχ-=======-⨯===>所以接受H0,拒绝H1.6.某种导线的电阻服从正态分布N(μ,20.005).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?【解】00102222/20.0251/20.975222220.02522:0.005;:0.005.9,0.05,0.008,(8)(8)17.535,(8)(8) 2.088,(1)80.00820.48,(8).(0.005)H Hn sn sαασσσσαχχχχχχχσ-===≠=======-⨯===>故应拒绝H0,不能认为这批导线的电阻标准差仍为0.005.7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:第一批棉纱样本:n1=200,x=0.532kg, s1=0.218kg;第二批棉纱样本:n2=200,y=0.57kg, s2=0.176kg.设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05)01211212/2120.0250.0250.025:;:.200,0.05,(2)(398) 1.96,0.1981,1.918;(398).w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=======-< 所以接受H 0,认为两批强度均值无显著差别.8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设222201:;:.A B A B H H σσσσ=≠【解】221212/2120.0250.9750.02521225,0.05,0.4322,0.5006,(1,1)(4,4)9.6,11(4,4)0.1042,(4.4)9.60.43220.8634.0.5006n n s s F n n F F F s F s αα=====--========那么0.9750.025(4,4)(4,4).F F F << 所以接受H 0,拒绝H 1. 9. 10. 11. 12.1灯泡厂用4种不同的材料制成灯丝,检验灯线材料这一因素对灯泡寿命的影响.若灯泡寿命服从正态分布,不同材料的灯丝制成的灯泡寿命的方差相同,试根据表中试验结果记录,在显著性水平0.05下检验灯泡寿命是否因灯丝材料不同而有显著差异?试验批号1 2 3 4 5 678灯丝材料水平A1A2A3A416001580146015101610 1640 1550 15201650 1640 1600 15301680 1700 1620 15701700 1750 1640 16001720 1660 16801800 17401820【解】14,26;====∑ri i r n n2442..11===-∑∑T iji j T S x n =69895900-69700188.46=195711.54, 242...11==-∑A i i iT S T n n =69744549.2-69700188.46=44360.7,=-E T A S S S =151350.8,0.05/(1)44360.7/32.15/()151350.8/22(3,22) 3.05.-===-=>A E S r F S n r F F ,故灯丝材料对灯泡寿命无显著影响. 表9-1-1方差分析表2. 一个年级有三个小班,他们进行了一次数学考试,现从各个班级随机地抽取了一些学生,记录其成绩如下:试在显著性水平0.05下检验各班级的平均分数有无显著差异.设各个总体服从正态分布,且方差相等.【解】13,40,====∑ri i r n n232..11in T iji j T S x n ===-∑∑=199462-185776.9=13685.1, 232...11==-∑A i i iT S T n n =186112.25-185776.9=335.35, =-E T A S S S =13349.65,0.05/(1)167.70.465/()360.8(2,37) 3.23.-===-=>A E S r F S n r F F故各班平均分数无显著差异. 表9-2-1方差分析表3. 下面记录了3位操作工分别在不同机器上操作3天的日产量.取显著性水平α=0.05,试分析操作工之间,机器之间以及两者交互作用有无显著差异?【解】由已知r =4,s =3,t =3........,,,ij i j T T T T 的计算如表9-3-1.表9-3-122 (111)22 (12)2.....122....111106510920.25144.75,11092310920.25 2.75,110947.4210920.2527.17,173.50=====⨯===-=-==-=-==-=-=⎛⎫-=--= ⎪⎝⎭∑∑∑∑∑∑∑rstT ijki j k r A i i s B j j r s ij A B A B i j T S x rst T S T st rst T S T rt rst T T S S S t rst ,41.33.⨯=---=E T A B A B S S S S S表9-3-2得方差分析表0.050.050.05(3,24) 3.01,(2,24) 3.40,(6,24) 2.51.===F F F接受假设01H ,拒绝假设0203,H H .即机器之间无显著差异,操作之间以及两者的交互作用有显著差异.4. 为了解3种不同配比的饲料对仔猪生长影响的差异,对3种不同品种的猪各选3头进行试验,分别测得其3个月间体重增加量如下表所示,取显著性水平α=0.05,试分析不同饲料与不同品种对猪的生长有无显著影响?假定其体重增长量服从正态分布,且各种配比的方差相等.【解】由已知r =s =3,经计算x =52, 1.x =50.66, 2.x =533.x =52.34, .1x =52, .2x =57, .3x =47,2112.12.1()162;()8.73,()150,3.27.r sT ij i j rA i i rB j j E T A B S x x S s x x S r x x S S S S =====-==-==-==--=∑∑∑∑表9-4-1得方差分析表由于0.050.05(2,4) 6.94,(2,4).A B F F F F =>< 因而接受假设01H ,拒绝假设02H .即不同饲料对猪体重增长无显著影响,猪的品种对猪体重增长有显著影响. 5.研究氯乙醇胶在各种硫化系统下的性能(油体膨胀绝对值越小越好)需要考察补强剂(A )、防老剂(B )、硫化系统(C )3个因素(各取3个水平),根据专业理论经验,交互作用全忽略,根据选用L 9(34)表作9次试验及试验结果见下表:试作最优生产条件的直观分析,并对3因素排出主次关系. 给定α=0.05,作方差分析与(1)比较.【解】(1) 对试验结果进行极差计算,得表9-5-1.表9-5-1由于要求油体膨胀越小越好,所以从表9-5-1的极差R j 的大小顺序排出因素的主次顺序为:主→次B ,A ,C最优工艺条件为:223A B C .(2) 利用表9-5-1的结果及公式2211==-∑r j ij i T S T r P,得表9-5-2.表9-5-2表9-5-2中第4列为空列,因此40.256==e S S ,其中2=e f ,所以eeS f =0.128方差分析表如表9-5-3.表9-5-3由于0.05(2,2)19.00F,故因素C作用较显著,A次之,B较次,但由于要求油体膨胀越小越好,所以主次顺序为:BAC,这与前面极差分析的结果是一致的.6. 某农科站进行早稻品种试验(产量越高越好),需考察品种(A),施氮肥量(B),氮、磷、钾肥比例(C),插植规格(D)4个因素,根据专业理论和经验,交互作用全忽略,早稻试验方案及结果分析见下表:(1) 试作出最优生产条件的直观分析,并对4因素排出主次关系.(2) 给定α=0.05,作方差分析,与(1)比较.【解】被考察因素有4个:A,B,C,D每个因素有两个水平,所以选用正交表L8(27),进行极差计算可得表9-6-1.表9-6-1从表9-6-1的极差R j 的大小顺序排出因素的主次为:,,,→主次B C A D 最优方案为:1222A B C D(2) 利用表9-6-1的结果及公式2211n j ij i T s T r P==-∑得表9-6-2.表9-6-2表9-6-2中第1,3,7列为空列,因此s e =s 1+s 3+s 7=18.330,f e =3,所以ees f =6.110.而在上表中其他列中j ejes s f f <.故将所有次均并入误差,可得 ΔΔ18.895,7.===e T e s s f整理得方差分析表为表9-6-3. 表9-6-3由于0.05(1.7) 5.59=F ,故4因素的影响均不显著,但依顺序为:,,,→主次B C A D 与(1)中极差分析结果一致.习题十1. 在硝酸钠(NaNO 3)的溶解度试验中,测得在不同温度x (℃)下,溶解于100份水中的硝酸钠份数y 的数据如下,试求y 关于x 的线性回归方程.【解】经计算得,9999211112234,811.3,10144,24628.6,110144(234)4060,9124628.6234811.33534.8.9ii ii i i i i i xx xy xy x x y S S =========-==-⨯⨯=∑∑∑∑故^^^811.32340.8706,67.5078,99xyxx S b a b S ===-⨯=从而回归方程:^67.50780.8706.y x =+2. 测量了9对父子的身高,所得数据如下(单位:英寸).求(1) 儿子身高y 关于父亲身高x 的回归方程.(2) 取α=0.05,检验儿子的身高y 与父亲身高x 之间的线性相关关系是否显著. (3) 若父亲身高70英寸,求其儿子的身高的置信度为95%的预测区间. 【解】经计算得,9999922111112291603,604.6,40569,40584.9,40651.68140569(603)168,9140584.9603604.676.7,9140651.68(604.6)35.9956.9ˆˆˆ(1)0.4565,/9/ii ii i i i i i i i xx xy yy xyi i i xx xy x x y y S S S S b a x b x S ============-==-⨯⨯==-====-⨯∑∑∑∑∑∑91936.5891,i ==∑故回归方程:ˆ36.58910.4565.yx =+20.05(2) 35.0172,35.995635.01720.9784,250.5439(1,7) 5.59./2xyxxS Q Q Q Q S Q F F Q n ===-=-===>=-回剩总回回剩故拒绝H 0,即两变量的线性相关关系是显著的.00.025/2ˆ(3)36.58910.45657068.5474,ˆ0.05,(7) 2.3646,0.3739,1.0792, (2) 2.36460.3739 1.079yt t n αασσ=+⨯========-=⨯⨯给定故20.9540.=从而其儿子的身高的置信度为95%的预测区间为 (68.5474±0.9540)=(67.5934,69.5014).3.随机抽取了10个家庭,调查了他们的家庭月收入x (单位:百元)和月支出y (单位:百元),记录于下表:求:(1) 在直角坐标系下作x 与y 的散点图,判断y 与x 是否存在线性关系. (2) 求y 与x 的一元线性回归方程.(3) 对所得的回归方程作显著性检验.(α=0.025)【解】(1) 散点图如右,从图看出,y 与x 之间具有线性相关关系. (2) 经计算可得10101010102211111191,170,3731,3310,2948,82.9,63,58.170191ˆˆ0.7600,0.76 2.4849,1010ii ii i i i i i i i xx xy yy xy xx xy x x y y S S S S b a S ================-⨯=∑∑∑∑∑故从而回归方程:ˆ 2.48490.76.yx =+题3图20.05(3) 47.8770,5847.87710.1230,37.8360(1,8)7.57./2xyxxS Q Q Q Q S Q F F Q n ===-=-===>=-回剩总回回剩故拒绝H 0,即两变量的线性相关关系是显著的.4.设y 为树干的体积,x 1为离地面一定高度的树干直径,x 2为树干高度,一共测量了31棵树,数据列于下表,作出y 对x 1,x 2的二元线性回归方程,以便能用简单分法从x 1和x 2估计一棵树的体积,进而估计一片森林的木材储量.x 1(直径) x 2(高)y (体积)x 1(直径) x 2(高)y (体积)8.3 7010.312.9 8533.88.6 6510.313.3 8627.48.8 6310.213.7 7125.710.5 7210.413.8 6424.9【解】根据表中数据,得正规方程组01201201231411.72356923.9,411.75766.5531598.713798.85,235631598.718027472035.6.b b b b b b b b b ++=⎧⎪++=⎨⎪++=⎩解之得,b 0=-54.5041,b 1=4.8424,b 2=0.2631. 故回归方程:^y =-54.5041+4.8424x 1+0.2631x 2.5.一家从事市场研究的公司,希望能预测每日出版的报纸在各种不同居民区的周末发行量,两个独立变量,即总零售额和人口密度被选作自变量.由n =25个居民区组成的随机样本所给出的结果列表如下,求日报周末发行量y 关于总零售额x 1和人口密度x 2的线性回归方程.8 4.3 31.6 66.8 9 4.7 35.5 76.4 10 3.5 25.1 53.0 11 4.0 30.8 66.9 12 3.5 25.8 55.9 13 4.0 30.3 66.5 14 3.0 22.2 45.3 15 4.5 35.7 73.6 16 4.1 30.9 65.1 17 4.8 35.5 75.2 18 3.4 24.2 54.6 19 4.3 33.4 68.7 20 4.0 30.0 64.8 21 4.6 35.1 74.7 22 3.9 29.4 62.7 23 4.3 32.5 67.6 24 3.1 24.0 51.3 254.433.970.8【解】类似于习题4,可得正规方程组01201201225 739.5 1576.6 98.2,739.5 22429.15 47709.1 2968.58,1576.6 47709.1 101568 6317.95.b b b b b b b b b ++=⎧⎪++=⎨⎪++=⎩解之得,b 0=0.3822,b 1=0.0678,b 2=0.0244.故回归方程:ˆy=0.3822+0.0678x 1+0.0244x 2. 6.一种合金在某种添加剂的不同浓度之下,各做3次试验,得数据如下: 浓度x10.0 15.0 20.0 25.030.0抗压强度y25.2 29.8 31.2 31.7 29.427.3 31.1 32.6 30.130.828.7 27.8 29.7 32.332.8(1) 作散点图.(2) 以模型y =b 0+b 1x 1+b 2x 2+ε,ε~N (0,σ2)拟合数据,其中b 0,b 1,b 2,σ2与x 无关,求回归方程ˆy =0ˆb +1ˆb x +2ˆb x 2. 【解】 散点图如下图.题6图(2) 令x 1=x ,x 2=x 2,根据表中数据可得下表根据上表中数据可得正规方程组01201201215 300 6750 450.5,300 6750 165000 9155,6750 165000 4263750 207990.b b b b b b b b b ++=⎧⎪++=⎨⎪++=⎩解之得:b 0=19.0333,b 1=1.0086,b 2=-0.0204.故y 关于x 1与x 2的回归方程:=19.0333+1.0086x 1-0.0204x 2,从而抗压强度y 关于浓度x 的回归方程: ˆy=19.0333+1.0086x -0.0204x 2.。

概率论与数理统计课后习题答案1-8章-习题解答

概率论与数理统计课后习题答案1-8章-习题解答

第一章 思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A (5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC (7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB (9)“三人均未中靶”: ;C B A (10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A 3 .设,A B 是两随机事件,化简事件 (1)()()AB A B (2) ()()A B A B解:(1)()()AB A B AB AB B B ==,(2) ()()AB AB ()A BA B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.解:51050.302410P P ==.5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档