中考数学总复习学案:第36课时 圆的基本性质
九年级数学专题复习圆的有关概念、性质与圆有关的位置关系
总复习圆的有关概念、性质与圆有关的位置关系【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质 1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点进阶:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定不在同一直线上的三个点确定一个圆.要点进阶:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.要点进阶:圆周角性质的前提是在同圆或等圆中.7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.要点进阶:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点进阶:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点进阶:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)到三角形三个顶点的距离相等,即OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点进阶:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述.(1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.2.与三角形内心有关的角(1)如图所示,I是△ABC的内心,则∠BIC1902A =+∠°.(2)如图所示,E是△ABC的两外角平分线的交点,1902BEC A ∠=-∠°.(3)如图所示,E是△ABC内角与外角的平分线的交点,12E A ∠=∠.(4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A.(5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,1902DFE A ∠=-∠°.(6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为DE上一点,则1902 DPE A ∠=+∠°.【典型例题】类型一、圆的性质及垂径定理的应用例1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.例2.如图所示,在⊙O 中,弦AB 与CD 相交于点M ,AD BC =,连接AC . (1)求证:△MAC 是等腰三角形;(2)若AC 为⊙O 直径,求证:AC 2=2AM ·AB .举一反三:【变式】如图所示,在⊙O 中,AB =2CD ,则( )A .2AB CD > B .2AB CD <C .2AB CD = D .AB 与2CD 的大小关系无法确定例3.已知:如图所示,△ABC 内接于⊙O ,BD ⊥半径AO 于D .(1)求证:∠C =∠ABD ;(2)若BD =4.8,sinC =45,求⊙O 的半径.类型二、圆的切线判定与性质的应用例4.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB 的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AC=8,BC=6,求线段BE的长.举一反三:【变式】如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.类型三、切线的性质与等腰三角形、勾股定理综合运用例5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且312OF-=,求证△DCE≌△OCB.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.例6.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,那么∠CMP的大小是否变化?请直接写出你的结论.举一反三:A的中点,CD⊥AB于D,CD与AE相交于F.【变式】如图所示,AB是⊙O的直径,C是E(1)求证:AC2=AF·AE;(2)求证:AF=CF.【巩固练习】一、选择题1. 在△ABC中,,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为()A.5 B.6 C.7 D.152.如图,AB为⊙ O 的直径,CD 为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A. 70°B.35°C. 30°D. 20°3.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于()A.30°B.60°C.45°D.50°第2题第3题第4题第5题4.如图,⊙O的半径为5,弦AB的长为8,M是弦AB 上的动点,则线段OM长的最小值为()A. 5B. 4C. 3D. 25.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A. 14B. 15C. 32D. 236. 如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为0AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35 C .43D .45二、填空题7.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则线段AB 长度的最小值为 .8.如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.O B⊥AD,交AC 于点B .若OB=5,则BC 的长等于 .9.如图所示,已知⊙O 中,直径MN =10,正方形ABCD 的四个顶点分别在半径OM 、OP 以及⊙O 上,并且∠POM =45°,则AB 的长为________.第8题 第9题 第10 题10.如图所示,在边长为3 cm 的正方形ABCD 中,1O 与2O 相外切,且1O 分别与,DA DC 边相切,2O 分别与,BA BC 边相切,则圆心距12O O = cm .11.如图所示,,EB EC 是O 的两条切线,,B C 是切点,,A D 是O 上两点,如果∠E=46°,∠DCF=32°那么∠A 的度数是 .12.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是的中点,CE⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE 、CB 于点P 、Q ,连接AC ,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P 是∠ACQ 的外心,其中正确结论是 (只需填写序号).三、解答题13.如图所示,AC 为⊙O 的直径且PA⊥AC,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DC 2DP DO 3==.(1)求证:直线PB 是⊙O 的切线; (2)求cos∠BCA 的值.14.如图所示,点A、B在直线MN上,AB=11厘米,⊙A、⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r =1+t(t≥0).(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数关系式;(2)问点A出发后多少秒两圆相切?15.已知⊙O的直径AB=10,弦BC=6,点D在⊙O上(与点C在AB两侧),过D作⊙O的切线PD.(1)如图①,PD与AB的延长线交于点P,连接PC,若PC与⊙O相切,求弦AD的长;(2)如图②,若PD∥AB,①求证:CD平分∠ACB;②求弦AD的长.16. 如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P 为半圆上一点,设∠MOP=α.当α=度时,点P到CD的距离最小,最小值为.探究一在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=度,此时点N到CD的距离是.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=34,cos41°=34,tan37°=34.)。
2024中考数学一轮复习核心知识点精讲—圆的基本性质
2024中考数学一轮复习核心知识点精讲—圆的基本性质1.理解圆心角及其所对的弧、弦之间的关系;2.理解并运用圆周角定理及其推论;3.探索并证明垂径定理会应用垂径定理解决与圆有关的问题;4.理解并运用圆内接四边形的性质.考点1:圆的定义及性质圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆。
这个固定的端点O叫做圆心,线段OA叫做半径。
圆的表示方法:以O点为圆心的圆记作⊙O,读作圆O。
圆的特点:在一个平面内,所有到一个定点的距离等于定长的点组成的图形。
圆的对称性:1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;2)圆是以圆心为对称中心的中心对称图形。
考点2:圆的有关概念弦的概念:连结圆上任意两点的线段叫做弦(例如:右图中的AB)。
直径的概念:经过圆心的弦叫做直径(例如:右图中的CD)。
备注:1)直径是同一圆中最长的弦。
2)直径长度等于半径长度的2倍。
,读作圆弧弧的概念:圆上任意两点间的部分叫做圆弧,简称弧。
以A、B为端点的弧记作ABAB或弧AB。
等弧的概念:在同圆或等圆中,能够互相重合的弧叫做等弧。
半圆的概念:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
优弧的概念:在一个圆中大于半圆的弧叫做优弧。
劣弧的概念:小于半圆的弧叫做劣弧。
考点3:垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论1:1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt △,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分考点4:垂径定理的应用考点5:圆心角的概念圆心角概念:顶点在圆心的角叫做圆心角。
弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
圆的基本性质复习教案
圆的基本性质复习教案一、教学目标:1. 知识与技能:(1)理解圆的定义及基本性质;(2)掌握圆的直径、半径、弧、弦等基本概念;(3)学会运用圆的性质解决实际问题。
2. 过程与方法:(1)通过观察、操作、思考、交流等活动,培养学生的空间观念和逻辑思维能力;(2)学会用圆的性质解释和解决几何问题。
3. 情感态度与价值观:(1)激发学生对圆的性质的兴趣,体验数学学习的乐趣;(2)培养学生的团队合作意识和勇于探究的精神。
二、教学内容:1. 圆的定义及基本性质;2. 圆的直径、半径、弧、弦的概念及性质;3. 圆的周长和面积的计算公式;4. 圆的性质在实际问题中的应用。
三、教学重点与难点:1. 教学重点:圆的基本性质、直径、半径、弧、弦的概念及性质。
2. 教学难点:圆的周长和面积的计算公式的应用。
四、教学准备:1. 教学用具:黑板、粉笔、圆规、直尺、多媒体课件。
2. 学习材料:教材、练习题。
五、教学过程:1. 导入新课:(1)复习已学过的圆的定义及基本性质;(2)引导学生回顾圆的直径、半径、弧、弦的概念及性质。
2. 知识讲解:(1)讲解圆的周长和面积的计算公式;(2)通过实例演示圆的性质在实际问题中的应用。
3. 课堂练习:(1)针对本节课的内容,设计一些练习题,让学生独立完成;(2)选取部分学生的作业进行点评,讲解正确答案及解题思路。
4. 小组讨论:(1)布置一道综合性的几何问题,要求学生分组讨论、合作解决;(2)邀请部分小组分享他们的解题过程和答案。
5. 总结与布置作业:(1)对本节课的内容进行总结,强调圆的性质的重要性;(2)布置一些有关圆的性质的练习题,要求学生课后完成。
六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探究圆的性质;2. 利用多媒体课件展示圆的性质和实际应用问题,增强学生的空间观念;3. 设计具有梯度的练习题,让学生在实践中巩固圆的性质;4. 鼓励学生开展小组合作学习,提高学生的团队协作能力。
圆的基本性质复习课教案(市公开课)
圆的基本性质复习课教案(市公开课)第一章:圆的定义与性质1.1 圆的定义:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆。
1.2 圆心:圆的中心点称为圆心。
1.3 半径:从圆心到圆上任意一点的线段称为半径。
1.4 直径:通过圆心,并且两端都在圆上的线段称为直径。
1.5 圆的性质:(1)圆是对称图形,圆心是对称中心。
(2)圆上任意一点到圆心的距离相等,即半径相等。
(3)直径是半径的两倍。
第二章:圆的周长与面积2.1 圆的周长:圆的周长称为圆周率,用符号π表示。
2.2 圆的面积:圆的面积等于圆周率乘以半径的平方。
2.3 圆周率π的值:π约等于3.14159。
第三章:圆的方程3.1 圆的标准方程:圆的方程为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。
3.2 圆的一般方程:圆的方程也可以表示为x²+y²+Dx+Ey+F=0,其中D、E、F为常数。
第四章:圆的弧与弦4.1 弧:圆上两点间的部分称为弧。
4.2 弦:圆上任意两点间的线段称为弦。
4.3 直径所对的圆周角是直角。
4.4 圆心角与所对弧的关系:圆心角等于所对弧的两倍。
第五章:圆的相交与切线5.1 圆与圆的相交:两个圆的边界相交称为圆与圆的相交。
5.2 圆与圆的切线:与圆相切的直线称为圆的切线。
5.3 切线的性质:切线与半径垂直,切点处的切线斜率等于半径的斜率的负倒数。
第六章:圆的相切与内切6.1 圆的相切:两个圆仅有一个公共点时,称为相切。
6.2 内切:一个圆内含于另一个圆时,称为内切。
6.3 相切关系的应用:相切圆的半径之和等于两圆心距离。
第七章:圆的方程应用7.1 圆的方程求解:通过给定的条件,求解圆的方程中的未知数。
7.2 圆的方程应用实例:求解圆与直线、圆与圆的交点坐标。
第八章:圆的弧长与角度8.1 弧长:圆周上的一段弧的长度称为弧长。
8.2 圆心角与弧长的关系:圆心角的大小等于所对弧的长度与半径的比值。
2023年九年级中考一轮复习数学课件圆的基本性质
例 4 如图,正方形 ABCD 内接于⊙O,E 为 AB 的中点,连结 CE 交 BD 于点 F,延长 CE 交⊙O 于点 G,连结 BG.
(1)求证:FB2=FE·FG; (2)若 AB=6,求 FB 和 EG 的长.
解:(1)证明:∵四边形 ABCD 是正方形, ∴AD=BC,
∴A︵D=B︵C.
(2)如图,连结 OC,CD,OD,OD 交 BC 于点 F. ∵∠DBC=∠CAD=∠BAD=∠BCD, ∴BD=DC. ∵OB=OC,∴OD 垂直平分 BC. ∵△BDE 是等腰直角三角形,BE=2 10,∴BD=2 5. ∵AB=10,∴OB=OD=5. 设 OF=t,则 DF=5-t. 在 Rt△BOF 和 Rt△BDF 中,52-t2=(2 5)2-(5-t)2,解得 t=3, ∴BF=4.∴BC=8.
理
相等的圆周角所对的弧相等..
推 1、半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径. 论 2、圆内接四边形的对角互补,并且任何一个外角等于它的内对角.
常 见 图 形
圆中常用辅助线:
遇到 弦时
有作垂直于弦的 半径(或直径)或再连接过弦的端点
的半径.
常连弦心距
【解】如图 1,当 PA,PB 不在同一个半圆时,过点 P 作直径 PQ,连结
AQ,BQ.
∵PQ 是⊙O 的直径,
∴∠PAQ=∠PBQ=90°.
∵⊙O 的半径 r=1,
∴PQ=2r=2.
图1
∵PA= 3,PB= 2,
∴cos∠APQ=PPAQ= 23,
cos∠BPQ=PPQB=
2 2.
∴∠APQ=30°,∠BPQ=45°.
∴∠APB=∠APQ+∠BPQ=75°.
初中数学九年级《圆》复习课导学案
《圆》复习导学案本次我们一起来复习圆.该章是中考中考查知识点最多的一章之一.本章包含的知识的变化、所含定义、定理是其它章节中所不能比的.本章分为四大节:1.圆的有关性质;2.直线和圆的位置关系;3.圆和圆的位置关系;4.正多边形和圆.一、基本知识:(学生结合知识自己复习)(一)圆的有关性质,本节中最重要的定理有4个.1.垂径定理:本定理和它的三个推论说明: 在(1)垂直于弦(不是直径的弦);(2)平分弦;(3)平分弦所对的弧;(4)过圆心(是半径或是直径)这四个语句中,满足两个就可得到其它两个的结论.如垂直于弦(不是直径的弦)的直径,平分弦且平分弦所对的两条弧。
条件是垂直于弦(不是直径的弦)的直径,结论是平分弦、平分弧。
再如弦的垂直平分线,经过圆心且平分弦所对的弧。
条件是垂直弦,、分弦,结论是过圆心、平分弦.应用:在圆中,弦的一半、半径、弦心距组成一个直角三角形,利用勾股定理解直角三角形的知识,可计算弦长、半径、弦心距和弓形的高.2.圆心角、弧、弦、弦心距四者之间的关系定理:在同圆和等圆中, 圆心角、弧、弦、弦心距这四组量中有一组量相等,则其它各组量均相等.这个定理证弧相等、弦相等、圆心角相等、弦心距相等是经常用的.3.圆周角定理:此定理在证题中不大用,但它的推论,即弧相等所对的圆周角相等;在同圆或等圆中,圆周角相等,弧相等.直径所对的圆周角是直角,90°的圆周角所对的弦是直径,都是很重要的.条件中若有直径,通常添加辅助线形成直角.4.圆内接四边形的性质:略.(二)直线和圆的位置关系1.性质:圆的切线垂直于经过切点的半径.(有了切线,将切点与圆心连结,则半径与切线垂直,所以连结圆心和切点,这条辅助线是常用的.)2.切线的判定有两种方法.①若直线与圆有公共点,连圆心和公共点成半径,证明半径与直线垂直即可.②若直线和圆公共点不确定,过圆心做直线的垂线,证明它是半径(利用定义证)。
根据不同的条件,选择不同的添加辅助线的方法是极重要的.3.三角形的内切圆:内心是内切圆圆心,具有的性质是:到三角形的三边距离相等,还要注意说某点是三角形的内心.连结三角形的顶点和内心,即是角平分线.4.切线长定理:自圆外一点引圆的切线,则切线和半径、圆心到该点的连线组成直角三角形,还要注意, AO D PB(三)圆和圆的位置关系1.记住5种位置关系的圆心距d与两圆半径之间的相等或不等关系.会利用d与R,r之间的关系确定两圆的位置关系,会利用d,R,r之间的关系确定两圆的位置关系.2.相交两圆,添加公共弦,通过公共弦将两圆连结起来.(四)圆的计算1、弧长公式2、扇形面积公式二、达标测试(一)判断题1.直径是弦.( )2.半圆是弧,但弧不一定是半圆. ( )3.到点O的距离等于2cm的点的集合是以O为圆心,2cm为半径的圆. ( )4.过三点可以做且只可以做一个圆. ( )5.三角形的外心到三角形三边的距离相等. ( )6.经过弦的中点的直径垂直于弦,且平分弦所对的两条弧. ( )7.经过圆O内一点的所有弦中,以与OP垂直的弦最短. ( )8.弦的垂直平分线经过圆心. ( )9.⊙O的半径是5,弦AB∥CD,AB=6,CD=8,则两弦间的距离是1. ( )10.在半径是4的圆中,垂直平分半径的弦长是.( )11.任意一个三角形一定有一个外接圆且只有一个外接圆. ( )(二)填空题:1.已知OC是半径,AB是弦,AB⊥OC于E,CE=1,AB=10,则OC=______.2.AB是弦,OA=20cm,∠AOB=120°,则S△AOB=______.3.在⊙O中,弦AB,CD互相垂直于E,AE=2,EB=6,ED=3,EC=4,则⊙O的直径是______.4.在⊙O中弦AB,CD互相平行,AB=24cm,CD=10cm,且AB与CD之间的距离是17cm,则⊙O的半径是______cm.5.圆的半径是6cm,弦AB=6cm,则劣弧AB的中点到弦AB的中点的距离是______cm.6.在⊙O中,半径长为5cm,AB∥CD,AB=6,CD=8,则AB,CD之间的距离是______cm.7.圆内接四边形ABCD中,∠A:∠B:∠C=2:3:6,则四边形的最大角是______度.8.在直径为12cm的圆中,两条直径AB,CD互相垂直,弦CE交AB于F,若CF=8cm,则AF的长是______cm.9.两圆半径长是方程的两根,圆心距是2,则两圆的位置关系是______.10.正三角形的边长是6㎝,则内切圆与外接圆组成的环形面积是______C㎡.11.已知扇形的圆心角是120°,扇形弧长是20,则扇形=______.12.已知正六边形的半径是6,则该正六边形的面积是______.13.若圆的半径是2cm,一条弦长是,则圆心到该弦的距离是______.14.在⊙O中,弦AB为24,圆心到弦的距离为5,则⊙O的半径是______cm.15.若AB是⊙O的直径,弦CD⊥AB于E,AE=9cm,BE=16cm,则CD=______cm.16.若⊙O的半径是13cm,弦AB=24cm,弦CD=10cm,AB∥CD,则弦AB与CD之间的距离是______cm.17.⊙O的半径是6,弦AB的长是6,则弧AB的中点到AB的中点的距离是______18.已知⊙O中,AB是弦,CD是直径,且CD⊥AB于M.⊙O的半径是15cm,OM:OC=3:5,则AB=______.19.已知O到直线l的距离OD是cm,l上一点P,PD=cm.⊙O的直径是20,则P在⊙O______.(二)解答题1.已知AB是⊙O的直径,AC是弦,直线CE切⊙O于C,AD⊥CE,垂足是D,求证:AC平分∠BAD.BOAE C D1、已知AB是⊙O的直径,P是⊙O外一点,PC⊥AB于C,交⊙O于D,PA交⊙O于E,PC交⊙O于D,交BE于F。
初中数学_圆的基本性质(复习课)教学设计学情分析教材分析课后反思
圆的基本性质(复习课)导学案(一)复习内容:1、圆的基本概念2、垂径定理3、圆心角和圆周角的关系4、圆心角、弦、弧三者关系定理(二)课标要求:了解圆的轴对称性,探索并证明垂径定理;探索圆的旋转不变性;探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论。
(三)教学重点:理解垂径定理;圆心角、弦、弧三者关系定理;圆周角定理及推论(四)教学难点:通过对解题思路及解题方法的表述进一步培养学生的推论能力。
(五)教学过程考点聚焦考点1 圆的有关概念考点2 垂径定理及其推论垂径定理:。
数学语言:∵∴推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;已知:结论:证明:推论2:平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
已知:结论:证明:总结:①过圆心;②平分弦;③垂直于弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
若一条直线具备这五项中任意两项,则必具备另外三项,注意!!其中由①、②得③、④、⑤时,被平分的弦不是直径。
典例分析例1:如图1,AB是圆O的直径,CD为圆O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则圆O的半径为。
变式训练:如图2,在圆O中,半径OD垂直于弦AB,垂足为C,OD=13㎝,AB=24㎝,则CD= ㎝。
图1 图2 图3推论3 弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
典例分析例2:如图3,要将如图所示的破圆轮残片复制完成,怎样确定这个圆轮残片的圆心和半径?3 圆心角与圆周角1.定义:圆心角,顶点在,角的两边是;圆周角,顶点在,角的两边。
2.性质(1)圆心角的度数等于的度数;(2)一条弧所对的圆周角的度数等于它所对圆心角的度数的;(3)同弧或等弧所对的圆周角,同圆或等圆中相等的圆周角所对的相等;(4)半圆(或直径)所对的圆周角是,90°的圆周角所对的弦是。
注意:同弧所对的圆周角相等;同弦所对的圆周角相等或互补。
典例分析例3:(1)如图3,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于( )。
中考数学考点29圆的基本性质总复习(解析版)
圆的基本性质【命题趋势】圆的基本性质是中考考查的重点.常以选择题.填空题和解答题考查为主;其中选择题和填空题的难度不会太大.对应用、创新、开放探究型题目.会根据当前的政治形势、新闻背景和实际生活去命题.进一步体现数学来源于生活.又应用于生活。
【中考考查重点】一、运用垂径定理及其推论进行计算二、运用圆周角定理及其推论进行计算三、垂径定理雪与圆周角定理结合考点:圆的有关概念圆的定义:在一个平面内.线段OA绕它固定的一个端点O旋转一周.另一个端点A所形成的图形叫圆。
这个固定的端点O叫做圆心.线段OA叫做半径。
圆的表示方法:以O点为圆心的圆记作⊙O.读作圆O。
圆的特点:在一个平面内.所有到一个定点的距离等于定长的点组成的图形。
确定圆的条件:1)圆心;2)半径。
备注:圆心确定圆的位置.半径长度确定圆的大小。
【补充】1)圆心相同且半径相等的圆叫做同圆;2)圆心相同.半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆。
圆的对称性:1)圆是轴对称图形.经过圆心的每一条直线都是它的对称轴;2)圆是以圆心为对称中心的中心对称图形。
弦的概念:连结圆上任意两点的线段叫做弦(例如:右图中的AB)。
直径的概念:经过圆心的弦叫做直径(例如:右图中的CD)。
备注:1)直径是同一圆中最长的弦。
2)直径长度等于半径长度的2倍。
⏜.读弧的概念:圆上任意两点间的部分叫做圆弧.简称弧。
以A、B为端点的弧记作AB作圆弧AB或弧AB。
等弧的概念:在同圆或等圆中.能够互相重合的弧叫做等弧。
半圆的概念:圆的任意一条直径的两个端点把圆分成两条弧.每一条弧都叫做半圆。
优弧的概念:在一个圆中大于半圆的弧叫做优弧。
劣弧的概念:小于半圆的弧叫做劣弧。
弦心距概念:从圆心到弦的距离叫做弦心距。
1.(2021秋•顺义区期末)如图.在⊙O中.如果=2.则下列关于弦AB与弦AC之间关系正确的是()A.AB=AC B.AB=2AC C.AB>2AC D.AB<2AC【答案】D【解答】解:如图.取弧AB的中点D.连接AD.BD.则=2=2.∵=2.∴==.∴AD=BD=AC.在△ABD中.AD+BD>AB.∴AC+AC>AB.即AB<2AC.故选:D.2.(2021秋•平原县期末)下列语句.错误的是()A.直径是弦B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心D.平分弧的半径垂直于弧所对的弦【答案】B【解答】解:直径是弦.A正确.不符合题意;在同圆或等圆中.相等的圆心角所对的弧相等.B错误.符合题意;弦的垂直平分线一定经过圆心.C正确.不符合题意;平分弧的半径垂直于弧所对的弦.D正确.不符合题意;故选:B.3.(2021秋•玉林期末)如图.从A地到B地有两条路可走.一条路是大半圆.另一条路是4个小半圆.有一天.一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走.它不敢与猫同行(怕被猫吃掉).就沿着4个小半圆行走.假设猫和老鼠行走的速度相同.那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定【答案】C【解答】解:以AB为直径的半圆的长是:π•AB;设四个小半圆的直径分别是a.b.c.d.则a+b+c+d=AB.则老鼠行走的路径长是:a+πb+πc+πd=π(a+b+c+d)=π•AB.故猫和老鼠行走的路径长相同.故选:C.考点:垂径定理垂径定理:垂直于弦的直径平分这条弦.并且平分弦所对的两条弧。
2019版中考数学总复习 圆的有关性质教案
2019版中考数学总复习圆的有关性质教案教学目标:知识目标:(1)理解圆、等圆、等弧等概念及圆的对称性,掌握点和圆的位置关系;(2)掌握垂径定理及其逆定理和圆心角,弧,弦,弦心距及圆周角之间的主要关系;掌握圆周角定理并会用它们进行计算;(3)掌握圆的内接四边形的对角互补,外角等于它的内对角的性质。
(4)会用尺规作三角形的外接圆;了解三角形的外心的概念.能力目标:通过知识点和典型题的讲练,使学生熟练掌握本节课的知识点,再用题图变形与题组训练来培养学生综合运用知识的能力以及思维的灵活性和广阔性。
情感目标:通过题图变形与题组训练来激发学生学习数学的兴趣;同时将课本的题目与中考题结合在教学当中以进一步向学生强调“依纲靠本”的复习指导思想,强化学生的中考意识。
知识结构圆⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧---⎩⎨⎧圆周角定理的弧的概念距的关系圆心角、弦、弧、弦心旋转不变性垂径定理轴对称性质点的轨迹不在同一直线上的三点定义1圆内接四边形及性质重点、热点垂径定理及推论;圆心角、弧、弦、弦心距之间的关系定理. 运用圆内接四边形的性质解有关计算和证明题.【典型例析】例1.(1)[2002.广西] 如图7.1-1.OE、OF分别是⊙O的弦AB、CD的弦心距,若OE=OF,则(只需写出一个正确的结论).(2)[2002. 广西] 如图7.1-2.已知,AB为⊙O的直径,D为弦AC的中点,BC=6cm,则OD= .[特色] 以上几道中考题均为直接运用圆的有关性质解题.[解答](1)AB=CD或 AB=CD或AD=BC,直接运用圆心角、弧、弦、弦心距之间的关系定理.(2)由三角形的中位线定理知OD=21BC[拓展]复习中要加强对圆的有关性质的理解、运用.例 2.(1)[2002.大连市]下列命题中真命题是().A.平分弦的直径垂直于弦B.圆的半径垂直于圆的切线 C.到圆心的距离大于半径的点在圆内 D.等弧所对的圆心角相等(2)[2002.河北] 如图7.1-3.AB是⊙O的直径,CD是⊙O弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为().A.12cmB.10cmC.8cmD.6cm(3)[2002.武汉市] 已知如图7.1-4圆心角∠BOC=100 ,则圆周角∠BAC的度数是().A. 50B.100C.130D.200[特色]着眼于基本知识的考查和辨析思维的评价.[解答] (1) D (考查对基本性质的理解).(2) D (过O作OM⊥CD,连结OC,由垂径定理得CM=21CD=4,由勾股定理得OM=3,而AB两点到CD的距离和等于OM的2倍)(3) A (由圆周角定理可得)[拓展] 第(2)题中,涉及圆的弦一般作弦心距.例3.[2002.广西南宁市]圆内接四边形A BCD,∠A、∠B、∠C的度数的比是1∶2∶3,则这个四边形的最大角是 .[特色]运用圆内接四边形的性质进行简单计算. [解答]设A=x,则∠B=2x,∠C=3x . ∵∠A+∠C=180 ,∴x+3x=180 ,∴ x=45 .∴∠A=45 ,∠B=90 ,∠C=135 ,∠ D=90 .∴最大角为135 .[拓展]此题着眼于基本性质、基本方法的考查.设未知数,列方程求解是解此类题的基本方法.例4. [2002.陕西] 已知,如图7.1-5 B C为半圆O的直径,F是半圆上异于BC的点,A是BF 的中点,AD⊥BC于点D,BF交AD于点E. (1)求证:BE•BF=BD•BC(2)试比较线段BD与AE的大小,并说明道理.[特色] 此题是教材中的习题变形而来,它立意于考查分析、观察、比较、归纳等能力.[解答] (1)连结FC,则BF⊥FC.在△BDF和△BCF中,∵∠BFC=∠EDB=90 ,∠FBC=∠EBD,∴△BDE∽△BFC,∴BE∶BC=BD∶BF.即 BF•BE=BD•BC.(2) AE>BD , 连结AC、AB 则∠BAC=90 .∵AF AB=, ∴∠1=∠2.又∵∠2+∠ABC=90 ,∠3+∠ABD=90 ,∴∠2=∠3,∠1=∠3,∴AE=BE.在Rt△EBD中, BE>BD,∴AE>BD.[拓展] 若AC交BE于G,请想一想,在什么情况下线段BE、BG、FG有相等关系?例 5.[2001.吉林省]如图7.4-1,矩形ABCD,AD=8,DC=6,在对角线AC上取一点O,以OC为半径的圆切AD于E,交BC于F,交CD于G.(1)求⊙O的半径R;(2)设∠BFE=α,∠GED=β,请写出α、β、90 三者之间的关系式(只需写出一个),并证明你的结论.[特色]此题第二问设计为开放性问题,它立意考查学生分析、观察、比较、归纳能力.[解答] (1)连结OE,则OE⊥AD.∵四边形是矩形,∴∠D=90 ,OE∥CD,∴AC=22DCAD+=2268+=10.∵△AOE∽△ACD,∴ OE∶CD=AO∶AC,∴ R∶6=(10-R) ∶10,解之得: R=415.(2)∵四边形是圆的内接四边形,∴∠EFB=∠EGC,∵∠EGC=90 +β,∴α =90 +β或∵β<90 ,α =∠EGC>90 ,∴β < 90 < α.[拓展]比较角的大小时,要善于发现角与角之间的关系,判断角是锐角还是直角、钝角.[中考动态前瞻]本节考查的题型常以填空、选择、解答题的形式出现,重点考查对圆的基本慨念、基本性质的理解及运用.特别是垂径定理及推论、圆周角定理及推论的运用是考查的重点内容. 对圆内接四边形的性质进行考查,主要以填空题、选择题、计算题、证明题的形式出现,利用圆内接四边形的性质主要是得到角相等或互补.一般不会考较复杂的计算、证明.欢迎您的下载,资料仅供参考!。
中考数学专题复习圆的基本性质课件人教版
中考总复习 8.1 提高 No.13
选择填空题答案
中考总复习 8.1 答案
8.1 课中检测
8.1 课后检测 1-5 DCADD
A
中考总复习 8.1 课中 No.3
中考总复习 8.1 课中 No.4
中考总复习 8.1 课中 No.5
E
中考总复习 8.1 课后
中考总复习 8.1 课后 No.1D中来自总复习 8.1 课后 No.2
C
中考总复习 8.1 课后 No.3
A
中考总复习 8.1 课后 No.4
D
中考总复习 8.1 课后 No.5
D
中考总复习 8.1 课后 No.6
中考总复习 8.1 课后 No.7
中考总复习 8.1 课后 No.8
中考总复习 8.1 课后 No.9
中考总复习 8.1 课后 No.10
中考总复习 8.1 课后 No.11
中考总复习 8.1 提高 No.12
中考总复习 8.1 提高 No.12
中考总复习 8.1 提高 No.13
中考总复习 8.1
中考总复习 8.1例题
中考总复习 知识填空
中考总复习 知识填空
中考总复习 引入
中考总复习 问题
中考总复习 问题
中考总复习 拓展
中考总复习 拓展
中考总复习 拓展
中考总复习
中考总复习 8.1检测
中考总复习 8.1 课中
中考总复习 8.1 课中 No.1
B
中考总复习 8.1 课中 No.2
中考数学圆的基本性质专题复习学案设计
中考数学圆的基本性质专题复习一、知识点讲解1.圆的概念圆是平面上到一个定点的距离等于定长的点的集合.定点就是圆心,定长就是半径的长,通常也称为半径.以定点O 为圆心的圆称为圆O ,记作O Θ. 2.点和圆的位置关系设圆的半径为R ,点P 到圆心的距离为d ,则(1)点P 在圆外⇔R d >; (2)点P 在圆上⇔;(3)点P 在圆内⇔R d <≤0. 3.圆的确定不在同一条直线上的三点确定一个圆.经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆.外接圆的圆心叫三 角形的外心,这个三角形叫这个圆的内接三角形.三角形的外心就是三角形三边垂直平分线的交点.4.圆心角、弧、弦、弦心距之间的关系定理及其推论(“知一推三”,强调特殊情况不成立) 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距 也相等;推论:在同圆或等圆中,如果两个圆心角、两条劣弧(或优弧)、两条弦、两条弦的弦心 距得到的四组量中有一组量相等,那么它们所对应的其余三组量也分别相等. 5.垂径定理及其推论(“知二推二”, 强调特殊情况不成立)如果圆的一条直径垂直于圆的一条弦,那么这条直径平分这条弦,并平分弦所对的两条弧.二、知识点相关练习例1.在平面上,经过给定的两点的圆有____个,这些圆的圆心一定在连结这两点的线段的_______上.例2.平面上有一个点到⊙O 的圆周上的最小距离为6cm ,最大距离为8cm ,则⊙O 的半径为_______.例3.在矩形ABCD 中,AB =8,AD =6,以点A 为圆心,若B ,C ,D 三点中至少有一点在圆内,且至少有一点在圆外,则圆A 的半径R 的取值范围为 __________.例4.下列说法:①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④长度相等的两条弧是等弧,其中正确的命题有( )个.A. 1B. 2C. 3D. 4例5.已知,如图,在⊙O 中,AB OE ⊥于E ,CD OF ⊥于F ,OE=OF . 求证:弧AC=弧BD .例6.如图,OB ,OC 的⊙O 上一点,且∠B=200,∠C=300,求∠A 的度数.OBCA例7.下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中是真命题的是( ). A. ①②③ B. ②③ C. ①③ D. ①②③例8.已知⊙O 的半径是5cm ,点P 满足PO=3cm ,则过P 的最大弦长为_________ 最小弦长为_________例9.已知⊙O 的半径是5㎝,圆心到弦AB 的距离是3㎝,则弦AB= ㎝.例10.等腰ABC ∆内接于半径为10cm 的圆内,其底边BC 的长为16cm ,则ABC S ∆( )A .322cmB .1282cmC .322cm 或802cmD .322cm 或1282cm例11.⊙O 的半径为13 cm ,弦AB ∥CD ,AB=24cm ,CD=10cm ,求AB 和CD 的距离.专项练习1.下列四边形:①平行四边形,②菱形;③矩形;④正方形.其中四个顶点一定能在同一个圆上的有( ).A .①②③④B .②③④C .②③D .③④2.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ). A .第①块 B .第②块 C .第③块 D .第④块3.下列命题中,正确的是( ) A. 平分一条直径的弦必垂直于这条直径 B. 平分一条弧的直线垂直于这条弧所对的弦 C. 弦的垂线必经过这条弦所在圆的圆心D. 在一个圆内平分一条弧和弧所对弦的直线必经过这个圆的圆心4.已知ABC ∆,090C ∠=,AC=3,BC=4,以点C 为圆心作圆C ,半径为r . (1) 当r 取什么值时,点A 、B 在圆C 外;(2) 当r 在什么范围时,点A 在圆C 内,点B 在圆C 外.5.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧,其中正确的命题有( )个.A. 4B. 3C. 2D. 16.下列命题中的假命题是( )A. 在等圆中,如果弦相等,那么它们所对的优弧也相等B.在等圆中,如果弧相等,那么它所对的弦的弦心距也相等 C .在等圆中,如果弦心距相等,那么它们所对的弦也相等 D .相等的圆心角所对的两条弦相等7.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于CD 两点,若AB =12cm, CD =8cm, 则AC 的长为( )A. 1cmB. 1.5cmC. 2cmD. 2.5cm8.下列命题中,正确的是( ).A .平分一条弧的直径垂直平分这条弧所对的弦;B .平分弦的直径垂直于弦,并且平分弦所对的弧;C .AB ,CD 是⊙O 的弦,若»»AB CD ,则AB ∥CD ; D .圆是轴对称图形,对称轴是圆的每一条直径.9.在△ABC 中,∠C =90°,AC =2,BC =4,CD 是高,CM 是中线,以C 为圆心,以5长为半径画圆,那么A 、B 、C 、D 、M 五个点中,在圆外的点是 __________;在圆上的点是 __________;在圆内的点是 __________.10.如图,一圆拱桥跨度为AB =8米,拱高CD =2米,则圆拱半径为 __________ 米.11.在ABC ∆中,090C ∠=,AC=4,BC=3,以点B 为圆心,以3.5为半径作圆,那么:(1)点C 在圆B____;(2)点A 在圆B____;(3)当半径=_____时,点A 在圆B 上. 12.AB 是圆O 的直径,2=AB ,弦3=AC ,若D 为圆上一点,且1=AD , 则=∠DAC 度.13. 已知等腰三角形的底边长为6,它内接于半径为5的o e 中,那么这个三角形的腰长 为 .14. P 是⊙O 外一点,过点P 的两条直线分别交⊙O 于A 、B 和C 、D ,又E 、F 分别是AB 弧、CD 弧的中点,联结EF ,交AB 、CD 于点M 、N ,请判断△PMN 的形状,并证明你的结论.P15.△ABC 内接于⊙O,AB=AC.已知⊙O的半径为7,且圆心O到BC的距离为3.求腰AB的长.16.⊙O的半径为13 cm,弦AB∥CD,AB=24cm,CD=10cm,求AB和CD的距离.17.在△ABC中,∠ACB=90°,CD⊥AB,D是垂足,∠A=30°,AC=3cm,以C为圆心,3cm为半径作圆C.(1)指出A、B、D与⊙C的位置关系;(2)如果要使⊙C经过点D,那么这个圆的半径应为多长?(3)设⊙C的半径为R,要使点B在⊙C内,点A在⊙C外,求出⊙C的半径R的取值范围.18.机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B、C都在圆O上.(1)求弦BC的长;(2)求圆O的半径长.(本题参考数据:sin 67.4° = 1213,cos 67.4° =513,tan 67.4° =125)BD。
201x版中考数学总复习 圆的有关性质教案
2019版中考数学总复习圆的有关性质教案教学目标:知识目标:(1)理解圆、等圆、等弧等概念及圆的对称性,掌握点和圆的位置关系;(2)掌握垂径定理及其逆定理和圆心角,弧,弦,弦心距及圆周角之间的主要关系;掌握圆周角定理并会用它们进行计算;(3)掌握圆的内接四边形的对角互补,外角等于它的内对角的性质。
(4)会用尺规作三角形的外接圆;了解三角形的外心的概念.能力目标:通过知识点和典型题的讲练,使学生熟练掌握本节课的知识点,再用题图变形与题组训练来培养学生综合运用知识的能力以及思维的灵活性和广阔性。
情感目标:通过题图变形与题组训练来激发学生学习数学的兴趣;同时将课本的题目与中考题结合在教学当中以进一步向学生强调“依纲靠本”的复习指导思想,强化学生的中考意识。
知识结构圆⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧---⎩⎨⎧圆周角定理的弧的概念距的关系圆心角、弦、弧、弦心旋转不变性垂径定理轴对称性质点的轨迹不在同一直线上的三点定义1圆内接四边形及性质重点、热点垂径定理及推论;圆心角、弧、弦、弦心距之间的关系定理. 运用圆内接四边形的性质解有关计算和证明题.【典型例析】例1.(1)[2002.广西] 如图7.1-1.OE、OF分别是⊙O的弦AB、CD的弦心距,若OE=OF,则(只需写出一个正确的结论).(2)[2002. 广西] 如图7.1-2.已知,AB为⊙O的直径,D为弦AC的中点,BC=6cm,则OD= .[特色] 以上几道中考题均为直接运用圆的有关性质解题.[解答](1)AB=CD或 AB=CD或AD=BC,直接运用圆心角、弧、弦、弦心距之间的关系定理.(2)由三角形的中位线定理知OD=21BC[拓展]复习中要加强对圆的有关性质的理解、运用.例 2.(1)[2002.大连市]下列命题中真命题是().A.平分弦的直径垂直于弦B.圆的半径垂直于圆的切线 C.到圆心的距离大于半径的点在圆内 D.等弧所对的圆心角相等(2)[2002.河北] 如图7.1-3.AB是⊙O的直径,CD是⊙O弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为().A.12cmB.10cmC.8cmD.6cm(3)[2002.武汉市] 已知如图7.1-4圆心角∠BOC=100 ,则圆周角∠BAC的度数是().A. 50B.100C.130D.200[特色]着眼于基本知识的考查和辨析思维的评价.[解答] (1) D (考查对基本性质的理解).(2) D (过O作OM⊥CD,连结OC,由垂径定理得CM=21CD=4,由勾股定理得OM=3,而AB两点到CD的距离和等于OM的2倍)(3) A (由圆周角定理可得)[拓展] 第(2)题中,涉及圆的弦一般作弦心距. 例3.[2002.广西南宁市]圆内接四边形A BCD,∠A、∠B、∠C的度数的比是1∶2∶3,则这个四边形的最大角是 .[特色]运用圆内接四边形的性质进行简单计算. [解答]设A=x,则∠B=2x,∠C=3x . ∵∠A+∠C=180 ,∴x+3x=180 ,∴ x=45 .∴∠A=45 ,∠B=90 ,∠C=135 ,∠ D=90 .∴最大角为135 .[拓展]此题着眼于基本性质、基本方法的考查.设未知数,列方程求解是解此类题的基本方法. 例4. [2002.陕西] 已知,如图7.1-5 B C为半圆O的直径,F是半圆上异于BC的点,A是BF 的中点,AD⊥BC于点D,BF交AD于点E. (1)求证:BE•BF=BD•BC(2)试比较线段BD与AE的大小,并说明道理.[特色] 此题是教材中的习题变形而来,它立意于考查分析、观察、比较、归纳等能力.[解答] (1)连结FC,则BF⊥FC.在△BDF和△BCF中,∵∠BFC=∠EDB=90 ,∠FBC=∠EBD,∴△BDE∽△BFC,∴BE∶BC=BD∶BF.即 BF•BE=BD•BC.(2) AE>BD , 连结AC、AB 则∠BAC=90 .∵AF AB=, ∴∠1=∠2.又∵∠2+∠ABC=90 ,∠3+∠ABD=90 ,∴∠2=∠3,∠1=∠3,∴AE=BE.在Rt△EBD中, BE>BD,∴AE>BD.[拓展] 若AC交BE于G,请想一想,在什么情况下线段BE、BG、FG有相等关系?例 5.[2001.吉林省]如图7.4-1,矩形ABCD,AD=8,DC=6,在对角线AC上取一点O,以OC为半径的圆切AD于E,交BC于F,交CD于G.(1)求⊙O的半径R;(2)设∠BFE=α,∠GED=β,请写出α、β、90 三者之间的关系式(只需写出一个),并证明你的结论.[特色]此题第二问设计为开放性问题,它立意考查学生分析、观察、比较、归纳能力.[解答] (1)连结OE,则OE⊥AD.∵四边形是矩形,∴∠D=90 ,OE∥CD,∴AC=22DCAD+=2268+=10.∵△AOE∽△ACD,∴ OE∶CD=AO∶AC,∴ R∶6=(10-R) ∶10,解之得: R=415.(2)∵四边形是圆的内接四边形,∴∠EFB=∠EGC,∵∠EGC=90 +β,∴α =90 +β或∵β<90 ,α =∠EGC>90 ,∴β < 90 < α.[拓展]比较角的大小时,要善于发现角与角之间的关系,判断角是锐角还是直角、钝角.[中考动态前瞻]本节考查的题型常以填空、选择、解答题的形式出现,重点考查对圆的基本慨念、基本性质的理解及运用.特别是垂径定理及推论、圆周角定理及推论的运用是考查的重点内容. 对圆内接四边形的性质进行考查,主要以填空题、选择题、计算题、证明题的形式出现,利用圆内接四边形的性质主要是得到角相等或互补.一般不会考较复杂的计算、证明.如有侵权请联系告知删除,感谢你们的配合!。
初三数学教案-圆的基本性质1 精品
“第3章圆的基本性质”教材分析圆属于空间与图形这部分内容,在前面学生已经学习了直线形图形的有关的性质,会借助于变换、坐标、证明等手段去认识图形的性质,并在小学的基础上,学生已经积累了大量有关圆的经验,本章是在此基础上,对圆的概念及其有关的性质进行系统的梳理,从圆的概念形成,圆本身的性质,圆中的量之间的关系以及圆中有关量的计算等方面,加强对圆的认识.圆是一种特殊的图形,它对于培养学生的数学能力,形成数学的思想方法具有重要的价值.由于圆既是中心对称图形又是轴对称图形,学生可以通过多种方式来认识它,这样有助于培养学生的数学能力.同时,圆的有关性质的探索是通过多种方法进行的,这样有助于学生形成基本的数学思想和方法.这些基本的数学思想方法有:⑴对称思想:圆的轴对称性、中心对称性.⑵推理思想:由对称性及其他方法来验证圆的有关结论.⑶分类归纳思想:将圆周角和圆心角之间的关系归结为同弧上圆周角与圆心角的关系,让学生形成分类讨论的思想.⑷算法思想:弧长、扇形的面积、圆锥的侧面积和全面积的计算公式不是直接给出的,而是让学生去进行探索、类比、归纳.不仅仅要求学生会计算,而且应该理解公式及其算法的意义.本章教学时间约需15课时,具体安排如下:3.1 圆2课时3.2 圆的对称性 2课时3.3 圆心角 2课时3.4 圆周角 2课时3.5 弧长及扇形的面积 2课时3.6 圆锥的侧面积和全面积 1课时复习、评估3课时,机动使用1课时,合计15课时一、教科书内容和课程教学目标⑴本章知识结构框图如下:⑵本章教学要求①通过日常生活中的实例,让学生感受圆是生活中大量存在的图形.②理解圆及其有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆的位置关系.③探索如何过一点、两点和不在同一直线上的三点作圆.④使学生经历探索圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征.⑤认识圆的轴对称性和中心对称性.⑥了解三角形的外心.⑦会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积.⑶本章教材分析本章主要学习圆的定义、弦、弧、弦心距、圆心角、圆周角、扇形和三角形的外接圆等有关概念.在“圆”这一节,主要是让学生通过圆的形成归纳出圆的定义.虽然在小学阶段,学生已经具有了圆的有关的知识,但还没有抽象出“平面上到定点的距离等于定长的所有点组成的图形叫做圆”的概念.通过探索如何过一点、两点和不在同一条直线上的三点作圆,使学生认识到“不在同一条直线上的三个点确定一个圆”这一确定圆的条件,它不仅仅是一个画圆的问题,而是使学生体会到在画圆中所体现的归纳的思想.另外,也使学生初步了解三角形的外心等有关知识.本节主要使学生体会圆的概念的形成过程.圆是一种特殊的图形,它既是中心对称图形又是轴对称图形,这一点在前面学习对称性时,学生已经有所了解.本章安排圆的对称性主要是借助于圆的轴对称性,去探索“垂经定理”;借助于圆的旋转不变性去探索圆中弧、弦、弦心距、圆心角之间的关系.而且由对称性可以尝试用其他的方法来验证有关的结论.在探索圆周角和圆心角之间的关系时,主要是归结为同弧上圆周角与圆心角的关系(即圆周角定理),让学生形成分类讨论的思想.弧长、扇形的面积、圆锥的侧面积和全面积的计算公式不是直接给出的,而是让学生去进行探索、类比、归纳.弧长的公式是类比圆的周长公式而归纳得出,扇形的面积公式是类比圆的面积公式而得;圆锥的侧面积是通过其侧面展开图是一个扇形,而由扇形的计算公式而得出的.因此,“弧长及扇形的面积、圆锥的侧面积和全面积”这两节不仅仅要求学生会计算,而且应该使他们理解公式的意义,理解算法的意义.二、本章编写特点⑴体现数学来源于生活,展示丰富多彩的几何世界人们生活在三维空间中,丰富多彩的图形世界给“空间与图形”的学习提供了大量现实有趣的素材.其中包含了大量与圆有关的现实物体、现实问题等内容,反映数学在建筑、机械、艺术等方面的广泛应用,体现数学丰富的文化价值的内容,既可以很好地体现圆作为联系数学与现实生活、科技发展的桥梁作用,也可以很好地呈现它丰富的数学内涵.在本章内容的呈现中,充分体现从生活中的立体图形到平面图形,立足学生已有的生活经验、初步的数学活动经历以及已经掌握的有关数学内容,分别从观察和分析生活中大量存在的圆入手,来探索一种特殊的曲线形——圆的有关性质.学生在已有的大量的空间与图形经验的基础上,通过折纸、对称、平移、旋转、推理等认识图形的性质.在本章设计中,在探索圆的垂径定理、弧、弦、圆心角的关系、圆周角和圆心角之间的关系时,充分利用多种方式来认识、验证有关圆的性质.⑵从学生的已有知识和经验出发,引导学生探索发现圆的性质等知识,培养学生的探究习惯本章在内容的编排上都力图提供生动有趣、便于学生活动、交流的问题情境,并通过深入观察、分析、探究等活动,进一步丰富学生对圆的正确理解和准确把握,形成有关对圆比较全面的认识.《数学课程标准》(实验稿)对圆的性质的要求是:使学生经历探索圆的性质.即通过实例去探索,以达到理解的目的.比如,①通过探索如何过一点、两点和不在同一直线上的三点作圆,使学生认识到“不在同一条直线上的三个点确定一个圆”这一确定圆的条件,它不仅仅是一个画圆的问题,而是使学生体会到在画圆中所体现的归纳的思想.②通过折纸,让学生探索圆的对称性,并在此基础上,让学生再通过折纸探索出圆的有关性质(垂径定理)等有关内容.③利用圆的旋转不变性探索圆中弧、弦、圆心角之间的关系.而在探索圆周角和圆心角之间的关系时,主要是归结为同弧上圆周角与圆心角的关系.④利用“合作学习”“做一做”等让学生自己探索有关的结论,比如通过学生自己合作,把圆锥沿母线剪开、铺平,并探索出圆锥侧面积和全面积的计算公式等等.整个设计意图,不仅在于引导学生观察和自觉分析生活现实和数学现实中的圆的现象,自觉总结圆的有关性质并自觉地应用到现实之中,逐步形成正确的数学观,并通过圆进一步丰富学生的数学活动经验和体验,在学习中有意识地培养学生积极的情感、态度,认识数学丰富的人文价值,促进观察、分析、归纳、概括等一般能力和审美意识的发展.从而进一步培养学生探究习惯、把握和研究“空间与图形”的水平.⑶转换学习方式,强调学生的动手操作和主动参与学习方式的转变是课程改革的一个重要目标,与其他数学内容相比,“空间与图形”的教学更容易激起学生学习数学的热情.在本章的编写中,注意从学生已有的生活经验和已有的知识出发,给学生提供“现实的、有意义的、富有挑战性的”学习材料,提供充分的数学活动和交流的机会,引导他们在“做数学”的活动中,在自主探索的过程中获得知识和技能,掌握基本的数学思想方法.《数学课程标准》中指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式”.本章非常重视向学生提供充分从事数学活动的机会.课本通过“合作学习”“探究活动”“想一想”“做一做”等栏目中安排了大量的数学活动题材,其中一些重要的数学概念及数学方法,都是需要学生通过数学活动获得.例如,圆的定义、圆的对称性、圆锥的侧面积等等.学生在亲身体验和探索中认识数学解决问题,理解和掌握数学知识和方法.并通过与他人的合作,学会交流思想,学会表达自己的观点,学会质疑,学会倾听,学会尊重他人,学会评价信息.这种“过程”会改变数学学习的过程和结果,对促进学生的发展具有非常重要的意义.另外,通过这些“探究点”,它可以帮助学生认识图形,丰富直观,验证学生的空间想象能力.三、教学建议⑴注意与前两个学段的衔接这一部分知识与前两个学段联系密切,大多数图形、概念在前两个学段都接触过,要衔接前两个学段,就要深入了解前面两个学段数学中“空间与图形”的内容、要求,了解它们与这一部分内容的联系与区别.⑵在教学中要注意如下几点:①要使学生从事观察、测量、折叠、平移、旋转、推理等活动,帮助他们有意识地积累活动经验,获得成功的体验.教学中,应鼓励学生动手、动口、动脑,并进行同伴之间的合作交流.②充分利用现实生活和数学中的素材,使学生探索与圆有关的概念和性质.尽可能地设计具有挑战性的情景,激发学生求知、探索的欲望.③本章的一个特点是由圆的旋转不变性、轴对称性导出圆的有关性质(如圆心角定理、垂径定理等),体现了利用运动观点来研究图形的思想和方法.也让学生通过本章的学习,体验用运动观点来研究图形的思想和方法.因此,在圆的对称性、圆周角与圆心角的关系等内容中,要有意识地满足学生多样化的学习要求.④在观察、探究和推理活动中,使学生有意识地归纳数学思想方法,发展学生的有条理地思考,并能清晰地表达自己的发现.教学中,教师一方面应充分运用好课本已提供的丰富的素材,另一方面也应该选取一些学生身边的、熟悉的材料,丰富教学内容,以帮助学生对圆的概念的认识和圆的性质的理解.⑤从学习方式上,通过合作学习、探究活动这种形式,促进学生相互交流,从而最大限度获得数学能力的培养和体验数学思想.教学中应积极鼓励学生,当学生在探究过程中遇到困难时,应给予诱导启发,或给予必要的阶梯.让学生在这过程中体验如何学会学习,千万不能包办代替,过早给学生答案.应鼓励合作学习,从多角度思考,采用多种解决问题的办法,创造积极合作、讨论氛围.⑥评价时要关注学生思考方式的多样化,注重对学生观察、操作、探索圆的性质、推理等活动进行评价,包括学生在活动中的主动性、参与程度、与同学合作与交流的意识、思考与表达的条理性等;比如,对有关圆的概念的评价应侧重于通过实例是否理解概念;对于圆的有关性质的评价应看学生是否借助于具体的思考方法去理解.对与圆有关的计算的评价,着重看学生是否懂得了基本的算理.⑦在日常教学中,不仅仅关注学生是否计算或推出某个结论,而且应该关注学生在各种数学活动中的情感和态度,特别是学生在小组活动中的表现.对于学生在探索过程中出现的新的方法、新的思想,教师要及时帮助学生解决问题过程中的创意.(徐鸿斌)。
华师大版初中数学九年级下册总复习《圆的有关概念和性质》学案
华师大版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!华师大初中数学和你一起共同进步学业有成!圆的有关概念和性质一:【课前预习】(一):【知识梳理】1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.④三角形的内心和外心ⓐ:确定圆的条件:不在同一直线上的三个点确定一个圆.ⓑ:三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.ⓒ:三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
圆周角的度数等于它所对的弧的度数的一半.(3)圆心角与圆周角的关系:同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.(二):【课前练习】1.如图,A、B、C是⊙O上的三点,∠BAC=30°则∠BOC的大小是()A.60○B.45○ C.30○D.15○2.如图,MN所在的直线垂直平分弦A B,利用这样的工具最少使用__________次,就可找到圆形工件的圆心.3.如图,A、B、C是⊙O上三个点,当 BC平分∠ABO时,能得出结论_______(任写一个).4.如图是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,则∠A+∠B+∠C+∠D+∠E 的度数是( )A .180°B .15 0°C .135°D .120°5.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上.如果∠P =50○ ,那么∠ACB 等于( )A .40○B .50○C .65○D .130○二:【经典考题剖析】1.如图,在⊙O 中,已知∠A CB =∠CDB =60○ ,AC =3,则△ABC 的周长是____________.2.“圆材埋壁”是我国古代《九章算术》中的问题:“今有圆材,埋在壁冲,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何”.用数学语言可表述为如图,CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1寸,AB=10寸,则直径CD 的长为( )A .12.5寸B .13寸C .25寸D .26寸3.如图,已知AB 是半圆O 的直径,弦AD 和BC 相交于点P ,那么等于( ) CD ABA .sin ∠BPDB .cos ∠BPDC .tan ∠BPD D .cot ∠BPD4.⊙O 的半径是5,AB 、CD 为⊙O 的两条弦,且AB ∥CD ,AB=6,CD=8,求 AB 与CD 之间的距离.5.如图,在⊙M 中,弧AB 所对的圆心角为1200,已知圆的半径为2cm ,并建立如图所示的直角坐标系,点C 是y 轴与弧AB 的交点。
九年级上第章圆的基本性质复习提纲教案
第三章圆的基本性质复习一、 点和圆的位置关系:如果P 是圆所在平面内的一点,d 表示P 到圆心的距离,r 表示圆的半径,则:(1)d<r →(2)d=r →(3)d>r →1、两个圆的圆心都是O ,半径分别为1r 、2r ,且1r <OA <2r ,那么点A 在( )A 、⊙1r 内B 、⊙2r 外C 、⊙1r 外,⊙2r 内D 、⊙1r 内,⊙2r 外2、一个点到圆的最小距离为4cm ,最大距离为9cm ,则该圆的半径是( )A 、 cm 或 cmB 、 cmC 、 cmD 、5 cm 或13cm3. ⊙0的半径为13cm ,圆心O 到直线l 的距离d=OD=5cm .在直线l 上有三点P,Q,R ,且PD = 12cm , QD<12cm , RD>12cm ,则点P 在 ,点Q 在 ,点R 在 .4. AB 为⊙0的直径,C 为⊙O 上一点,过C 作CD ⊥AB 于点D ,延长CD 至E ,使DE=CD ,那么点E 的位置 ( )A .在⊙0 内B .在⊙0上C .在⊙0外D .不能确定二、几点确定一个圆问题:(1)经过一个已知点可以画多少个圆?(2)经过两个已知点可以画多少个圆?这样的圆的圆心在怎样的一条直线上?(3)过同在一条直线上的三个点能画圆吗?定理:经过 确定一个圆。
1、三角形的外心恰在它的一条边上,那么这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、不能确定2、作下列三角形的外接圆:312:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧31的长为 _______.2⊙ O 的半径为 。
3 O 中过点A 的最短弦长=2,PO =5,求⊙O 的半径。
5四、圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
圆周角定理:一条弧所对的圆周角等于它所对的。
推论:半圆(或直径)所对的圆周角是,90°圆周角所对的弦是。
湘教版九年级数学总复习教案《圆的基本性质》
圆的基本性质教学目标:1、了解圆的对称性,掌握弦、弧、圆心角之间的关系2、掌握圆心角定理、圆周角定理及其推论3、掌握垂径定理,并能运用垂径定理解决实际问题教学重点:1、掌握圆心角定理、圆周角定理及其推论2、掌握垂径定理,并能运用垂径定理解决实际问题教学难点:掌握垂径定理,并能运用垂径定理解决实际问题课时安排:1课时教学过程:一、知识梳理(一)圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性.3.圆的确定不在同一直线上的三个点确定一个圆.(二)圆心角、弧、弦之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.(三)圆周角定理及其推论圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.(四)垂径定理垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.二、典型例题1、如图,A,B,E为⊙0上的点,⊙O的半径OC⊥AB于点D,若∠CEB=30°,OD=1,则AB的长为( C )A. B.4 C.2 D.62、已知:如图所示,在⊙O中,弦AB的中点为C,过点C的半径为OD.(1)若AB=OC=1,求CD的长;(2)若半径OD=R,∠AOB=120°,求CD的长.解:∵半径OD经过弦AB的中点C,∴半径OD⊥AB.(1)∵AB=AC=BC.∵OC=1,由勾股定理得OA=2.∴CD=OD-OC=OA-OC=1,即CD=1.(2)∵OD⊥AB,OA=OB,∴∠AOD=∠BOD.∴∠AOB=120°,∴∠AOC=60°.∵OC=OA·cos∠AOC=OA·cos60°=12 R,∴1122 CD OD OC R R R =-=-=三、练习巩固如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.(1)求BE的长;(2)求△ACD外接圆的半径.解:(1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知),∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径),∴∠AED=90°(直径所对的圆周角为直角),又AD是△ABC的角平分线(已知),∴∠CAD=∠EAD(角平分线定义),∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等),在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE(全等三角形的对应边相等);∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,∴BE=13﹣AC=13﹣5=8;(2)由(1)得到∠AED=90°,则有∠BED=90°,设CD=DE=x,则DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即(12﹣x)2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==,根据AD是△ACD外接圆直径,∴△ACD外接圆的半径为:×=.四、总结本节课我们学习了什么内容?五、作业布置完成练习册《圆的基本性质》六、教学反思。
北师大版九年级数学下册第三章圆圆的基本性质复习课教案
1 / 3ABCD OE例1图圆的基本性质复习课教案考纲要求:1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念。
2.探索圆周角、弧、弦之间的关系,了解并证明圆周角定理及其推论,圆周角的度数等于它所对弧上的圆心角度数的一半,直径所对的圆周角是直角,90°的圆周角所对的弦是直径,圆内接四边形的对角互补。
教学重点:掌握圆的基本性质 教学难点:圆的基本性质的应用教学过程:一、引入师:大家请看老师黑板上所画的图形圆。
这是我们这节课要复习的主要内容,请大家回顾,什么是圆?生:平面内到定点的距离等于定长的所有点组成的图形。
师:根据定义,确定圆必须有几个条件? 生:圆心和半径。
师:和圆有关的两种角是圆心角和圆周角,请同学们回顾它们的定义。
生:顶点在圆心的角是圆心角。
顶点在圆上、两边和圆相交的角是圆周角。
师:今天,老师带来了一个圆形纸片,但圆心找不到了,你们能通过折纸的方法帮老师找到这个圆的圆心吗?生:对折两次,两条折痕的交点就是圆心。
师:非常好,这两条折痕其实是圆的什么?对折后能完全重合,说明圆具有什么性质? 生:折痕是直径,说明圆具有轴对称性。
师:圆是一个轴对称图形,从它的轴对称性我们可以得到垂径定理及其逆定理。
下面,我们回顾一下垂径定理及其逆定理的内容。
生:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
师:刚才,我们通过折纸的方法找到了圆的两条直径,如图,两条直径AB 与CD 的交点O 就是圆心。
那么,图中⌒AD 与⌒BC 、⌒AC 与⌒BD 相等吗? 为什么?生:相等。
因为它们所对的圆心角相等。
师:在一个圆中,只要圆心角相等,它们所对的弧一定相等,这是因为圆具有旋转不变性。
这种旋转不变性,使得圆的三种基本量圆心角、弧、弦之间具有特殊的关系。
接下来我们就来复习这些内容。
二、知识回顾1.圆心角定理及其推论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第36课时 圆的基本性质
一、选择题
1.如图,⊙O 是△ABC 的外接圆,已知∠ABO=50°,则∠ACB 的大小为( ) A .40°
B .30°
C .45°
D .50°
2.如图,⊙O 是△ABC 的外接圆,已知∠B=60°,则∠CAO 的度数是( ) A .15° B .30° C .45°
D .60°
第1题图 第2题图 第3题图 第4题图 第5题图
3.如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 半径为1,P 是⊙O 上的点,且位于右上方的小正方形内,则∠APB 等于( ) A .30° B.45° C.60° D.90°
4.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠BOC=110°,AD∥OC,则∠AOD=( )A .70°
B .60°
C .50°
D .40°
5.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A=70o
,∠C=50o
, 那么sin∠AEB 的值为( ) A. 21 B. 33 C.2
2 D. 23
6.如图,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发,沿O-C-D-O 的路线作匀速运动.设运动时间为t 秒, ∠APB 的度数为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是( ).
7.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )
A.0.4米B.0.5米C.0.8米D.1米
第7题图第8题图第10题图第11题图第12题图
8.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD 的值等于()
A.OM的长B.2OM的长C.CD的长 D.2CD的长
9.已知⊙O是△ABC的外接圆,若AB=AC=5,BC=6,则⊙的半径为()
A.4 B.3.25 C.3.125 D.2.25
10.如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C 的度数是()A.25° B.40° C.30° D.50°
11.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于()
A
.B.5 C
.D.6
12.如图,AB是O
⊙的直径,点C在圆上,CD AB DE BC
⊥,∥,则图中与ABC
△相似的三角形的个数有()
A.4个B.3个C.2个D.1个
二、填空题
1.如图,AB是⊙O的直径,AC是弦,若∠ACO = 32°,则∠COB的度数等于.
2.如图,AB是⊙O
的直径,点C
在⊙O
上
,OD∥AC,若
BD=1
,则BC的长为 .
3.如图,⊙O的半径为5,P为圆内一点,P点到圆心O的距离为4,则过P点的弦长的最小值是________.
第1题图第2题图第3题图第4题图
4.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于 .
5.如图,圆O 的半径5cm OA =,弦8cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm .
6.某蔬菜基地的圆弧形蔬菜大棚的剖面如图(2)所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m .
7.如图,点C 、D 在以AB 为直径的⊙O 上,且CD 平分ACB ∠,若AB =2,∠CBA=15°,则CD 的长为
8.如图,△ABC
内接于⊙O,AB =BC ,∠ABC=120°,AD 为⊙O 的直径,AD =6,则BD =
_____
第5题图 第6题图 第7题图 第8题图 三、解答题
9.如图,⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5.
(1)若s in ∠B A D =3
5
,求CD 的长; (2)若 ∠ADO:∠EDO=4:1
,求扇形OAC (阴影部分)的面积(结果保留π).。