2020冀教版九年级数学上册 图形的相似测试题及答案
完整版冀教版九年级上册数学第25章 图形的相似含答案
![完整版冀教版九年级上册数学第25章 图形的相似含答案](https://img.taocdn.com/s3/m/b7c1a52d854769eae009581b6bd97f192279bf65.png)
冀教版九年级上册数学第25章图形的相似含答案一、单选题(共15题,共计45分)1、已知△ABC∽△A′B′C′,△A′B′C′的面积为6cm2,周长为△ABC周长的一半,则△ABC的面积等于()A.1.5cm 2B.3cm 2C.12cm 2D.24cm 22、如图,在的正方形网格中,连结两格点A,B,点C、D是线段与网格线的交点,则为A. B. C. D.3、如图,P,Q分别是双曲线在第一、三象限上的点,PA⊥ 轴,QB⊥轴,垂足分别为A,B,点C是PQ与轴的交点.设△PAB的面积为,△QAB的面积为,△QAC的面积为,则有()A. B. C. D.4、在△ABC中,DE∥BC,分别交边AB、AC于点D、E,AD:BD=1:2,那么△ADE与△ABC面积的比为()A.1:2B.1:4C.1:3D.1:95、如图,已知在▱ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F,则下列选项中的结论错误的是()A.FA:FB=1:2B.AE:BC=1:2C.BE:CF=1:2D.S△ABE:S △FBC=1:46、如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC,若AD=2,DB=1,△ADE、△ABC的面积分别为S1、S2,则的值为()A. B. C. D.27、△ABC的三边长分别为、、2,△A′B′C′的两边长分别为1和,如果△ABC∽△A′B′C′,那么△A′B′C′的第三边的长应等于( )A. B.2 C. D.28、如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是()A. B. C. D.9、如图,在中,,,等于()A. B. C. D.10、如图,在平面直角坐标系中,Rt△ABC的顶点A,C的坐标分别是(0,3),(3、0)。
∠ACB=90°,AC=2BC,若函数y= (k>0,x>0)的图象经过点B,则k 的值为()A. B.9 C. D.11、如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为()A. B. C. D.12、如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则▱ABCD的面积为()A.30B.27C.14D.3213、两个相似三角形的对应边的比是2:3,周长之和是20,那么这两个三角形周长分别为()A.8和12B.9和11C.7和13D.8和1514、如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH长为()A.1B.1.2C.2D.2.515、下列说法正确的是A.相等的圆心角所对的弧相等B.无限小数是无理数C.阴天会下雨是必然事件D.在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k二、填空题(共10题,共计30分)16、如果= = =k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=________.17、如图,网高为0.8米,击球点到网的水平距离为3米,小明在打网球时,要使球恰好能过网,且落点恰好在离网4米的位置上,则球拍击球的高度h为________米。
2020年冀教版九年级数学上学期第25章 图形的相似单元检测卷及答案
![2020年冀教版九年级数学上学期第25章 图形的相似单元检测卷及答案](https://img.taocdn.com/s3/m/0588c938ddccda38366baf01.png)
第二十五章测试卷一、选择题(1~10题每题3分,11~16题每题2分,共42分) 1.下列长度的各组线段成比例的是( )A .4cm ,2cm ,1cm ,3cmB .1cm ,2cm ,3cm ,5cmC .3cm ,4cm ,5cm ,6cmD .1cm ,2cm ,2cm ,4cm 2.若m +n n =52,则m n 等于( )A.52B.23C.25D.323.如图,可以判定△ABC ∽△A ′B ′C ′的条件是( )A .∠A =∠B ′=∠C ′ B.AB A ′B ′=AC A ′C ′且∠A =∠C ′ C.AB A ′B ′=AC A ′C ′且∠A =∠A ′D .以上条件都不对4.若两个相似多边形的面积之比为1:4,则它们的周长之比为( )A .1:4B .1:2C .2:1D .4:15.如图,在△ABC 中,若DE ∥BC ,AD =3,BD =6,AE =2,则AC 的长为( )A .4B .5C .6D .86.如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O为位似中心,相似比为13,在第一象限内把线段AB缩短后得到CD,则点C的坐标为()A.(2,1) B.(2,0)C.(3,3) D.(3,1)7.若线段AB=5cm,C是线段AB的一个黄金分割点,则线段AC的长为()A.5-52 B.35-52C.5-52或35-52 D.35-52或5+528.如图,小东用长3.2 m的竹竿BE做测量工具测量学校旗杆CD的高度,移动竹竿BE,使竹竿BE、旗杆CD顶端的影子恰好落在地面的同一点A处.此时,竹竿BE与点A相距8 m,与旗杆CD相距22 m,则旗杆CD的高度为()A.12 m B.10 mC.8 m D.7 m9.如图,在4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形是()10.如图所示,△ABC是等边三角形,若被一边平行于BC的矩形所截,AB被截成三等份,则图中阴影部分的面积是△ABC面积的()A.19 B.29 C.13 D.4911.如图,在△ABC中,点D, E分别是边AC, AB的中点,BD与CE相交于点O, 连接DE.下列结论:①OEOB=ODOC;②DEBC=12;③S△DOES△BOC=12;④S△DOE S△DBE=13,其中正确的有()A.1个B.2 个C.3 个D.4个12.如图,在矩形ABCD中,AB=2,BC=3,点E是AD的中点,CF⊥BE于点F,则CF等于()A.2 B.2.4C.2.5 D.2.2513.如图是小明设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A发出经平面镜反射后刚好射到古城墙CD的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,且AD∶BD=9∶4,则AC∶BC等于()A.9∶4 B.9∶2C.3∶4 D.3∶215.如图,在△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F 在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F 到BC的距离为()A.1 B.2C.12 2-6 D.6 2-616.如图,在钝角三角形ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于点M,取BC的中点D,AC的中点N,连接DN,DE,DF.下列结论:①EM=DN;②S△CND=13S四边形ABDN;③DE=DF;④DE⊥DF.其中正确结论的个数为()A.1 B.2 C.3 D.4二、填空题(每题3分,共9分)17.如图,直线l1∥l2∥l3,直线AC交l1,l2,l3于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知ABAC=13,则EFDE=________.18.如图,已知D,E分别是△ABC的边AB,AC上的点,DE∥BC,且S△ADE:S四边形DBCE=1:8,那么AE:AC=________.19.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形(如图),勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是________步.三、解答题(20,21题每题8分,22~25题每题10分,26题13分,共69分) 20.如图,四边形ABCD∽四边形EFGH,试求出x及α的大小.21.如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(-1,2),B(2,1),C(4,5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,并求出△A2B2C2的面积.22.如图,在△ABC中,点D在AB边上,∠ABC=∠ACD.(1)求证:△ABC~△ACD;(2)若AD=2,AB=5,求AC的长.23.如图,一条河的两岸BC与DE互相平行,两岸各有一排景观灯(图中黑点代表景观灯),每排相邻两景观灯的间隔都是10 m,在与河岸DE的距离为16 m的A处(AD⊥DE)看对岸BC,看到对岸BC上的两个景观灯的灯杆恰好被河岸DE上两个景观灯的灯杆遮住.河岸DE上的两个景观灯之间有1个景观灯,河岸BC上被遮住的两个景观灯之间有4个景观灯,求这条河的宽度.24.如图,要从一块Rt△ABC的白铁皮零料上截出一块矩形EFHD白铁皮.已知∠A=90°,AB=16cm,AC=12cm,要求截出的矩形的长与宽的比为2∶1,且较长边在BC上,点H,F分别在AB,AC上,所截矩形的长和宽各是多少?25.如图,在矩形ABCD中,已知AB=24,BC=12,点E沿BC边从点B开始向点C以每秒2个单位长度的速度运动;点F沿CD边从点C开始向点D以每秒4个单位长度的速度运动.如果点E,F同时出发,用t(0≤t≤6)秒表示运动的时间.请解答下列问题:(1)当t为何值时,△CEF是等腰直角三角形?(2)当t为何值时,以点E,C,F为顶点的三角形与△ACD相似?26.如图,E,F分别是正方形ABCD的边DC,CB上的点,且DE=CF,以AE为边作正方形AEHG,HE与BC交于点Q,连接DF.(1)求证:△ADE≌△DCF;(2)若E是CD的中点,求证:Q是CF的中点;(3)连接AQ,设S△CEQ=S1,S△AED=S2,S△EAQ=S3,在(2)的条件下,判断S1+S2=S3是否成立?并说明理由.答案一、1.D 2.D 3.C 4.B 5.C 6.A7.C8.A 点拨:∵BE ∥CD ,∴△AEB ∽△ADC ,∴AE AD =BE CD ,即88+22=3.2CD , 解得CD =12 m .故旗杆CD 的高度为12 m .故选A.9.D 10.C11.B 点拨:∵点D ,E 分别是边AC ,AB 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC 且DE BC =12,②正确; ∴∠ODE =∠OBC ,∠OED =∠OCB ,∴△ODE ∽△OBC ,∴OE OC =OD OB =DE BC =12,①错误; S △DOE S △BOC =⎝ ⎛⎭⎪⎫DE BC 2=14,③错误;∵S △DOE S △BOE =12OD ·h 12OB ·h =OD OB =12, ∴S △DOE S △DBE=13,④正确.故选B. 12.B13.B 点拨:由题意知,∠APB =∠CPD .又∵AB ⊥BD ,CD ⊥BD ,∴Rt △ABP ∽Rt △CDP ,∴AB CD =BP PD .∵AB =1.2米,BP =1.8米,PD =12米,∴CD =AB ·PD BP =1.2×121.8=8(米).故选B.14.D 点拨:方法1:∵∠ACB =90°,∠ADC =90°,又∠A 是公共角,∴Rt △ABC ∽Rt △ACD .∴AC AB =AD AC ,∴AC 2=AD ·AB .∵∠ACB =90°,∠BDC =90°,又∠B 是公共角,∴Rt △ABC ∽Rt △CBD ,∴BC BD =AB BC ,∴BC 2=BD ·AB .∴⎝ ⎛⎭⎪⎫AC BC 2=AD ·AB BD ·AB =AD BD =94. ∴AC ∶BC =3∶2.方法2:易证△ACD ∽△CBD ,∴S △ACD S △CBD =⎝ ⎛⎭⎪⎫AC BC 2. 又∵CD ⊥AB ,∴S △ACD S △CBD =12AD ·CD 12BD ·CD =AD BD =94, ∴AC BC =32. 15.D 点拨:如图,过点A 作AM ⊥BC 于点M ,交DG 于点N ,延长GF 交BC 于点H .∵AB =AC ,AD =AG ,∴AD :AB =AG :AC .又∵∠BAC =∠DAG ,∴△ADG ∽△ABC .∴∠ADG =∠B .∴DG ∥BC .∴AN ⊥DG .∵四边形DEFG 是正方形,∴FG⊥DG.∴FH⊥BC.∵AB=AC=18,BC=12,∴BM=12BC=6.∴AM=AB2-BM2=12 2.∵ANAM=DGBC,即AN12 2=612,∴AN=6 2.∴MN=AM-AN=6 2.∴FH=MN-GF=6 2-6.故选D.16.D点拨:∵△ABE是等腰直角三角形,EM平分∠AEB,∴EM是AB边上的中线.∴EM=12AB.∵点D,点N分别是BC,AC的中点,∴DN是△ABC的中位线.∴DN=12AB,DN∥AB.∴EM=DN.①正确;由DN∥AB,易证△CDN∽△CBA.∴S△CNDS△CAB=⎝⎛⎭⎪⎫DNAB2=14.∴S△CND=13S四边形ABDN.②正确;如图,连接DM,FN,则DM是△ABC的中位线,∴DM=12AC,DM∥AC,∴四边形AMDN是平行四边形.∴∠AMD=∠AND.易知∠ANF=90°,∠AME=90°,∴∠EMD=∠DNF.∵FN是AC边上的中线,∴FN=12AC.∴DM=FN.又∵EM=DN,∴△DEM≌△FDN.∴DE=DF,∠FDN=∠DEM.③正确;∵∠MDN+∠AMD=180°,∴∠EDF=∠MDN-(∠EDM+∠FDN)=180°-∠AMD-(∠EDM+∠DEM)=180°-(∠AMD+∠EDM+∠DEM)=180°-(180°-∠AME)=180°-(180°-90°)=90°,∴DE⊥DF.④正确.故选D.二、17.218.1∶319.60 17三、20.解:因为四边形ABCD∽四边形EFGH,所以∠H=∠D=95°,则α=360°-95°-118°-67°=80°.再由x∶7=12∶6,解得x=14.21.解:(1)如图,△A1B1C1就是所要画的三角形.(2)如图,△A2B2C2就是所要画的三角形.分别过点A2,C2作y轴的平行线,过点B2作x轴的平行线,交点分别为E,F.∵A (-1,2),B (2,1),C (4,5),△A 2B 2C 2与△ABC 位似,且位似比为2:1, ∴A 2(-2,4),B 2(4,2),C 2(8,10).∴S △A 2B 2C 2=12×(2+8)×10-12×2×6-12×4×8=28.22.(1)证明:∵∠ABC =∠ACD ,∠A =∠A ,∴△ABC ∽△ACD .(2)解:由(1)知△ABC ∽△ACD ,∴AC AD =AB AC .∵AD =2,AB =5,∴AC 2=5AC, ∴AC =10(负值舍去).23.解:由题意可得DE ∥BC ,所以△ADE ∽△ABC .所以AD AB =DE BC ,即AD AD +DB=DE BC . 因为AD =16 m ,BC =50 m ,DE =20 m ,所以1616+DB =2050. 所以DB =24 m.答:这条河的宽度为24 m.24.解:如图,过点A 作AN ⊥BC 交HF 于点M ,交BC 于点N .∵∠BAC =90°,∴∠BNA =∠BAC ,BC =AB 2+AC 2=20(cm).又∵∠B =∠B ,∴△ABN ∽△CBA ,∴AN AC =ABBC ,∴AN =AC ×AB BC =485(cm).∵四边形EFHD 是矩形,∴HF ∥ED ,∴∠AHF =∠B ,∠AFM =∠C ,∴△AHF ∽△ABC ,∴AM AN =HFBC .设EF =x ,则MN =x ,由截出的矩形的长与宽的比为2∶1,可知HF =2x ,∴485-x485=2x20,解得x =24049,∴2x =48049.故所截矩形的长为48049cm ,宽为24049cm.25.解:(1)由题意可知BE =2t ,CF =4t ,CE =12-2t .因为△CEF 是等腰直角三角形,∠ECF 是直角,所以CE =CF .所以12-2t =4t ,解得t =2.所以当t =2时,△CEF 是等腰直角三角形.(2)根据题意,可分为两种情况:①若△EFC ∽△ACD ,则EC AD =FCCD ,所以12-2t12=4t24,解得t =3,即当t =3时,△EFC ∽△ACD ;②若△FEC ∽△ACD ,则FC AD =ECCD ,所以4t 12=12-2t 24,解得t =1.2, 即当t =1.2时,△FEC ∽△ACD .因此,当t 为3或1.2时,以点E ,C ,F 为顶点的三角形与△ACD 相似.26.(1)证明:由AD =DC ,∠ADE =∠DCF =90°,DE =CF ,得△ADE ≌△DCF .(2)证明:因为四边形AEHG 是正方形,所以∠AEH =90°.所以∠QEC +∠AED =90°.又因为∠AED +∠EAD =90°,所以∠QEC =∠EAD .因为∠C =∠ADE =90°,所以△ECQ ∽△ADE .所以CQ DE =EC AD .因为E 是CD 的中点,CD =AD ,所以EC =DE =12AD . 所以EC AD =12. 因为DE =CF ,所以CQ DE =CQ CF =12, 即Q 是CF 的中点.(3)解:S 1+S 2=S 3成立.理由:因为△ECQ ∽△ADE ,所以CQ DE =QE AE .所以CQ CE =QE AE .因为∠C =∠AEQ =90°,所以△ECQ ∽△AEQ .所以△AEQ ∽△ECQ ∽△ADE .所以S 1S 3=⎝ ⎛⎭⎪⎫EQ AQ 2,S 2S 3=⎝ ⎛⎭⎪⎫AE AQ 2. 所以S 1S 3+S 2S 3=⎝ ⎛⎭⎪⎫EQ AQ 2+⎝ ⎛⎭⎪⎫AE AQ 2=EQ 2+AE 2AQ 2.在Rt △AEQ 中, 由勾股定理得EQ 2+AE 2=AQ 2,S1 S3+S2S3=1,即S1+S2=S3.所以1、只要朝着一个方向努力,一切都会变得得心应手。
冀教版九年级上册数学第25章 图形的相似 含答案
![冀教版九年级上册数学第25章 图形的相似 含答案](https://img.taocdn.com/s3/m/60ecbdffde80d4d8d05a4fbc.png)
冀教版九年级上册数学第25章图形的相似含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,与位似,位似中心是原点,若与的相似比为,已知,则它对应点的坐标是()A. B. C.(-9,1)或 (9,-1) D.或2、如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O ,则等于()A. B. C. D.3、如图,将边长为3的正方形纸片ABCD对折,使AB与DC重合,折痕为EF,展平后,再将点B折到边CD上,使边AB经过点E,折痕为GH,点B的对应点为M,点A的对应点为N,那么折痕GH的长为()A. B. C. D.4、在△ABC中,DE∥BC,AE:EC=2:3,则S△ADE :S四边形BCED的值为()A.4:9B.4:21C.4:25D.4:55、已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A,C,F在一条直线上()A. B. C. D.6、某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为().A.5. 3米B.4.8米C.4.0米D.2.7米7、已知,则下列比例式成立的是()A. B. C. D.8、《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立标杆,长一尺五寸,影长五寸,问竿长几何?意即:如图,有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺9、如图所示,在平面直角坐标系中,有两点A(4,2),B(3,0),以原点为位似中心,A′B′与AB的相似比为,得到线段A′B′.正确的画法是()A. B.C.D.10、如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2 ;③tan∠DCF= ;④△ABF的面积为.其中一定成立的有几个()A.1个B.2个C.3个D.4个11、如图,已知△ABC,P是边AB上一点,连结CP,以下条件不能判定△APC∽△ACB的是()A.∠ACP=∠BB.∠APC=∠ACBC.AC 2=AP·ABD.12、下列各选项中的两个图形不是位似图形的是()A. B.C. D.13、在正方形中,点为边上的一点,,连接,作于点,令关于的函数关系图象大致是()A. B. C. D.14、如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60mB.40mC.30mD.20m15、下面两个三角形一定相似的是()A.两个等腰三角形B.两个直角三角形C.两个钝角三角形D.两个等边三角形二、填空题(共10题,共计30分)16、在平面直角坐标系xOy中,点A、B的坐标分别为(2,﹣1)、(3,0),以原点O为位似中心,把线段AB放大,点B的对应点B′的坐标为(6,0),则点A的对应点A′的坐标为________17、若,则=________.18、如图,△ABC与△DEF是位似图形,位似比为2:3,若AB=6,那么DE=________ .19、已知P是线段AB的黄金分割点,PA>PB,AB=2cm,则PA为________cm.20、若两个相似多边形的面积比是16:25,则它们的周长比等于________.21、已知3x=2y,那么=________ .22、在△ABC中,AB=AC,高AH与中线BD相交于点E,如果BC=2,BD=3,那么AE=________.23、如图,已知,请添加一个条件,使,这个条件可以是________.24、如图,在△ABC与△ADE中,,要使△ABC与△ADE相似,还需要添加一个条件,这个条件可以是________ 。
冀教版九年级上册数学第25章 图形的相似 含答案
![冀教版九年级上册数学第25章 图形的相似 含答案](https://img.taocdn.com/s3/m/47eb03b6e45c3b3566ec8b84.png)
冀教版九年级上册数学第25章图形的相似含答案一、单选题(共15题,共计45分)1、如图,△ABC中,AD⊥BC于D,且有下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3)=;(4)AB2=BD·BC其中一定能够判定△ABC是直角三角形的共有()A.3个B.2个C.1个D.0个2、已知两个三角形相似,对应中线之比为1:4,那么对应周长之比为()A.1:2B.1:16C.1:4D.无法确定3、若两个相似矩形的相似比为,较小矩形面积为,较大矩形一边为,则其相邻的一边是()A. B. C. D.4、在下列命题中:①三点确定一个圆;②同弧或等弧所对圆周角相等;③所有直角三角形都相似;④所有菱形都相似;其中正确的命题个数是()A.0B.1C.2D.35、如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE= DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣6、如图,已知是坐标原点,与是以点为位似中心的位似图形,且与的相似比为,如果内部一点的坐标为,则在中的对应点的坐标为()A.(-x, -y)B.(-2x, -2y)C.(-2x, 2y)D.(2x, -2y)7、下列各组数中,能成比例的是()A.3,4,5,6B.-1,-2, 2,4C.-3,1,3,0D.-1,2,-3,48、如图,中,点D在线段BC上,且,则下列结论一定正确的是()A. B. C.D.9、在△ABC中,点D,E分别在边AB,AC上,AD:BD=1:2,那么下列条件中能够判断DE∥BC的是()A. B. C. D.10、如图,在矩形ABCD中,AB=6,BC=10,P是AD边上一动点(不含端点A,D),连接PC,E是AB边上一点,设BE=a,若存在唯一点P,使∠EPC=90°,则a的值是( )A. B. C.3 D.611、如图,交双曲线于点A,且,若矩形的面积是8,且轴,则k的值是( )A.18B.50C.12D.12、如图,AD是⊙O的直径,以A为圆心,弦AB为半径画弧交⊙O于点C,连结BC交AD于点E,若DE=3,BC=8,则⊙O的半径长为( )A. B.5 C. D.13、如图,四边形是正方形,是的中点,连接与对角线相交于点,连接并延长,交于点,连接交于点.以下结论:①;②;③;④.其中正确结论的个数有()A.1B.2C.3D.414、下列各组线段的长度成比例的是()A.1cm,2cm,3cm,4cmB.2cm,3cm,4cm,5cmC.0.3m,0.6m,0.5m,0.9m D.30cm,20cm,90cm,60cm15、有一块直角边AB=3cm,BC=4cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A. B. C. D.二、填空题(共10题,共计30分)16、在1:500000的无锡市地图上,新建的地铁线估计长5cm,那么等地铁造好后实际长约为________千米.17、如图,点A在y=(k>0)图象上,点B在x轴负半轴上,直线AB交y 轴于C.若=,△AOB的面积为15,则k=________.18、如图,在▱ABCD中,延长CD至点E,使DE=DC,连接BE与AC于点F,则的值是________.19、如图,已知AB=AC=AD,∠CAD=60°,分别连接BC、BD,作AE平分∠BAC 交BD于点E,若BE=4,ED=8,则DF=________.20、如图,在△ABC中,D、E分别是边AB、AC的中点,则△ADE与△ABC的面积比S△ADE :S△ABC=________.21、如图,菱形的对角线、交于点O,点E、F、G分别在、、上,且四边形为矩形.若,,则的长为________.22、已知,且a+b-2c=6,则a的值为________ 。
冀教版九年级上册数学第25章 图形的相似 含答案
![冀教版九年级上册数学第25章 图形的相似 含答案](https://img.taocdn.com/s3/m/ca66f78ff242336c1fb95e4e.png)
冀教版九年级上册数学第25章图形的相似含答案一、单选题(共15题,共计45分)1、如图,以点O为位似中心,将缩小后得到,已知,则与的面积的比为( )A.1:3B.1:4C.1:5D.1:92、如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,下列结论不正确的是()A.BF=DFB.四边形AECD是等腰梯形C.S△FAD =2S△FBED.∠AEB=∠ADC3、在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为()A. B.2 C. D.14、如图,若DE是△ABC的中位线,则S△ADE :S△ABC=()A.1:B.1:2C.1:3D.1:45、如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACBB.∠ADB=∠ABC B.C.AB 2=AD•ACD. =6、某一时刻,一根4米长的旗杆的影子长6米,同一时刻一座建筑物的影子长36米,则这座建筑物的高度为()米.A.22B.20C.26D.247、在下列命题中:①三点确定一个圆;②同弧或等弧所对圆周角相等;③所有直角三角形都相似;④所有菱形都相似;其中正确的命题个数是()A.0B.1C.2D.38、如图,能使△ACD∽△BCA全等的条件是()A. B.AC 2=CD CB C. D.CD 2=AD BD9、在△ABC中,DE∥BC,若AD=1,DB=2,则的值为()A. B. C. D.10、如图,已知点P是四边形ABCD对角线AC上一点,PF//CD交AD于点E,PE//BC交AB于点F.若,则四边形AFPE的周长与四边形ABCD的周长之比为( )A. =B. =C. =D. =11、如图,△ABC中,AB=4,BC=6.点D,点E分别是边AB,BC上的两个动点,若按照下列条件将△ABC沿DE剪开,剪下的△BDE与原三角形不相似的是()A.∠BDE=∠CB.DE∥ACC.AD=3,BE=2D.AD=1,CE=412、如果延长线段AB到C,使得BC= AB,那么AC:AB等于()A.2:1B.2:3C.3:1D.3:213、如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.3.25mB.4.25mC.4.45mD.4.75m14、如图,在中,,分别以的边向外作正方形,连接EC、BF,过B作于M,交AC于N,下列结论:≌;;;,其中正确的是()A. B. C. D.15、如图,慢慢将电线杆竖起,如果所用力F的方向始终竖直向上,则电线杆竖起过程中所用力的大小将()A.变大B.变小C.不变D.无法判断二、填空题(共10题,共计30分)16、若,且,则________.17、如图,AB是⊙O的直径,经过圆上点D的直线CD恰使∠ADC=∠B.过点A 作直线AB的垂线交BD的延长线于点E,且AB= ,BD=2,则线段AE的长为________.18、如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为________m.19、如图,点为⊙O外一点,过点P作的切线、,点A、B为切点.连接并延长交的延长线于点C,过点作,交的延长线于点D.已知,,则的长为________.20、P为线段AB的黄金分割点,AP>BP,如果AP=10cm,那么BP=________cm.(精确到0.1cm)21、如图,点是双曲线上的一个动点,连接并延长交双曲线于点将线段绕点逆时针旋转得到线段若点在双曲线上运动,则________.22、如图,AB⊥CB于点B , AC⊥CD于点C , AB=6,AC=10,当CD= ________时,△ABC∽△ACD .23、如图,已知 A、B 两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(-2,0),半径为2.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是________;24、如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段BE的长为________ .25、如图,AB、CD都是BD的垂线,AB=4,CD=6,BD=14,P是BD上一点,联结AP、CP,所得两个三角形相似,则BP的长是________。
冀教版九年级上册数学第25章 图形的相似 含答案
![冀教版九年级上册数学第25章 图形的相似 含答案](https://img.taocdn.com/s3/m/ed27ac788762caaedc33d4ab.png)
冀教版九年级上册数学第25章图形的相似含答案一、单选题(共15题,共计45分)1、如图,已知矩形ABCD,AB=6,BC=8,E,F分别是AB,BC的中点,AF与DE 相交于I,与BD相交于H,则四边形BEIH的面积为()A. B. C. D.2、如图,在△ABC中,点D,E分别在边AB,AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠BB.∠ADE=∠CC.D.3、如图,在口ABCD中,E为AD的三等分点,AE= AD ,连接BE交AC于点F , AC=12,则AF为().A.4B.4.8C.5.2D.64、如图,在中,,,,将沿图示中的虚线剪开,剪下的三角形与原三角形不相似的是()A. B. C. D.5、在同一时刻,身高1.6m的小强,在太阳光线下影长是1.2m,旗杆的影长是15m,则旗杆高为()A.22mB.20mC.18mD.16m6、如图,□ABCD,E在CD延长线上,AB=6,DE=4,EF=6,则BF的长为().A.7B.8C.9D.107、如图,在平行四边形中,为的中点,,交于点,若随机向平行四边形内投一粒米,则米粒落在图中阴影部分的概率为()A. B. C. D.8、下列命题正确的是()A.若锐角满足,则B.在平面直角坐标系中,点关于x轴的对称点为C.两条直线被第三条直线所截,同旁内角互补D.相似三角形周长之比与面积之比一定相等9、已知= (a≠0,b≠0),下列变形错误的是()A. =B.2a=3bC. =D.3a=2b10、如图,△ABC是一张锐角三角形的纸片,AD是边BC上的高,已知BC=20cm,AD=15cm,从这张纸片上剪一下一个矩形,使矩形的一边在BC上,另两个顶点分别在AB、AC上。
则下列结论不正确的是()A.当△AHG的面积等于矩形面积时,HE的长为5cmB.当HE的长为6cm 时,剪下的矩形的边HG是HE的2倍C.当矩形的边HG是HE的2倍时,矩形面积最大D.当矩形的面积最大时,HG的长是10cm11、如图,路灯距地面8米,身高1.6米的小明从距离路灯的底部(点O)20米的点A处沿OA所在的直线行走14米到点B时,人影长度( )A.变长3.5米B.变长2.5米C.变短3.5米D.变短2.5米12、如图,已知BC∥DE,则下列说法中不正确的是()A.两个三角形是位似图形B.点A是两个三角形的位似中心C.AE︰AD是位似比D.点B与点E、点C与点D是对应位似点13、如图,E是▱ABCD边AB延长线上的一点,AB=4BE,连接DE交BC于F,则△DCF与四边形ABFD面积的比是()A.4:5B.2:3C.9:16D.16:2514、如图,在平行四边形中,F为BC中点,延长AD至E,连结EF交DC 于点G,若,则()A.1:2B.1:3C.1:4D.2:915、两个相似三角形面积比是,其中一个三角形的周长为18,则另一个三角形的周长是()A.12B.12或24C.27D.12或27二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2),若点A′(5,6),则A的坐标为________.17、如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F,已知,若DF=10,则DE=________.18、如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是________.19、如图,在△ABC中,∠B=90°,AB=3,BC=2,点O在AC边上,⊙O与AB、BC分别切于点D、E,则⊙O的半径长为________.20、若两个等边三角形的边长分别为与3 ,则它们的面积之比为________.21、如图所示,,AC、BD相交于点E,若面积为3,的面积为5,则梯形的面积为________.22、如图,在△ABC中,∠C=90°,AC=6,BC=8,CD是斜边AB上的中线,G是△ABC的重心,GH⊥AB于H,则GH=________.23、已知D是等边△ABC边AB上的一点,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上.如图,若AD∶DB=1∶4,则CE∶CF=________.24、如图,在△ABC中,D,E分别是AB,AC上的点,DE∥BC.若AE=6,EC=3,DE=8,则BC=________.25、如图,双曲线y= 经过Rt△BOC斜边上的点A,且满足= ,与BC=21,求k=________.交于点D,S△BOD三、解答题(共5题,共计25分)26、已知,且x+y-z=2,求x、y、z的值.27、已知:如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻,AB 在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6m,请你计算DE的长.28、如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P ,在近岸取点Q和S ,使点P、Q、S共线且直线PS与河垂直,接着再过点S且与PS 垂直的直线a上选择适当的点T ,确定PT与过点Q且垂直PS的直线 b的交点 R .如果测得 QS=45 m , ST=90 m , QR=60 m ,求河的宽度 PQ .29、已知△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC绕圆点O旋转180°得到△A1B1C1,请你在图中画出△A1B1C1;(2)写出点A1的坐标;(3)求△A1B1C1的面积.30、亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部,颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置,.然后测出两人之间的距离,颖颖与楼之间的距离(,,在一条直线上),颖颖的身高,亮亮蹲地观测时眼睛到地面的距离.你能根据以上测量数据帮助他们求出住宅楼的高度吗?参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、C5、B6、C7、B8、B9、B10、C11、C12、C13、B14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
冀教版九年级上册数学第25章 图形的相似 含答案
![冀教版九年级上册数学第25章 图形的相似 含答案](https://img.taocdn.com/s3/m/eeb16141960590c69fc3769c.png)
冀教版九年级上册数学第25章图形的相似含答案一、单选题(共15题,共计45分)1、如图,△ABC内接于圆O,∠BOC=120°,AD为圆O的直径.AD交BC于P点且PB=1,PC=2,则AC的长为( )A. B. C.3 D.22、在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为2:1,把△EFO缩小,则点E的对应点E′的坐标是()A.(-2,1)B.(-2, 1)或(2,-1)C.(-8,4)D.(-8,4)或(8,-4)3、如图,正方形ABCD中,,点E是对角线AC上一点,连接BE,过点E作,交AB于点F,连接DF,交AC于点G,将沿EF翻折,得到,连接DM,交EF于点N,若点F是AB的中点,则的周长是()A. B. C. D.4、如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B 两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cmB.5.4 cmC.3.6 cmD.0.6 cm5、如图,△ABC, AB=12,AC=15,D为AB上一点,且AD= AB ,在AC上取一点E,使以A,D,E为顶点的三角形与ABC相似,则AE等于()A. B.10 C. 或10 D.以上答案都不对6、已知正方形ABCD,E是CD的中点,P是BC边上的一点,下列条件中不能推出△ABP与△ECP相似的是()A.∠APB=∠EPCB.∠APE=90°C.P是BC的中点D.BP︰BC =2︰37、如图,将矩形ABCD密铺在长为4cm.宽为2cm的矩形纸片右侧,若组成的新矩形与原矩形(图中阴影部分)相似,则AB=()cm.A.3B.6C.8D. -18、如图,D是△ABC的边AB上的一点,那么下列四个条件不能单独判定△ABC ∽△ACD的是()A.∠B=∠ACDB.∠ADC=∠ACBC. =D.AC 2=AD•AB9、如图,一张矩形报纸ABCD的长AB=a,宽BC=b,E,F分别是AB,CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽的比等于矩形ABCD的长与宽的比,则a:b等于()A. B. C. D.10、如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于( )A. B. C. D.11、如图,四边形ABCD的对角线AC,BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是()A.①与②相似B.①与③相似C.①与④相似D.②与④相似12、如图,在▱ABCD中,E为BC的中点,连接AE、AC,分别交BD于M、N,则BM:DN等于()A.1:2B.1:3C.2:3D.以上都不正确13、如图,,,那么下列比例式中正确的是()A. B. C. D.14、如图,在中,、为边的三等分点,,点为与的交点.若,则为()A.1B.2C.D.315、如图,锐角△ABC中,AD是高,E,F分别是AB,AC中点,EF交AD于G,已知GF=1,AC= 6,△DEG的周长为10,则△ABC的周长为()A.27B.28C.28-4D.20+2二、填空题(共10题,共计30分)16、如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=________ .17、如图,点B,E分别在线段AC,DF上,若AD∥BE∥CF,AB=3,BC=2,DE=4.5,则DF的长为________.18、平面直角坐标系中,四边形ABCD与四边形A′B′C′D′关于原点O位似,点A坐标为(﹣2,1),它的对应点A′(1,﹣0.5),如果AB=2,则A′B′=________ .19、如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段的长为________.20、若两个三角形的相似比为3:2,且较大的三角形的周长为9cm,则较小的三角形的周长为________ cm.21、如图,是⊙的直径,是⊙外一点,点在⊙上,与⊙相切于点,,若,则弦的长为________.22、如图,在平行四边形ABCD中,点E在AD上,且,连接CE交BD于F,则S△BCF :S△DCF=________。
冀教版九年级上册数学第25章 图形的相似 含答案
![冀教版九年级上册数学第25章 图形的相似 含答案](https://img.taocdn.com/s3/m/3b79abb6c850ad02df8041d1.png)
冀教版九年级上册数学第25章图形的相似含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,DE∥BC,,则()A. B. C. D.2、如图,在正方形ABCD中,△BPC是等边三角形,BP,CP的延长线分别交AD于点E,F,连接BD,DP,BD与CF交于点H.下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC,其中正确的结论是()A.①②③④B.②③C.①②④D.①③④3、正方形ABCD中,E、F分别为AB、BC的中点,AF与DE相交于点O,则=()A. B. C. D.4、如果4x=5y(y≠0),那么下列比例式成立的是( )A. B. C. D.5、如图所示,△ABC∽△ACD,且AB=10cm,AC=8cm,则AD的长是()A.6.4cmB.6cmC.2cmD.4cm6、如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S= .在以上4个结论中,正确的有()⊿BEFA.1B.2C.3D.47、关于直角三角形,下列说法正确的是()A.所有的直角三角形一定相似;B.如果直角三角形的两边长分别是3和4,那么第三边的长一定是5;C.如果已知直角三角形两个元素(直角除外),那么这个直角三角形一定可解;D.如果已知直角三角形一锐角的三角函数值,那么这个直角三角形的三边之比一定确定.8、在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地间的实际距离是()A.1250kmB.125kmC.12.5kmD.1.25km9、如图,Rt△ABC中,BC=2,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E 4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S 1、S2、S3、…、S2013.则S2013的大小为()A. B. C. D.10、如图,和是位似图形,点是位似中心,点,,分别是,,的中点.若的面积为,周长为,则下列说法正确的是()A. 的面积为B. 的面积为C. 的周长为D. 的周长为11、如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A. B. C. D.12、如图,△ABC中,若DE∥BC,EF∥AB,则下列等式①②③④其中正确的是()A.①③④B.②③④C.①②④D.①②③④13、如图,在中,,,为边上的一点,且.若的面积为,则的面积为()A. B. C. D.14、如图,,与相交于点,若,,,则的值是()A. B. C. D.15、如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,要在宽AB为20米的瓯海大道两边安装路灯,路灯的灯臂CD与灯柱BC成120°角,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线(即O为AB的中点)时照明效果最佳,若CD= 米,则路灯的灯柱BC高度应该设计为________米(计算结果保留根号).17、如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为________18、如图,在△ABC中,AB=3,D是AB上的一点(不与点A、B重合),DE∥BC,交AC于点E,则的最大值为________.19、如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF ⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为________.20、如图,在△ABC中,DE∥BC,DE过重心G,且分别与AB、AC交与点D、E,如果△ADE的面积为16cm2,那么四边形BCED的面积为________cm2.21、三个等腰直角三角形Rt△ABE, Rt△BCF, Rt△CDG如图摆放在射线AD 上,直角顶点分别为B,C,D,已知相似比为2:3:4,AB=4,则(1)CG的长为________;(2)图中阴影部分的面积是________.22、经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为________.23、如果在比例尺为1∶1000000的地图上,A、B两地的图上距离是3.4厘米,那么A、B两地的实际距离是________千米.24、如图,线段AC、BD交于点O,请你添加一个条件:________,使△AOB∽△COD.25、在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是________.三、解答题(共5题,共计25分)26、已知x:y:z=2:3:4,求的值.27、五角星是我们常见的图形,如图所示,其中,点C,D分别是线段AB的黄金分割点,AB=20cm,求EC+CD的长.28、如图,△ABC的高AD、BE交于点F,求证:=.29、如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.30、已知:如图,D是BC上一点,△ABC∽△ADE,求证:∠1=∠2=∠3.参考答案一、单选题(共15题,共计45分)1、B2、C3、D4、B5、A6、C7、D8、D9、C10、C11、A12、D13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、。
(基础题)冀教版九年级上册数学第25章 图形的相似含答案
![(基础题)冀教版九年级上册数学第25章 图形的相似含答案](https://img.taocdn.com/s3/m/f763c9cae109581b6bd97f19227916888486b914.png)
冀教版九年级上册数学第25章图形的相似含答案一、单选题(共15题,共计45分)1、某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC 的影子BC的长度为6米,那么旗杆AC的高度为( )A.6米B.7米C.8.5米D.9米2、下列四个命题:①两角分别相等的两个三角形相似;②三边成比例的两个三角形相似;③两直角边成比例的两个直角三角形相似;④顶角相等的两个等腰三角形相似.其中是真命题的是()A.①②③B.①②④C.①②③④D.①②3、如图,在反比例函数y=- 的图像上有一动点A,连接AO并延长交图像的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y= 的图像上运动,若tan∠CAB=2,则k的值为()A.2B.4C.6D.84、如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF =S△ABF.其中正确的结论有()A.4个B.3个C.2个D.1个5、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( )A.1对B.2对C.3对D.4对6、如图,在△ABC中,BC=9,∠ABC的平分线BF交AC于点F,点D、点E分别是边AB、AC上的点,若,则BD﹣DE的值为()A.3B.3.5C.4D.4.57、冬至时是一年中太阳相对于地球位置最低的时刻,只要此时能采到阳光,一年四季就均能受到阳光照射.此时竖一根米长的竹杆,其影长为米,某单位计划想建米高的南北两幢宿舍楼(如图所示).当两幢楼相距多少米时,后楼的采光一年四季不受影响?()A. 米B. 米C. 米D. 米8、两个全等的等腰直角三角形,斜边长为2,按如图放置,其中一个三角形45°角的项点与另一个三角形的直角顶点A重合,若三角形ABC固定,当另一个三角形绕点A旋转时,它的角边和斜边所在的直线分别与边BC交于点E、F,设BF= CE= 则关于的函数图象大致是()A. B. C. D.9、如图点的坐标分别是A(1,7),B(1,1),C(4,1),D(6,1),以,C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是A.(6,0)B.(6,3)C.(6,5)D.(4,2)10、如图,一块含有30°的直角三角板的直角顶点和坐标原点重合,30°角的顶点在反比例函数的图象上,顶点B在反比例函数的图象上,则k的值为()A.-4B.4C.-6D.611、如果a:b=12:8,且b是a和c的比例中项,那么b:c等于().A.4:3B.3:2C.2:3D.3:412、如图是小明设计用手电来测量某古城墙高度的示意图。
冀教版九年级上册数学第25章 图形的相似 含答案
![冀教版九年级上册数学第25章 图形的相似 含答案](https://img.taocdn.com/s3/m/5dd92029b14e852459fb570d.png)
冀教版九年级上册数学第25章图形的相似含答案一、单选题(共15题,共计45分)1、如图,已知是坐标原点,与是以点为位似中心的位似图形,且与的相似比为,如果内部一点的坐标为,则在中的对应点的坐标为()A.(-x, -y)B.(-2x, -2y)C.(-2x, 2y)D.(2x, -2y)2、如图,在中,点D为边上的一点,且,交于D,过点D作交于点E,若,则的面积为()A. B.4 C. D.33、如图,CD是Rt△ABC斜边AB上的高,CD=6,BD=4,则AB的长为()A.10B.11C.12D.134、如图,直线l与x轴、y轴分别交于A、B两点,与反比例函数y=的图象在第一象限相交于点C.若AB=BC,△AOB的面积为3,则k的值为()A.6B.9C.12D.185、如图,已知点E(﹣4,2),点F(﹣1,﹣1),以O为位似中心,把△EFO 放大为原来的2倍,则E点的对应点坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,4)C.(2,﹣1)D.(8,﹣4)6、如图,已知在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8B.3:8C.3:5D.2:57、如图,在Rt△ABC中,AC=4,∠ABC=90°,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,则图中阴影部分面积为()A.1B.1.5C.2D.2.58、已知Rt△ABC∽Rt△A'B'C',∠C=∠C'=90°,且AB=2A'B',则sinA与sinA'的关系为( )A.sinA=2sinA'B.sinA=sinA'C.2sinA=sinA'D.不能确定9、若a:b=3:2,且b是a、c的比例中项,则b:c等于()A.4:3B.3:4C.3:2D.2:310、如图,将的三边扩大一倍得到(顶点均在格点上),如果它们是以点P为位似中心的位似图形,则点的P坐标是()A. B. C. D.11、如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2B.3C.5D.612、下列正方形方格中四个三角形中,与甲图中的三角形相似的是()A. B. C.D.13、如图,等边三角形内接于,点P在弧BC上,PA与BC相交于点D,若PB=3,PC=6,则PD=( )A.1.5B.C.2D.14、在一张复印机复印出来的纸上,一个多边形图案的一条边由原来的1cm变成2cm,那么这次复印出来的多边形图案面积是原来的()A.1倍B.2倍C.3倍D.4倍15、如图,在正方形中,是等边三角形,,的延长线分别交于点,,连接,,与相交于点.有下列结论:①;②;③;④.其中正确的个数是()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、如图,已知矩形OABC与矩形ODEF是位似图形,P是位似中心,若点B的坐标为,点E的坐标为,则点P的坐标为________.17、如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=________cm.18、如图,已知AB∥CD∥EF,AD:AF=3:5,BE=10,那么BC的长等于________.19、如果,那么=________20、赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.21、如图,AB//CD,,E为BC上一点,且.若,,,则DE的长为________.22、如图,火焰的光线穿过小孔O,在竖直的屏幕上形成倒立的实像,像的长度BD=2 cm,OA=60 cm, OB=15 cm,则火焰的长度为________.23、如图,在Rt△BEG中,∠BEG=90°,ED平分∠BEG,点H、F在EG上,∠CFG=2∠EDH,∠EBG=∠DEB+∠EDH,BD=CD=CG=2,则CF的长为________。
冀教版九年级上册数学第25章 图形的相似 含答案
![冀教版九年级上册数学第25章 图形的相似 含答案](https://img.taocdn.com/s3/m/4367311cfbd6195f312b3169a45177232f60e4c3.png)
冀教版九年级上册数学第25章图形的相似含答案一、单选题(共15题,共计45分)1、如图,小明用自制的直角三角形纸板DEF测量树AB的高度,测量时,使直角边DF保持水平状态,其延长线交AB于点G;使斜边DE所在的直线经过点A.测得边DF离地面的高度为1m,点D到AB的距离等于7.5m.已知DF=1.5m,EF=0.6m,那么树AB的高度等于()A.4mB.4.5mC.4.6mD.4.8m2、如图平行四边变形 ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则BF∶FD等于()A.2∶5B.3∶5C.2∶3D.5∶73、如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论中正确的个数有()①∠EAF=45°;②△ABE∽△ACD;③AE平分∠CAF;④BE2+DC2=DE2.A.1个B.2个C.3个D.4个4、如图,在平行四边形中,E是AB延长线上一点,连接,交于点,交于点,那么图中相似三角形(不含全等三角形)共有()A.6对B.5对C.4对D.3对5、如图,已知△ABC与△DEF是位似图形,且OB:BE=1:2,那么S△ABC :S△DEF()A.1:3B.1:2C.1:9D.1:46、如图,一架梯子AB靠墙而立,梯子顶端B到地面的距离BC为,梯子中点处有一个标记,在梯子顶端B竖直下滑的过程中,该标记到地面的距离y与顶端下滑的距离x满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系7、如图,矩形ABCD∽矩形AFEB,若S矩形ABCD :S矩形AFEB=9:16,AB=6,则S矩形ABCD的值为()A.9B.16C.27D.488、如图,,,、分别交于点、,则下列结论错误的是()A. B. C. D.9、如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为()A. B. C. D.10、下列各组线段(单位:cm)中,成比例线段的是()A.1.2.3.4B.1 .2. 2. 4C.3. 5. 9. 13D.1. 2. 2. 311、已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为()A.32B.8C.4D.1612、如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的周长之比为1:2,点C的坐标为(﹣2,0),若点A的坐标为(﹣4,3),则点E的坐标为()A.(,﹣6)B.(4,﹣6)C.(2,﹣6)D.13、如图,在▱ABCD中,M、N为BD的三等分点,连接CM并延长交AB与点E,连接EN并延长交CD于点F,则DF:FC等于().A.1:2B.1:3C.2:3D.1:414、如图1,点D是的AB边上任意一点,DE//BC交AC于E点,若AD=1,BD=2,设DE= ,BC= ,则( )A. B. C. D.15、如图,AB是的弦(非直径),点C是弦AB上的动点(不与点A,B重合),过点C作垂直于OC的弦DE.设的半径为r,弦AB的长为a,,则弦DE的长()A.与r,a,m的值均有关B.只与r,a的值有关C.只与r,m的值有关D.只与a,m的值有关:二、填空题(共10题,共计30分)16、如图,在小孔成像问题中,小孔O到物体AB的距离是40cm,小孔O到像CD的距离是20cm,若物体AB的长为14cm,则像CD的长是________cm.17、如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于________.18、在矩形ABCD中,AB=6,BC=8,AC,BD相交于O,P是边BC上一点,AP与BD交于点M,DP与AC交于点N.①若点P为BC的中点,则AM:PM=2:1;②若点P为BC的中点,则四边形OMPN的面积是8;③若点P为BC的中点,则图中阴影部分的总面积为28;④若点P在BC的运动,则图中阴影部分的总面积不变.其中正确的是________.(填序号即可)19、如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为________.20、数3和12的比例中项是________ 。
冀教版九年级上册数学第25章 图形的相似含答案(实用)
![冀教版九年级上册数学第25章 图形的相似含答案(实用)](https://img.taocdn.com/s3/m/df9d876ba517866fb84ae45c3b3567ec102ddc9e.png)
冀教版九年级上册数学第25章 图形的相似含答案一、单选题(共15题,共计45分)1、“差之毫厘,失之千里”是一句描述开始时虽然相差很微小,结果会造成很大的误差或错误的成语.现实中就有这样的实例,如步枪在瞄准时的示意图如图,从眼睛到准星的距离OE 为80cm ,眼睛距离目标为200m ,步枪上准星宽度AB 为2mm ,若射击时,由于抖动导致视线偏离了准星1mm ,则目标偏离的距离为( )cm .A.25B.50C.75D.1002、如图,一同学在湖边看到一棵树,他目测出自己与树的距离为20m ,树的顶端在水中的倒影距自己5m 远,该同学的身高为1.7m ,则树高为( )m.A.3.4B.5.1C.6.8D.8.53、如图,△ABC 和△A 1B 1C 1是以点O 为位似中心的位似三角形,若C 1为OC 的中点,AB =4,则A 1B 1的长为( )A.1B.2C.4D.84、在平行四边形ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则S △AEF :S △BCF 的值是( )A. B. C. D.5、如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(-2,3),AD=5,若反比例函数(k>0,x>0)的图象经过点B,则k的值为()A. B.8 C.10 D.6、若两个相似三角形的周长比为1:3,则它们的面积比为()A.1:9B.1:6C.1:3D.6:17、如图,△ABC中,点D,E分别在AB,AC上,∠ADE=∠C,如果AE=4,△ADE的面积为5,四边形BCED的面积为15,那么AB的长为()A.6B.C.8D.8、我国古代数学著作中记载了一个问题:“今有邑方不知大小,各开中门,出北门四十步有木,出西门八百一十步见木,问:邑方几何?”其大意是:一座正方形城池,西、北边正中各开一道门,从北门往正北方向走40步后刚好有一树木,若从西门往正西方向走810步后正好看到树木,则正方形城池的边长为()步A.360B.270.C.180D.909、如图,在矩形ABCD中,点F在AD上,射线BF交AC于点G,交CD的延长线于点E,则下列等式正确的为()A. B. C. D.10、图中的两个三角形是位似图形,它们的位似中心是()A.点PB.点DC.点MD.点N11、平面直角坐标系中,已知点O(0,0)、A(0,2)、B(1,0),点P是反比例函数y= 象上的一个动点,过点P作PQ⊥x轴,垂足为点Q若以点O、P、Q 为顶点的三角形与△OAB相似,则相应的点P共有( )A.1个B.2个C.3个D.4个12、如图2,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A.S△AFD =2S△EFBB.BF= DFC.四边形AECD是等腰梯形 D.∠AEB=∠ADC13、如图,在中,分别为边上的中点,则与的面积之比是()A. B. C. D.14、如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A. =B.∠APB=∠ABCC. =D.∠ABP=∠C15、如图,点P是的边上一点,连接,则下列条件中,不能判定的是()A. B. C. D.二、填空题(共10题,共计30分)16、美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女士身高157cm,下半身长为94cm,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为________cm.(精确到1cm)17、如图,在△ABC中,DE∥BC,= ,则=________.18、如图,的两条中线,交于点,交于点,若,则________.19、如图,D是等边△ABC边AB上的点,AD=2,DB=4.现将△ABC折叠,使得点C与点D重合,折痕为EF,且点E、F分别在边AC和BC上,则=________.20、如图,若CD是RtΔABC斜边CD上的高,AD=3cm,CD=4cm,则BC的长等于________cm.21、如图,在△ABC中,P,Q分别为AB,AC的中点.若S△APQ =1,则S四边形PBCQ=________.22、如图,已知点M是△ABC的重心,AB=18,MN∥AB,则MN=________.23、已知abc≠0,且,则的值是________或________.24、已知,则=________25、如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,连接DE交BC 于点F,则CF:AD=________.三、解答题(共5题,共计25分)26、已知:,求的值.27、如图,AB是⊙O的直径,点D,E在⊙O上,∠B=2∠ADE,点C在BA 的延长线上.(Ⅰ)若∠C=∠DAB,求证:CE是⊙O的切线;(Ⅱ)若OF=2,AF=3,求EF的长.28、如图,梯形ABCD中,AB∥CD,F是DC的中点,BF的延长线交射线AD于点G,, BG 交AC于点E.求证:.29、如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA 的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.30、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1)、B(﹣3,2)、C(﹣1,4).①以原点O为位似中心,在第二象限内画出将△ABC放大为原来的2倍后的△A1B1C1.②画出△ABC绕C点顺时针旋转90°后得到的△A2B2 C.参考答案一、单选题(共15题,共计45分)1、A2、B3、D4、C5、D6、A7、C8、A9、B10、A11、D12、A13、A14、A15、A二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【文库独家】
图形的相似水平测试
一、试试你的身手(每小题3分,共30分)
1.在比例尺为1∶50 0000的福建省地图上,量得省会福州到漳州的距离约为46厘米,则福州到漳州实际距离约为 千米.
2.若线段a ,b ,c ,d 成比例,其中5cm a =,7cm b =,4cm c =,则d = .
3.已知450x y -=,则():()x y x y +-的值为 .
4.两个相似三角形面积比是9∶25,其中一个三角形的周长为36cm ,则另一个三角形的周长是 .
5.把一个矩形的各边都扩大4倍,则对角线扩大到 倍,其面积扩大到 倍.
6.厨房角柜的台面是三角形(如图1),如果把各边中点连线所围成三角形铺成黑色大理石,其余部分铺成白色大理石,则黑色大理石的面积与白色大理石的面积之比为 .
7.顶角为36°的等腰三角形称为黄金三角形,如图2,ABC △,BDC △,DEC △都是黄金三角形,已知1AB =,则DE 的长= .
8.在同一时刻,高为1.5m 的标杆的影长为2.5m ,一古塔在地面上影长为50m ,那么古塔的高为 .
9.如图3,ABC △中,DE BC ∥,2AD =,3AE =,4BD =,则AC = .
10.如图4,在ABC △和EBD △中,53
AB BC AC EB BD ED ===,ABC △与EBD △的周长之差为10cm ,则ABC △的周长是 .
二、相信你的选择(每小题3分,共30分)
1.在下列说法中,正确的是( )
A .两个钝角三角形一定相似
B .两个等腰三角形一定相似
C .两个直角三角形一定相似
D .两个等边三角形一定相似
2.如图5,在ABC △中,D ,E 分别是AB 、AC 边上的点,DE BC ∥,30ADE =∠,
120C =∠,则A =∠( )
A .60°
B .45°
C .30°
D .20°
3.如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角( )
A .都扩大为原来的5倍
B .都扩大为原来的10倍
C .都扩大为原来的25倍
D .都与原来相等
4.如图6, 在Rt ABC △中,90ACB =∠,CD AB ⊥于D ,若1AD =,4BD =,则CD =( )
A .2
B .4
C .2
D .3
5.如图7,6BC =,E ,F 分别是线段AB 和线段AC 的中点,那么线段EF 的长是( )
A .6
B .5
C .4.5
D .3
6.如图8,点E 是ABCD 的边BC 延长线上的一点,AE 与CD 相交于点G ,AC 是ABCD 的对角线,则图中相似三角形共有( )
A .2对
B .3对
C .4对
D .5对
7.如图9,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )
8.如图10,梯形ABCD 的对角线交于点O ,有以下四个结论:
①AOB COD △∽△; ②AOD ACB △∽△;
③::DOC AOD S S DC AB =△△;④AOD BOC S S =△△.
其中始终正确的有( )
A . 1个
B .2个
C .3个
D .4个
9.用作相似图形的方法,可以将一个图形放大或缩小,相似中心位置可选在( )
A .原图形的外部
B .原图形的内部
C .原图形的边上
D .任意位置
10.如图11是小孔成像原理的示意图,根据图中所标注的尺寸,
这支蜡烛在暗盒中所成的像CD 的长是( )
A .16cm
B .13 cm
C .12 cm
D .1cm
三、挑战你的选择(本大题共60分)
1.(8分)我们已经学习了相似三角形,也知道:如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形.比如两个正方形,它们的边长,对角线等所有元素都对应成比例,就可以称它们为相似图形.
现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形.请指出其中哪几对是相似图形,哪几对不是相似图形,并简单地说明理由.
2.(8分)如图12,梯形ABCD 中,AB DC ∥,90B =∠,E 为BC 上一点,且AE ED ⊥. 若12BC =,7DC =,BE ∶EC =1∶2,求AB 的长.
3.(8分)如图13,已知ABC △中,点F 是BC 的中点,DE BC ∥,则DG 和GE 有怎样的关系?请你说明理由.
4.(8分)某中学平整的操场上有一根旗杆(如图14),一数学兴趣小组欲测量其高度,现有测量工具(皮尺、标杆)可供选用,请你用所学的知识,帮助他们设计测量方案. 要求:(1)画出你设计的测量平面图;
(2)简述测量方法,并写出测量的数据(长度用a ,b ,c …表示).
5.(14分)阳光通过窗户照到室内,在地面上留下2.7米宽的光亮区,如图15,已知亮区一边到窗下墙脚的距离CE =8.7米,窗口高AB =1.8米,那么窗口底边离地面的高BC 是多少米?
6.(14分)如图16,在一个长40m 、宽30m 的长方形小操场上,王刚从A 点出发,沿着A →B →C 的路线以3m/s 的速度跑向C 地.当他出发4s 后,张华有东西需要交给他,就从A 地出发沿王刚走的路线追赶,当张华跑到距B 地223
m 的D 处时,他和王刚在阳光下的影子恰好重叠在同一条直线上.此时,A 处一根电线杆在阳光下的影子也恰好落在对角线AC 上.
(1)求他们的影子重叠时,两人相距多少米(DE 的长)?
(2)求张华追赶王刚的速度是多少(精确到0.1m/s)?
参考答案
一、1.230
2.285
cm 3.9 4.60或
1085 5.4,16
6.13
78.30m
9.9
10.25cm
二、1.D 2.C 3.D 4.A 5.D 6.B 7.A 8.C 9.D 10.D
三、1. ①、④是相似图形,②、③不一定是相似图形 理由:两个圆和两个正六边形分别为相似图形,因为它们的对应元素都成比例;两个菱形和两个长方形都不是,因为它们的对应元素不一定都成比例(或举出具体的反例).
2.解:因为AB DC ∥,且90B =∠,所以90AEB BAE +=∠∠及90C =∠. 所以90AEB CED +=∠∠.故BAE CED =∠∠.
又 90B C ==∠∠,
所以EAB DEC △∽△. 所以AB BE EC CD
=. 又:1:2BE EC =,且12BC =及7DC =, 故
487AB =.所以327AB =. 3.解:DG GE =.
因为DE BC ∥,所以ADG B =∠∠,AGD AFB =∠∠,
所以ADG ABF △∽△,所以
DG AG BF AF
=. 同样AGE AFC △∽△,所以GE AG FC AF =,所以DG GE BF FC
=, 又F 是BC 的中点,所以DG GE =.
4.解:(1)如图,沿着旗杆的影竖立标杆,使标杆影子的顶端正好
与旗杆影子顶端重合.
(2)用皮尺测量旗杆的影长BE a =米,标杆CD 的影长DE b =米,
标杆CD c =米.
根据EDC EBA △∽△,得
CD ED AB EB =,c b AB a =,所以ac AB b =米. 即旗杆AB 的高为ac b
米. 5.解:由已知可得BD AE ∥,所以CBD CAE △∽△,所以
CB CD CA CE =. 又8.78.7 2.76 1.8CE CD CA CB ==-==+,,, 所以
61.88.7
CB CB =+,解得4CB =. 即窗口底边离地面的高BC 是4米.
6.(1)根据投影的特征可知AC DE ∥,所以BDE BAC △∽△, 所以DE BD AC BA =,DE BE AC BC
=. 又40AB CF ==
,50AC ==,223
BD =. 所以2235040
DE =,所以103DE =(m ). (2)因为DE BE AC BC
=,30BC AF ==, 所以1030350
DE BC BE AC ⨯==,即2BE =, 所以40242AB BE +=+=(m ),
所以王刚从A 到E 的时间为42÷3=14(s ),
所以张华从A 到D 的时间为14-4=10(s ),
所以张华的速度为(40-223)÷10≈3.7(m/s ).。