an与sn的关系

合集下载

数列中an与Sn的关系

数列中an与Sn的关系

对于任意一个数列,当定义数列的前 n 项和通常用S n 表示时,记作 S n = a i +玄:+…十a n ,此时通项公S i , n = 1,式 a n = *.S n _ 5_1, n 》2而对于不同的题目中的 a n 与S n 的递推关系,在解题时又应该从哪些方向去灵活应用 a n = S n - S n -i (n > 2)去解决不同类型的问题呢?我们将从下面三个角度去探索在各类考试中出现的a n 与S n 相关的问题:归纳起来常见的角度有:角度一:直观运用已知的 S n ,求a n ;角度二:客观运用 a n = S n -S n -i (n > 2)求与a n , Sn 有关的结论; 角度三:a n 与S n 的延伸应用.方法:已知S n 求a n 的三个步骤(此时S n 为关于n 的代数式): (1)先利用a i = S i 求出a i ;⑵用n - 1替换S 中的n 得到一个新的关系,利用a n = S n -S n - i (n > 2)便可求出当n 》2时a n 的表达式; ⑶对n = 1时的结果进行检验,看是否符合n 》2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分 n = 1与n 》2两段来写.同时,在部分题目中需要深刻理解“数列的前n 项和”的实际意义,对“和的式子”有本质的认识,这样才能更好的运用 S n 求解.如:a 1+ 2a 2 + 3a 3+・・・+ na n = 2n — 1,其中a 1+ 2a 2+ 3a 3+・・・+ na n 表示数列 {na n }的前n 项和.1.已知数列{a n }的前n 项和S n = n 2- 2n + 2,则数列{a n }的通项公式为()A . a n =2n -3【解析】 当n 》2时,a n= Si — S n -1 = 2n — 3 .当n = 1时,a 1 = S 1 = 1,不满足上式.【答案】Cn+12 .(2015 河北石家庄一中月考)数列{ a n }满足:a 1 + 3a 2+ 5a 3+…+ (2n-1) a n= (n — 1) • + 3(n € N *), 则数列的通项公式 a n= _________________________________ .【解析】当n 》2时,a 1 + 3a 2+ 5a 3+-+ (2n — 3) a n -1= (n - 2) 3-n + 3;则用已知等式减去上式得 (2n — 1) a n = (2n—1) 3,得 a n = 3 ;当 n = 1 时,a 1= 3,满足上式;故 a n = 3 .B . a n = 2n + 3C . a n = f n =1|2n — 3, n 》21, n = 1D . a n ='2n + 3, n 》2【答案】a n= 3n3. (2015天津一中月考)已知{a n}的前n项和为S n,且满足log2(S n +1) = n+ 1,贝V a.= ______________________ .【解析】由已知得 S n + 1 = 2n +1,贝y S n = 2n +1 - 1 ;当 n A2 时,a n = S n — S n - 1 = 2卄 1- 1 -2n + 1 = 2n ;当4. (2015四川成都树德期中)已知{a n }是一个公差大于0的等差数列,且满足 a 3a 5= 45, a 2 + a 6= 14. (1)求{a n }的通项公式;⑵若数列{b n }满足:2 +》+•••+ 2 = a n + 1(n € N *),求{b n }的前n 项和.【解】(1)设等差数列{a n }的公差为d ,则d >0,由 a 2+ a 6= 14,可得 a 4= 7由 a 3a 5= 45,得(7- d)(7 + d) = 45,解得 d = 2 或 d = - 2(舍)/.an =玄4 + (n — 4)d = 7+ 2(n — 4),即 a n = 2n — 1.b(2)令 c n = 2,则 C 1+ C 2 + C 3+…+ C n = a *+ 1 = 2n ①当 n A 2 时,C 1 + C 2 + C 3+・・・+ C n -1 = 2(n — 1) ② 由①一②得,C n = 2,当n = 1时,C 1= 2,满足上式;贝y C n = 2(n € N *),即戸=2,•/ b n = 2n +1,故数列{b n }是首项为4 ,公比为2得等比数列, 4(1 - 2n )n +2n n 2角度二:客观运用 a n = S n — S n -i (n A 2),求与a n , S n 有关的结论此类题目中,已知条件往往是一个关于a n 与S n 的等式,问题则是求解与 a n , S n 有关联的结论.那么我们需要通过对所求问题进行客观分析后,判定最后的结果中是保留 a n ,还是S n .那么,主要从两个方向利用 a n = S n 一 S n -1 (n A 2):方向一:若所求问题是与a n 相关的结论,那么用 S n - S n -1 =环(n A 2)消去等式中所有 S n 与S n -1,保留项数a n ,在进行整理求解;1. (2015 •州潮州月考)数列{ a n }的前n 项和记为S, a 1= 1, a *+1 = 2S n + 1(n A 1, n € N *),则数列的 通项公式是 _________________ .n = 1时,a 1 = S 1 = 3,不满足上式;故3, n = 1 2n , n A 2【答案】2n , n = 1 n A 2【解析】当 n >2 时,a n = 2S n -1+ 1,两式相减得 a n +i — a n = 2(S n — S IT ),即 a n +1— a n = 2a n ,得 a n +i = 3a n ;当n = I 时,a 2= 3,则a 2= 3a i ,满足上式;故{a n }是首项为1,公比为3得等比数列,二a n【答案】a n = 3n —12 .数列{ a n }的前 n 项和为 S n ,若 a n +1 = — 4S n + 1, a 1= 1.(1)求数列{a n }的通项公式; ⑵设b n = na n ,求数列{b n }的前n 项和T n . 【解】⑴当 n 》2 时,a n=— 4S n - 1+ 1,又 a n + 1 =— 4S n + 1,a n +1a n +1 — a n =— 4a n ,即 =—3(n 》2),a n又 a 2=— 4a 1+ 1 = — 3, a 1= 1,二数列{a n }是首项为a 1= 1,公比为q = — 3的等比数列, ••• a n = (— 3)n —1.(2)由(1)可得 b n = n ( —3)n 1,T n = 1 ( — 3)0+ 2 ( — 3)1+ 3 ( — 3)2+…+ (n — 1) (•— 3)n —2+ n (— 3)n —1,—3T n = 1 (— 3)1 + 2 (— 3)2 + •••+ (n — 2) (•— 3)n —2+ (n — 1) (•— 3)n —1 + n( — 3)n , • 4T n = 1 + (—3)1+ (— 3)2+ …+ ( — 3)n —1 — n (— 3)n ,方向二:若所求问题是与S n 相关的结论,那么用a n = S n — S n - 1(n > 2)消去等式中所有项数a n , 与S n - 1,在进行整理求解.、 11 .已知数列{a n }的前n 项和为Si 且满足a n + 2S n S n -1= 0(n >2), a 1 = 2.(1) 求证:g 是等差数列; (2) 求a n 的表达式.【解】(1)证明:T a n = S n — S n -1( n > 2),又 a n =— 2S S n -1 ,…S n -1—S n= 2S n S n - 1, S n ^ 0 •1 1 因此= 2(n 》2). S n S n -11 ' 1 1故由等差数列的定义知‘g 是以&=a =2为首项,2为公差的等差数列.1当n >2时,a n =-第S 「1 一丽二刁 1又••• a i =-,不适合上式. 冷,n =1,.••an= 1I 1 1(2)由(1)知S = S + (n — 1)d = 2+ (n — 1) >2 = 2n ,即 S n =亦.3n —1所以, 1 —(4n + 1)( —3)n16保留S n一 ,n 》2. 2n(n — 1)2. (2015江西名校联盟调考)已知正项数列{a n }的前n 项和为S n ,且a :— 2S n a n + 1 = 0• (1) 求数列{S n }的通项公式; 11 1 一 1 2(2) 求证:3+3 +…+2(S n+1— 1).(提示:一> --------------S 1 S 2S n7n p n + 1 + V n【解】(1) - a n = Si — S n -1(n 》2),由 a n 一 2S n a n +1 = 0,得(S n - S n -1) 一 2S n (S n 一 S n - 1) + 1 = 0,整理得 S n 一 S n -1 = 1 • 当 n = 1 时,a f - 2S 1a 1 + 1 = 0,且 a 1 >0,解得 a 1= 1,故由等差数列的定义知{§}是以1为首项,1为公差的等差数列. .•.S = n ,则 S n = _n .ddQQ___⑵由⑴知 S =.n = 2.n >一 n + 1 +: n = 2( '1一 ’ ,•••1 + S +…+ S 1 > 2( 2 — 1) + 2( 3— .2)+-+ 2( n + 1一 n)= 2( n + 1 — 1) 即 S + 吉+…+ & > 2(S n +1—1) •【总结】此类题目往往伴随着等差、等比数列的判定,所以需要对数列的判定方法熟练掌握.r.S 1, n = 1 ,解此类题目中不仅需要深刻理解“数列的前n 项和”的实际意义,还需要对a n =关系S n — S n -1 , n >2 式的形式结构很熟练的掌握,这样才能在题目中对已知等式灵活地变换.当然在解决问题的时候仍然需要从求谁的角度出发分析,确定等式的变换方向. 方向一:关于双重前 n 项和此类题目中一般出现“数列 {a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ”的条件,在解答时需要 确定清楚求的是与 a n , S n , T n 中谁相关的问题,确定已知等式的运用方向.但一般是求解最底层的a ..1. (2015湖北武汉质检)设数列{a n }的前n 现和为S n ,数列{ S n }的前n 项和为T n ,满足T n = 2Sn — n 2, n € N *.(1)求a 1的值;⑵求数列{a n }的通项公式.【解】(1)当 n = 1 时,T i = 2S i — 1,且 T i = S i = a i ,解得 a i = 1,(2)当 n 》2 时,S n = T n — T n —1 = 2S n — n 2 — [2 S n -1 — (n — 1)2] = 2S n — 2S n -1 — 2n + 1 S n = 2S n -1 + 2n —1①则 S n + 1 = 2S n + 2n + 1② 由②一①,得 a n +1 = 2a n +2,a n +1 + 2 ••• a n +1+ 2= 2(a n + 2),即—— =2(n 》2), a n + 2a 2 + 2易求得,a 1+ 2 = 3, a 2+2= 6,则 + 2 = 2,a 1 + 2•数列{a n + 2}是首项为3,公比为2的等比数列, ••• a n + 2 = 3 2n —1,贝y a n = 3 2n —1 — 2(n € N *).22. (2015安徽滁州期末联考)设数列{ a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,且2T n = 4$—(n + n), n € N * .(1)证明:数列{a n + 1}为等比数列; n + 1 、十仃口⑵设b n = a + 1,证明:【解】(1)当 n = 1 时,2T 1 = 4S 1 — 2,且 T 1 = S 1= a 1,解得 a 1= 1,当 n = 2 时,2T 2= 2(a 1+a 1+a 2)= 4(a 1+ a2)— 6,解得 a 2= 3,当 n >2 时,2T n -1= 4S n -1—[( n一 1)2+ (n—1)]• 2S n = 2T n — 2T n -1= 4S n — (n 2+ n)— 4S n — 1+ [(n — 1)2+ (n — 1)] 整理得S n = 2S n -1+ n ①则 S n + 1= 2S n + n + 1② 由②一①,得 a n + 1 = 2a n +1 , • a n +1+ 1 = 2(a n + 1),即 a n+1+11 = 2(n > 2), a n 十1••数列{a n + 1}是首项为2,公比为2的等比数列,n E rn + 1(2)由(1)知,a n + 1 = 2 ,贝y b n = ~2亍.234 n + 1则 b 1+ b 2+-+ b n = 2+ 22 + 戸…+~2厂,+ b ?+…+ b n v 3.显然a 2+1a 1+ 1。

高中数学数列公式大全(很齐全哟~!)

高中数学数列公式大全(很齐全哟~!)

一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n—k)d (其中a1为首项、a k为已知的第k项)当d≠0时,a n是关于n 的一次式;当d=0时,a n是一个常数。

3、等差数列的前n项和公式:S n= S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式.4、等比数列的通项公式: a n= a1 q n-1a n= a k q n—k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式);当q≠1时,S n= S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m—S m、S3m-S2m、S4m— S3m、……仍为等差数列。

2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m—S m、S3m—S2m、S4m— S3m、……仍为等比数列。

5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。

6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列.7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列.9、三个数成等差数列的设法:a—d,a,a+d;四个数成等差的设法:a-3d,a—d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{a n}为等差数列,则(c>0)是等比数列。

数列Sn与an关系(含详细答案)

数列Sn与an关系(含详细答案)

数列n s 与n a 关系知识点1.等差数列前n 项和公式:n da n d d n n na a a n S n n )2(22)1(2)(1211-+=-+=+=2. 等比数列前n 项和公式: ⎪⎩⎪⎨⎧≠⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=111)1(1111q q q a a q q a q na S n n n3.数列{}n a 是等差数列⇔q p n q pn a n ,),1(≥+=为常数b a n bn an S n ,),1(2≥+=⇔为常数(没有常数项的二次函数)数列{}na 是等比数列⇔n a =m ap (a ≠0)⇔n ns ap r =+(a+r=0) 4.等差数列{}n a 的前n 项和为n S ,n n a n S )12(12-=-5. 数列n s 与n a关系:⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-21,11n S S n S a S n n n n训练题A 组1.设数列{}n a 的前n 项和2n S n =,则8a 的值为( A ) A.15 B.16 C.49 D.642.设数列{}n a 的前n 项和为n S ,)1(13≥-=n S n n ,则=n a ( A ) A.132-⋅n B.46-n C.432-⋅n D.n32⋅3.等差数列{}n a 的前n 项和为n S ,若,2211=S 则=6a ( B ) A.1 B.2 C.3 D.44.数列6.等差数列}{n a 的前n 项和为n S ,若102,a a 是方程08122=-+x x 的两个根, 那么11S 的值为 ( D )A.44B.-44C.66D.-665.若两个等差数列{}n a 与{}n b 的前n 项和分别为n n B A ,,且3233+-=n n B A n n , 则=66b a ( C ) A.23 B.1 C.56 D.23276.(2010辽宁文数)设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( B )A.3B.4C.5D.67.设n S 是等差数列}{n a 的前n 项和,若==5935,95S S a a ( A ) A.1 B.-1 C.2 D.21 8.{}n a 的前n 项和为n S ,)1(12≥+=n n S n ,则=n a ⎩⎨⎧≥-=21211n n n9.已知数列}{n a 的前n 项和为n S ,))(1(31*N n a S n n ∈-=,则=n a n )21(- 10.数列{}n a 的前n 项和为n S ,且.35-=n n S a 则{}n a 的通项公式是1)41(43--n 11.数列{}n a 前n 项和为n S ,)2(122,121≥-==n S S a a n n n ,则=n S121-n12.等差数列{}n a 的前n 项和为n S ,若,147=S 则=4a 2 13.等比数列}{n a 的前n 项和为n S ,r S n n +=3,则=r -114.数列}{n a 的前n 项和为n S ,且,1≥n 时22nn S n +=(1)求数列{}n a 的通项公式; (2)求992199111S S S T +⋅⋅⋅++=的值. (1))1(≥=∴n n a n(2) 22n n S n +=,)111(2)1(21+-=+=∴n n n n S n⎥⎦⎤⎢⎣⎡-+⋅⋅⋅+-+-=+⋅⋅⋅++=∴)1001991()3121()211(2111992199S S S T 5099)10011(2=-=15.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn16.数列{}n a 满足条件11131,1--⎪⎭⎫⎝⎛+==n n n a a a ),3,2( =n(1)求;n a(2)求.321n a a a a ++++解:(1)∑∑=--=+=-+=nk k k k nk n a a a a 21121)31(1)(11)31(2123311])31(1[311---=--+=n n(2)43)31(4323])31(4343[23311)31(212123.321-+=--=-⋅--=++++n n n n n n n a a a a17.(2012广东文)设数列{}n a 的前n 项和n s ,数列{}n s 的前n 项和为{}n T ,满足2*2,n n T S n n N =-∈. (1) 求1a 的值;(2) 求数列{}n a 的通项公式.解:(1):21112-=a a ………………………………………………3分11=a …………………………………………………………5分(2)①②…………………………6分①-②得:122+-=n a S n n ……………… ③………………………7分在向后类推一次1)1(2211+--=--n a S n n ……… ④…………………………8分③-④得:2221--=-n n n a a a …………………………………………9分221+=-n n a a …………………………………………………10分 )2(221+=+-n n a a ……………………………………………12分 的数列公比为是以首项为2,32}2{1=++a a n …………13分1232-⨯=+∴n n a2231-⨯=∴-n n a ………………………………………………14分训练题B 组1.数列}{n a 的前n 项和为n S ,当,1≥n 32-=n n a S 则n a = 123-⋅n2.等差数列{}n a 中,已知74a =,则13s= 523.两等差数列}{n a 和}{n b ,前n 项和分别为n n T S ,,且,327++=n n T S n n 则157202b b a a ++等于 241494.等比数列}{n a 的前n 项和为n S ,14n n S r -=+,则=r 14- 5.等差数列{}n a 的前n 项和为n S ,若1114S =,则61411a =22n S T n n -= 211)1(2--=--n S T n n6.已知数列{a n }的前n 项和为S n ,满足log 2(1+S n )=n+1,求数列的通项公式. 解 S n 满足log 2(1+S n )=n+1,∴1+S n =2n+1,∴S n =2n+1-1.∴1=n 时,311==S a ,2≥n 时,a n =S n -S n-1=(2n+1-1)-(2n-1)=2n,∴{a n }的通项公式为a n =⎪⎩⎪⎨⎧≥=).2(2),1(3n n n7.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn8.数列{}n a 的前n 项和为)()1(*2N n n n a n S n n ∈+++= (1)求通项n a ; (2)设),1111(321nn S S S S T +⋅⋅⋅⋅⋅⋅+++-=求证:1<n T 解:(1) n a n 2-=∴(2)nn n n n n S n n S n a n n n 111)111()1(11),1(,2-+=+--=+-=∴+-=∴-= 1111+-=-∴n n S n )11111(1321nn n S S S S S T ++⋅⋅⋅+++-=∴-n T ∴=1111)111()111()3121()211(<+-=+-+--+⋅⋅⋅+-+-n n n n n *N n ∈ ∴1<n T9.已知等差数列{}n a 中,11=a ,前n 项和nS 满足条件12412+-=-n n SS nn ,( n=1,2,3,┅) (1)求数列{a n }的通项公式;(2)设nn S b 1=,求数列{}n b 的通项公式; (3)数列{}n b 的前n 项和为n T ,若1+<n n a T λ对一切∙∈N n 都成立,求λ的取值范围. 解:(1) 等差数列{}n a 中11=a ,12412+-=-n n SS nn 对于任意正整数都成立, 所以,当n=2时,有21222423=+-⨯=SS ,设数列{}n a 的公差为d ,则d d a S 333313+=+=,d d a S +=+=22212,所以)2(233d d +=+,解得公差1=d ,所以n n a n=-+=)1(11(2)因为()22121nn d n n na S n +=-+=,n n b n +=∴223)由n n b n+=22=()⎪⎭⎫ ⎝⎛+-=+111212n n n n ,得()⎪⎪⎭⎫⎝⎛+++⨯+⨯+⨯=114313212112n n T n ⎪⎭⎫ ⎝⎛+-++-+-+-=111413*********n n 121112+=⎪⎭⎫ ⎝⎛+-=n n n 若1+<n n a T λ对一切∙∈N n 都成立,即)1(12+<+n n n λ,∙∈N n 恒成立, 所以2)1(2+>n nλ,而212122212)1(22=+≤++=+nn n n , (当且仅当n=1时取等号) 所以,λ的取值范围是⎪⎭⎫ ⎝⎛+∞,21.10.已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =. (1)求数列{}n a 与{}n b 的通项公式; (2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和. (1)12n n a -=,21n b n =-. (2)数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-. 11.已知数列{}n a 满足21=a ,241+=-n n a S (n=2,3,4,...). (1)证明数列{}n n a a 21-+成等比数列;(2)证明数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧n n a 2成等差数列;(3)求数列{}n a 的通项公式n a 和前n 项和n S .(1){}n n a a 21-+是首项为4,公比为2的等比数列, (2)⎭⎬⎫⎩⎨⎧n n a 2是首项为1,公差为1的等差数列. (3)n n n a 2⋅=,12)1(2+⋅-+=n n n S12.已知数列{}n a 满足, *11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。

高中数学选择性必修二 4 1 2数列的递推公式(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 4 1 2数列的递推公式(知识梳理+例题+变式+练习)(含答案)

4.1.2 数列的递推公式知识点一数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.数列递推公式与通项公式的关系:递推公式表示a n 与它的前一项a n -1(或前n 项)之间的关系,而通项公式表示a n 与n 之间的关系. 要点二 a n 与S n 的关系1.前n 项和S n :把数列{a n }从第1项起到第n 项止的各项之和,称为数列{a n }的前n 项和,记作S n ,即S n =12n a a a +++ 2.a n 与S n 的关系:a n =11,1,2n n S n S S n -=⎧⎨-≥⎩【基础自测】1.判断正误(正确的画“√”,错误的画“×”) (1)根据通项公式可以求出数列的任意一项.( ) (2)有些数列可能不存在最大项.( ) (3)递推公式是表示数列的一种方法.( ) (4)所有的数列都有递推公式.( ) 【答案】(1)√(2)√(3)√(4)×2.数列{a n }中,a n +1=a n +2-a n ,a 1=2,a 2=5,则a 5=( ) A .-3 B .-11 C .-5 D .19 【答案】D【解析】a 3=a 2+a 1=5+2=7,a 4=a 3+a 2=7+5=12,a 5=a 4+a 3=12+7=19,故选D. 3.数列{a n }中,a n =2n 2-3,则125是这个数列的第几项( ) A .4 B .8 C .7 D .12 【答案】B【解析】令2n 2-3=125得n =8或n =-8(舍),故125是第8项.故选B. 4.已知数列{a n }的前n 项和为S n =n 2,则a n =________. 【答案】2n -1【解析】当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=n 2-n 2+2n -1=2n -1.当n =1时,a 1=S 1=1满足上式,所以{a n }的通项公式为a n =2n -1.题型一 数列中项与项数关系的判断(1)写出数列的一个通项公式,并求出它的第20项;(2)判断42和10是不是该数列中的项?若是,指出是数列的第几项,若不是,请说明理由.【解析】(1)由于22=8,所以该数列前4项中,根号下的数依次相差3,所以它的一个通项公式为a n =3n -1;a 20=3×20-1=59.(2)令3n -1=42,两边平方得3n =33,解得n =11,是正整数令3n -1=10,两边平方得n =1013,不是整数.∴42是数列的第11项,10不是数列中的项. 【方法归纳】(1)由通项公式写出数列的指定项,主要是对n 进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.(2)判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.(3)在用函数的有关知识解决数列问题时,要注意它的定义域是N *(或它的有限子集{1,2,3,…,n })这一约束条件.【跟踪训练1】已知数列{a n }的通项公式为a n =3n 2-28n . (1)写出此数列的第4项和第6项;(2)问-49是否是该数列的一项?如果是,应是哪一项?68是否是该数列的一项呢? 【解析】(1)a 4=3×42-28×4=-64, a 6=3×62-28×6=-60.(2)由3n 2-28n =-49解得n =7或n =73(舍去),所以-49是该数列的第7项.由3n 2-28n =68解得n =-2或n =343,所以68不是该数列的一项.题型二 已知S n 求a n例2 设S n 为数列{a n }的前n 项和,S n =2n 2-30n .求a n . 【解析】当n ≥2时,a n =S n -S n -1=2n 2-30n -[2(n -1)2-30(n -1)]=4n -32 当n =1时,a 1=S 1=-28,适合上式, 所以a n =4n -32.借助a n =⎩⎪⎨⎪⎧S 1,(n =1)S n -S n -1(n ≥2)【变式探究1】将本例中的“S n =2n 2-30n ”换为“S n =2n 2-30n +1”,求a n . 【解析】当n =1时,a 1=S 1=2×1-30×1+1=-27. 当n ≥2时,a n =S n -S n -1=2n 2-30n +1-[2(n -1)2-30(n -1)+1] =4n -32.验证当n =1时,上式不成立∴a n =⎩⎪⎨⎪⎧-27,n =14n -32,n ≥2.方法归纳已知数列{a n }的前n 项和公式S n ,求通项公式a n 的步骤: (1)当n =1时,a 1=S 1.(2)当n ≥2时,根据S n 写出S n -1,化简a n =S n -S n -1.(3)如果a 1也满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式为a n =S n -S n -1;如果a 1不满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式要分段表示为a n =⎩⎪⎨⎪⎧S 1,n =1S n -S n -1,n ≥2.【跟踪训练2】已知数列:a 1+3a 2+32a 3+…+3n -1a n =n 3,求a n .【解析】当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13,满足a n =13n ,所以a n =13n .题型三 由数列递推公式求通项公式【例3】已知数列{a n }中,a 1=1,a n +1=a n +n +1,则a n =________.【答案】n (n +1)2【解析】∵a n +1=a n +n +1,a 1=1,∴a n +1-a n =n +1, ∴a n -a n -1=n ,a n -1-a n -2=n -1,…,a 2-a 1=2 以上式子相加得: a n -a 1=2+3+…+n∴a n =1+2+3+…+n =n (n +1)2.变形为:a n +1-a n =n +1,照此递推关系写出前n 项中任意相邻两项的关系,这些式子两边分别相加可求. 【变式探究2】若将“a n +1=a n +n +1”改为“a n +1=nn +1a n”,则a n =________.【答案】1n【解析】∵a n +1=n n +1a n ,a 1=1,∴a n +1a n =nn +1,∴a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 2a 1=12,以上式子两边分别相乘得:a n a 1=n -1n ×n -2n -1×…×12=1n∴a n =1n a 1=1n .【方法归纳】由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=g (n )·a n ,则可以分别通过累加法或累乘法求得通项公式,即:(1)累加法:当a n =a n -1+f (n )时,常用a n =a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1求通项公式.(2)累乘法:当a n a n -1=g (n )时,常用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1求通项公式.【跟踪训练3】在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 【答案】A【解析】∵在数列{a n }中,a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=2+ln n .故选A.【易错辨析】数列中忽视n 的限制条件致误【例4】设S n 为数列{a n }的前n 项和,log 2(S n +1)=n +1,则a n =________.【答案】⎩⎪⎨⎪⎧3,n =12n ,n ≥2【解析】由log 2(S n +1)=n +1得S n +1=2n +1,∴S n =2n +1-1当n ≥2时a n =S n -S n -1=2n +1-1-2n +1=2n .当n =1时,a 1=S 1=3.经验证不符合上式.∴a n =⎩⎪⎨⎪⎧3,n =12n ,n ≥2.【易错警示】1. 出错原因忽视n =1的情况致错,得到错误答案:a n =2n . 2. 纠错心得已知a n 与S n 的关系求a n 时,常用a n =S n -S n -1(n ≥2)来求a n ,但一定要注意n =1的情况.一、单选题1.设数列{}n a 的前n 项和为n S ,11a =,2(1)nn S a n n =+-,(*n N ∈),若()22112n S S S n n+++--2013=,则n 的值为( ). A .1007 B .1006 C .2012 D .2014【答案】A 【分析】根据数列n a 与n S 的关系证得数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,利用等差数列的前n 项和公式求出题中的式子,化简计算即可. 【解析】2(1)nn S a n n=+-, 12(1)(2)nn n S S S n n n-∴-=+-, 整理可得,1(1)2(1)n n n S nS n n ---=-, 两边同时除以(1)n n -可得12(2)1n n S S n n n --=-,又111S = ∴数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,2321(1)23nS S S S n n∴++++-- 2(1)12(1)2n n n n -=⨯+⨯-- 22(1)n n =--21n =-,由题意可得,212013n -=, 解得1007n =. 故选:A .2.南宋数学家杨辉在《解析九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .171 B .190 C .174 D .193【答案】C 【分析】根据题意可得数列3,4,6,9,13,18,24,⋯,满足:11(2)n n a a n n --=-,13a =,从而利用累加法即可求出n a ,进一步即可得到19a 的值. 【解析】3,4,6,9,13,18,24,后项减前项可得1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()111133,222n n n n n -+⋅--=+=+≥.所以19191831742a ⨯=+=. 故选:C3.在数列{}n a 中,11a =,121nn n a a +-=-,则9a =( )A .512B .511C .502D .503【答案】D 【分析】利用累加法先求出通项即可求得答案. 【解析】因为11a =,121nn n a a +-=-,所以()()()121321n n n a a a a a a a a -=+-+-++-=()()()21211(21)21211222(1)2n n n n n --+-+-++-=++++--=-,所以9929503a =-=.故选:D. 4.数列23,45,69,817,1033,…的一个通项公式为( )A .221n n n a =+ B .2221n n n a +=+ C .1121n n n a ++=-D .12222n n n a ++=+【答案】A 【分析】根据数列中项的规律可总结得到通项公式. 【解析】1221321⨯=+,2422521⨯=+,3623921⨯=+,48241721⨯=+,510253321⨯=+, ∴一个通项公式为:221n nna =+. 故选:A.5.下列命题不正确的是( )A 的一个通项公式是n aB .已知数列{},3n n a a kn =-,且711a =,则1527a =C .已知数列{}n a 的前n 项和为()*,25n n n S S n N =-∈,那么123是这个数列{}n a 的第7项D .已知()*1n n a a n n N +=+∈,则数列{}n a 是递增数列【答案】C 【分析】A:根据被开方数的特征进行判断即可;B:运用代入法进行求解判断即可;C:根据前n项和与第n项之间的关系进行求解判断即可;D:根据递增数列的定义进行判断即可.【解析】对于A31⇒⨯na⇒=A正确;对于B,3na kn=-,且7151122327na k a n a=⇒=⇒=-⇒=,B正确;对于C,()*25nnS n N=-∈,13a=-,当2,n n N*≥∈时,111222n n nn n na S S---=-=-=,12127n-=,无正整数解,所以123不是这个数列{}n a的第7项,C错误;对于D.由()*11,0n n n na a n n N a a n++=+∈-=>,易知D正确,故选:C.6.已知数列{}n a的前n项和2nS n=,则数列11n na a+⎧⎫⎨⎬⎩⎭的前99项和为()A.1168B.1134C.198199D.99199【答案】D【分析】先根据11,2,1n nnS S naS n--≥⎧=⎨=⎩,求出21na n=-,然后利用裂项相消求和法即可求解.【解析】解:因为数列{}n a的前n项和2nS n=,2121nS n n-=-+,两式作差得到21(2)na n n=-≥,又当1n=时,21111a S===,符合上式,所以21na n=-,111111(21)(21)22121n na a n n n n+⎛⎫==-⎪-+-+⎝⎭,所以12233411111n na a a a a a a a+++++=111111111111233557212122121n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以12233499100111199992991199a a a a a a a a ++++==⨯+. 故选:D.7.数列{}n a 中的前n 项和22nn S =+,数列{}2log n a 的前n 项和为n T ,则20T =( ).A .190B .192C .180D .182【答案】B 【分析】根据公式1n n n a S S -=-计算通项公式得到14,12,2n n n a n -=⎧=⎨≥⎩,故2,11,2n n b n n =⎧=⎨-≥⎩,求和得到答案.【解析】当1n =时,111224a S ==+=;当2n ≥时,()11112222222n n n n n n n n a S S ----=-=+-+=-=,经检验14a =不满足上式,所以14,12,2n n n a n -=⎧=⎨≥⎩, 2log n n b a =,则2,11,2n n b n n =⎧=⎨-≥⎩,()201911921922T ⨯+=+=. 故选:B.8.已知数列{}n a 满足11a =,()()()11*12n n n n a a a a n N n n ++-=∈++,则10a 的值为( )A .1231B .2231C .1D .2【答案】B 【分析】首先根据已知条件得到1111112n n a a n n +-=-++,再利用累加法求解即可. 【解析】 因为()()()*1112n n n n a a n n n N a a ++++=∈-,所以()()()*11112nn n n a a n N a a n n ++-=∈++, 所以()()111111212n n n n a a a a n n n n ++-==-++++,即1111112n n a a n n +-=-++,当2n ≥时,11221111111n n n n a a a a a a ---⎛⎫⎛⎫⎛⎫-+-+⋯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111123n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪⎪+ ⎪ ⎝⎭⎝⎭-⎝⎭, 1111121n a a n -=-+,解得()11131122122n n n a n n +=-+=≥++ 当1n =时,上式成立,故2231n n a n +=+,故102022230131a +==+. 故选:B二、多选题9.数列{a n }的前n 项和为S n ,()*111,2N n n a a S n +==∈,则有( )A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .21,123,2n n n a n -=⎧=⎨⋅≥⎩【答案】ABD 【分析】根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得n a ,进而求得n S 以及判断出{}n S 是等比数列.【解析】依题意()*111,2N n n a a S n +==∈,当1n =时,2122a a ==, 当2n ≥时,12n n a S -=,11222n n n n n a a S S a +--=-=,所以13n n a a +=,所以()2223232n n n a a n --=⋅=⋅≥,所以21,123,2n n n a n -=⎧=⎨⋅≥⎩. 当2n ≥时,1132n n n a S -+==;当1n =时,111S a ==符合上式,所以13n n S -=.13n nS S +=,所以数列{}n S 是首项为1,公比为3的等比数列. 所以ABD 选项正确,C 选项错误.故选:ABD10.已知数列{}n a 的前n 项和22n n nS +=,数列{}n b 满足1n n b a =,若n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,则k 的值不可能是( ) A .4 B .6 C .8 D .10【答案】AD 【分析】利用n a 与n S 的关系,求得n a ,进而求得n b ,然后根据n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,得到n 与k 的关系,进而求得答案.【解析】当1n =时,11212a S ===,当2n ≥时,()()2211122n n n n n n n a S S n --+++=-=-=,故n a n =(N n *∈),11n n b a n ==(N n *∈).因为n b ,2n b +,n k b +(N k *∈,2k >)成等差数列,所以22n n n k b b b ++=+,即2112n n n k=+++,所以48422n k n n ==+--,(2k >,N k *∈),从而2n -的取值为1,2,4,8,则对应的k 的值为12,8,6,5,所以k 的值不可能是4,10, 故选:AD .第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题11.数列{}n a 的前n 项的和231n S n n =++,n a =________.【分析】利用2n 时,1n n n a S S -=-求n a ,同时注意11a S =. 【解析】解析:由题可知,当2n 时,1n n n a S S -=-22313(1)(1)1n n n n ⎡⎤=++--+-+⎣⎦62n =-,当1n =时,113115a S ==++=,故答案为:5,162,2n n n =⎧⎨-⎩.12.设数列{a n }的前n 项和为S n =2n -3,则a n =________.【答案】【解析】解析 当n ≥2时,a n =S n -S n -1=(2n -3)-[2(n -1)-3]=2,又a 1=S 1=2×1-3=-1,故a n =13.已知数列{}n a 的前n 项和为n S ,若n n a b S +=,2414a a =,则数列{}n a 的通项公式为___________. 【答案】212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭【分析】 由n n a b S +=可得数列{}n a 是公比为12的等比数列,然后根据2414a a =求出21a =即可. 【解析】因为n n a b S +=,所以当1n =时,1112b a S a +==,即12b a = 当2n ≥时,11n n b a S --+=,然后可得10n n n a a a --+=,即()1122n n a a n -=≥ 所以数列{}n a 是公比为12的等比数列 所以21124b a a ==,4111816a a b ==, 因为22411644a ab ==,所以4b =±, 当4b =时, 21a =,2221122n n n a a --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭当4b =-时, 21a =-,2221122n n n a a --⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭故答案为:212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭四、解答题 14.已知数列{}n a 的前n 项和()2*2n S n kn k N =-+∈,且n S 的最大值为4.(1)求常数k 及n a ;(2)设()17n n b n a =-,求数列{}n b 的前n 项和n T . 【答案】(1)2k =,25n a n =-+ (2)2(1)n n T n =+ 【分析】(1)由于()222*2()n S n kn n k k k N =-+=--+∈,则可得24k =,从而可求出2k =,然后利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出n a , (2)由(1)可得11121n b n n ⎛⎫=- ⎪+⎝⎭,然后利用裂项相消求和法求解即可 (1)因为()222*2()n S n kn n k k k N =-+=--+∈,所以当n k =时,n S 取得最大值2k , 所以24k =,因为*k N ∈,所以2k =,所以24n S n n =-+,当1n =时,11143a S ==-+=,当2n ≥时,2214[(1)4(1)]25n n n a S S n n n n n -=-=-+---+-=-+,13a =满足上式,所以25n a n =-+(2)由(1)可得()()11111177252(1)21n n b n a n n n n n n ⎛⎫====- ⎪-+-++⎝⎭, 所以1111111112222321n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⋅⋅⋅+⨯- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 111212(1)n n n ⎛⎫=-= ⎪++⎝⎭ 15.已知数列{}n a 满足()23*1232222n n a a a a n n N ++++=∈,求数列{}n a 的通项公式.【答案】12n na =【分析】 先根据前n 项和与通项的关系得12n n a =,再检验1n =时也满足条件即可求得答案. 【解析】因为23*1232222()n n a a a a n n N ++++=∈①, 所以()2311231222212n n a a a x a n n --++++=-≥②, ①-②得21(2)n n a n =≥,即 12n n a =, 当1n =时,112a =,满足12n n a =, 所以12n na = 16.已知数列{}n a 的前n 项和112n n S ⎛⎫=+ ⎪⎝⎭,求数列{}n a 的通项公式. 【答案】312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩ 【分析】根据n S 与n a 的关系式,求解数列的通项公式即可.需要注意验证首项.【解析】()111111222n n n n S S n --⎛⎫⎛⎫=+∴=+≥ ⎪ ⎪⎝⎭⎝⎭①②-①②得()122n n a n ⎛⎫=-≥ ⎪⎝⎭ 根据题意,1111311222a S ⎛⎫==+=≠- ⎪⎝⎭ 所以数列的通项公式为312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩。

高中数学数列公式大全

高中数学数列公式大全

一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d(其中a1为首项、a k为已知的第k项)当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。

3、等差数列的前n项和公式:S n= S n= S n=当d≠0时,Sn 是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

4、等比数列的通项公式: a n= a1q n-1a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1(是关于n的正比例式);当q≠1时,S n= S n=二、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m- S3m、……仍为等差数列。

2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m- S3m、……仍为等比数列。

5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。

6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列。

7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3}为等差数列,则(c>0)是等比数列。

一、11、{an12、{b n}(b n>0)是等比数列,则{log c b n} (c>0且c1) 是等差数列。

数列中an及Sn的关系

数列中an及Sn的关系

课题浅谈数列中a n 与S n 的递推公式的应用对于任意一个数列,当定义数列的前n 项和通常用S n 表示时,记作S n =a 1+a 2+…+a n ,此时通项公式a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.而对于不同的题目中的a n 与S n 的递推关系,在解题时又应该从哪些方向去灵活应用a n =S n -S n -1(n ≥2)去解决不同类型的问题呢?我们将从下面三个角度去探索在各类考试中出现的a n 与S n 相关的问题:归纳起来常见的角度有:角度一:直观运用已知的S n ,求a n ;角度二:客观运用a n =S n -S n -1(n ≥2),求与a n ,S n 有关的结论; 角度三:a n 与S n 的延伸应用.角度一:直观运用已知的S n ,求a n方法:已知S n 求a n 的三个步骤(此时S n 为关于n 的代数式): (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.同时,在部分题目中需要深刻理解“数列的前n 项和”的实际意义,对“和的式子”有本质的认识,这样才能更好的运用S n 求解.如:a 1+2a 2+3a 3+…+na n =2n -1,其中a 1+2a 2+3a 3+…+na n 表示数列{na n }的前n 项和.1.已知数列{a n }的前n 项和S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3 B .a n =2n +3C .a n =⎩⎨⎧ 1,n =12n -3,n ≥2D .a n =⎩⎨⎧1,n =12n +3,n ≥2【解析】当n ≥2时,a n =S n -S n -1=2n -3.当n =1时,a 1=S 1=1,不满足上式. 【答案】C2.(2015·河北石家庄一中月考)数列{a n }满足:a 1+3a 2+5a 3+…+(2n -1)·a n =(n -1) ·3n +1+3(n ∈N *),则数列的通项公式a n = .【解析】当n ≥2时,a 1+3a 2+5a 3+…+(2n -3)·a n -1=(n -2) ·3n +3;则用已知等式减去上式得(2n -1)·a n =(2n -1)·3n ,得a n =3n ;当n =1时,a 1=3,满足上式;故a n =3n .【答案】a n =3n3.(2015·天津一中月考)已知{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,则a n = . 【解析】由已知得S n +1=2n +1,则S n =2n +1-1;当n ≥2时,a n =S n -S n -1=2n +1-1-2n +1=2n ;当n =1时,a 1=S 1=3,不满足上式;故a n =⎩⎨⎧3,n =12n ,n ≥2.【答案】a n =⎩⎨⎧3,n =12n ,n ≥24.(2015·四川成都树德期中)已知{a n }是一个公差大于0的等差数列,且满足a 3a 5=45,a 2+a 6=14.(1)求{a n }的通项公式; (2)若数列{b n }满足:b 12+b 222+…+b n2n=a n +1(n ∈N *),求{b n }的前n 项和.【解】(1)设等差数列{a n }的公差为d ,则d >0, 由a 2+a 6=14,可得a 4=7由a 3a 5=45,得(7-d )(7+d )=45,解得d =2 或d =-2(舍) ∴a n =a 4+(n -4)d =7+2(n -4),即a n =2n -1.(2)令c n =b n2n,则c 1+c 2+c 3+…+c n =a n +1=2n ①当n ≥2时,c 1+c 2+c 3+…+c n -1=2(n -1) ②由①-②得,c n =2,当n =1时,c 1=2,满足上式;则c n =2(n ∈N *),即b n2n =2,∴b n =2n +1,故数列{b n }是首项为4,公比为2得等比数列, ∴数列{b n }的前n 项和S n =4(1-2n )1-2=2n +2-4.此类题目中,已知条件往往是一个关于a n 与S n 的等式,问题则是求解与a n ,S n 有关联的结论.那么我们需要通过对所求问题进行客观分析后,判定最后的结果中是保留a n ,还是S n .那么,主要从两个方向利用a n =S n -S n -1(n ≥2):方向一:若所求问题是与a n 相关的结论,那么用S n -S n -1=a n (n ≥2)消去等式中所有S n 与S n -1,保留项数a n ,在进行整理求解;1.(2015·广州潮州月考)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1,n ∈N *),则数列的通项公式是 .【解析】当n ≥2时,a n =2S n -1+1,两式相减得a n +1-a n =2(S n -S n -1),即a n +1-a n =2a n ,得a n+1=3a n ;当n =1时,a 2=3,则a 2=3a 1,满足上式;故{a n }是首项为1,公比为3得等比数列,∴a n=3n -1.【答案】a n =3n -12.数列{a n }的前n 项和为S n ,若a n +1=-4S n +1,a 1=1. (1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .【解】(1)当n ≥2时,a n =-4S n -1+1,又a n +1=-4S n +1,∴a n +1-a n =-4a n ,即a n +1a n=-3(n ≥2), 又a 2=-4a 1+1=-3,a 1=1,∴数列{a n }是首项为a 1=1,公比为q =-3的等比数列, ∴a n =(-3)n -1.(2)由(1)可得b n =n ·(-3)n -1,T n =1·(-3)0+2·(-3)1+3·(-3)2+…+(n -1)·(-3)n -2+n ·(-3)n -1,-3T n =1·(-3)1+2·(-3)2+…+(n -2)·(-3)n -2+(n -1)·(-3)n -1+n (-3)n , ∴4T n =1+(-3)1+(-3)2+…+(-3)n -1-n ·(-3)n , 所以,T n =1-(4n +1)(-3)n16.方向二:若所求问题是与S n 相关的结论,那么用a n =S n -S n -1(n ≥2)消去等式中所有项数a n ,保留S n 与S n -1,在进行整理求解.1.已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 是等差数列;(2)求a n 的表达式.【解】(1)证明:∵a n =S n -S n -1(n ≥2),又a n =-2S n ·S n -1,∴S n -1-S n =2S n ·S n -1,S n ≠0.因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n =1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n .当n ≥2时,a n =-2S n ·S n -1=-12n (n -1),又∵a 1=12,不适合上式.∴a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.2.(2015·江西名校联盟调考)已知正项数列{a n }的前n 项和为S n ,且a 2n -2S n a n +1=0. (1)求数列{S n }的通项公式;(2)求证:1S 1+1S 2+…+1S n>2(S n+1-1).(提示:1n >2n +1+n)【解】(1)∵a n =S n -S n -1(n ≥2),由a 2n -2S n a n +1=0,得(S n -S n -1)2-2S n (S n -S n -1)+1=0,整理得S 2n -S 2n -1=1.当n =1时,a 21-2S 1a 1+1=0,且a 1>0,解得a 1=1, 故由等差数列的定义知{S 2n }是以1为首项,1为公差的等差数列. ∴S 2n =n ,则S n =n .(2)由(1)知1S n =1n =22n >2n +1+n=2(n +1-n ),∴1S 1+1S 2+…+1S n >2(2-1)+2(3-2)+…+2(n +1-n )=2(n +1-1)即1S 1+1S 2+…+1S n>2(S n +1-1) .【总结】此类题目往往伴随着等差、等比数列的判定,所以需要对数列的判定方法熟练掌握.解此类题目中不仅需要深刻理解“数列的前n 项和”的实际意义,还需要对a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2关系式的形式结构很熟练的掌握,这样才能在题目中对已知等式灵活地变换.当然在解决问题的时候仍然需要从求谁的角度出发分析,确定等式的变换方向. 方向一:关于双重前n 项和此类题目中一般出现“数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ”的条件,在解答时需要确定清楚求的是与a n ,S n ,T n 中谁相关的问题,确定已知等式的运用方向.但一般是求解最底层的a n .1.(2015·湖北武汉质检)设数列{a n }的前n 现和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.【解】(1)当n =1时,T 1=2S 1-1,且T 1=S 1=a 1,解得a 1=1,(2)当n ≥2时,S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2]=2S n -2S n -1-2n +1 ∴S n =2S n -1+2n -1 ① 则S n +1=2S n +2n +1 ② 由②-①,得a n +1=2a n +2,∴a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ≥2),易求得,a 1+2=3,a 2+2=6,则a 2+2a 1+2=2,∴数列{a n +2}是首项为3,公比为2的等比数列,∴a n +2=3·2n -1,则a n =3·2n -1-2(n ∈N *).2.(2015·安徽滁州期末联考)设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,且2T n =4S n-(n 2+n ),n ∈N *.(1)证明:数列{a n +1}为等比数列;(2)设b n =n +1a n +1,证明:b 1+b 2+…+b n <3. 【解】(1)当n =1时,2T 1=4S 1-2,且T 1=S 1=a 1,解得a 1=1,当n =2时,2T 2=2(a 1+a 1+a 2)=4(a 1+a 2)-6,解得a 2=3, 当n ≥2时,2T n -1=4S n -1-[(n -1)2+(n -1)]∴2S n =2T n -2T n -1=4S n -(n 2+n )-4S n -1+[(n -1)2+(n -1)] 整理得S n =2S n -1+n ① 则S n +1=2S n +n +1 ② 由②-①,得a n +1=2a n +1, ∴a n +1+1=2(a n +1),即a n +1+1a n +1=2(n ≥2),显然a 2+1a 1+1=2,∴数列{a n +1}是首项为2,公比为2的等比数列,(2)由(1)知,a n +1=2n ,则b n =n +12n.则b 1+b 2+…+b n =22+322+423…+n +12n ,令T n =22+322+423…+n +12n ,①则12T n = 222+323+424…+n 2n +n +12n +1,② 由①-②,得12T n =1+122+123+124…+12n -n +12n +1=1+122(1-12n -1)1-12-n +12n +1=32-n +32n +1<32则T n <3,即b 1+b 2+…+b n <3. 方向二:已知等式在整理过程中需要因式分解此类问题大多数时候会伴随“各项均为正数的数列{a n }”这样的条件,运用在因式分解后对因式进行符号的判定,对因式进行的取舍.1.(2015·山东青岛一模)各项均为正数的数列{a n }满足a 2n =4S n -2a n -1(n ∈N *),其中S n 为{a n }的前n 项和.(1)求a 1,a 2的值; (2)求数列{a n }的通项公式.【解】(1)当n =1时,T 1=2S 1-1;又T 1=S 1=a 1,则a 1=2a 1-1,解得a 1=1;(2)当n ≥2时,S n =T n -T n -1=(2S n -n 2)-[2S n -1-(n -1)2]=2S n -2S n -1-2n +1, 整理得S n =2S n -1+2n -1 ① ∴S n +1=2S n +2n +1 ② 由②-①,得a n +1=2a n +2 ∴a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ≥2)又T 2=2S 2-4;得a 2=4当n =1时,a 1+2=3,a 2+2=6,则a 1+2a 2+2=2,∴数列{a n +2}是以3为首项,2为公比的等比数列. 则a n +2=3·2n -1,所以a n =3·2n -1-2.2.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2,n ∈N *.(1)求证:数列{a n }是等差数列;(2)设b n =12S n,T n =b 1+b 2+…+b n ,求T n .【解】(1)由已知得,当n =1时,a 1=S 1=a 1(a 1+1)2(a n >0),∴a 1=1.当n ≥2时,由⎩⎨⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1得2a n =a 2n +a n -a 2n -1-a n -1. 即(a n +a n -1)(a n -a n -1-1)=0,∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,1为公差的等差数列. (2)由(1)可得a n =n ,S n =n (n +1)2,b n =12S n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.方向三:需对已知等式变形后,再求解1.(2015·江西五校联考)已知正项数列{a n }中,其前n 项和为S n ,且a n =2S n -1. (1)求数列{a n }的通项公式; (2)设b n =1a n ·a n+1,T n =b 1+b 2+b 3+…+b n ,求T n .【解】(1)由已知得,4S n =(a n +1)2.当n ≥2时,4S n -1=(a n -1+1)2,则4S n -4S n -1=(a n +1)2-(a n -1+1)2,整理得 (a n -1)2-(a n -1+1)2=0, ∴(a n -a n -1-2)(a n +a n -1)=0 又a n >0,则a n -a n -1=2,当n =1时,4S 1=(a 1+1)2,得a 1=1; 故数列{a n }是首项为1,公差为2的等差数列; ∴a n =2n -1.(2)由(1)可得b n =1a n ·a n+1=12n -1×12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =1b 1+1b 2+1b 3+…+1b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 2.(2015·浙江温州中学月考)设数列{a n }的前n 项和为S n ,已知a 1=2,a 2=8,S n +1+4S n -1=5S n (n ≥2),T n 是数列{log 2a n }的前n 项和.(1)求数列{a n }的通项公式; (2)求T n .【解】(1)当n ≥2时,S n +1+4S n -1=5S n ,∴S n +1-S n =4(S n -S n -1),即a n +1=4a n , 当n =1时,a 2=4a 1;故数列{a n }是以2为首项,4为公比的等比数列. ∴a n =2·4n -1=22n -1.(2)由(1)可知log 2a n =log 222n -1=2n -1, ∴T n =log 2a 1+log 2a 2+log 2a 3+…+log 2a n=1+3+5+…+2n -1 =n (1+2n -1)2=n 2.3.(2015·江西三县联考)已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,其中n ∈N *.(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成等差数列,求数列{a n }的通项公式;(2) a 1=1,对任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成公比为q 的等比数列,求数列{a n }的前n 项和A n .【解】(1)∵任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成等差数列,∴B (n )-A (n )=C (n )-B (n ),则a n +1-a 1=a n +2-a 2,即a n +2-a n +1=a 2-a 1=4, 故数列{a n }是首项为1,公差为4的等差数列; ∴a n =1+(n -1)×4=4n -3.(2)若对任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成公比为q 的等比数列, ∴B (n )=qA (n ),C (n )=qB (n ), 则C (n )-B (n )=q [B (n )-A (n )],得a n +2-a 2=q (a n +1-a 1),即a n +2-qa n +1=a 2-qa 1, 当n =1时,由B (1)=qA (1),可得a 2=qa 1; 则a n +2-qa n +1=a 2-qa 1=0,又a n >0,则a n +2a n +1=a 2a 1=q , 故数列{a n }是以1为首项,q 为公比的等比数列.∴A n =⎩⎪⎨⎪⎧n ,q =1,1-q n1-q,q ≠1.4.(2015·辽宁沈阳诊断考试)设数列{a n }的前n 项和为S n ,a 1=10,a n +1=9S n +10. (1)求证:{lg a n }是等差数列;(2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3(lg a n )(lg a n +1)的前n 项和,求T n ; (3)求使T n >14(m 2-5m )对所有的n ∈N *恒成立的整数m 的取值集合.【解】(1)证明:当n ≥2时,a n =9S n -1+10,∴a n +1-a n =9(S n -S n -1),则a n +1=10a n ,即a n +1a n=10, 当n =1时,a 2=9a 1+10=100,则a 2a 1=10, 故数列{a n }是以10为首项,10为公比的等比数列. ∴a n =10n ,则lg a n =n , ∴lg a n +1-lg a n =n +1-n =1,故数列{lg a n }是首项为1,公差为1的等差数列.(2)解:由(1)知3(lg a n )(lg a n +1)=3n n +1=3⎝ ⎛⎭⎪⎫1n -1n +1,∴T n =3⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=3⎝ ⎛⎭⎪⎫1-1n +1=3n n +1. (3)∵T n =3n n +1=3-3n +1, ∴当n =1时,T n 取最小值32.依题意有32>14(m 2-5m ),解得-1<m <6,故整数m 的取值集合为{0,1,2,3,4,5}.1.(2015·江苏扬州外国语中学模拟)已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式为 .【解析】当n ≥2时,a n =S n -S n -1=2n -3-2n -1+3=2n -1.当n =1时,a 1=S 1=-1,不满足上式.【答案】a n =⎩⎨⎧-1,n =12n -1,n ≥22.(2015·辽宁沈阳二中月考)已知数列{a n }满足a 1+a 22+…+a nn=a 2n -1,求数列{a n }的通项公式. 【解】当n ≥2时,a 1+a 22+…+a n -1n -1=a 2n -2-1 由已知等式减去上式,得a nn=a 2n -1-a 2n -2+1=(a 2-1)a 2n -2, ∴a n =n (a 2-1)a 2n -2,当n =1时,a 1=a 2-1,满足上式; ∴a n =n (a 2-1)a 2n -2.3.(2015·安徽江淮十校联考)已知函数f (x )是定义在(0,+∞)上的单调函数,且对任意的正数x ,y 都有f (x ·y )= f (x )+f (y ),若数列{a n }的前n 项和为S n ,且满足f (S n +2)-f (a n )= f (3)(n ∈N *),则a n 为( )A .2n -1B .nC .2n -1D .⎝ ⎛⎭⎪⎫32n -1【解析】由f (x ·y )= f (x )+f (y ),f (S n +2)-f (a n )= f (3),得S n +2=3a n ,S n -1+2=3a n -1(n ≥2),两式相减得2a n =3a n -1;当n =1时,S 1+2=3a 1=a 1+2,则a 1=1.所以数列{a n }是首项为1,公比为32的等比数列.【答案】a n =⎝ ⎛⎭⎪⎫32n -14.(2015·辽宁鞍山二中期中)设数列{a n }是等差数列,数列{b n }的前n 项和S n 满足S n =32(b n -1),且a 2=b 1,a 5=b 2.(1)求数列{a n }和{b n }的通项公式;(2)设c n =a n ·b n ,T n 为{c n }的前n 项和,求T n . 【解】(1)当n ≥2时,S n -1=32(b n -1-1),则b n =S n -S n -1=32(b n -1)-32(b n -1-1),整理得b n =3b n -1,当n =1时,b 1=32(b 1-1),解得b 1=3;故数列{b n }是以3为首项,3为公比的等比数列. ∴b n =3n ,设等差数列{a n }的公差为d ,由a 2=b 1=3,a 5=b 2=9,则⎩⎨⎧a 1+d =3,a 1+4d =3,解得d =2,a 1=1,∴a n =2n -1,∴a n =2n -1,b n =3n .(2)由(1)知c n =a n ·b n =(2n -1)·3n ,∴T n =3+3·32+5·33+…+(2n -1)·3n ,①3T n = 32+3·33+5·34+…+(2n -3)·3n +(2n -1)·3n +1,② 由①-②,得-2T n =3+2(32+33+…+3n )-(2n -1)·3n +1=3+2×32(1-3 n -1)1-3-(2n -1)·3n +1=(2-2n )·3n +1-6,∴T n =(n -1) 3n +1+3.5.在数列{a n }中,已知a 1=1,a n =2(a n -1+a n -2+…+a 2+a 1) (n ≥2,n ∈N *),则数列的通项公式是 .【解析】由已知n ≥2时,a n =2S n -1 ①;当n ≥3时,a n -1=2S n -2 ②①-②整理得a n a n -1=3 (n ≥3),∴a n =⎩⎨⎧1, n =1,2×3n -2, n ≥2.【答案】a n =⎩⎨⎧1, n =1,2×3n -2, n ≥2. 6.(2015·广东桂城摸底)已知各项均为正数的数列{a n }的前n 项和为S n ,且a 2n +a n =2S n . (1)求a 1;(2)求数列{a n }的通项公式;(3)若b n =1a 2n (n ∈N *),T n =b 1+b 2+…+b n ,求证:T n <53.⎝ ⎛⎭⎪⎫提示:1n 2<2⎝ ⎛⎭⎪⎫12n -1-12n +1【解】(1)当n =1时,a 21+a 1=2S 1,且a n >0,得a 1=1;(2)当n ≥2时,a 2n -1+a n -1=2S n -1 ①;且a 2n +a n =2S n ②;由②-①,得(a n +a n -1)(a n -a n -1-1)=0, 又a n >0,则a n -a n -1=1,故数列{a n }是首项为1,公差为1的等差数列; ∴a n =n .(3)证明:由(2)知,b n =1a 2n =1n2,当n =1时,b 1=1<53,不等式成立;当n ≥2时,1n 2<1n 2-14=44n 2-1=2⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =1+122+132+…+1n 2<1+2⎝ ⎛⎭⎪⎫13-15+15-17…+12n -1-12n +1<1+23=53, ∴T n <537.(2015·大连双基测试)已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________. 【解析】当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎨⎧4,n =1,2n +1,n ≥2. 【答案】⎩⎨⎧4,n =12n +1,n ≥28.(2014·烟台一模)已知数列{a n }前n 项和为S n ,首项为a 1,且12,a n ,S n 成等差数列.(1)求数列{a n }的通项公式;(2)数列{b n }满足b n =(log 2a 2n +1)×(log 2a 2n +3),求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n 的前n 项和.【解】(1)∵12,a n ,S n 成等差数列,∴2a n =S n +12,当n =1时,2a 1=S 1+12,∴a 1=12,当n ≥2时,S n =2a n -12,S n -1=2a n -1-12,两式相减得:a n =S n -S n -1=2a n -2a n -1,∴a na n -1=2, 所以数列{a n }是首项为12,公比为2的等比数列,即a n =12×2n -1=2n -2.(2)∵b n =(log 2a 2n +1)×(log 2a 2n +3)=(log 222n +1-2)×(log 222n +3-2)=(2n -1)(2n +1), ∴1b n =12n -1×12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n 的前n 项和T n =1b 1+1b 2+1b 3+…+1b n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.9.(2014·山西四校联考)已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =________. 【解析】当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,∴a n +1=2(a n -1+1),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.【答案】2n -110.(2014·湖南卷)已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 【解】(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n2-n -12+n -12=n .又a 1=1满足上式,故数列{a n }的通项公式为a n =n . (2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n , 则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+ (22),B =-1+2-3+4-…+2n ,则A =21-22n1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.11.已知数列{a n }是各项均为正数的等比数列,a 3=4,{a n }的前3项和为7. (1)求数列{a n }的通项公式;(2)若a 1b 1+a 2b 2+…+a n b n =(2n -3)2n +3,设数列{b n }的前n 项和为S n ,求证:1S 1+1S 2+…+1S n≤2-1n.【解】(1)设数列{a n }的公比为q ,由已知得q >0,且⎩⎨⎧ a 1q 2=4,a 1+a 1q +4=7,∴⎩⎨⎧a 1=1,q =2.∴数列{a n }的通项公式为a n =2n -1.(2)【证明】当n =1时,a 1b 1=1,且a 1=1,解得b 1=1.当n ≥2时,a n b n =(2n -3)2n +3-(2n -2-3)2n -1-3=(2n -1)·2n -1.∵a n =2n -1,∴当n ≥2时,b n =2n -1. ∵b 1=1=2×1-1满足b n =2n -1, ∴数列{b n }的通项公式为b n =2n -1(n ∈N *). ∴数列{b n }是首项为1,公差为2的等差数列. ∴S n =n 2.∴当n =1时,1S 1=1=2-11.当n ≥2时,1S n =1n 2<1n (n -1)=1n -1-1n.∴1S 1+1S 2+…+1S n ≤2-11+11-12+…+1n -1-1n =2-1n . 12.设数列{a n }的前n 项和为S n ,a 1=1,a n =S nn+2 (n -1) (n ∈N *). (1)求证:数列{a n }为等差数列,并分别写出a n 和S n 关于n 的表达式;(2)是否存在自然数n ,使得S 1+S 22+S 33+…+S nn -(n -1)2=2 013?若存在,求出n 的值;若不存在,请说明理由.【解】(1)由a n =S n n+2(n -1),得S n =na n -2n (n -1) (n ∈N *).当n ≥2时,a n =S n -S n -1=na n -(n -1)a n -1-4(n -1),即a n -a n -1=4, 故数列{a n }是以1为首项,以4为公差的等差数列. 于是,a n =4n -3,S n =a 1+a n n2=2n 2-n (n ∈N *).(2)由S n =na n -2n (n -1),得S nn=2n -1 (n ∈N *),又S 1+S 22+S 33+…+S nn -(n -1)2=1+3+5+7+…+(2n -1)-(n -1)2=n 2-(n -1)2=2n -1.令2n -1=2 013,得n =1 007,即存在满足条件的自然数n =1 007.1.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.【解】(1)由S n =12a 2n +12a n ,可得a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理,a 3=3,a 4=4.(2)S n =12a 2n +12a n,①当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .2.在数列{a n }中,a 1=-5,a 2=-2,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2(n ∈N *),若对于任意n ∈N *,A (n ),B (n ),C (n )成等差数列.(1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和.【解】(1)根据题意A (n ),B (n ),C (n )成等差数列,∴A (n )+C (n )=2B (n ),整理得a n +2-a n +1=a 2-a 1=-2+5=3, ∴数列{a n }是首项为-5,公差为3的等差数列, ∴a n =-5+3(n -1)=3n -8.(2)|a n |=⎩⎨⎧-3n +8,n ≤2,3n -8,n ≥3,记数列{|a n |}的前n 项和为S n .当n ≤2时,S n =n 5+8-3n2=-3n 22+132n ;当n ≥3时,S n =7+n -21+3n -82=3n 22-132n +14,综上,S n=⎩⎪⎨⎪⎧-32n 2+132n ,n ≤2,32n 2-132n +14,n ≥3.3.(2014·广东卷)设各项均为正数的数列{a n } 的前n 项和为S n ,且 S n 满足 S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1 的值;(2)求数列{a n } 的通项公式;(3)证明:对一切正整数n ,有1a 1a 1+1+1a 2a 2+1+…+1a n a n +1<13.【解】(1)由题意知,S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.令n =1,有S 21-(12+1-3)S 1-3×(12+1)=0,可得S 21+S 1-6=0,解得S 1=-3或2,即a 1=-3或2, 又a n 为正数,所以a 1=2.(2)由S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *可得,(S n +3)(S n -n 2-n )=0,则S n =n 2+n 或S n =-3, 又数列{a n }的各项均为正数,∴S n =n 2+n ,S n -1=(n -1)2+(n -1),当n ≥2时,a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n . 又a 1=2=2×1,所以a n =2n . (3)证明:当n =1时,1a 1a 1+1=12×3=16<13成立;当n ≥2时,1a n a n +1=12n 2n +1<12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴1a 1a 1+1+1a 2a 2+1+…+1a n a n +1<16+12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=16+12⎝ ⎛⎭⎪⎫13-12n +1<16+16=13. 所以对一切正整数n ,有1a 1a 1+1+1a 2a 2+1+…+1a n a n +1<13.。

高中数学数列公式大全

高中数学数列公式大全

一、高中数列基本公式:二、1、一般数列的通项 a n与前 n 项和 S n的关系:a n=三、 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d( 其中 a1为首项、 a k为已知的第 k 项) 当 d≠0时, a n是关于 n 的一次式;当 d=0 时, a n是一个常数。

3、等差数列的前 n 项和公式:S n=S n=S n=当 d≠0时,S n是关于 n 的二次式且常数项为 0;当 d=0 时(a1≠0),S n=na1是关于 n 的正比率式。

4、等比数列的通项公式: a n= a 1 q n-1a n= a k q n-k( 其中 a1为首项、 a k为已知的第 k 项, a n≠0)5、等比数列的前 n 项和公式:当 q=1 时, S n=n a1( 是关于 n 的正比例式 ) ;当 q≠1时, S n=S n=二、高中数学中有关等差、等比数列的结论1、等差数列 {a n} 的任意 m的和构成的数列S m、S2m-S m、S3m-S 2m、S4m- S 3m、⋯⋯仍等差数列。

2、等差数列 {a n} 中,若 m+n=p+q,3、等比数列 {a n} 中,若 m+n=p+q,4、等比数列 {a n} 的任意 m的和构成的数列S m、S2m-S m、S3m-S 2m、S4m- S 3m、⋯⋯仍等比数列。

5、两个等差数列 {a n} 与{b n } 的和差的数列 {a n+b n} 、{a n-b n} 仍等差数列。

6、两个等比数列 {a n} 与{b n} 的、商、倒数成的数列{an b } 、、仍等比数列。

n7、等差数列 {a n} 的任意等距离的构成的数列仍等差数列。

8、等比数列 {a n} 的任意等距离的构成的数列仍等比数列。

9、三个数成等差数列的法:a-d,a,a+d ;四个数成等差的法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的法:a/q,a,aq ;四个数成等比的法:a/q 3,a/q,aq,aq3一、11、{a n} 为等差数列,则二、12、{b n} (b n>0)是等比数列,则差数列。

由an与Sn的关系求通项

由an与Sn的关系求通项

1)2
∴整理得(an+an-1)(an-an-1-2)=0.
2
由于{an}3>0∴an-an-1-2=0.
∴数列{an}是首项为 1,公差为 2 的等差数列. ∴an=2n-1.
二、已知an与Sn的关系求通项an
【例 2】
sn 4an 3
【巩固练习】
Sn (an21)2
在数列 an 中, a1 1 ,它的前 n 项和为 S n ,
且 an
2S
2 n
(n
2Sn 1
2) ,求 an 的通项公式。
统一变量形式,
实现化简目1的、。an=sn-sn-1代入 2、整理sn与sn-1的递推式 3、求sn表达式 4、再求an
小结
an
ss1n
, n=1 s n1 , n
2
一、已知sn表达式求an(注意并项问题)
二、已知an与sn关系式 1、转化为an的递推关系
当 n≥2 时,an=Sn-Sn-1
=(2n+3)-(2n-1+3)=2n-1.
由于 a1 不适合此等式,
由于 a1 也适合此等式, ∴an=2n-4.
an=5, 2n-1,
n=1, n≥2.
二、已知an与Sn的关系求通项an
【例 2】
解 n=1 时由 a1=S1=4a1-3 得 a1=1
已知数列{an}的前 n 项和
等差或等比 的形式
2、转化为sn的递推关系
转化思想
为 Sn,1且、S寻n找=a4na-n1-与s3n,-n1的∈关N*系. 式
求{an}的通项公式.
n≥2 时 又由 an=Sn-Sn-1
sn sn1
4an 3 4an1 3

高中数学数列公式大全(很齐全哟~!)

高中数学数列公式大全(很齐全哟~!)

一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。

3、等差数列的前n项和公式:S n= S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。

4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式);当q≠1时,S n= S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。

2、等差数列{a n}中,若m+n=p+q,则3、等比数列{an}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。

5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。

6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列。

7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{a n}为等差数列,则 (c>0)是等比数列。

一般数列的通项an与前n项和Sn的关系 (2)

一般数列的通项an与前n项和Sn的关系 (2)

一般数列的通项a n与前n项和S n的关系:a n=(这里是s n-s n-1)2、等差数列的通项公式:a n=a1+(n-1)d3、等差数列的前n项和公式:S n=S n=4、等比数列的通项公式:a n= a1q n-15、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式);当q≠1时,S n=(那里是a1乘以括号1-q的n次方)三、高中数学中有关等差、等比数列的结论2、等差数列{a n}中,若m+n=p+q,则a m+a n=a p+a q3、等比数列{a n}中,若m+n=p+q,则a m*a n=a p*a q三角函数正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B 是边a 和边c 的夹角sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- (若要使用其他三角函数的代换则把公式中的啊,A,B 代换成如π,0,等)一般答题中出现三角函数你就把这些公式能用的解析几何圆的标准方程 (x-a)2+(y-b)2=r2(2代表平方)注:(a,b )是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2px(y的平方)x2=2py (x的平方)x2=-2py (x的平方)标准方程: 1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1 其中a>b>0,c>0,c^2=a^2-b^2. 2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1 其中a>b>0,c>0,c^2=a^2-b^2. 参数方程:X=acosθ Y=bsinθ (θ为参数)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。

(完整版)高中数学数列公式大全(很齐全哟~)

(完整版)高中数学数列公式大全(很齐全哟~)

一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。

3、等差数列的前n项和公式:S n= S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。

4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式);当q≠1时,S n= S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。

2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。

5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。

6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列。

7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{a n}为等差数列,则 (c>0)是等比数列。

由an与Sn的关系求通项.ppt

由an与Sn的关系求通项.ppt

2.清朝黄遵宪曾作诗曰:“钟声一及时,顷刻不少留。虽
有万钧柁,动如绕指柔。”这是在描写
()
A.电话
B.汽车
C.电报
D.火车
解析:从“万钧柁”“动如绕指柔”可推断为火车。
答案:D
[典题例析]
[例1] 上海世博会曾吸引了大批海内外人士利用各种
交通工具前往参观。然而在19世纪七十年代,江苏沿江
居民到上海,最有可能乘坐的交通工具是
, n=1 s n1 , n
2
一、已知sn表达式求an(注意并项问题)
二、已知an与sn关系式 1、转化为an的递推关系
等差或等比的形 式
2、转化为sn的递推关系
转化思想
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材·填要点]
一、铁路,更多的铁路 1.地位 铁路是 交通建运设输的重点,便于国计民生,成为国民经济 发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 至开胥平各庄铁 路建成通车。 1888年,宫廷专用铁路落成。
动了经济与社会的发展。
关键词——交通和通讯不断进步、辛亥革命和国民大革命顺应

代潮流
图说历史
主旨句归纳
(1)1911年,革命党人发动武昌起义,辛亥
革命
爆发,随后建立了中华民国,颁布了《中

民国临时约法》;辛亥革命是中国近代化

程的里程碑。
(2)1924年国民党“一大”召开,标志着第 一
关键词——交通和通讯不断进步、辛亥革命和国民大革命顺应
解析:从图片中可以了解到各国举的灯笼是火车形状, 20世纪初的这一幅漫画正反映了帝国主义掠夺中国铁路 权益。B项说法错误,C项不能反映漫画的主题,D项时 间上不一致。 答案:A

2021-2022学年北师大版必修五 an与Sn的关系及裂项求和法 课件(32张)

2021-2022学年北师大版必修五  an与Sn的关系及裂项求和法  课件(32张)
解:(1)当n≥2时,Sn-1=2(n-1)2-8(n-1)+10=2n2-12n+20,
∴an=Sn-Sn-1=2n2-8n+10-2n2+12n-20=4n-10.
当n=1时,a1=S1=2-8+10=4,
4,
= 1,
而 4×1-10=-6≠4,∴an=
4-10, ≥ 2.
∵当n≥2时,an-an-1=4n-10-4(n-1)+10=4,
第2课时
an与Sn的关系及裂项求和法
学 习 目 标
思 维 脉 络
1.进一步熟练掌握等差数列通项公式
及前 n 项和公式.
2.掌握公式 an=Sn-Sn-1(n≥2)的应用.
3.掌握裂项相消法求数列前 n 项和的方
法.
1.an与Sn的关系
因为Sn=a1+a2+a3+…+an,当n≥2,且n∈N+时,Sn-1=a1+a2+…+an-1,所
一项或少数几项外,其余各项都能前后相抵消,进而可求出数列的
前n项和.
1
1
1
1
+
+
+…+
=
【做一做2】 1×4 4×7 7×10
(3-2)(3+1)

答案:
3+1
.
名师点拨常用的裂项求和公式
1
+1
(1)若{an}是等差数列,则
=
1 1
1
+1
1
1 1
1
=
;
+2
2 +2
1
1 1 1

等差数列sn和an的关系

等差数列sn和an的关系

等差数列sn和an的关系全文共四篇示例,供读者参考第一篇示例:等差数列是数学中非常常见且重要的数列之一,其中每一项与前一项之差都相等。

在等差数列中,我们常使用两种常见的记号:S_n和a_n。

S_n表示等差数列的前n项和,而a_n表示等差数列的第n项。

本文将详细探讨S_n和a_n之间的关系。

我们来看S_n和a_n之间的关系。

设等差数列的首项为a_1,公差为d,则等差数列的第n项可以表示为a_n=a_1+(n-1)d。

而S_n表示等差数列的前n项和,即S_n=a_1+a_2+...+a_n。

接下来,我们来看一些具体的例子来说明S_n和a_n之间的关系。

假设我们有一个等差数列的首项a_1=2,公差d=3,我们来求该等差数列的前5项和S_5。

首先确定等差数列的第5项:a_5=2+(5-1)\times 3=14。

然后利用前面推导的公式计算前5项和S_5:S_5=\frac{5}{2}(2\times2+(5-1)\times 3)=5\times 8=40。

所以,当等差数列的首项为2,公差为3时,它的前5项和为40。

通过这个例子,我们可以看到S_n和a_n之间的关系是非常紧密和重要的。

在实际生活和工作中,等差数列的概念和相关公式会被广泛应用。

比如在金融领域中,等差数列常用来描述递增或递减的收入或支出情况;在物理学中,等差数列可以用来描述匀速运动的距离随时间的变化等问题。

S_n和a_n之间的关系是数学中一个非常重要的概念,对于理解等差数列的性质和应用起着至关重要的作用。

希望通过本文的介绍,读者能够更加深入地理解等差数列及其相关知识,从而更好地应用于实际问题中。

【2000字】第二篇示例:等差数列,顾名思义,就是数列中相邻两项之间的差值是相同的。

在数学中,我们常用字母a表示等差数列的首项,d表示公差,n表示项数,数列的一般形式可以表示为:an = a + (n-1)d,其中an表示第n项,a表示首项,d表示公差。

(完整版)高中数学数列公式大全(很齐全哟~)

(完整版)高中数学数列公式大全(很齐全哟~)

一、高中数列基本公式:1、一般数列的通项a n与前 n 项和 S n的关系: a n=2、等差数列的通项公式: a n=a1+(n-1)d a n=a k+(n-k)d ( 此中 a1为首项、 a k为已知的第 k 项 ) 当 d≠0时, a n是关于 n 的一次式;当d=0 时, a n是一个常数。

3、等差数列的前n 项和公式: S n=S n =S n=当 d≠0时,( a1≠0),S n是关于 n 的二次式且常数项为S n=na1是关于 n 的正比率式。

0;当d=0时4、等比数列的通项公式: a n= a 1 q n-1 a n= a k q n-k( 此中 a1为首项、 a k为已知的第 k 项, a n≠0)5、等比数列的前 n 项和公式:当 q=1 时, S n=n a1 ( 是关于 n 的正比率式 ) ;当 q≠1时, S n=S n=三、高中数学中有关等差、等比数列的结论1、等差数列 {a n} 的任意连续m项的和构成的数列S m、S2m-S m、S3m-S 2m、S4m - S 3m、仍为等差数列。

2、等差数列 {a n} 中,若 m+n=p+q,则3、等比数列 {a n} 中,若 m+n=p+q,则4、等比数列 {a S3m-S 2m、S4m - S n}的任意连续m项的和构成的数列3m、仍为等比数列。

S m、S2m-S m、5、两个等差数列{a n } 与{b n} 的和差的数列{a n+b n} 、{a n -b n} 仍为等差数列。

6、两个等比数列{a n } 与{b n} 的积、商、倒数构成的数列{a n b n} 、、仍为等比数列。

7、等差数列 {a n} 的任意等距离的项构成的数列仍为等差数列。

8、等比数列 {a n} 的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的想法:a-d,a,a+d;四个数成等差的想法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的想法:a/q,a,aq;四个数成等比的错误想法:a/q3,a/q,aq,aq3(为何?)11、 {a n}为等差数列,则(c>0)是等比数列。

等差数列中Sn与an间的重要关系及应用

等差数列中Sn与an间的重要关系及应用

等差数列中S n 与a n 间的 重要关系及其应用“设S n、a n分别是等差数列{a n}的前n 和与通项,则它们之间有如下的重要关系:S n =(kn )a n ,其中k 是非零实数,n 是正整数。

”我们知道,等差数列{a n }的前n 和S n 、通项a n 分别有如下的表达式:⑴ S n =na 1- n(n-1)2 d ,其可等价变形为S n = d 2 n 2 +(a 1-d2 )n ,它是关于n 的二次函数且不含常数项,一般形式是:S n =An 2+Bn ,其中A 、B 是非零待定系数;⑵ a n = a 1 +(n-1)d ,其可等价变形为a n =dn+(a 1 -d ),它是关于n 的一次函数,一般形式是:a n =an+b ,其中a 、b 是非零待定系数;通过对等差数列{a n }前n 和S n 的一般形式S n =An 2+Bn 与其通项a n 的一般形式a n =an+b 的观察分析,不难得出S n 与a n 之间有这样的重要关系式:S n =(kn )a n 。

S n 与a n 相互关系的应用举例:[例1]在等差数列{a n }中,a 4=0.8,a 11=2.2,求a 51+a 52+…+a 80.【解】 由等差数列的通项公式得⎩⎨⎧=+=+2.2108.0311d a d a ,解得a 1=0.2,d =0.2.∴a 51+a 52+…+a 80=S 80-S 50 =80a 1+d a d 2495050279801⨯--⨯=30a 1+1935d =30×0.2+1935×0.2=393. 【点评】 本题求解分两个层次,首先由已知求出a 1和d ,再将所求转化为S 80-S 50,这是解题的关键.[例2]根据数列{a n }的前n 项和公式,判断下列数列是否是等差数列. (1)S n =2n 2-n (2)S n =2n 2-n +1【解】 (1)a 1=S 1=1 当n ≥2时,a n =S n -S n -1=(2n 2-n )-[2(n -1)2-(n -1)]=2(2n -1)-1=4n -3∵n =1 时也成立,∴a n =4n -3 a n +1-a n =[4(n +1)-3]-[4n -3]=4∴{a n }成等差数列(2)a 1=S 1=2 a 2=S 2-S 1=5 a 3=S 3-S 2=9 ∵a 2-a 1≠a 3-a 2 ∴{a n }不是等差数列.【点评】 已知S n ,求a n ,要注意a 1=S 1,当n ≥2时a n =S n -S n -1, 因此a n =⎩⎨⎧≥-=-)2( )1(11n S S n S n n.练习: 已知等差数列{a n }的前项和S n 满足条件:S n =2n 2+3n ,求此等差数列的通项a n解: 根据等差数列的前n 项和S n 是关于n 的二次函数且不含常数项,即S n = d 2n 2+(a 1-d 2 )n,并结合已知条件等差数列{a n }的前项和S n =2n 2+3n 立有, d2 =2且a 1-d2=3, 解之得 a 1=5,d=4,于是便得所求等差数列的通项a n =4n+1. [例3]已知等差数列{a n }满足:S p =q ,S q =p ,求S p +q (其中p ≠q ). 【解】 由已知S p =q ,S q =p 得 pa 1+q d p p =-2)1( ① qa 1+p d q q =-2)1( ② ①-②整理得2)1(21dq p a -++=-1∴d q p q p a q p S q p 2)1)(()(1-++++=+=(p +q )2)1(21d q p a -++=-(p +q ) 【点评】 本问题即是在a 1、d 、n 、a n 、S n 中知三求二问题,但在解方程的过程中体现出了较高的技巧;也可考虑设S n =An 2+Bn 去求解. 例4 有两个等差数列{a n }、{b n },其前n 和分别为S n 、 T n ,并且n n T S =7n+2n+3 ,求:⑴ 55b a 的值;⑵115b a的值分析:由等差数列可知,其前n 项和是关于n 的二次函数且不含常数项;根据已知条件,两个等差数列前n 项和的比的结果是关于n 的一次因式,说明它们在相比的过程中约去了一个共同的因式kn ,于是,我们只要将其还原,即可得到两个等差数列的前n 项和,再对照等差数列前n 项和的二次函数形式:S n = d 2 n 2 +(a 1-d2 )n ,很快便可得到其首项、公差与通项,进而由等差数列通项公式求出数列中的任意一项。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档