数学选择题常用解题方法

合集下载

初中数学选择题、填空题答题技巧

 初中数学选择题、填空题答题技巧

初中数学选择题、填空题答题技巧初中数学选择题答题技巧大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。

方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。

用特殊值法解题要注意所选取的值要符合条件,且易于计算。

方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。

我们在做解答题时大部分都是采用这种方法。

例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。

方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。

方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。

方法八:枚举法列举所有可能的情况,然后作出正确的判断。

例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。

方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。

数学答题方法和技巧.docx

数学答题方法和技巧.docx

数学解题技巧(中考)1.中考选择题解题八技巧(1)排除法根据题设和有关知识,排除明显不正确选项,那么剩下惟一的选项,自然就是正确的选项,如果不能立即得到止确的选项,至少可以缩小选择范围,提高解题的准确率。

排除法是解选择题的间接方法,也是选择题的常用方法。

(2)数形结合法:解决与图形或图像有关的选择题,常常要运用数学结合的思想方法,有时还要综合运用其他方法。

(3)(特例检验法:取满足条件的特例(特殊值,特殊点,特殊图形,特殊位置等)进行验证即可得正确选项,因为命题对一般情况成立,那么对特殊情况也成立。

(4)代入法:将选择支代入题干或题代入选择支进行检验,然后作出判断。

(5)观察法:观察题干及选择支特点,区别各选择支差异及相互关系作出选择。

(6)枚举法:列举所有可能的情况,然后作出正确的判断。

例如,把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有()(A)5种(B)6 种(C)8种(D) 10种。

分析:如果设面值2元的人民币x 张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B.(7)待定系数法:要求某个两数关系式,可先假设待泄系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。

(8)不完全归纳法:当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若丁简单情形进行考查,从中找出一般规律,求得问题的解决。

该法有一定的局限性,因而不能作为一种严格的论证方法,但它可以帮助我们发现和探求一般问题的规律,从而找到解决问题的途径。

二.选择题的解法技巧:1、排除法。

是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。

排除法是解选择题的间接方法,也是选择题的常用方法。

2、特殊值法。

即根据题目屮的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。

中考数学选择题和填空题解题技巧

中考数学选择题和填空题解题技巧

中考数学选择题和填空题解题技巧选择题解法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。

方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。

用特殊值法解题要注意所选取的值要符合条件,且易于计算。

方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。

我们在做解答题时大部分都是采用这种方法。

例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。

方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。

方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。

方法八:枚举法列举所有可能的情况,然后作出正确的判断。

例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。

方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。

方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。

成人高考数学选择题六个答题技巧,你知道吗?

成人高考数学选择题六个答题技巧,你知道吗?

成人高考数学选择题六个答题技巧,你知道吗?解题思路”在某种程度上来说,属于理论上的“定性”,要想解具体的题目,还得有科学、合理、简便的方法。

1、直接法
有些选择题是由计算题、应用题、证明题、判断题改编而成的。

这类题型可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则,通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法。

2、筛选法
数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的错误答案,找到符合题意的正确结论。

可通过筛除一些较易判定的的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。

如筛去不合题意的以后,结论只有一个,则为应选项。

3、特殊值法
有些选择题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。

4、验证法
通过对试题的观察、分析、确定,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。

5、图象法
在解答选择题的过程中,可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。

6、试探法
对于综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。

祝大家在考试中取得好成绩,一次拿证。

选择题解题的方法和策略

选择题解题的方法和策略
(1887—1985)
1.假设一段信使RNA上有600个碱基,其中 A150个,G250个,此信使RNA控制的蛋白质
的氨基酸种类最多有多少? 20
改为”氨基酸数目最多有多少”又如何?
2.在低等植物细胞有丝分裂的分裂期,参与分裂
活动的细胞器有 A.高尔基体 B.核糖体
AD
C.叶绿体
D.中心体
三、信息转化法
通 的成生对过形根的物某思式据食之些维,生物间选转 从态链 的择换 而系: 关题, 化统丙 系,将 陌能推→由题生量丁理于示为逐→其情信熟级甲数境息悉递→量比转,减乙变较化化的。动陌难为特然情生为较点后况,易熟,根。或,悉写据当内迅的出食甲容速,四物的比求便种链数较解于生中量繁。理物各增琐解构, 加例时:,以丁虫因治大虫量是被生甲态捕农食业,的数重量要将内会容减,下少图,表丙示因某丁一的生 态减系少统而中数四量种将生增物加所,含乙有因机甲物增的加总,量食,假物设来这源四充种足生而物数只 构量成增一加条。食物链。请问在一段时间内,如果甲的种群数量 增加答,案其:可D能引起的后果是
七、淘汰法
有些试题,根据已知条件直接找答案,有可能找不到、 找不全或找不准。可以根据题干所给的条件和提出的 问题,对各个选项加以审视,将与题目要求不符合的 选项逐一筛选,不能否定的答案即为正确答案。
例:基因型RrSs与rrSs的个体杂交后,子代的表现
型之比是 A.l︰2︰l
B.3︰1︰3︰1
C.1︰l︰1︰l D.9︰3︰3︰l色体和两个X染色体,此
细胞可能是:
A、卵原细胞
B、精原细胞
C、初级卵母细胞 D、初级精母细胞
E、次级卵母细胞 F、次级精母细胞
ACEF
2.假设一段信使RNA上有600个碱基,其中A150个,G250个, 那么转录成该信使RNA的DNA分子片段中C和T的个数共有:

选择题解题技巧掌握解答小学数学选择题的技巧

选择题解题技巧掌握解答小学数学选择题的技巧

选择题解题技巧掌握解答小学数学选择题的技巧选择题是小学数学考试中常见的题型之一,因为其答案选项的存在,给了学生在解答中提供了一定的线索和帮助。

然而,选择题也有其独特的解题技巧,只有掌握了这些技巧,才能更加准确地解答选择题。

本文将介绍一些解答小学数学选择题的技巧。

1. 仔细阅读题目解答选择题的第一步是仔细阅读题目。

不仅要读懂题意,还要理解题目所要求的解答方式和答案选项的含义。

只有充分理解题目,才能有针对性地解答选择题。

2. 充分利用答案选项答案选项往往是选择题解答的关键。

学生在解答选择题时,应该充分利用答案选项,将其作为解题的线索。

比如,可以通过排除法确定正确答案,将那些明显不符合题意的选项剔除,从而减少解题的难度。

3. 留意关键词在解答选择题时,学生应该留意题目中的关键词。

这些关键词往往可以提供有用的信息,帮助学生更好地理解题意和解答选择题。

比如,题目中的“最大”、“最小”、“总共”等关键词,可以帮助学生确定解题的方向。

4. 简化计算过程在解答选择题时,可以尝试将题目中的计算过程进行简化。

通过巧妙的变形和运算,可以使计算过程变得更加简单,从而减少解题的复杂度。

这样不仅能够节省时间,还可以减少解题时产生错误的可能性。

5. 弥补知识漏洞解答选择题时,可能会遇到一些自己不熟悉的知识点。

这时,学生可以通过复习和学习来弥补这些知识漏洞。

通过对相关知识的学习,能够提升解答选择题的能力,从而更好地应对考试。

6. 练习多样题目掌握解答小学数学选择题的技巧需要不断的练习。

学生可以多做一些不同类型的选择题,在实践中不断总结和提高自己的解题能力。

通过多样的练习,可以逐渐提升对选择题的理解和解答的准确性。

总之,掌握解答小学数学选择题的技巧对于学生来说是非常重要的。

通过仔细阅读题目、充分利用答案选项、留意关键词、简化计算过程、弥补知识漏洞和练习多样题目等技巧,学生可以更好地解答选择题,提高数学解题的能力。

希望以上技巧对小学生解答选择题有所帮助。

史上最全的初中数学解题方法大全

史上最全的初中数学解题方法大全

一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。

2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。

3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。

4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。

5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。

二、常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。

数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

做数学选择题的常用方法

做数学选择题的常用方法

常见的方法一般有七种:
1、直接法:直接从条件出发,通过合理运算和严密推理,最后推出准确的结果,再对照选择支解答的一种解题思路。

2、特例法:(又叫特殊值法)用符合已知条件的特例或考虑特殊情况、特殊位置,检验选择支或化简已知条件,得出答案。

当已知条件中有范围时可考虑使用特例法。

3、检验法:将选项分别代入题设中或将题设代入选项中检验,从而确定答案。

解答此题时若直接解方程,要浪费很多时间和精力。

当结论为具体值时可考虑使用检验法。

4、排除法:利用一些基本概念、定理和简单的运算,通过排除容易发现错误的选择支,从而推断准确答案的方法。

5、图解法:根据数形结合的原理,先画示意图,再通过观察图象的特征作出选择的方法。

6、定义法:使用相关的定义、概念、定理、公理等内容,作出准确选择的一种方法.
7、综合法:为了对选择题迅速、准确地作出判断,有时需要综合使用前面介绍的几种方法.。

高考数学选择题十大解题法则

高考数学选择题十大解题法则

高考数学选择题十大解题法则高考数学选择题一直是考生最为头疼的问题之一。

其实,只要掌握了一些解题方法,就可以在考场上游刃有余地处理这些题目。

以下是高考数学选择题十大解题法则,希望对考生们备考有所帮助。

一、审题认真,确保理解清题目要求。

在解题之前,一定要仔细阅读题目,看懂题目的意思和要求,不要匆忙从题目中得出结论。

有时候,题目中的条件可能相对比较复杂,需要我们通读各项条件,理清思路。

二、逐一排除错误选项。

一般来说,高考数学选择题答案选项只有四个,其中必有三个是错误的,一个是正确答案。

考生可以通过排除错误的答案,缩小范围,提高答题效率。

三、找寻规律,依据题目特点处理。

许多高考数学选择题存在一定的规律性,通过发掘它们的规律结构、有效运用规律特性,就能够比较容易地得出答案。

四、借助代数化解,缩短计算时间。

有时候,高考数学选择题很难逐一计算,这时候可以借助代数化解,使用公式计算,从而缩短计算时间,提高答题速度。

五、运用图形分析,直观理解。

很多高考数学选择题与图形有关,考生可以通过画图直观理解问题,从而更好地解答问题。

有时候,在视觉上感受一下,可能会比进行大量计算要更高效。

六、用逆向思维,解决复杂难题。

很多时候,高考数学选择题非常复杂,脑力负担不能直接计算解答。

这时候,可以尝试逆向思维,从答案出发,结合题目条件,寻找能够满足题目要求的解法。

七、根据已知要求,寻找相似问题解法。

有一些高考数学选择题可能与以前做过的题目相似,考生可以通过对比和寻找相同之处,极大地提高解题效率。

在备考期间,做一些类似题目的练习是非常有必要的。

八、关注题干变动,注意细节问题。

有时候,高考数学选择题中出现的区别可能会非常细小,要求考生格外谨慎,一定要仔细审查,不要失之交臂。

九、合理估计数值,选择较接近的答案。

在考试过程中,考生可能无法得到准确的答案。

此时,可以通过合理的数值估测,尽可能选出一个比较接近的答案。

十、巧用三角变形,利用几何常识推荐答案。

高考数学选择题答题技巧 解题套路有哪些

高考数学选择题答题技巧 解题套路有哪些

高考数学选择题答题技巧解题套路有哪些在高考时,把握肯定的答题技巧能够帮助同学们更好的答题,节省时间。

以下是我为大家整理的相关内容,以供参考,一起来看看!高考数学选择题答题技巧有哪些1、小题不能大做;2、不要不管选项;3、能定性分析就不要定量计算;4、能特值法就不要常规计算;5、能间接解就不要直接解;6、能排解的先排解缩小选择范围;7、分析计算一半后直接选选项;8、三个相像选相像。

可以利用简便方法进行答题。

数学常考答题套路1、函数或方程或不等式的题目,先直接思索后建立三者的联系。

首先考虑定义域,其次使用“三合肯定理”。

2、假如在方程或是不等式中消失超越式,优先选择数形结合的思想方法。

3、面对含有参数的初等函数来说,在讨论的时候应当抓住参数没有影响到的不变的性质。

如所过的定点,二次函数的对称轴或是.....4、选择与填空中消失不等式的题目,优选特别值法。

5、求参数的取值范围,应当建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分别参数的方法。

6、恒成立问题或是它的反面,能够转化为最值问题,留意二次函数的应用,敏捷使用闭区间上的最值,分类争论的思想,分类争论应当不重复不遗漏。

7、圆锥曲线的题目优先选择它们的定义完成,直线与圆维曲线相交问题,若与弦的中点相关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必需先考虑是否为二次及根的判别式。

8、求曲线方程的题目,假如知道曲线的外形,则可选择待定系数法,假如不知道曲线的外形,则所用的步骤为建系、设点、列式、化简(留意去掉不符合条件的特别点)。

9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。

10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用帮助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,留意向量角的范围。

11、数列的题目与和相关,优选和通公式,优选作差的方法;留意归纳、猜想之后证明;猜想的方向是两种特别数列;解答的时候留意使用通项公式及前n项和公式,体会方程的思想。

数学选择题解题技巧

数学选择题解题技巧

数学选择题解题技巧数学选择题解题技巧1直接法(推演法):定义:直接从题设条件出发,运用有关的概念、定义、公理、定理、性质、公式等,使用正确的解题方法,经过严密的推理和准确的运算,得出正确的结论,然后对照题目中给出的选择项“对号入座”,作出相应的选择,这种方法称之为直接法.是一种基础的、重要的、常用的方法,一般涉及概念、性质的辨析或运算较简单的题目常用直接法.排除法定义:利用选择题的特征:答案唯一,来去伪存真,舍弃不符合题目要求的错误答案。

途径有二种:1)从已知条件出发,通过观察分析或推理运算各选项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论,这种方法称为排除法.2)从选项入手,根据题设的条件与选项的关系,通过分析、推理、计算、判断,对选项进行筛选,逐步缩小范围,得到正确结果.称为反排法.排除法常应用于条件多于一个时,先根据一些已知条件,在选择项中找出与其相矛盾的选项,予以排除,然后再根据另一些已知条件,在余下的选项中,再找出与其矛盾的选项,再予以排除,直到得出正确的选项为止.等价转化法定义:根据题目的条件和要求,将题目等价转化为一个容易解答的方式进行解决。

在解决有关排列组合的的应用问题尤为突出.定义法定义:根据题目中涉及到的知识的定义出发进行解答,因此回归定义是解决问题的一种重要策略.总结:要注意定义的成立条件或约束条件,平时要掌握定义的推导和证明过程.直觉判断法定义:通过平时的练习积累,可根据直觉对题目中的答案进行判断.比如一个长方形面积最小时,长与宽的关系是什么样的?二点间的直线距离最短等.要点:需要平时多积累、多观察、多总结.数学选择题解题技巧2先易后难就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

先熟后生高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。

高考数学选择题、填空题的六大解题方法和技巧

高考数学选择题、填空题的六大解题方法和技巧

高考数学选择题、填空题的六大解题方法和技巧方法一:直接法直接法就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,得出正确结论,此法是解选择题和填空题最基本、最常用的方法.【典例1】(1)(2021·新高考Ⅱ卷)在复平面内,复数2-i 1-3i对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】选A.因为2-i1-3i =(2-i )(1+3i )(1-3i )(1+3i ) =5+5i 10 =12 +12 i ,所以复数2-i 1-3i 对应的点位于第一象限.(2)(2021·烟台二模)已知双曲线C :x 2a 2 -y 2b 2 =1(a>0,b>0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若2F A ·2F B =0,且|2F A |=|2F B |,则C 的离心率为( ) A . 2 B . 3 C . 6 D .7【解析】选B.由F 2A·F 2B =0且|2F A |=|2F B |知:△ABF 2为等腰直角三角形且 ∠AF 2B =π2 、∠BAF 2=π4 ,即|AB|= 2 |2F A |= 2 |2F B |, 因为⎩⎪⎨⎪⎧|F 1A|-|F 2A|=2a ,|F 2B|-|F 1B|=2a ,|AB|=|F 1A|-|F 1B|,所以|AB|=4a ,故|F 2A|=|F 2B|=2 2 a ,则|F 1A|=2( 2 +1)a ,而在△AF 1F 2中,|F 1F 2|2=|F 2A|2+|F 1A|2-2|F 2A||F 1A|cos ∠BAF 2, 所以4c 2=8a 2+4(3+2 2 )a 2-8( 2 +1)a 2,则c 2=3a 2,故e =ca = 3 . 【变式训练】1.(2021·北京高考)在复平面内,复数z 满足(1-i)z =2,则z =( ) A .1 B .i C .1-i D .1+i【解析】选D.方法一:z =21-i =2(1+i )(1-i )(1+i )=1+i.方法二:设z =a +bi ,则(a +b)+(b -a)i =2,联立⎩⎪⎨⎪⎧a +b =2,b -a =0, 解得a =b =1,所以z =1+i.2.(2021·郑州二模)已知梯形ABCD 中,以AB 中点O 为坐标原点建立如图所示的平面直角坐标系.|AB|=2|CD|,点E 在线段AC 上,且AE→ =23 EC → ,若以A ,B 为焦点的双曲线过C ,D ,E 三点,则该双曲线的离心率为( )A .10B .7C . 6D . 2【解析】选B.设双曲线方程为x 2a 2 -y 2b 2 =1,由题中的条件可知|CD|=c , 且CD 所在直线平行于x 轴, 设C ⎝ ⎛⎭⎪⎫c 2,y 0 ,A(-c ,0),E(x ,y),所以AE → =(x +c ,y),EC →=⎝ ⎛⎭⎪⎫c 2-x ,y 0-y ,c 24a 2 -y 20 b 2 =1,由AE → =23 EC →,可得⎩⎪⎨⎪⎧x =-25c y =25y 0,所以E ⎝ ⎛⎭⎪⎫-25c ,25y 0 ,因为点E 的坐标满足双曲线方程,所以4c 225a 2 -4y 2025b 2 =1, 即4c 225a 2 -425 ⎝ ⎛⎭⎪⎫c 24a 2-1 =1,即3c 225a 2 =2125 ,解得e =7 .方法二:特例法从题干出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或特殊图形或特殊位置,进行判断.特例法是“小题小做”的重要策略,要注意在怎样的情况下才可以使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.【典例2】(1)(2021·郑州三模)在矩形ABCD 中,其中AB =3,AD =1,AB 上的点E 满足AE +2BE =0,F 为AD 上任意一点,则EB ·BF =( ) A .1 B .3 C .-1 D .-3 【解析】选D.(直接法)如图,因为AE +2BE =0, 所以EB =13 AB , 设AF =λAD ,则BF =BA +λAD =-AB +λAD ,所以EB ·BF =13 AB ·(-AB +λAD )=-13 |AB |2+13 λAB ·AD =-3+0=-3.(特例法)该题中,“F为AD上任意一点”,且选项均为定值,不妨取点A为F. 因为AE+2BE=0,所以EB=13AB.故EB·BF=13AB·(-AB)=-132 AB=-13×32=-3.(2)(2021·成都三模)在△ABC中,内角A,B,C成等差数列,则sin2A+sin2C-sin A sin C=________.【解析】(方法一:直接法)由内角A,B,C成等差数列,知:2B=A+C,而A+B+C=π,所以B=π3,而由余弦定理知:b2=a2+c2-2ac cos B=a2+c2-ac,结合正弦定理得:sin2B=sin2A+sin2C-sin A sin C=3 4.(方法二:特例法)该题中只有“内角A,B,C成等差数列”的限制条件,故可取特殊的三角形——等边三角形代入求值.不妨取A=B=C=π3,则sin 2A+sin2C-sin A sin C=sin2π3+sin2π3-sinπ3sinπ3=34.(也可以取A=π6,B=π3,C=π2代入求值.)答案:34【变式训练】设四边形ABCD为平行四边形,|AB→|=6,|AD→|=4,若点M,N满足BM→=3MC→,DN→=2NC → ,则AM → ·NM → 等于( ) A .20 B .15 C .9 D .6【解析】选C.若四边形ABCD 为矩形,建系如图,由BM → =3MC → ,DN → =2NC→ ,知M(6,3),N(4,4),所以AM → =(6,3),NM → =(2,-1),所以AM → ·NM → =6×2+3×(-1)=9.方法三:数形结合法对于一些含有几何背景的问题,往往可以借助图形的直观性,迅速作出判断解决相应的问题.如Veen 图、三角函数线、函数图象以及方程的曲线等,都是常用的图形.【典例3】已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C . 2D .22【解析】选C.如图,设OA→ =a ,OB → =b ,则|OA → |=|OB → |=1,OA → ⊥OB → ,设OC → =c ,则a-c =CA → ,b -c =CB → ,(a -c )·(b -c )=0,即CA → ·CB → =0.所以CA → ⊥CB → .点C 在以AB 为直径的圆上,圆的直径长是|AB→ |= 2 ,|c |=|OC → |,|OC → |的最大值是圆的直径,长为 2 .【变式训练】1.设直线l :3x +2y -6=0,P(m ,n)为直线l 上动点,则(m -1)2+n 2的最小值为( ) A .913 B .313 C .31313 D .1313【解析】选A.(m -1)2+n 2表示点P(m ,n)到点A(1,0)距离的平方,该距离的最小值为点A(1,0)到直线l 的距离,即|3-6|13 =313,则(m -1)2+n 2的最小值为913 .2.(2021·河南联考)已知函数f(x)=⎩⎪⎨⎪⎧x ln x -2x (x>0),x 2+1(x≤0), 若f(x)的图象上有且仅有2个不同的点关于直线y =-32 的对称点在直线kx -y -3=0上,则实数k 的取值是________. 【解析】直线kx -y -3=0关于直线y =-32 对称的直线l 的方程为kx +y =0,对应的函数为y =-kx ,其图象与函数y =f(x)的图象有2个交点.对于一次函数y =-kx ,当x =0时,y =0,由f(x)≠0知不符合题意. 当x≠0时,令-kx =f(x),可得-k =f (x )x ,此时, 令g(x)=f (x )x =⎩⎨⎧ln x -2(x>0),x +1x (x<0).当x>0时,g(x)为增函数,g(x)∈R ,当x<0时,g(x)为先增再减函数,g(x)∈(-∞,-2]. 结合图象,直线y =-k 与函数y =g(x)有2个交点, 因此,实数-k =-2,即k =2. 答案:2方法四:排除法排除法也叫筛选法、淘汰法,它是充分利用单选题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项,从而确定正确选项.【典例4】(1)(2021·郑州二模)函数f(x)=sin x ln π-xπ+x在(-π,π)的图象大致为()【解析】选A.根据题意,函数f(x)=sin x ln π-xπ+x,x∈(-π,π),f(-x)=sin (-x)ln π+xπ-x=sin x lnπ-xπ+x=f(x),则f(x)在区间(-π,π)上为偶函数,所以排除B,C,又由f ⎝ ⎛⎭⎪⎫π2 =sin π2 ln π23π2=ln 13 <0,所以排除D.(2)(2021·太原二模)已知函数y =f(x)部分图象的大致形状如图所示,则y =f(x)的解析式最可能是( )A .f(x)=cos x e x -e -xB .f(x)=sin x e x -e -xC .f(x)=cos x e x +e -xD .f(x)=sin x e x +e -x 【解析】选A.由图象可知,f(2)<0,f(-1)<0, 对于B ,f(2)=sin 2e 2-e -2>0,故B 不正确;对于C ,f(-1)=cos (-1)e -1+e=cos 1e -1+e>0,故C 不正确; 对于D ,f(2)=sin 2e 2+e -2 >0,故D 不正确.【变式训练】1.(2021·嘉兴二模)函数f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x 的图象可能是()【解析】选C.由f(-x)=⎝⎛⎭⎪⎫1-x -1+1-x +1 cos (-x) =-⎝ ⎛⎭⎪⎫1x -1+1x +1 cos x =-f(x)知, 函数f(x)为奇函数,故排除B.又f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x =2x x 2-1 cos x , 当x ∈(0,1)时,2xx 2-1 <0,cos x>0⇒f(x)<0.故排除A ,D.2.(2021·石家庄一模)甲、乙、丙三人从红、黄、蓝三种颜色的帽子中各选一顶戴在头上,每人帽子的颜色互不相同,乙比戴蓝帽的人个头高,丙和戴红帽的人身高不同,戴红帽的人比甲个头小,则甲、乙、丙所戴帽子的颜色分别为( ) A .红、黄、蓝 B .黄、红、蓝 C .蓝、红、黄 D .蓝、黄、红【解析】选B.丙和戴红帽的人身高不同,戴红帽的人比甲个头小,故戴红帽的人为乙,即乙比甲的个头小;乙比戴蓝帽的人个头高,故戴蓝帽的人是丙. 综上,甲、乙、丙所戴帽子的颜色分别为黄、红、蓝.方法五:构造法构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等模型转化为熟悉的问题求解.【典例5】(1)(2021·昆明三模)已知函数f(x)=e x -a -ln x x -1有两个不同的零点,则实数a 的取值范围是( )A .(e ,+∞)B .⎝ ⎛⎭⎪⎫e 2,+∞C .⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)【解析】选D.方法一(切线构造):函数f(x)=e x -a -ln xx -1有两个不同的零点, 则e x -a -1=ln xx 有两个解, 令g(x)=e x -a -1,h(x)=ln xx (x>0),则g(x)与h(x)有2个交点,h′(x)=1-ln xx 2 (x>0), 当x>e 时h′(x)<0,h(x)单调递减, 当0<x<e 时h′(x)>0,h(x)单调递增, 由g′(x)=e x -a (x>0)得g(x)单调递增, 图象如下,当g(x)与h(x)相切时,设切点为⎝ ⎛⎭⎪⎫x 0,ln x 0x 0 , h′(x 0)=1-ln x 0x 2=g′(x 0)=0x ae -, 同时ln x 0x 0 =ex 0-a -1,得ln x 0x 0 +1=1-ln x 0x 2,即x0ln x0+x20=1-ln x0,(x0+1)ln x0=-(x0+1)(x0-1),又x0>0,ln x0=1-x0,所以x0=1,此时1=e1-a,所以a=1,当a>1时,可看作g(x)=e x-1-1的图象向右平移,此时g(x)与h(x)必有2个交点,当a<1时,图象向左平移二者必然无交点,综上a>1.方法二(分离参数):由题意,方程e x-a-ln xx-1=0有两个不同的解,即e-a=ln xx+1e x有两个不同的解,所以直线y=e-a与g(x)=ln xx+1e x的图象有两个交点.g′(x)=⎝⎛⎭⎪⎫ln xx+1′×e x-(e x)′×⎝⎛⎭⎪⎫ln xx+1(e x)2=-(x+1)(ln x+x-1)x2e x.记h(x)=ln x+x-1.显然该函数在(0,+∞)上单调递增,且h(1)=0,所以0<x<1时,h(x)<0,即g′(x)>0,函数单调递增;所以x>1时,h(x)>0,即g′(x)<0,函数单调递减.所以g(x)≤g(1)=ln 11+1e1=1e.又x→0时,g(x)→0;x→+∞时,g(x)→0.由直线y=e a与g(x)=ln xx+1e x的图象有两个交点,可得e -a <1e =e -1,即-a<-1,解得a>1.方法三:由题意,方程e x -a -ln x x -1=0有两个不同的解,即e x -a =ln x x +1,也就是1e a (xe x )=x +ln x =ln (xe x ).设t =xe x (x>0),则方程为1e a t =ln t ,所以1e a =ln t t .由题意,该方程有两个不同的解.设p(x)=xe x (x>0),则p′(x)=(x +1)e x (x>0),显然p′(x)>0,所以p(x)单调递增,所以t =p(x)>p(0)=0.记q(t)=ln t t (t>0),则q′(t)=1-ln t t 2 .当0<t<e 时,q′(t)>0,函数单调递增;当t>e 时,q′(t)<0,函数单调递减.所以q(t)≤q(e)=ln e e =1e .又t→0时,q(t)→0;t→+∞时,q(t)→0.由方程1e a =ln t t 有两个不同的解,可得0<1e a <1e ,解得a>1.(2)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P-ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π【解析】选C.将三棱锥P-ABC 放入长方体中,如图,三棱锥P-ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22 =2 3 .设外接球的半径为R ,依题意可得(2R)2=22+22+(2 3 )2=20,故R 2=5,则球O 的表面积为4πR 2=20π.【变式训练】1.已知2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),则( )A .a<b<cB .b<a<cC .c<b<aD .c<a<b【解析】选D.因为2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),化为:ln a a =ln 22 ,ln b b =ln 33 ,ln c c =ln 55 ,令f(x)=ln x x ,x ∈(0,e),f′(x)=1-ln x x 2 ,可得函数f(x)在(0,e)上单调递增,在(e ,+∞)上单调递减,f(c)-f(a)=ln 55 -ln 22 =2ln 5-5ln 210=ln 253210 <0,且a ,c ∈(0,e), 所以c<a ,同理可得a<b.所以c<a<b.2.(2021·汕头三模)已知定义在R 上的函数f(x)的导函数为f′(x),且满足f′(x)-f(x)>0,f(2 021)=e 2 021,则不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 的解集为( ) A .(e 2 021,+∞)B .(0,e 2 021)C .(e 2 021e ,+∞)D .(0,e 2 021e )【解析】选D.令t =1e ln x ,则x =e et ,所以不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 等价转化为不等式f(t)<e e et =e t ,即f (t )e t <1 构造函数g(t)=f (t )e t ,则g′(t)=f′(t )-f (t )e t, 由题意,g′(t)=f′(t )-f (t )e t>0, 所以g(t)为R 上的增函数,又f(2 021)=e 2 021,所以g(2 021)=f (2 021)e 2 021 =1,所以g(t)=f (t )e t <1=g(2 021),解得t<2 021,即1e ln x<2 021,所以0<x<e 2 021e .方法六:估算法估算法就是不需要计算出准确数值,可根据变量变化的趋势或极值的取值情况估算出大致取值范围,从而解决相应问题的方法.【典例6】(2019·全国Ⅰ卷)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12 (5-12 ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12 .若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A.165 cm B.175 cmC.185 cm D.190 cm【解析】选B.头顶至脖子下端的长度为26 cm,可得咽喉至肚脐的长度小于42 cm,肚脐至足底的长度小于110 cm,则该人的身高小于178 cm,又由肚脐至足底的长度大于105 cm,可得头顶至肚脐的长度大于65 cm,则该人的身高大于170 cm,所以该人的身高在170~178 cm之间.【变式训练】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9 3 ,则三棱锥D-ABC体积的最大值为()A.12 3 B.18 3C.24 3 D.54 3【解析】选B.等边三角形ABC的面积为9 3 ,显然球心不是此三角形的中心,所以三棱锥的体积最大时,三棱锥的高h应满足h∈(4,8),所以13×9 3 ×4<V三棱锥D-ABC <13×9 3 ×8,即12 3 <V三棱锥D-ABC<24 3 .。

数学选择题的解题方法

数学选择题的解题方法

数学选择题的解题方法1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。

运用此种方法解题需要扎实的数学基础。

例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为 ( )12527.12536.12554.12581.D C B A 解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。

12527)106(104)106(333223=⨯+⨯⨯C C 故选A 。

例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直。

其中正确命题的个数为( )A .0B .1C .2D .3解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正确的,故选D 。

例3、已知F 1、F 2是椭圆162x +92y =1的两焦点,经点F 2的的直线交椭圆于点A 、B ,若|AB|=5,则|AF 1|+|BF 1|等于( )A .11B .10C .9D .16解析:由椭圆的定义可得|AF 1|+|AF 2|=2a=8,|BF 1|+|BF 2|=2a=8,两式相加后将|AB|=5=|AF 2|+|BF 2|代入,得|AF 1|+|BF 1|=11,故选A 。

例4、已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( )A .(0,1)B .(1,2)C .(0,2)D .[2,+∞)解析:∵a>0,∴y 1=2-ax 是减函数,∵ log (2)a y ax =-在[0,1]上是减函数。

∴a>1,且2-a>0,∴1<a<2,故选B 。

2、特例法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。

小学数学解题技巧+小学数学公式大全

小学数学解题技巧+小学数学公式大全

小学数学解题技巧+小学数学公式大全解题技巧一选择题答题攻略1.剔除法利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

2.特殊值检验法对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

3.极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。

4.顺推破解法利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

5.逆推验证法将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

6.正难则反法从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

7.数形结合法由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

8.递推归纳法通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

9.特征分析法对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。

10.估值选择法有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

二填空题答题攻略数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。

求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫。

常用的方法有直接法、特殊化法、数行结合法、等价转化法等。

1.直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。

数学选择题八大解题方法

数学选择题八大解题方法

数学选择题八大解题方法引言在数学学习过程中,选择题是常见的一种题型。

解答选择题不仅需要掌握相关的知识,还需要一些解题技巧和方法。

本文将介绍数学选择题的八大解题方法,帮助读者在解答选择题时更加高效和准确。

方法一:审题法审题是解答选择题的第一步,合理的审题可以帮助我们理解题意和找出解题思路。

在审题时,可以注意以下几个方面:1.仔细阅读题目,理解题意和要求;2.注意题目中的关键词和限定条件;3.确定问题的解题方法和思路。

审题能够避免一些不必要的错误和误解,提高解题的准确性和效率。

方法二:排除法排除法是一种常用的解答选择题的方法。

在每个选项中逐一排除明显错误的答案,从剩下的选项中选择正确答案。

这种方法可以帮助我们更快地找到正确答案,尤其适用于那些没有明确解法的问题。

方法三:代入法代入法是解答选择题的另一种常见方法。

当给定的题目条件较复杂时,我们可以将一些具体的数据代入题目中进行计算,从而找到正确答案。

代入法适用于一些需要具体计算的问题,可以通过具体的计算过程来验证选择的答案是否正确。

方法四:联想法联想法是通过将题目中的内容与已经掌握的知识进行联系和联想,从而找出正确答案。

这种方法在解答一些相对抽象或概念性的选择题时比较常见。

通过联想已知的知识点和题目中的内容,可以较快地找到正确答案。

方法五:归纳法归纳法是通过观察多个类似的选择题,总结其中的规律和特点,从而找到解题的方法。

这种方法适合于一些相对简单的选择题,通过观察类似问题的解题思路,可以快速解答当前的选择题。

方法六:分析法分析法是一种通过分析题目的结构和特点,找出解题关键的方法。

分析题目的结构和特点有助于我们更好地理解题目要求,从而找到正确答案。

这种方法适用于一些较为复杂的选择题,通过细致的分析可以找到解题的思路。

方法七:逻辑推理法逻辑推理法是一种通过逻辑思维推理,从而找到解题方法的方法。

通过分析题目中的逻辑关系和条件,可以逐步推导出正确答案。

逻辑推理法适合一些需要通过推理和思考来找出答案的选择题。

高中数学选择题的解题方法

高中数学选择题的解题方法

高中数学挑选题的解题方法【导语】数学的挑选题是高考中的必考的的题型,下面作者将为大家带来高中数学的挑选题的解题方法介绍,期望能够帮助到大家。

方法一:直接法所谓直接法,就是直接从题设的条件动身,运用有关的概念、定义、性质、定理、法则和公式等知识,通过周密的推理与运算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.方法二:特例法特例法的理论根据是:命题的一样性结论为真的先决条件是它的特别情形为真,即普通性寓于特别性当中,所谓特例法,就是用特别值(特别图形、特别位置)代替题设普遍条件,得出特别结论,对各个选项进行检验,从而作出正确的判定.常用的特例有取特别数值、特别数列、特别函数、特别图形、特别角、特别位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些挑选题有时常常十分见效.注意:在题设条件都成立的情形下,用特别值(获得越简单越好)进行探求,从而清楚、快捷地得到正确的答案,即通过对特别情形的研究来判定一样规律,是解答本类挑选题的较佳策略.近几年高考挑选题中可用或结合特例法来解答的约占30%.因此,特例法是求解挑选题的好招.方法三:排除法数学挑选题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.挑选法(又叫排除法)就是通过视察分析或推理运算各项提供的信息或通过特例,对于毛病的选项,逐一剔除,从而获得正确的结论.注意:排除法适应于定性型或不易直接求解的挑选题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范畴内找出矛盾,这样逐渐挑选,直到得出正确的答案.它与特例法、图解法等结合使用是解挑选题的常用方法,近几年高考挑选题中占有很大的比重.方法四:数形结合法数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.方法五:估算法在挑选题中作准确运算不易时,可根据题干提供的信息,估算出结果的大致取值范畴,排除毛病的选项.对于客观性试题,公道的估算常常比盲目的准确运算和严谨推理更为有效,可谓“一叶知秋”.方法六:综合法当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.。

数学选择题的解题方法

数学选择题的解题方法

数学选择题的解题方法
数学选择题的解题方法
当然,仅仅有思路还是不够的,〝解题思路〞在某种程度上来说,属于理论上的〝定性〞,要想解具体的题目,还得有科学.合理.简便的方法.
有关选择题的解法的研究,可谓是仁者见仁,智者见智.其中不乏真知灼见,现选择部分实用性较强的方法,供参考:
1.直接法
有些选择题是由计算题.应用题.证明题.判断题改编而成的.这类题型可直接从题设的条件出发,利用已知条件.相关公式.公理.定理.法则,通过准确的运算.严谨的推理.合理的验证得出正确的结论,从而确定选择支的方法.
2.筛选法
数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的错误答案,找到符合题意的正确结论.可通过筛除一些较易判定的的.不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案.如筛去不合题意的以后,结论只有一个,则为应选项.
3.特殊值法
有些选择题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单.
4.验证法
通过对试题的观察.分析.确定,将各选择支逐个代入题干中,进行验证.或适当选取特殊值进行检验.或采取其他验证手段,以判断选择支正误的方法.
5.图象法
在解答选择题的过程中,可先根椐题意,作出草图,然后参照图形的作法.形状.位置.性质,综合图象的特征,得出结论.
6.试探法
对于综合性较强.选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型.代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法.。

数学选择题解题技巧

数学选择题解题技巧

数学选择题解题技巧
1、排除法。

是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。

排除法是解选择题的间接方法,也是选择题的常用方法。

2、特殊值法。

即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。

用特殊值法解题要注意所选取的值要符合条件,且易于计算。

此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。

在解决时可将问题提供的条件特殊化。

使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的解答往往就是原题的解答。

利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。

3、通过猜想、测量的方法,直接观察或得出结果。

这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1数学选择题常用解题方法选择题一般由题干(题设)和选择支(选项)组成。

如果题干不是完全陈述句,那么题干加上正确的选择支,就构成了一个真命题;而题干加上错误的选择支,构成的是假命题,错误的选择支也叫干扰支,解选择题的过程就是通过分析、判断、推理排除干扰支,得出正确选项的过程。

解选择题的基本要求是:快、准。

解选择题的基本策略是:要充分利用题设和选项两方面提供的信息作出判断。

一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特例判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接法解;对于明显可以否定的选项应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。

解选择题的原则是:既要注意题目特点,充分应用供选择的答案所提供的信息,又要有效地排除错误答案可能造成的干扰,所以必须注意以下几点:认真审题;先易后难;大胆猜想;细心验证。

解选择题的关键是:能熟练运用各种解题方法或手段,以提高解题的效率;充分利用选择支所提供的信息与“只有一个正确答案”的方向,讲究解题策略,充分发挥直观的作用,发现其特殊的数量关系和图形位置等特征,迅速解题。

解数学选择题的常用方法,主要分直接法和间接法两大类。

直接法是解答选择题最基本、最常用的方法;但中考的题量较大,如果所有选择题都用直接法解答,不但费时还可能由于运算或推理较多而出错,小题大做,得不偿失。

因此,我们有必要掌握解答选择题的一些特有方法。

一、直接法直接从题设出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择。

涉及概念、性质的辨析或运算较简单的题目常用直接法。

1.某商店进了一批商品,每件商品的进价为a 元,若要获利15%,则每件商品的零售价应为( ) A .15%a 元B .(1+15%)a 元C .%151+a 元 D .(1-15%)a 元2.已知一次函数y = ax + b 的图象过点(-2,1),则关于抛物线y = ax 2-bx + 3的三条叙述: ① 过定点(2,1), ② 对称轴可以是x = 1,③ 当a <0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是A .0B .1C .2D .33.若()0322=++-b a ,则()2011b a +的值是( )A.0B.1C.-1D.20114.在同一直角坐标系中,函数()0≠=k xk y 与y =kx +k (k ≠0)的图象大致是( )ABC D25.函数y =ax 2与xa y =(a <0)在同一坐标系中的图象大致是()二、筛选法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的错误答案,找到符合题意的正确结论。

可通过筛除一些较易判定的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。

即根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断,这种方法也称为排除法或淘汰法。

1.200粒大米重约4克,如果每人每天浪费1粒米,那么约458万人口的城市每天浪费大米约( )克(用科学记数法表示)A .91600B .91.6×103C .9.16×104D .0.916×1052.在下列计算中,正确的是( ) A .(ab 2)3=ab 6B .(3xy )3=9x 3y 3C .(-2a 2)2=-4a 4D .()4122=--3.在下列二次根式中,与a 是同类二次根式的是( ) A .a 2B .23aC .3aD .4a4.已知二次函数y =ax 2+bx +c ,如果a >b >c ,且a +b +c =0,则它的图象可能是( )三、特例法有些选择题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。

用特殊值(或特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断。

1.当0<a <b <1时,下列各式成立的是( ) A .ba 11->-B .ba11-<- C .ba11< D .-b >-a特例法就是用符合已知条件的特例或考虑特殊情况、特殊位置,检验选择支或化简已知条件,得出答案。

当已知条件中有范围时可考虑使用特例法。

当正确的选择对象,在题设普遍条件下都成立的情况下,用特例法(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略。

32.若A (a 1,b 1),B (a 2,b 2)是反比例函数xy 2-=图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是( )A .b 1<b 2B .b 1 = b 2C .b 1>b 2D .大小不确定3.计算aba ab ba +÷⎪⎭⎫⎝⎛-的结果为( ) A .bb a - B .bb a + C .ab a - D .ab a +4.对任意实数x ,点P (x ,x 2-2x )一定不在( ) A .第一象限B .第二象限C .第三象限D .第四象限5.如果a <0,a +b >0,把a ,-a ,b ,-b 用“>”连结应是( ) A .a >-a >b >-b B .b >-b >-a >a C .b >-a >a >-bD .-a >a >b >-b6.若x <-2,那么|1-|1+x ||的值是( )A .―2―xB .―2+xC .2-xD .x +47.若m <n <0,则下列结论中错误的是( ) A .n -m >0B .1>nmC .m -5>n -5D .-3m >-3n8.当k <0,函数y=k(x -1)与xk y =在同一直角坐标系中的图象大致是()9.已知实数a b 、在数轴上的位置如图所示,化简a b +-的结果为A .0B .-2aC .2bD .-2a -2b10.一根直尺EF 压在三角板30°的角∠BAC 上,与两边AC ,AB 交 于M 、N ,那么∠CME+∠BNF 是( )A .150°B .180°C .135°D.不能确定11.如图,点P 是矩形ABCD 的边AD 上的一个动点,矩形的两条 边AB 、AC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .125B .65C .245D .不确定412.如图,在□ABCD 中,AC 与BD 相交于点O ,点E 是边BC 的中点, AB = 4,则OE 的长是( )A .2B .2C .1D .2113.如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 上的动点, 则AP 长不可能...是( ) A .2.5B .3C .4D .514.二次函数y =ax 2+bx +c (a ≠0)的图象经过点(-1,2),且与x 轴交点的横坐标分别为x 1,x 2,其中-2<x 1<-1,0<x 2<1,下列结论:①4a -2b +c <0;②2a -b <0;③a <-1;④b 2+8a >4ac .其中正确的有A .1个B .2个C .3个D .4个15.如图,梯形ABCD 中,AB ∥CD ,E 是底边CD 上一动点(不与C 重合),AC 与BE 相交于点O ,设△AOE 、△BOC 的面积分别为S 1、S 2,则 ( )A .S 1<S 2B .S l =S 2C .S 1>S 2D .S 1与S 2的大小关系不确定四、验证法通过对试题的观察、分析、确定,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。

1.无论m 为任何实数,二次函数y =x 2-(2-m )x +m 的图像总是过点( ) A .(1,-3)B .(1,0)C .(-1,3)D .(-1,0)验证法适应于题设复杂,结论简单的选择题,直接将各选择支中的结论代人题设条件进行检验,从而选出符合题意的答案。

2.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是A .甲票10元∕张,乙票8元∕张B .甲票8元∕张,乙票10元∕张C .甲票12元∕张,乙票10元∕张D .甲票10元∕张,乙票12元∕张3.已知关于x 的一元二次方程()()0112222=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( )A .43>m B .43≥m C .43>m 且m ≠2 D .43≥m 且m ≠24.不等式组⎩⎨⎧≤->+0603x x 的解集是A .-3<x ≤6B .3<x ≤6 C.-3<x <6 D .x >-35AE D BC F五、图解法有的选择题可通过命题条件的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的作法、形状、位置、性质,综合图象(或图形)的特征,得出结论。

这种方法也叫数形结合法。

1.已知二次函数y =ax 2+bx +c ,且a <0,a -b +c >0,则一定有( ) A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac ≤0严格地说,数形结合法并非属于选择题解题思路范畴,而是一种数形结合的解题策略,但它在解有关选择题时非常简便有效。

2.如果函数y =2x 的图象与双曲线()0≠=kxk y 相交,则当x <0 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.在同一平面直角坐标系中,函数xy 1-=与函数y =x 的图象交点个数是( )A .0个B .1个C .2个D .3个 4.在平面直角坐标系中,点(-3,2)关于原点对称的点是( ) A .(2,-3)B .(-3,-2)C .(3,2)D .(3,-2)5.a ,b 是实数且满足ab <0,a +b <0,a -b <0,那么a ,b 及其相反数的大小和顺序是( ) A .a <-b <b <-a B .-a <-b <b <aC .b <-a <a <-bD .a <b <-b <-a六、操作测量法操作测量法就是根据题设的条件,使用符合条件的材料进行操作,然后使用工具进行测量,通过简单的推理或运算,并将所得结论或近似值与选择支进行比较,从而得出结论。

1.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知AB =8,BC =10,则BAF ∠tan 的值为( )A .43 B .34 C .53D .542.如图,在⊙O 中,∠BOC =100°,则∠A 等于( ) A .100° B .50° C .40°D .25°3.如图,在□ABCD 中,E 是AD 的中点,且CE =CD ,F 是CE 与BD 的交点,则下列结论不正确...的是( ) A .∠ABC =∠CED B .BF =2DF C .四边形ABCE 是等腰梯形 D .S △BCF =S △DEF 4.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°, ∠2=50°,则∠3的度数等于( )A .50°B .30°C .20°D .15°BAECD F1 2365.如图,把等腰直角△ABC 沿BD 折叠,使点A 落在边BC 上的点E 处。

相关文档
最新文档