八年级数学上册《因式分解背景》

合集下载

人教版-数学-八年级上册-因式分解 课标解读

人教版-数学-八年级上册-因式分解 课标解读

初中-数学-打印版
因式分解课标解读
一、课标要求
人教版八上14.3因式分解包括14.3.1提公因式法和14.3.2公式法两小节内容,《义务教育数学课程标准(2011年版)》对因式分解一节提出的教学要求是:能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数).
二、课标解读
1.理解因式分解的概念,理解因式分解与整式的乘法的联系和区别是学习本节内容的理论基础和关键,在教学过程中可通过大量的实例加强学生对这一核心概念的理解.2.提公因式法是教材中的第一种因式分解的方法,是最基本的也是最重要的因式分解的方法,提公因式法的关键是确定多项式中各项的公因式,为此,教学过程中,可让学生多次实践,摸索确定公因式的一般方法,寻找一般规律,并在乘法分配律及整式的乘法知识基础上完成对运用提公因式法进行因式分解的一般过程的学习.按照《义务教育数学课程标准(2011年版)》要求,多项式中的字母指数仅限于正整数的情况,教学中应把握好这一要求.3.运用公式法因式分解是整式的乘法公式,
,的逆用,对于公式法,要求学生理解每个公式的意义,掌握每个公式的特点,并能熟练运用公式将多项式进行因式分解,但是,直接用公式不要求超过两次,用公式中字母表示多项式时,不要求超过两项.4.将多项式因式分解时要分解彻底,即分解到每个多项式因式不能再继续分解为止.5.初中阶段对多项式的因式分解要求在有理数范围内进行,教学中应合理把握尺度.
初中-数学-打印版。

数学八年级上册第十四章第三节《因式分解》

数学八年级上册第十四章第三节《因式分解》
设计意图:学生通过学习目标,明确本节课的学习方向以及要掌握的 主要知识点,便于更好的开展学习。
说设计
四、导学交流,探究发现一(4分钟)
想一想: a2-b2=(a+b)(a-b) , a2-2ab+b2 = (a-b)2 , x2-x=x(x-1) 这三个等式从运算过程看有什么共同点? 由此你能得出因式分解 的定义吗?
且学习了整式的乘法运算。因此,对于因式分解的引入,学生不会感到 陌生,它为今天学习因式分解打下了良好基础。
学生已有的学习方式和学习习惯:由整式乘法寻求因式分解的方
法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受 起来还有一定的困难,在教学当中尽量要让学生自己去探索如何去解决 问题。本班的个别学生观察、讨论、发现归纳能力较差,因此在教学过 程中教师要多加引导,并结合星级评价提高学生自主学习及合作学习的 热情。
设计意图:学生通过观察,交流,归纳总结,得出因式分解的概念, 提升学生的分析、归纳能力,渗透化归的数学思想方法。 遵循从具 体到抽象的原则 ,让学生经历从具体实例中抽象出概念的活动,从 而顺利地掌握重点。
1
b 说设计
五、应用训练,巩固新知一(3分钟)
1.下列代数式变形中,哪些是因式分解?哪些不是?为什么? (1)x2-3x+1=x(x-3)+1 ; (2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y); (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2; (5)3a2+6a=3a(a+2); (6)x2-4+3x=(x-2)(x+2)+3x; (7) 据我们数学学科的特点,及数学新授课模式,确定本节课模式:

初中数学人教版八年级上册:第14章《整式的乘除与因式分解》全章教案(22页)

初中数学人教版八年级上册:第14章《整式的乘除与因式分解》全章教案(22页)

初中数学人教版八年级上册实用资料第十四章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.重点正确理解同底数幂的乘法法则.难点正确理解和应用同底数幂的乘法法则.一、提出问题,创设情境复习a n的意义:a n表示n个a相乘,我们把这种运算叫做乘方,乘方的结果叫做幂;a叫做底数,n是指数.(出示投影片)提出问题:(出示投影片)问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103秒可进行多少次运算?[师]能否用我们学过的知识来解决这个问题呢?[生]运算次数=运算速度×工作时间,所以计算机工作103秒可进行的运算次数为:1015×103.[师]1015×103如何计算呢?[生]根据乘方的意义可知1015×103=(10×10×…×10)15个10×(10×10×10)=(10×10×…×10)18个10=1018.[师]很好,通过观察大家可以发现1015、103这两个因数是同底数幂的形式,所以我们把像1015,103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算——同底数幂的乘法.二、探究新知1.做一做(出示投影片)计算下列各式:(1)25×22;(2)a3·a2;(3)5m·5n.(m,n都是正整数)你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.[师]根据乘方的意义,同学们可以独立解决上述问题.[生](1)25×22=(2×2×2×2×2)×(2×2)=27=25+2.因为25表示5个2相乘,22表示2个2相乘,根据乘方的意义,同样道理可得a3·a2=(a·a·a)(a·a)=a5=a3+2.5m·5n=(5×5·…·5),\s\do4(m个5))×(5×5·…·5),\s\do4(n个5))=5m+n.[生]我们可以发现下列规律:a m·a n等于什么(m,n都是正整数)?为什么?(1)这三个式子都是底数相同的幂相乘;(2)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.2.议一议(出示投影片)[师生共析]a m·a n表示同底数幂的乘法.根据幂的意义可得:a m·a n=(a×a·…·a)m个a·(a×a·…·a)n个a=a·a·…·a(m+n)个a=a m+n于是有a m·a n=a m+n(m,n都是正整数),用语言来描述此法则即为:“同底数幂相乘,底数不变,指数相加”.[师]请同学们用自己的语言解释“同底数幂相乘,底数不变,指数相加”的道理,深刻理解同底数幂的乘法法则.[生]a m表示m个a相乘,a n表示n个a相乘,a m·a n表示m个a相乘再乘以n个a相乘,也就是说有(m+n)个a相乘,根据乘方的意义可得a m·a n=a m+n.[师]也就是说同底数幂相乘,底数不变,指数要降一级运算,变为相加.3.例题讲解出示投影片[例1]计算:(1)x2·x5; (2)a·a6;(3)2×24×23; (4)x m·x3m+1.[例2]计算a m·a n·a p后,能找到什么规律?[师]我们先来看例1,是不是可以用同底数幂的乘法法则呢?[生1](1),(2),(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则.[生2](3)也可以,先算两个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.[师]同学们分析得很好.请自己做一遍.每组出一名同学板演,看谁算得又准又快.生板演:(1)解:x2·x5=x2+5=x7;(2)解:a·a6=a1·a6=a1+6=a7;(3)解:2×24×23=21+4·23=25·23=25+3=28;(4)解:x m·x3m+1=x m+(3m+1)=x4m+1.[师]接下来我们来看例2.受(3)的启发,能自己解决吗?与同伴交流一下解题方法.解法一:a m·a n·a p=(a m·a n)·a p=a m+n·a p=a m+n+p;解法二::a m·a n·a p=a m·(a n·a p)=a m·a n+p=a m+n+p;解法三:a m·a n·a p=(a·a…a)m个a·(a·a…a)n个a·(a·a…a)p个a=a m+n+p归纳:解法一与解法二都直接应用了运算法则,同时还运用了乘法的结合律;解法三是直接应用乘方的意义.三种解法得出了同一结果.我们需要这种开拓思维的创新精神.[生]那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加.[师]是的,能不能用符号表示出来呢?[生]am1·am2·am3·…am n=am1+m2+m3+…m n.[师]鼓励学生.那么例1中的第(3)题我们就可以直接应用法则运算了.2×24×23=21+4+3=28.三、随堂练习1.m14可以写成()A.m7+m7B.m7·m7C.m2·m7D.m·m142.若x m=2,x n=5,则x m+n的值为()A.7 B.10 C.25D.523.计算:-22×(-2)2=________;(-x)(-x2)(-x3)(-x4)=________.4.计算:(1)(-3)2×(-3)5;(2)106·105·10;(3)x2·(-x)5;(4)(a+b)2·(a+b)6.四、课堂小结[师]这节课我们学习了同底数幂的乘法的运算性质,请同学们谈一下有何新的收获和体会呢?[生]在探索同底数幂乘法的性质时,进一步体会了幂的意义,了解了同底数幂乘法的运算性质.[生]同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,我觉得应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即a m·a n=a m+n(m,n是正整数).五、课后作业教材第96页练习.本课的主要教学任务是“同底数幂乘法的运算性质”:同底数幂相乘,底数不变,指数相加. 在课堂教学时,通过幂的意义引导学生得出这一性质,接着再引导学生深入探讨同底数幂运算,幂的底数可以是“任意有理数、单项式、多项式”,训练学生的整体思想.14.1.2幂的乘方1.知道幂的乘方的意义.2.会进行幂的乘方计算.重点会进行幂的乘方的运算.难点幂的乘方法则的总结及运用.一、复习引入(1)叙述同底数幂乘法法则,并用字母表示:(2)计算:①a2·a5·a n;②a4·a4·a4.二、自主探究1.思考:根据乘方的意义及同底数幂的乘法填空,看看计算结果有什么规律:(1)(32)3=32×32×32=3();(2)(a2)3=a2·a2·a2=a();(3)(a m)3=a m·a m·a m=a().(m是正整数)2.小组讨论对正整数n,你认识(a m)n等于什么?能对你的猜想给出验证过程吗?幂的乘方(a m)n=a m·a m·a m…a m n个=am+m+m+…m,\s\up6(n个m))=a mn字母表示:(a m)n=a mn(m,n都是正整数)语言叙述:幂的乘方,底数不变,指数相乘.注意:幂的乘方不能和同底数幂的乘法相混淆,例如不能把(a5)2的结果错误地写成a7,也不能把a5·a2的计算结果写成a10.三、巩固练习1.下列各式的计算中,正确的是()A.(x3)2=x5B.(x3)2=x6C.(x n+1)2=x2n+1D.x3·x2=x62.计算:(1)(103)5; (2)(a4)4;(3)(a m)2; (4)-(x4)3.四、归纳小结幂的乘方的意义:(a m)n=a mn.(m,n都是正整数)五、布置作业教材第97页练习.运用类比方法,得到了幂的乘方法则.这样的设计起点低,学生学起来更自然,对新知识更容易接受.类比是一种重要的数学思想方法,值得引起注意.14.1.3积的乘方1.经历探索积的乘方和运算法则的过程,进一步体会幂的意义.2.理解积的乘方运算法则,能解决一些实际问题.重点积的乘方运算法则及其应用.难点幂的运算法则的灵活运用.一、问题导入[师]提出的问题:若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?[生]它的体积应是V=(1.1×103)3cm3.[师]这个结果是幂的乘方形式吗?[生]不是,底数是1.1与103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理.[师]积的乘方如何运算呢?能不能找到一个运算法则?用前两节课的探究经验,请同学们自己探索,发现其中的奥妙.二、探索新知老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳.(出示投影片)1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b();(2)(ab)3=________=________=a()b();(3)(ab)n=________=________=a()b().(n是正整数)2.把你发现的规律先用文字语言表述,再用符号语言表达.3.解决前面提到的正方体体积计算问题.4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法.5.完成教材第97页例3.学生探究的经过:1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则.同样的方法可以算出(2),(3)题;(2)(ab)3=(ab)·(ab)·(ab)=(a·a·a)·(b·b·b)=a3b3;(3)(ab)n=(ab)·(ab)·…·(ab)n个ab=a·a·…·an个a·b·b·…·bn个b=a n b n.2.积的乘方的结果是把积的每一个因式分别乘方,再把所得的幂相乘,也就是说积的乘方等于幂的乘积.用符号语言叙述便是:(ab)n=a n·b n.(n是正整数)3.正方体的V=(1.1×103)3它不是最简形式,根据发现的规律可作如下运算:V=(1.1×103)3=1.13×(103)3=1.13×103×3=1.13×109=1.331×109(cm3).通过上述探究,我们可以发现积的乘方的运算法则:(ab)n=a n·b n.(n为正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.再考虑如下问题:(abc)n如何计算?是不是也有类似的规律?3个以上的因式呢?学生讨论后得出结论:三个或三个以上因式的积的乘方也具有这一性质,即(abc)n=a n·b n·c n.(n为正整数) 4.积的乘方法则可以进行逆运算.即a n·b n=(ab)n.(n为正整数)分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变.看来这也是降级运算了,即将幂的乘积转化为底数的乘法运算.对于a n·b n=(a·b)n(n为正整数)的证明如下:a n·b n=(a×a×…×a)n个a(b×b×…×b)n个b——幂的意义=(ab)(ab)(ab)(ab)…(ab)n个(ab)——乘法交换律、结合律=(a·b)n——乘方的意义5.[例3](1)(2a)3=23·a3=8a3;(2)(-5b)3=(-5)3·b3=-125b3;(3)(xy2)2=x2·(y2)2=x2·y2×2=x2·y4=x2y4;(4)(-2x3)4=(-2)4·(x3)4=16·x3×4=16x12.(学生活动时,老师深入到学生中,发现问题,及时启发引导,使各个层面的学生都能学有所获)[师]通过自己的努力,发现了积的乘方的运算法则,并能做简单的应用.可以作如下归纳总结:(1)积的乘方法则:积的乘方等于每一个因式乘方的积.即(ab)n=a n·b n.(n为正整数)(2)三个或三个以上的因式的积的乘方也是具有这一性质.如(abc)n=a n·b n·c n;(n为正整数)(3)积的乘方法则也可以逆用.即a n·b n=(ab)n,a n·b n·c n=(abc)n.(n为正整数)三、随堂练习1.教材第98页练习.(由学生板演或口答)四、课堂小结(1)通过本节课的学习,你有什么新的体会和收获?(2)在应用积的运算性质计算时,你觉得应该注意哪些问题?五、布置作业(1)(-2xy)3;(2)(5x3y)2;(3)[(x+y)2]3;(4)(0.5am3n4)2.本节课属于典型的公式法则课,从实际问题猜想——主动推导探究——理解公式——应用公式——公式拓展,整堂课体现以学生为本的思想。

数学:13.5《因式分解》课件(华东师大版八年级上)(2019年10月整理)

数学:13.5《因式分解》课件(华东师大版八年级上)(2019年10月整理)

(3)x2+3xy+x=x(x+3y)
(×)
【理由】等式的两边不恒等.
例: 下列各恒等变形若是因式分解,打“√” ; 若不是,打“×”.并说明理由: (4)2(b+c)(b-c)+2=2(b2-c2+1) ( √ )
【理由】等式的两边恒等,且符合因式分解 的意义.
பைடு நூலகம்
例: 下列各恒等变形若是因式分解,打“√” ; 若不是,打“×”.并说明理由:
(1) am+bm-1=m(a+b)-1 ( × ) 【理由】等式的两边虽恒等,但右边不是几
个整式的积.
例:下列各恒等变形若是因式分解,打“√” ;
若不是,打“×”.并说明理由:
1
1
(2)a2b+a=a2(b-a )
(× )
a
1
【理由】等式的两边虽恒等,但右边b+ a
不是整式.
例: 下列各恒等变形若是因式分解,打“√” ; 若不是,打“×”.并说明理由:
什么是因式分解呢?
把一个多项式化成几个整式的 积的形式叫做因式分解,也叫分解 因式。
特点:由和差形式(多项式) 转化为整式的积的形式。
注:因式分解要注意以下几点:
1 、分解的对象必须是多项式. 2 、分解的结果一定是几个整式的 乘积的形式. ※3 、要分解到不能分解为止.
例:下列各恒等变形若是因式分解,打“√” ; 若不是,打“×”.并说明理由:
观察:等式的左边是什么样的式 子?右边又是什么形式?
20x2+60x = 20x(x+3) a2-b2 = (a+b)(a-b) a2-2ab+b2= (a-b) 2
13.5 因式分解
;建筑木方价格 / 建筑木方价格

初中数学八年级上册第十五章《整式的乘除与因式分解》简介

初中数学八年级上册第十五章《整式的乘除与因式分解》简介

新课标人教版初中数学八年级上册第十五章《整式的乘除与因式分解》简介人教版《义务教育课程标准实验教科书?数学》第十五章是“整式的乘除与因式分解”。

本章的主要内容是整式的乘除运算、乘法公式以及因式分解。

本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。

整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识.本章共安排了4个小节,教学时间约需13课时(供参考):15.1 整式的乘法4课时15.2 乘法公式2课时15.3 整式的除法2课时15.4 因式分解3课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章共包括4节15.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。

本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。

其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。

在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。

首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。

在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。

15.2乘法公式本节分为两个小节,分别介绍平方差公式与完全平方公式。

乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书在本节开始首先指出了这一点。

人教版八年级上册数学《公式法》整式的乘法与因式分解PPT课件(第2课时)

人教版八年级上册数学《公式法》整式的乘法与因式分解PPT课件(第2课时)

因此x=-5是原分式方程的解.
随堂练习
1.下列方程是分式方程的是( B )
A.
一元一次方程
B.
C. x2-1=0
D. 2x+1=3x 一元二次方程
一元一次方程
2.(2020·海南中考)分式方程 的解是(
A. x=-1
B. x=1 C. x=5
x-2=3
D. x=2
x=5
) C
解分式方程时,不要忘记检验哦.
用平方差公式分解因式 由于整式的乘法与因式分解是方向相反的变形,把整 式乘法的平方差公式(a+b)(a-b)=a2-b2的等号两边互换位 置,就得到了 a2-b2=(a+b)(a-b)
语言叙述:两个数的平方差,等于这两个数的和与这 两个数的差的积.
用完全平方公式分解因式 把整式乘法的完全平方公式 (a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2 的等号两边互换位置,就可以得到 a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2. 语言叙述:两个数的平方和加上(或减去)这两个数 的积的2倍,等于这两个数的和(或差)的平方.
分析:将b2看成一个整体a,则原式变形为(b2)2-b2-12,
可以看作a2-b-12.
1 -4
b4-b2-12 =(b2-4)(b2+3) =(b+2)(b-2)(b2+3).
13 1×3+1×(-4)=-1
2.(2020·乐山)已知y≠0,且x2-3xy-4y2=0,则 的值是
__4_或__-_1__.
分析:因为x2-3xy-4y2=0, 即(x-4y)(x+y)=0, 可得x=4y或x=-y, 所以 =4或 =−1.

初中数学教学课例《因式分解(提公因式法)》课程思政核心素养教学设计及总结反思

初中数学教学课例《因式分解(提公因式法)》课程思政核心素养教学设计及总结反思

的巩固对因式分解,特别是提公因式法理解并学会应
用。
课例研究综
在整个教学教程中,学生均处于主导地位,教师只

是从旁引,学生对于由自己推导出性质定理感到非常兴
奋。尽管新旧两种教法的对比上,新课程的教学不一定 马上显露出强劲的优势,甚至可能因为强化练习较少, 在短时间内,学生的成绩比不上传统教法的学生成绩, 但从长远目标看来,这种对数学本质的训练会有效地提 高学生的数学素养,培养出学生对数学本质的理解,而 不仅仅是停留在对数学的机械模仿记忆的层面上。总 之,教学的着眼点,不是熟练技能,而是发展思维,使 学生在学习的情感态度与价值观上发生深刻的变化.再 教设计:在探索及运用提公因式法进行分解因式时,应 该让学生多练习一些有关幂的运算中应用提公因式法 (因式分解)的题目,更加容易加深学生的理解,以及 拓展应用提公因式法进行因式分解。
初中数学教学课例《因式分解(提公因式法)》教学设计及 总结反思
学科
初中数学
教学课例名
《因式分解(提公因式法)》

本节课选自人教版数学八年级上册第十五章第四
节第一个内容。因式分解是进行代数恒等变形的重要手
段之一,它在以后的代数学习中有着重要的应用,因此
学好因式分解对于代数知识的后继学习具有相当重要 教材分析
第一组式子的观察得出第二组式子的结果,然后通过对 这两组式子的结果的比较,使学生对因式分解有一个初 步的意识,由整式乘法的逆运算逐步过渡到因式分解, 发展学生的逆向思维能力。
活动 4:归纳、得出新知 比较以下两种运算的联系与区别: (1)a(a+1)(a-1)=a3-a(2)a3-a=a(a+1)(a-1) 在第三环节的运算中还有其它类似的例子吗?除 此之外,你还能找到类似的例子吗? 结论:把一个多项式化成几个整式的积的形式,这 种变形叫做把这个多项式因式分解。其中,把多项式中 各项的公因式提取出来做为积的一个因式,多项式各项 剩下部分做为积的另一个因式这种因式分解的方法叫 做提公因式法。 辨一辨:下列变形是因式分解吗?为什么? (1)a+b=b+a(2)4x2y–8xy2+1=4xy(x–y)+1 (3)a(a–b)=a2–ab(4)a2–2ab+b2=(a–b)2 学生讨论、发言对因式分解,特别是提公因式法的 认识、理解、看法,并总结出因式分解、提公因式法的 定义。通过学生的讨论,使学生更清楚以下事实:(1) 分解因式与整式的乘法是一种互逆关系;(2)分解因 式的结果要以积的形式表示;(3)每个因来的多项式的次

人教版八年级数学上册教学设计14.3 因式分解

人教版八年级数学上册教学设计14.3  因式分解

人教版八年级数学上册教学设计14.3 因式分解一. 教材分析因式分解是八年级数学上册的教学内容,主要目的是让学生掌握因式分解的基本方法和技巧。

教材通过引入多项式的乘法,让学生理解因式分解的实质,进而学习提公因式法、公式法等因式分解方法。

本节课的内容在数学知识体系中具有重要的地位,为学生深入学习代数运算和方程求解打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算,具备一定的代数基础。

但因式分解作为一种独立的解题方法,对学生来说较为抽象,需要通过实例分析、动手操作、小组讨论等方式,让学生逐步理解和掌握。

三. 教学目标1.知识与技能:使学生掌握因式分解的基本方法,能够运用提公因式法、公式法等进行因式分解。

2.过程与方法:培养学生观察、分析、归纳的能力,提高学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学的内在美。

四. 教学重难点1.重点:因式分解的方法和技巧。

2.难点:如何引导学生发现和运用提公因式法、公式法等进行因式分解。

五. 教学方法采用问题驱动法、实例分析法、小组合作法、引导发现法等,以学生为主体,教师为主导,充分调动学生的积极性,提高学生的学习兴趣。

六. 教学准备1.准备相关教学PPT和教学素材。

2.设计好教学问题和练习题。

3.准备好黑板和粉笔。

七. 教学过程1.导入(5分钟)通过一个实际问题引出因式分解的必要性,激发学生的学习兴趣。

例如:已知二次函数的图像,求其解析式。

2.呈现(10分钟)呈现因式分解的定义和基本方法,引导学生观察、分析、归纳因式分解的规律。

通过PPT展示提公因式法、公式法等具体的因式分解方法。

3.操练(10分钟)让学生动手操作,尝试运用所学的因式分解方法解决实际问题。

教师巡回指导,解答学生遇到的问题。

4.巩固(10分钟)设计一些练习题,让学生运用所学的因式分解方法进行解答。

教师选取部分学生的答案进行讲解和评价,及时巩固所学知识。

八年级上册数学第十四章因式分解

八年级上册数学第十四章因式分解

八年级上册数学第十四章:因式分解1. 基础概念因式分解是指一个多项式被分解成几个简单的因式相乘的形式。

在代数中,因式分解是一个基本的运算技能,它在解算术问题和简化数学表达式中起到至关重要的作用。

八年级上册数学的第十四章中,因式分解是一个重要的内容。

2. 因式分解的意义因式分解可以帮助我们简化复杂的表达式,使得问题变得更加直观和易于理解。

通过因式分解,我们可以将复杂的多项式分解成简单的因式相乘的形式,从而更好地理解其结构和特性。

因式分解也为我们解方程、求函数的性质等提供了有力的工具。

3. 因式分解的方法在八年级上册数学的第十四章中,主要介绍了以下几种因式分解的方法:a. 提公因式法:根据多项式的各项的公因式提出一个因式,然后用提出的公因式除原来的多项式。

b. 分组、差的平方和完全平方公式法:通过分组、差的平方和完全平方公式,将多项式分解成更简单的形式。

c. 换元法:通过变量代换的方法,将原多项式转化成更易于分解的形式。

4. 因式分解的应用因式分解在实际问题中有着广泛的应用。

在八年级上册数学的第十四章中,通过大量的例题和练习题,让学生们掌握因式分解的基本方法和技巧,并培养他们运用因式分解解决实际问题的能力。

在解方程、求函数的零点、化简复杂的表达式等方面,因式分解都能发挥重要作用。

5. 拓展与延伸除了基本的因式分解方法外,八年级上册数学第十四章还会进一步引入一元二次方程的因式分解等内容,从而帮助学生更好地理解因式分解的原理和方法,为学习高中数学打下坚实的基础。

通过八年级上册数学的第十四章因式分解的学习,不仅可以让学生掌握因式分解的基本原理和方法,更可以为其将来学习高中数学和应用数学打下坚实的基础。

因式分解作为八年级数学的重要内容,对于学生的数学素养和综合运算能力有着重要的意义。

6. 因式分解的综合运用在八年级上册数学第十四章中,因式分解不仅仅是简单的将多项式分解成简单因式的乘积,还涉及到更多的综合运用。

人教版八年级数学上册《公式法》整式的乘法与因式分解PPT精品课件

人教版八年级数学上册《公式法》整式的乘法与因式分解PPT精品课件
1
-1
1
-2
1×(-2)+1×(-1)=-3
(2)
1
-2
1
5
1×5+1×(-2)=3
解:(1) x2-3x+2=(x-1)(x-2); (2) x2+3x-10=(x-2)(x+5).
随堂练习
x(x+2)(x+3)
1.(2019·淄博)分解因式:x3+5x2+6x=___________.
分析:x3+5x2+6x
(1)当多项式的各项有公因式时,应先提取公因式;当
多项式的各项没有公因式时(或提取公因式后),若
符合平方差公式或完全平方公式,就利用公式法分解
因式;
(2)当不能直接提取公因式或用公式法分解因式时,可
根据多项式的特点,把其变形为能提取公因式或能用
公式法的形式,再分解因式;
(3)当乘积中的每一个因式都不能再分解时,因式分解
一般地,如果多项式的各项有公因式,可以把这个公
因式提取出来,将多项式写成公因式与另外一个因式
的乘积的形式,这种分解因式的方法叫做提公因式法.
提公因式法一般步骤:
(1)确定公因式:先确定系数,再确定字母和字母的指
数;
(2)提公因式并确定另外一个因式:用多项式除以公因
式,所得的商就是提公因式后剩下的另一个因式;
1
2
=x(x2+5x+6)
1
3
=x(x+2)(x+3).
1×3+1×2=5
2.(2019·威海)分解因式:2x2-6x+4=__________.
2(x-1)(x-2)

数学人教版八年级上册14.3.2 因式分解 公式法(第一课时)

数学人教版八年级上册14.3.2 因式分解 公式法(第一课时)

14.3.2 因式分解公式法(第一课时)一、内容和内容解析1.内容因式分解平方差公式2.内容解析本节课是在学习了提公因式法后,公式法因式分解的第一课时,它是整式乘法中平方差公式的逆向应用,在教材中处于重要的地位。

平方差公式因式分解要充分理解公式的含义,掌握公式的形式与特点. 公式左边的多项式形式上是二项式,且两项符号相反;公式左边的每一项都可以化成某一个数或式的平方形式。

基于以上分析,确定本节课的教学重点:运用平方差公式分解因式。

二、目标和目标解析1、目标(1)进一步理解因式分解的概念,体会因式分解在简化计算上的应用。

(2)会用平方差公式进行因式分解,并从中体验“整体”的思路,树立“换元”的意识。

2、目标解析达成目标(1)的标志是:学生能说出因式分解中平方差公式的特点。

知道这里的平方差公式与整式乘法中的平方差公式是互逆变形的关系。

达成目标(2)的标志是:学生在数学活动过程中,体会平方差公式的结构、特征及公式中字母的广泛含义,理解平方差公式的意义,掌握运用平方差公式解决问题的方法.并在练习中,对发生的错误做具体分析,加深对公式的理解。

三、教学问题诊断分析虽然有了第一节提公因式法做基础,但学生有时还会出现因式分解后又反转回去做乘法的错误,解决此问题的关键是让学生正确认识因式分解的概念,理解它与整式乘法的互逆变形关系。

学生在运用平方差公式分解因式的过程中经常遇到的困难是找不准哪个数或式相当于公式中的a , b 。

因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解.本节课的教学难点是:灵活运用平方差公式分解因式,并理解因式分解的要求。

四、教学过程设计1.复习引入问题1 你能叙述多项式因式分解的定义吗?提公因式法的定义是什么?因式分解:(1)3mx-6nx 2;(2)4a 2b+10ab-2ab 3;(3)252 y 师生活动:学生独立思考并解答,找同学的答案投影展示。

华师大版初中数学八年级上因式分解说课稿

华师大版初中数学八年级上因式分解说课稿

一、课题介绍本节课选自华东师范大学出版社2007版初中数学八年级(上)第十三章整式的乘除第五节的内容的第一课时.二、教材分析1、本节在教材中的地位和作用因式分解是华东师大版八年级数学上册第十三章《整式的乘除》第五节课的内容.因式分解是代数式的一种重要恒等变形.又是分式通分、约分的基础知识, 就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的相互关系,它是继乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理.这一思想实质贯穿后继学习的各种因式分解方法. 通过本节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备,因此,它起到了承上启下的作用.2、目标分析根据新课程标准的要求以及结合本节教材内容的地位、作用、特点等,考虑初二年级学生的认知水平,我从以下三个方面确定本节课的教学目标:(1)知识目标(认知目标):(a)理解因式分解的概念,以及因式分解与整式乘法的关系;(b)理解公因式的概念和提公因式的方法;(c)会用提公因式法分解因式.(2)能力目标:通过对因式分解的学习,培养学生的创新意识和观察、抽象、概括类比、分析解决问题的能力.(3)情感目标:(a)感悟数学的简洁美;(b)培养学生学习数学的兴趣,增加学习的信心.3、教学重点与难点本节课理解因式分解的概念的本质属性是学习整章因式分解的关键,而学生由乘法到因式分解的变形是一个逆向思维.在前两节整式乘法的较长时间的学习,造成思维定势,学生容易产生“倒摄抑制”作用,阻碍学生新概念的形成.因此确定本节课的重点和难点如下:重点:用提公因式法分解因式;难点:确定公因式以及提出公因式后的另外一个因式.三、教法分析根据建构主义的学习理论,学习是学习者主动建构新知识的过程在教学中,老师不仅要传授知识给学生,还要成为他们学习活动的促进者、指导者.初二学生已经接触过一些因式分解的类型,因此本节课主要通过师生之间的探索,引导学生归纳出因式分解的定义,让学生参与思考,主动探究,通过讲练结合的方式让学生掌握内容.本节课所渗透的数学思想有类比思想、归纳思想等.四、学法分析根据新课程标准理念,学生是学习的主体,教师只是学习的帮助者,引导者.考虑到这节课主要通过老师的引导让学生自己发现规律,在自己的发现中学到知识,提高能力,我主要引导学生自己观察、归纳、分析,采用自主探究的方法进行学习,并使学生从中体会学习的兴趣.五、教学过程1、复习引入问题:运用前面所学的知识填空:()()()()()()1__________;2523___________;3237118__________.m a b c x y z xy x y z ++=+-=+-+= 设计说明:从寻求简单算法入手的三个题目学生容易接受,由此提出因式分解的概念,一方面突出了多项式因式分解本质特征是一种式的恒等变形,另一方面也说明了它可以与因数分解进行比较,从而对因式分解的概念和方法有一个整体的认识,也渗透着数学中的类比思想.在讲解新知识之前,我先让学生先完成下面的几个填空题:()()()22221_________;210515___________;36142216________.ma mb mc x y z xy x y xy x y ++=+-=+-+= 鼓励学生根据整式乘法与逆向思维原理对上面三个题进行计算,若有学生能正确给出答案,要及时予以表扬、鼓励;若没有的话,就再次解说复习时所做的填空题,引导学生观察所填的内容和此题的题干之间的联系,等学生都把答案说出来之后,我再归纳整理并板书:像这样,把一个多项式化为几个整式的积的形式,叫做多项式的因式分解(factorization),也叫做把这个多项式分解因式.2、展示新知辨一辨:下列变形是否是因式分解?为什么?()()22133;x xy y y x x -+=-()()2222314;x x x +-=+-()()()2232111;x y xy xy xy +-=+-()()22141.n n n n x x x x x x ++-+=-+有了因式分解的概念之后,为巩固概念,根据变式理论我特意设置了辨一辨环节共四个小题,它们都不是因式分解,从侧面巩固了概念.在辨一辨之后,我再让学生回头看做的第二个填空题,请学生归纳我板书:多项式ma mb mc ++中的每一项都含有相同的因式m ,我们称之为公因式(common factor ).把公因式提出来,把多项式分解成几个整式的乘积的方法叫做提公因式法.显然,由定义知,提公因式法的关键是如何正确的找到公因式.让学生观察上面的公因式的特点,找出确定公因式的方法:(1)公因式的系数应取各项系数的最大公约数;(2)字母取各项的相同字母,而且各字母的指数取次数最低的.有了找公因式的方法,接下来当然就是练习找公因式了.我设置了如下四个例题:例1:指出下列各多项式中各项的公因式:()1;ax ay az ++()2236;mx mx -()23410;a ah +()224.x y xy +设计说明:理解清楚因式分解的概念和公因式的概念时教学继续进行的关键,而所谓的因式分解就是把多项式化为积的形式,分清它与整式乘法的关系对因式分解的概念的建立很有必要,而在学生中间展开辨析,讨论是一种有效的方法.3、例题讲解,运用新知(通过实例演练,形成技能)学习了新的知识,就要会用它解决问题.结合本节课开始给出的第二个填空题,加深对概念的理解记忆,同时给他们“学以致用”的思想.例2:请同学们把下列多项式分解因式:()()()()()323321812;22;341618.a b ab c a b c b c a a a ++-+-+-和学生一起解答这三个问题之后,做出点评:(1)提出公因式后,要满足另一个因式不再有公因式才行.概括为:括号里分到“底”.这里“底”是指到不能再分解为止.(2)公因式可以是单项式也可以是多项式,是多项式时应整体考虑直接提出.当1作为项的系数时,通常可以省略.但如果单独成一项时,它在因式分解时不能漏掉,概括为:某项提出莫漏1.(3)如果多项式的第一项的系数是负的,一般要提出“-”,是括号内的第一项的系数是正的.在提出“-”时,多项式的各项都要变号.概括为:首项有负常提负.设计说明:例题是确定公因式和如何提供因式分解方法的具体化,根据学生的心理和发展水平,此处学生自己处理会问题较多,所以我会细致讲解,要让学生清楚的知道具体的方法和步骤.讨论清楚各种类型多项式提供因式时处理的方法,是本节课的核心和关键.4、巩固练习根据夸美纽斯的教学巩固性原则,为了培养学生独立解决问题的能力,在例题讲解之后,通过请个别同学上讲台演算,其他同学在草稿本上完成练习,教师巡视的方式来掌握学生的学习情况,从而对讲解的内容做适当的补充和提醒.用提公因式法将下列各式因式分解:()()()()()133;2555;332.a b x y z x a b y a b +-+-+- 设计说明:针对本节课的重点,有目的的设计了两个练习,已达到深化理解所学内容,形成因式分解解题技能的目的,同时充分让学生暴露问题,以便查漏补缺.5、总结提炼问题:用提公因式法分解因式要注意哪些问题呢?做出概括:各项有“公”先提“公”,首项有负常提负,某项提出莫忘1,括号里面分到“底”.设计说明:每节课后设置小结环节,目的是使学生养成反思的习惯,为掌握知识、提高能力服务.6、作业布置知识的掌握需要由浅到深,由易到难.作业布置主要根据由简到难的原则,先让学生运用所学概念,再进一步到变形应用,巩固知识.(1)复习今天所学的知识点并预习这一节的另一个内容公式法分解因式;(2)书上41页练习题1,2(1)(2)和习题13.5 的1(1),2.(3)选做题:判断下面的因式分解正确吗?为什么?()3322222a b ab ab a b -=-五、板书设计板书设计的好坏直接影响这节课的效果,因此它起着举足轻重的作用.为了使整个板面重点突出,层次分明,我将黑板分为四版:第一版是新课的讲解,第二版是例1,第三版是例2,第四版作展现练习、总结以及作业;再借助小黑板板书复习引入时所用的两个填空题.这样的排版使学生一目了然.小黑板运用前面所学的知识填空:根据整式乘法和逆向思维原理填空:六、教学评价本节课时因式分解的第一节课,主要是建立因式分解的概念和用提公因式法进行因式分解.由于因式分解的主要目的是对多项式进行恒等变形,它的作用是应用于多项式的计算和化简,是数学中多时的基本运算之一,也由于因式分解的能力在具体应用中会得到不断的提高,所以现在对因式分解的题目的难度不宜过高.总之,本节课体现的是老师与学生交流,讲练结合的形式,让学生主动快乐的学习.。

人教版八年级上册数学《因式分解--十字相乘法与分组分解法》专题讲义(含答案)

人教版八年级上册数学《因式分解--十字相乘法与分组分解法》专题讲义(含答案)

因式分解的基本方法例题精讲一、十字相乘法十字相乘法:一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解二、分组分解分组分解法:将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.一、十字相乘【例 1】分解因式:⑴256x x ++ ⑵256x x -+⑶276x x ++ ⑷276x x -+【解析】 ⑴(2)(3)x x ++;⑵(2)(3)x x --;⑶(1)(6)x x ++;⑷(1)(6)x x --【巩固】 分解因式:268x x ++【解析】 268(2)(4)x x x x ++=++【巩固】 分解因式:278x x +-【解析】 278(8)(1)x x x x +-=+-【例 2】分解因式:2376a a --【解析】 2376(32)(3)a a a a --=+-【巩固】 分解因式:2383x x --【解析】 2383(31)(3)x x x x --=+-【巩固】 分解因式:25129x x +-【解析】 25129(3)(53)x x x x +-=+-【巩固】 分解因式:42730x x +-【解析】 4222730(3)(10)x x x x +-=-+【巩固】 分解因式:2273320x x --【解析】 2273320(94)(35)x x x x --=+-【例 3】分解因式:212x x +-【解析】 221212(3)(4)x x x x x x +-=-++=+-+【巩固】 分解因式:2612x x -+-【解析】 22612(612)(23)(34)x x x x x x -+-=-+-=-+-【例 4】分解因式:2214425x y xy +-【解析】 2214425(16)(9)x y xy x y x y +-=--【巩固】 分解因式:22672x xy y -+【解析】 22672(2)(32)x xy y x y x y -+=--【巩固】 分解因式:22121115x xy y --【解析】 22121115(35)(43)x xy y x y x y --=-+【例 5】分解因式:⑴2()4()12x y x y +-+-;⑵2212()11()()2()x y x y x y x y +++-+-【解析】 ⑴把x y +看作一个整体,利用十字相乘法分解即可.2()4()12(2)(6)x y x y x y x y +-+-=+++-⑵将,x y x y +-看作整体,则原式[][]4()()3()2()(53)(5)x y x y x y x y x y x y =++-++-=++.【巩固】 分解因式:257(1)6(1)a a ++-+【解析】 [][]257(1)6(1)53(1)12(1)(23)(23)a a a a a a ++-+=-+++=-+【巩固】 分解因式:2(2)8(2)12a b a b ---+【解析】 [][]2(2)8(2)12(2)2(2)6(22)(26)a b a b a b a b a b a b ---+=----=----【例 6】分解因式:1a b c ab ac bc abc +++++++【解析】 把a 视为未知数,其它视为参数。

课件《因式分解》精品PPT课件_人教版2

课件《因式分解》精品PPT课件_人教版2

十字相乘法②随堂练习: 1)4a2–9a+2 a 24a 1
2)7a2–19a–6 7a 2a 3 3)2(x2+y2)+5xy 2x y x 2y
例 .将 2(6x2 +x) 2-11(6x2 +x) +5 分解因式 解:2(6x2 +x)2-11(6x2 +x) +5 = [(6x2 +x) -5][2(6x2 +x)-1] = (6x2 +x-5) (12x2 +2x-1 ) = (6x -5)(x +1) (12x2 +2x-1 )
x2 13x 42 x 6 x 7
对二次三项式x2+px+q用x2+(a+b)x+ab=(x+a)(x+b)进行因式分解, 应重点掌握以下问题:
1.适用范围:只有当q=ab,且p=a+b时 才能用十字相乘法进

行分解。
2.掌握方法:拆分常数项,验证一次项.
3.符号规律:
当q>0时,a、b同号,且a、b的符号与p的符号相同;
3.(x-2)(x+1)= x2-x-2
4.(x-2)(x-1)= x2-3x+2 5.(x+2)(x+3)= x2+5x+6 6.(x+2)(x-3)= x2-x-6 7.(x-2)(x+3)= x2+x-6 8.(x-2)(x-3)= x2-5x+6
(x+a)(x+b) =x2+(a+b)x+ab
2
-1
例1:2x2-7x+3
解:原式=(2x-1)(x-3) 1
-3
总结:
2 × (-3)+(-1) × 1=-7

华东师大版八年级上册数学教学设计《因式分解》

华东师大版八年级上册数学教学设计《因式分解》

华东师大版八年级上册数学教学设计《因式分解》一. 教材分析华东师大版八年级上册数学《因式分解》是学生在学习了整式的乘法、方程的解法等知识后,对多项式进行的一种分解。

本节课的内容是因式分解的定义、方法和应用。

因式分解是初中学段数学的重要知识点,也是后续学习高中数学的基础。

教材从实际问题出发,引导学生探究因式分解的方法,培养学生解决问题的能力。

二. 学情分析八年级的学生已经掌握了整式的乘法、方程的解法等知识,具备了一定的数学基础。

但学生在学习因式分解时,容易与多项式乘法混淆,对因式分解的方法理解不深。

因此,在教学过程中,需要帮助学生明确因式分解的意义,指导学生掌握因式分解的方法,提高学生解决问题的能力。

三. 教学目标1.理解因式分解的定义,掌握因式分解的方法。

2.能够运用因式分解解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.因式分解的定义和方法的掌握。

2.因式分解在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。

六. 教学准备1.准备相关的教学案例和实际问题。

2.制作多媒体课件,辅助教学。

七. 教学过程1.导入(5分钟)通过一个实际问题引出因式分解的概念,激发学生的学习兴趣。

例:已知一个二次方程的解为x1=3,x2=4,求该方程。

2.呈现(10分钟)呈现因式分解的定义和方法,引导学生理解因式分解的意义。

定义:将一个多项式表达为两个或两个以上多项式的乘积的形式,称为因式分解。

方法:试错法、分解法、换元法等。

3.操练(10分钟)让学生通过具体的例子,运用因式分解的方法解决问题,加深对因式分解的理解。

例1:因式分解x^2 - 5x + 6。

例2:因式分解a^2 + 2ab + b^2。

4.巩固(10分钟)通过一些练习题,巩固学生对因式分解的掌握。

练习1:因式分解x^2 - 4x + 3。

最新人教版八年级数学上册《14.3.1 提公因式法》优质教学课件

最新人教版八年级数学上册《14.3.1 提公因式法》优质教学课件

② 24x2y=3x ·8xy 因式分解的对象是多项式
③ x2–1=(x+1)(x–1)
④ (2x+1)2=4x2+4x+1 是整式乘法

x2+x=x2(1+
1
)
x
每个因式必须是整式
⑥ 2x+4y+6z=2(x+2y+3z)
探究新知
知识点 2
用提公因式法分解因式
问题1: 观察下列多项式,它们有什么共同特点?
例2 计算:
(1)39×37–13×91;
(2)29×20.16+72×20.16+13×20.16–20.16×14.
解:(1)原式=3×13×37–13×91
=13×(3×37–91)
=13×20=260;
(2)原式=20.16×(29+72+13–14)
=2016.
方法总结:在计算求
值时,若式子各项都
–2xy
探究新知
素养考点 1 利用提公因式法分解因式
例1
把下列各式分解因式.
(1) 8a3b2 + 12ab3c;
公因式既可以是一个单
项式的形式,也可以是
一个多项式的形式.
(2) 2a(b+c) – 3(b+c).
分析:提公因式法步骤(分两步)
第一步:找出公因式;
第二步:提取公因式 ,即将多项式化为两个因式的乘积.
注意:首项有负常提负.
探究新知
归纳总结
提取公因式分解因式的技巧:
①当公因式是多项式时,把多项式看成一个整体提
取公因式;②分解因式分解到不能分解为止;③某一项
全部提取后,不要漏掉“1”;④首项有负号常提负号;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档