年级数学第十六章《分式》整章水平测试(D)(含答案)

合集下载

八年级数学下册第16章《分式》综合水平测试题[1]

八年级数学下册第16章《分式》综合水平测试题[1]

八年级数学下册第16章《分式》综合水平测试一、选择题:(每小题2分,共20分) 1.下列各式:2b a -,x x 3+,πy+5,()1432+x ,ba b a -+,)(1y x m-中,是分式的共有( )A.1个B.2个C.3个D.4个 2.下列判断中,正确的是( ) A .分式的分子中一定含有字母 B .当B =0时,分式B A无意义 C .当A =0时,分式BA的值为0(A 、B为整式)D .分数一定是分式 3.下列各式正确的是( ) A .11++=++b a x b x a B .22x y x y = C .()0,≠=a mana m n D .am an m n --=4.下列各分式中,最简分式是( ) A .()()y x y x +-8534 B .yx x y +-22 C .2222xy y x y x ++D .()222y x y x +-5.化简2293mmm --的结果是( ) A.3+m m B.3+-m m C.3-m m D.mm-36.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍7.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A .9448448=-++x x B .9448448=-++x x C .9448=+x D .9496496=-++x x8.已知230.5x y z ==,则32x y z x y z +--+的值是( ) A .17 B.7 C.1 D.139.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.47 10.已知226a b ab +=,且0a b >>,则a ba b+-的值为( ) A .2 B .2± C .2 D .2±二、填空题:(每小题3分,共24分)11.分式392--x x 当x 时分式的值为零,当x 时,分式xx2121-+有意义.12.利用分式的基本性质填空:(1)())0(,10 53≠=a axy xy a (2)()1422=-+a a 13.分式方程1111112-=+--x x x 去分母时,两边都乘以 . 14.要使2415--x x 与的值相等,则x =. 15.计算:=+-+3932a a a . 16. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为.17.若分式231-+x x 的值为负数,则x 的取值范围是.18. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为. 三、解答题:(共56分) 19.计算:(1)11123x x x++ (2)32÷x y2620. 计算: ()3322232n m n m --⋅21. 计算(1)168422+--x x xx (2)mn nn m m m n n m -+-+--222. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==-23. 解下列分式方程. (1)xx 3121=- (2)1412112-=-++x x x24. 计算: (1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111x x x x ++++++-25.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.26.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).27.某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?28.A、B两地相距20 ,甲骑车自A地出发向B地方向行进30分钟后,乙骑车自B地出发,以每小时比甲快2倍的速度向A地驶去,两车在距B地12 的C地相遇,求甲、乙两人的车速.答案 一、选择题1.C 2.B 3.C 4.C 5.B 6.C 7.B 8.A 9.B 10.A二、填空题(每小题3分,共24分)11.=-3、≠1212.26a 、2a - 13.(1)(1)x x +- 14.6 15.3a - 16. 17.-1<x <2318.2(提示:设24y y m +=,原方程变形为211x m x m -=--,方程两边同时乘以(1)(1)x m --,得(1)(1)(2)x m x m -=--,化简得m x +=2,即24y y m ++=2.三、解答题(共56分) 19.(1)原式=632666x x x ++=116x (2)原式=2236x xy y =212x20.原式=243343m n m n -=1712m n -21.(1)原式=2(4)(4)x x x --=4xx - (2)原式=2m n m n m n m n m n -++----=2m n m n m n -++--=mm n-- 22.原式=22222()()[]1()()()a a a a b a a b a b a b a b a b --÷-+--+-- =2222()[]1()()()a ab a a a b a a b a b a b ----÷+-+-=2()()1()ab a b a b a b ab-+-÷+-- =a b a b a b a b +-+--=2aa b- 当2,33a b ==-时,原式=2232(3)3⨯--=43113=411 23.(1)方程两边同时乘以3(2)x x -,得32x x =-,解得x =-1,把x =-1代入3(2)x x -,3(2)x x -≠0,∴原方程的解,∴原方程的解是x =-1.(2)方程两边同乘以最简公分母(1)(1)x x +-,得4)1(2)1(=++-x x ,解这个整式方程得,1=x ,检验:把1=x 代入最简公分母(1)(1)x x +-,(1)(1)x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解.24.(1)原式=1111x x x -⎛⎫+⎪-⎝⎭=1111x x x x -+--=11x x x x--=1(2)原式=241124(1)(1)(1)(1)11x x x x x x x x +-+++-+-+++=224224111x x x++-++=22222242(1)2(1)4(1)(1)(1)(1)1x x x x x x x +-++-++-+=2222422224(1)(1)1x x x x x ++-+-++=444411x x +-+=4444444(1)4(1)(1)(1)(1)(1)x x x x x x +-+-++-=4484(1)4(1)1x x x ++--=881x -25.原式=222218339x x x x +-++--=22(3)2(3)(218)9x x x x --+++- 2269x x +-=2(3)(3)(3)x x x ++-=23x -,∵918232322-++-++x x x x 是整数,∴23x -是整数,∴3x -的值可能是±1或±2,分别解得x =4,x =2,x =5,x =1,符合条件的x 可以是1、2、4、5.26.①241≤x ≤300;②x m 12-,6012+-x m27.设原计划每小时加工x 个零件,根据题意得:1500150052x x-=,解得x =150,经检验,x =150是原方程的根,答:设原计划每小时加工150个零件. 28.设甲速为,乙速为3,则有xx x31260301220=--,解之得8=x ,经检验,x =8是原方程的根,答:甲速为8,乙速为24.。

最新八年级下期数学第十六章分式单元测试题及答案

最新八年级下期数学第十六章分式单元测试题及答案

八年级下期数学第十六章分式单元测试题及答案一、选择题(本题共16分,每小题2分)1、在x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个2、下列各式中,一定成立的是( )A 、1-=---b a a b B 、()222b a b a -=- C 、y x yx xy y x -=---1222 D 、()2222a b b ab a -=+- 3、与分式23.015.0+-x x 的值,始终相等的是( ) A 、2315+-x x B 、203105+-x x C 、2032+-x x D 、2315 4、下列分式中的最简分式(不能再约分的)是( )A 、112++a aB 、aa a 222++ C 、cd ab 42 D 、2)1(22++a a 5、下列说法正确的是 ( )A 、若n m >,则88->-n mB 、42≤-x 的解集是2≥xC 、当m =32时, m m 23-无意义 D 、分式2)2(++m m m 总有意义6、下列从左边到右边的变形正确的是( )A 、)32(4124822b a ab ab ab b a -=--B 、22)21(41-=+-x x x C 、mm m 2321=+ D 、1=-+-b a b b a a7、若分式)1)(4()4)(4(--+-m m m m 的值为零,则m = ( )A 、±4B 、 4C 、 4-D 、 18、下列化简正确的是 ( )A 、b a b a b a +=++2B 、1-=+--b a b aC 、1-=---b a b aD 、b a b a b a -=--22二、填空题(本题共16分,每小题2分)1、 当x 时,分式42+-x x 有意义。

2、若32=a b ,则=+-ba b a 。

3、当x 时,分式242+-x x 的无意义;(1分) 当x 时,分式242+-x x 值为零;(1分) 4、计算(结果用科学计数技术法表示)(1) (3×10-8)×(4×103)= (1分) (2) (2×10-3)2÷(10-3)3 = (1分)5、化简:ab bc a 2= ,(1分) 12122+--x x x -2122x x -- = ;(1分) 6、化简:a y ya 242-⋅= ,(1分) =-÷+-)1(11m m m . (1分) 7、如果分式333++x x x 与的差为2 ,那么x 的值是 . 8、若=++≠==a c b a a c b a 则),0(753 .三、化简、计算(本题共25分,第1—5题每小题4分,第6题5分)1、a b a b a b a -+-+2、y y y y y y 93322-⋅⎪⎪⎭⎫ ⎝⎛+--3、 19)1(961222--⨯+÷++-a a a a a a4、x x x x x x x x -÷+----+4)44122(225、2224442yx x y x y x y x y y x x +÷--+⋅-6、已知:ba ab ab b a ++-==+21,4求:的值。

新人教版八年级下数学第十六章分式单元检验题及答案

新人教版八年级下数学第十六章分式单元检验题及答案

八年级 ( 下 >数学单元检测题<第十六章 分式)一、选择题 <每题3 分,共 30 分)1.以下式子是分式的是< )A .xB.2C .xD. x y2x22.以下各式计算正确的选项是<)A . a a 1B .bb 2C .n na, a 0bb 1aabmmaD .nn a mm a3.以下各分式中,最简分式是< )A .3 x yB. m 2n 2 C .a 2b 27 x ymna 2b ab 2D .x 2 y 2x 2 2 xy y 24.化简 m23m的结果是 <)9 m 2mB.m C.mm A.m3D.3 mm 3m 35.若把分式xy中的 x 和 y 都扩大 2 倍,那么分式的值<)xyA .扩大 2 倍B .不变C .减小 2倍D .减小 4倍6.若分式方程1 3ax有增根,则 a 的值是 < )x 2a xA . 1B . 0C.— 1 D .— 27.已知abc ,则 a b的值是 <)234 cA .4B.7D.5 5448.一艘轮船在静水中的最大航速为30 千 M/时,它沿江以最大航速顺水航行100 千 M 所用时间,与以最大航速逆流航行 60 千 M 所用时间相等,江水的流速为多少?设江水的流速为x 千 M/时,则可列方程<)Xs3IIMCUcUA. 10060B. 100x 60x3030x x3030C. 10060D. 100x 6030x30x x30309.某学校学生进行急行军训练,估计行60 千 M的行程在下午 5 时抵达,后出处于把速度加速20% ,结果于下午 4 时抵达,求原计划行军的速度。

设原计划行军的速度为xkm/h ,,则可列方程 <) Xs3IIMCUcUA.60x 601 B.60601x20%x x 20%60601 D.60601C.x(1x x(120%)x20%)10. 已知a b c k ,则直线 y kx2k 必定经过<)c a c a bbA. 第一、二象限B.第二、三象限C.第三、四象限D. 第一、四象限二、填空题 <每题 3分,共 18分)11.计算 a 2 b3(a2 b) 3=.12.用科学记数法表示—0.000 000 0314=.132a1..计算a 24a214.方程3704的解是.x x9,16,25,36,15.瑞士中学教师巴尔末成功地从光谱数据中获得5122132巴尔末公式,进而翻开了光谱神秘的大门。

华师大版八年级数学下册 第十六章《分式》整章水平测试

华师大版八年级数学下册  第十六章《分式》整章水平测试

八年级数学下册第十六章《分式》整章水平测试(总分:100分,时间:40分钟)一、 试试你的身手(每小题4分,共28分)1.若分式11x x -+的值为零,则x 的值为 . 2.不改变分式的值,把分式10.720.3a b a b-+的分子与分母的各项系数化为整数为: . 3.当a 时,分式2521a a -+的值不小于0. 4.化简:3222222232a b a b a ab ab a ab b a b +--÷++-= . 5.生物学家发现一种病毒的长度约为0.000043㎜,用科学记数法表示0.000043的结果为㎜.6.若方程56x x a x x -=--有增根,则a 的值可能是 . 7.把题目补充完整:轮船在顺流中航行64km 与逆流中航行34km 一共用去的时间等于该船在静水中航行180km 所用的时间,已知水流的速度是每小时3km ,求该船 . 设 ,依题意列方程 .二、相信你的选择(每小题4分,共32分)1.在有理式21121,,(),,,,(15)321x x x m n m n R x a m n yππ-+--+中,分式有( ). (A )1个 (B )2个 (C )3个 (D )4个2.如果226x x x ---=0,则x 等于( ). (A )±2 (B )-2 (C )2 (D )33.分式2232x x y-中的,x y 同时扩大2倍,则分式的值( ).(A )不变 (B )是原来的2倍 (C )是原来的4倍 (D )是原来的21 4.下列各式从左到右的变形正确的是( ). (A )122122x y x y x yx y --=++(B )0.220.22a b a b a b a b ++=++(C )11x x x y x y +--=-- (D )a b a b a b a b +-=-+ 5.已知111,11ab M a b ==+++,11a b N a b =+++,则M 与N 的大小关系为( ). (A )M>N (B )M=N (C )M<N (D )不确定6.关于x 的方程(1)43a x x +=+的解是负数,则a 的取值范围是( ).(A )a =3 (B )a <3且a ≠-1 (C )a ≥3 (D )a ≤3且a ≠-17.在正数范围内定义一种运算“※”,其规则为a ※b =11a b+,根据这个规则方程x ※(1x +)=0的解为( ).(A )1 (B )0 (C )无解 (D )12- 8.学生有m 个,若每n 个人分配1间宿舍,则还有一人没有地方住,问宿舍的间数为( ).(A )1m n + (B )1m n - (C )1m n - (D )1m n + 三、挑战你的技能(本大题共37分)1.(本题8分)解方程:214 1.11x x x +-=--2.(本题10分)先化简代数式222222()()()a b a b aba b a b a b a b+--÷-+-+,然后请选择一组你喜欢的,a b的值代入求值.3.(本题12分)同一条高速公路沿途有三座城市A、B、C,C市在A市与B市之间,A、C两市的距离为540千米,B、C两市的距离为600千米.现有甲、乙两辆汽车同时分别从A、B两市出发驶向C 市,已知甲车比乙车的速度慢10千米/时,结果两辆车同时到达C市.求两车的速度.四、拓广探索(本大题共12分)请阅读某同学解下面分式方程的具体过程. 解方程1423.4132x x x x +=+---- 解:13244231x x x x -=-----, ① 222102106843x x x x x x -+-+=-+-+, ② 22116843x x x x =-+-+, ③ ∴22684 3.x x x x -+=-+ ④ ∴5.2x =把52x =代入原方程检验知52x =是原方程的解. 请你回答:(1)得到①式的做法是 ;得到②式的具体做法是 ;得到③式的具体做法是 ;得到④式的根据是 .(2)上述解答正确吗?如果不正确,从哪一步开始出现错误?答: .错误的原因是 .(3)给出正确答案(不要求重新解答,只需把你认为应改正的加上即可).参考答案:一、1.1 2.57310a b a b -+ 3.a ≤524.2ab 5.54.310-⨯6.6 7.在静水中的速度,船在静水中的速度为x km/h ,64348033x x x +=+-.。

人教版初中数学第16章 分式整章水平测试(二)及答案

人教版初中数学第16章 分式整章水平测试(二)及答案

第十六章《分式》整章水平测试一、精心选一选。

(每题3分,共30分)1.代数式-32x ,4x y -,x+y ,22x π+,273y y ,55b a ,98,中是分式的有( ) A .1个 B .2个 C .3个 D .4个2.当x≠-1时,对于分式11x -总有( ) A .11x -=21x + B .11x -=211x x +- C .11x -=211x x -- D .11x -=13x -- 3.下列变形正确的是( )A .a b a b c c -++=-; B .a a b c b c-=--- C .a b a b a b a b -++=--- D .a b a b a b a b--+=-+- 4.学完分式运算后,老师出了一道题“化简:23224x x x x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的5.若分式6922-+-x x x 的值为0,则x 的值为( ) A.3 B.-3或2 C .3 D.-36.若分式2112(4)x x --的值为正数,则x 的值为( ) A .x<2 B .2<x<4 C .x>2 D .x>2且x≠47.若关于x 的分式方程2344m x x=+--有增根,则m 的值为( ) A .-2 B .2 C .±2 D .48.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80•棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,•则根据题意列出方程是( )A .80705x x =-B .80705x x =+C .80705x x =+D .80705x x =- 9.一个人从A 地到B 地,去时速度为xkm/h ,回时速度为ykm/h ,•则这个人往返的平均速度为( )km/h .A .2x y +B .2xy x y +C .xy x y +D .2()x y xy+ 10.实数a ,b 满足ab=1,记M=11a ++11b +,N=1a a ++1b b+,则M 、N 的大小关系为( ) A .M>N B .M=N C .M<N D .不确定二、细心填一填。

人教版八年级下册数学第十六章分式混合运算测试题(含答案)

人教版八年级下册数学第十六章分式混合运算测试题(含答案)

分式混合运算测试题姓名__________ 班级___________ 分数_______________一、选择题(每小题3分,共30分)1.化简(322211x x x x x x ---++)÷211x x ++的结果为( )A 、1x -B 、21x -C 、21x +D 、1x +2.计算(22x x x x --+)÷42x x -的结果是( ) A 、12x + B 、12x -+ C 、-1 D 、13.计算1a a -÷(1a a -)的正确结果是( )A 、11a +B 、1C 、11a - D 、-14.若0xy x y =-≠,则分式11y x-等于( )A 、1xyB 、y x -C 、1D 、-15.在一段坡路上,小明骑自行车上坡的速度为每小时1v 千米,下坡时的速度为每小时2v 千米,则他在这段坡路上的平均速度是每小时( )千米 A 、122v v + B 、1212v v v v + C 、12122v vv v + D 、无法确定 6.计算(22a a a a --+)·24a a-的结果是( ) A 、-4 B 、4 C 、2a D 、24a +7.化简1x x -÷(1x x -)的结果是( )A 、11x +B 、1C 、11x - D 、-18.分式34x x y -与4x y y x +-的和减去74yx y-,所得的差为( )A 、264x y x y+-- B 、264x yx y -- C 、-2 D 、29.把分式2221,,322136a a a a a a -+++++通分后,各分子的和是( )A 、22711a a ++B 、2244a a ++C 、241113a a ++D 、2810a a ++10.设A x y =+,B x y =-,则A B A BA B A B+---+等于( ) A 、22x y xy - B 、222x y xy - C 、22x y xy + D 、222x y xy+二、填空题(每小题3分,共24分)11.已知3,1a b ab +==,则a bb a+的值等于_________________________. 12.若222222m xy y x yx y x y x y --=+--+,则m =_________________________. 13.若()111A B n n n n +=++,则A=___________,B=______________. 14.已知115a b a b +=+,则b aa b +的值为_________________________.15.若2222a ab a b b abab b a ab++-÷-- 的值是正整数,则整数a 的值为_________________________.16.计算422a a+--的结果为_________________________.17.已知:,a b 为实数,且1ab =,设M=11a b a b +++,N=1111a b +++,则M 与N 的大小关系是M________N,(填“>”、“<”、或“=”).18.油库有油m 升,计划每天用n 升,实际用油每天节约了d 升,这些油可以多用________________天. 三、计算题(每小题4分,共24分)(1)(22x x x x --+)÷42x x - (2)22a b a b--÷(222a b ab ++)(3)21x x --÷(311x x +--) (4)(1n m +)÷(1n m -)·(22m n -)(5)b a b -+32322222b ab b a a b ab b a +÷-+- (6)()2222x y x y x y y x++--四、化简求值(每小题6分,共18分) (1)先化简,再求值:(4ab a b a b -+-)(4ab a b a b +-+),其中31,22a b ==-(2)先化简,再求值:(2221244a a a a a a ---+++)·24a a +-,其中a 满足2210a a +-=(3)先化简,再求值:112x x y-+(222x y x y x +-+)其中2,3x y ==五、条件求值(每小题6分,共24分)(1)已知12012,2012a b ==,求(22a b a b b a---)÷a b ab +的值.(2)已知52,52a b =+=-,求2b aa b++的值.(3)已知269a a -+与1b -互为相反数,求(a bb a-)÷()a b +已知230,3260,0x y z x y z xyz -+=--=≠,求2222222x y z x y z+++-的值.分式混合运算测试题(参考答案)一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案ABACCAADAB二、填空题11. 7 12. 2x 13. A=1,B=1 14. 315.1a =- 16.22a a - 17. = 18.2md n nd -三、计算题(1)12x + (2)ab a b+ (3)12x -+ (4)222m mn n ++(5)ba(6)x y +四、化简求值(1)原式=22a b -,其值为2 (2)原式=212a a+,其值为1 (3)原式=y x -,其值为32-五、条件求值(1)原式=ab ,其值为1 (2)原式=()2a b ab+其值为20(3)原式=a b ab-,其值为23 (4)1320。

第十六章《分式》整章参考答案

第十六章《分式》整章参考答案

第十六章《分式》整章参考答案第十六童分式16.1.1从分数到分式16.2.2分式的加减〔―〕1. ±- m + n Ww)、曲、。

44 4. _3 为任意实数 6. C 7. C 8. C 9. D 10. (1) -<x<2; (2) 4⑶ x=2: 16.1.2 分式的差不多性质h-a 1. ------- 2a-ba-2b 2a-b 2. 4x+20 5x-10 3. 12(G -1)2(°-2)2 4. A 5. D 6. (1)— n (2) 兀+ 2 2 ;⑶-8(x —y)4:⑷ -----------4厂 x + 77. (1) 5ac 2b 2「…:⑵芈,卑:⑶ \0crb c 10“T c 6x^y 6A "y 时'梟:⑷y+1 T12c 16.2.1 分式的乘除〔一〕 1 jy 2.一丛 2 3・ 4. 9.v 5. C 6. C A 9.1 10・⑴•严+严+・・・ + x+l (2) 2咖—1 16.2.1 分式的乘除〔二〕 1. A 2・ B 1 3-D 4•乔 5. 4 —6. 4x4-6 7. 4-2/7? 8・不正确, 原式=%•—- x — 2 x — 2 1 X (X —2)2 9. 10.(吟 X+1 2加 2 X 5$ 1.⑴ ——:(2) v-y2.⑴ —:(2) a+b3.——4. 正5. a X x-l7. A 8. C 9. (1) X :(2) 1 10. 1211. 3 12.- x + 2 1+G 36, 3尸一/1•⑴ 0, (2) m+n 2. 9. 1 AM (2)-=——+------------- n 77 + 1 n{n +1) 16.2.2分式的加减〔二〕 ] 2x + 6 3. 10.二―,-1 a + b a+b 4・ 2 5・ D 6. A 7. ——!— x + 2 11.— 11 12・(1) □ , O 分不表示6和30, 16.2.3整数指数幕2•⑴一右’⑵W 3- 16.2.3整数指数幕 〔一〕 D 4- 5. 12" 6. %10 匚〕 1. (1) 9xl0"5, (2) 5.6X10-4 2. 0. 0002 3. 0. 0000000302 4. D 5. (1) 1.2x10二 ⑵ 9 6・ 2.667xlO 23〔个),1.675x10® (千克) 16.3分式方程〔一〕3. — 14. 5 5・ 1 6. A 7. C 8. D 9. A 10.⑴ x = 2\ (2)无解 11 •⑴ ⑴:⑵无解12. 31 B. m< — 2 16.3分式方程〔二〕 £ 1- (l4)xl 4 120 4. C 5・ B 6. B (1) 60 天,(2) 24 天 8.科普书7. 5元/本.文学书5元/本;(2)科普书2本.文学书3本 9•此 商品进价是500元, 第二个月共销售128件. 10. (1) 12 间,(2) 8000 元.8500 元 16.3分式方程[三〕 15 15 11.—— ----- =—x 1.2% 2 2. C 3. 5千米/时 4・甲速度24千米/时,乙速度60千米/时 5. 2元/米' 6. (1)优待率为32・5%: (2)标价750元 7.乙先到达第16童《分式》童节复习22. (1)丄•丄=丄一丄;⑵ n 〃 +1 n n +11 n n + \ n(n +1) n(n +1) n(n + l)元/吨・第十六章《分式》童节测试一、 选择题1-5 DDCBC 6-10 CDCBA 11-12 DD二、 填空题 13・ U 2 3.5, 2 14.—— 15. (v + 1)316. xv? I? (斗-3 18. 1 “一一 R a-h a 2 -ZZL 、 解答题4 a 4 \ + m y 19. (1)心±3: (2) x<2. 20. (1) 7 n : (2) : (3) ——:(4) 一 J 21.原9x 2y 2 4b 1-/7? x+ y 式=兀+1,取值时注意xH±l,—2・ 22.不可能,原式等于丄时,x = -\,现在分式无意4义. 23. (1) x = —3;⑵ 无解. 24. (1) 60天;⑵24天. 25.甲每分钟输入22 名,乙每分钟输入11名・ 26. (1)移项,方程两边分不通分,方程两边同除以-2x+10,分式 值相等,分子相等,那么分母相等:(2)有错误.从第③步显现错误,缘故:-2x + 10可能为零;(3)当-2x+10 = 0时,一2工=一10,尤=5,经检验知x = 5也是原方程的解,故原方程的解为1-5 13. 19.选择题BACCD 填空题 4.3x10-解答题 (1) 4:⑵ 6-10 DABDA lOOx-6 14. ------------ -500x-25 x+\ 11-12 AD 15・ 2ab 16. 24 17. 24 18. 5 20.化简结果为a+b, (取值要求:同工问)・21. (1) x = 2:23.有错,当a<2 时,分母有可能为零:改正:因为XH2,因 n 2 — a此——H2, oH-4,因此结果为a<2且3 24. 9 元. 25・12个月. 26. 2 (2)。

初中八年级下册数学第十六章《分式》附答案

初中八年级下册数学第十六章《分式》附答案

新课标人教版初中八年级下册数学第十六章《分式》精品试题(附答案)班级:___ 姓名:______一、选择题:1、在式子:23123510,,,,,94678xy a b c x y x a x y π+++中,分式的个数是( ) A 、2 B 、3 C 、4 D 、52、如果把分式10x x y+中的X 、Y 都扩大10倍,则分式的值是( ) A 、扩大100倍 B 、扩大10倍 C 、不变 D 、缩小到原来的1103、下列等式成立的是( )A 、2(3)9--=-B 、21(3)9--=C 、12224()a a =D 、-70.0000000618=6.1810⨯ 4、某厂去年产值是m 万元,今年产值是n 万元(m <n ),则今年的产值比去年的产值增加的百分比是( )A 、100%m n n -⨯B 、 100%n m m -⨯C 、(1)100%n m +⨯D 、100%10n m m -⨯5、如图所示的电路总电阻是6Ω,若R 1=3R 2,则R 1、R 2的值分别是( )A 、R1=45Ω,R2=15ΩB 、R1=24Ω,R2=8ΩC 、R1=92Ω,R2=32ΩD 、R1=23Ω,R2=29Ω 二、填空题:6、x ,y 满足关系_____时,分式x y x y-+无意义。

7、222222m n mn m n mn += 8、化简2211366a a a÷--的结果是_____ 9、已知115a b -=,则2322a ab b a ab b+---的值是______ 10、我国是一个水资源贫乏的国家,第每一个公民都应自觉养成节约用水的意识和习惯。

为提高水资源的利用效率,某住宅小区安装了循环用水装置,经测算,原来a 天需用水m 吨,现在这些水可多用5天,现在每天比原来少用水__吨。

三、算一算(每小题8分,共24分):11、22142a a a +-- 12、2112x y xy x y x y x y x y ⎛⎫⎛⎫-÷+ ⎪ ⎪---⎝⎭⎝⎭13、先化简,再求值:22243411211x x x x x x x ---÷+-++-,其中231x =+四、做一做(每小题8分,共16分):14、解方程:313221x x+=--15、解方程:11222xx x-=---五、学以致用(每小题10分,共20分):16、比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议。

第十六章 《分式》整章参考答案.doc

第十六章  《分式》整章参考答案.doc

参考答案第十六章 分式16.1.1 从分数到分式1.2s m n + 2.11x +、22a b a b --,1()5x y +、23x -、0 3.12,434.3-,1- 5.3-,为任意实数 6.C 7.C 8.C 9.D 10.(1)34<x <2;(2)x <34或x >2;(3)x =2;(4)x =3416.1.2 分式的基本性质1.2b a a b --,22a b a b -- 2.420510x x +- 3.2212(1)(2)a a -- 4.A 5.D 6.(1)2m n;(2)24x z -;(3)48()x y --;(4)27x x ++ 7.(1)232352,1010ac b a b c a b c ;(2)2232,66ax by x y x y ;(3)32222212,88c a b ab c ab c -;(4)2211,11y y y y +--- 8.12- 9.1816.2.1 分式的乘除(一)1.2x y - 2. 292x y - 3. 213b - 4.9x 5.C 6.C 7.B 8.A 9.1a 10.(1)121n n x x x --++++,(2)200821-16.2.1 分式的乘除(二)1.A 2.B 3.D 4.212y 5.2249x y 6.46x + 7.42m - 8.不正确,原式21122(2)x x x x x =∙∙=--- 9.12 10.22()1x x -+ 16.2.2 分式的加减(一)1.(1)2m a ;(2)x y - 2.(1)2x ;(2)a b + 3.1x x - 4.正 5.58s a6.23s t t - 7.A 8.C 9.(1)2x x +;(2)11a + 10.12 11.3 12.1316.2.2 分式的加减(二)1.(1)0,(2)m n + 2.126x -+ 3.a b + 4.2 5.D 6.A 7.12x -+ 8.23- 9.21(2)x -- 10.2a b +,-1 11.61112.(1)□,○分别表示6和30,(2)1111(1)n n n n =+++ 16.2.3 整数指数幂(一)1.(1)116,(2)-1 2.(1)338y x -,(2)434a b 3.D 4.C 5.12a b6.10x 16.2.3 整数指数幂(二)1.(1)5910-⨯,(2)45.610-⨯ 2.0.0002 3.0.000 000 0302 4.D 5.(1)31.210-⨯,(2)9 6.232.66710⨯(个),271.67510-⨯(千克)16.3 分式方程(一)1.0x = 2.1 3.-1 4.5 5.1 6.A 7.C 8.D 9.A 10.(1)2x =;(2)无解 11.(1)13x =;(2)无解 12.13313.m <-2 16.3 分式方程(二)1.1112()142x +⨯= 2.9012035x x =- 3.1%p d p =+ 4.C 5.B 6.B (1)60天,(2)24天 8.科普书7.5元/本、文学书5元/本;(2)科普书2本、文学书3本 9.此商品进价是500元,第二个月共销售128件. 10.(1)12间,(2)8000元、8500元16.3 分式方程(三)1.151511.22x x -= 2.C 3.5千米/时 4.甲速度24千米/时,乙速度60千米/时 5.2元/米3 6.(1)优惠率为32.5%;(2)标价750元 7.乙先到达第16章 《分式》 章节复习一、选择题1-5 BACCD 6-10 DABDA 11-12 AD二、填空题13. 54.310-⨯ 14.100650025x x --- 15.2ab 16.24 17.24 18.5 三、解答题 19.(1)32x y ;(2)21x x +-+. 20.化简结果为a b +,(取值要求:a b ≠). 21.(1)2x =;(2)3x =. 22.(1)1n ·11111n n n =-++;(2)111n n -=+1(1)(1)n n n n n n +-++1(1)n n =+ 1n =·11n +;(3)244x x +. 23.有错,当a <2时,分母有可能为零;改正:因为2x ≠,所以223a -≠,4a ≠-,所以结果为a <2且4a ≠-. 24.9元. 25.12个月. 26.2元/吨.第十六章 《分式》 章节测试一、选择题1-5 DDCBC 6-10 CDCBA 11-12 DD二、填空题13. 3.5,2 14.2U R 15.3(1)y + 16.2xy 17.()m m a b a -- 18.12n - 三、解答题19.(1)x ≠3±;(2)x <2. 20.(1)2249x y ;(2)44a b ;(3)11m m+-;(4)y x y -+. 21. 原式1x =+,取值时注意x ≠1,2±-. 22. 不可能,原式等于14时,1x =-,此时分式无意义. 23.(1)3x =-;(2)无解. 24.(1)60天;(2)24天. 25. 甲每分钟输入22名,乙每分钟输入11名. 26.(1)移项,方程两边分别通分,方程两边同除以210x -+,分式值相等,分子相等,则分母相等;(2)有错误.从第③步出现错误,原因:210x -+可能为零;(3)当2100x -+=时,210,5x x -=-=,经检验知5x =也是原方程的解,故原方程的解为55,2x x ==.。

最新华师版八年级数学下册第16章分式专题复习测试题及答案全套

最新华师版八年级数学下册第16章分式专题复习测试题及答案全套

最新华师版八年级数学下册第16章分式专题复习测试题及答案全套专训1 分式求值的方法名师点金:分式的求值既突出了式子的化简计算,又考查了数学方法的运用,在计算中若能根据特点,灵活选用方法,往往会收到意想不到的效果.常见的分式求值方法有:直接代入法求值、活用公式求值、整体代入法求值、巧变形法求值、设参数求值等.直接代入法求值1.(中考·鄂州改编)先化简,再求值:⎝ ⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.活用公式求值2.已知x 2-5x +1=0,求x 4+1x 4的值.3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z≠0,求x 2y +z +y 2z +x +z 2x +y 的值.巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x的值.设参数求值6.已知x 2=y 3=z 4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.专训2 全章热门考点整合应用名师点金:本章主要考查分式的概念、分式有意义的条件、分式的性质及运算,考试中题型以选择题、填空题为主,分式的化简求值主要以解答题的形式出现.分式方程是中考的必考内容之一,一般着重考查解分式方程,并要求会用增根的意义解题,考题常以解答题的形式出现,有时也会出现在选择题和填空题中.其主要考点可概括为:三个概念、一个性质、一种运算、一个解法、一个应用、四种思想.三个概念概念1 分式1.下列说法中,正确的是( )A .分式的分子中一定含有字母B .分母中含有字母的式子是分式C .分数一定是分式D .当A =0,分式AB的值为0(A ,B 为整式)2.若式子1x 2-2x +m不论x 取任何数总有意义,则m 的取值范围是( )A .m≥1B .m>1C .m≤1D .m<1 概念2 分式方程3.关于x 的方程:①x 2-x -13=6;②x 900=500x -30;③x 3+1=32x ;④a 2x =1x ;⑤320x -400x =4; ⑥x a =35-x.分式方程有____________(填序号). 4.(中考·遂宁)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各是多少万千克?设原计划每亩平均产量为x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为( )A .36x -36+91.5x =20 B .36x -361.5x=20C .36+91.5x -36x =20D .36x +36+91.5x =20 概念3 增根5.若关于x 的方程x -4x -5-3=a x -5有增根,则增根为( )A .x =6B .x =5C .x =4D .x =36.已知方程21+x -k 1-x =6x 2-1有增根x =1,求k 的值.7.若关于x 的分式方程2m +x x -3-1=2x无解,求m 的值.一个性质——分式的基本性质8.不改变下列分式的值,将分式的分子和分母中的各项的系数化为整数.(1)15x -12y 14x +23y ; (2)0.1x +0.3y 0.5x -0.02y .一种运算——分式的运算9.先化简,再求值:⎝ ⎛⎭⎪⎫2ab 2a +b 3÷⎝ ⎛⎭⎪⎫ab 3a 2-b 22·⎣⎢⎡⎦⎥⎤12(a -b )2,其中a =-12,b =23.一个解法——分式方程的解法10.(中考·嘉兴)小明解方程1x -x -2x =1的过程如下.请指出他解答过程中的错误,并写出正确的解答过程.解:方程两边同乘x ,得1-(x -2)=1.……① 去括号,得1-x -2=1.……② 合并同类项,得-x -1=1.……③ 移项,得-x =2.……④ 解得x =-2.……⑤∴原方程的解为x =-2.……⑥一个应用——分式方程的应用11.某超市用3 000元购进某种干果销售,由于销售状况良好,超市又调拨9 000元购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量比第一次的2倍还多300 kg.如果超市按9元/kg的价格出售,当大部分干果售出后,余下的600 kg按售价的八折售完.(1)该种干果第一次的进价是多少?(2)超市销售这种干果共盈利多少元?四种思想思想1数形结合思想12.如图,点A,B在数轴上,它们所表示的数分别是-4,2x+23x-5,且点A,B到原点的距离相等,求x的值.(第12题) 思想2整体思想13.已知实数a满足a2+4a-8=0,求1a+1-a+3a2-1·a2-2a+1a2+6a+9的值.思想3 消元思想14.已知2x -3y +z =0,3x -2y -6z =0,且z≠0,求x 2+y 2+z 22x 2+y 2-z 2的值.思想4 类比思想15.化简:⎝ ⎛⎭⎪⎫2a -b a +b -b a -b ÷a -2b a -b .答案专训11.解:原式=[2a +1+a +2(a +1)(a -1)]·a -1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1. 当a =5时,原式=35+1=12.2.解:由x 2-5x +1=0得x≠0,∴x+1x=5.∴⎝ ⎛⎭⎪⎫x +1x 2=25.∴x 2+1x 2=23.∴x 4+1x 4=⎝⎛⎭⎪⎫x 2+1x 22-2=232-2=527.点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答.3.解:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xyxy (x +y ).因为x +y =12,xy =9, 所以原式=122+99×12=1712.4.解:因为x +y +z≠0,所以等式的两边同时乘(x +y +z),得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z.所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z.所以x 2y +z +y 2z +x +z 2x +y=0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想.5.解:∵4x 2-4x +1=0, ∴(2x-1)2=0.∴2x=1. ∴原式=1+11=2.6.解:设x 2=y 3=z4=k≠0,则x =2k ,y =3k ,z =4k.所以x 2-y 2+2z 2xy +yz +xz=(2k)2-(3k)2+2(4k)2 2k·3k+3k·4k+2k·4k=27k226k2=2726.专训21.B2.B点拨:∵x2-2x+m=x2-2x+1+m-1=(x-1)2+m-1,∴当m-1>0,即m>1时,式子1x2-2x+m总有意义.3.②④⑤4.A 5.B6.解:方程两边同乘x2-1,得2(x-1)+k(x+1)=6.整理得(2+k)x+k-8=0.∵原分式方程有增根x=1,∴2+k+k-8=0.解得k=3.7.解:方程两边都乘x(x-3),得(2m+x)x-x(x-3)=2(x-3),即(2m+1)x=-6.①(1)当2m+1=0时,此方程无解,∴原分式方程也无解.此时m=-0.5;(2)当2m+1≠0时,要使关于x的分式方程2m+xx-3-1=2x无解,则x=0或x-3=0,即x=0或x=3.把x=0代入①,m的值不存在;把x=3代入①,得3(2m+1)=-6,解得m=-1.5.∴m的值是-0.5或-1.5.8.解:(1)原式=12x-30y15x+40y.(2)原式=5x +15y25x -y.9.解:原式=(2ab 2)3(a +b )3·(a 2-b 2)2(ab 3)2·14(a -b )2 =8a 3b 6(a +b )3·(a +b )2(a -b )2a 2b 6·14(a -b )2 =2aa +b. 当a =-12,b =23时,原式=2×⎝ ⎛⎭⎪⎫-12-12+23=-6.10.解:步骤①去分母时,没有在等号右边乘x ; 步骤②括号前面是“-”号,去括号时,没有变号; 步骤⑥前没有检验. 正确的解答过程如下:解:方程两边都乘x ,得1-(x -2)=x , 去括号,得1-x +2=x ,移项、合并同类项,得-2x =-3, 解得x =32.经检验x =32是原分式方程的解.11.解:(1)设该种干果第一次的进价是x 元/kg ,则第二次的进价是(1+20%)x 元/kg. 由题意,得9 000(1+20%)x =2×3 000x +300.解得x =5.经检验,x =5是原分式方程的解,且符合题意. 答:该种干果第一次的进价是5元/kg.(2)[3 0005+9 0005×(1+20%)-600]×9+600×9×80%-(3 000+9 000)=5 820(元).答:超市销售这种干果共盈利5 820元.12.解:由题意得2x +23x -5=4.去分母,得2x +2=4(3x -5).解得x =2.2.经检验,x =2.2是原方程的根.所以x 的值是2.2.点拨:本题运用了数形结合思想,通过观察数轴上A ,B 两点的位置情况并结合已知条件“点A ,B 到原点的距离相等”可知,A ,B 两点所表示的数互为相反数,于是可建立方程求出x 的值.13.解:原式=1a +1-a +3(a +1)(a -1)·(a -1)2(a +3)2=1a +1-a -1(a +1)(a +3)=4(a +1)(a +3)=4a 2+4a +3.由a 2+4a -8=0得a 2+4a =8,故原式=411.点拨:本题根据已知条件求出a 的值很困难,因此考虑将已知条件变形后整体代入化简后的式子.14.解:由2x -3y +z =0,3x -2y -6z =0,z≠0,得到⎩⎨⎧2x -3y =-z ,3x -2y =6z.解得⎩⎨⎧x =4z ,y =3z.所以原式=(4z )2+(3z )2+z22(4z )2+(3z )2-z 2=16z 2+9z 2+z 232z 2+9z 2-z 2=1320.点拨:本题先用含z 的式子分别表示出x 与y ,然后代入所求式子消去x ,y 这两个未知数,从而简化求值过程,体现了消元思想.15.解:原式=(2a -b )(a -b )-b (a +b )(a +b )(a -b )·a -b a -2b =2a 2-2ab -ab +b 2-ab -b 2(a +b )(a -2b )=2a 2-4ab (a +b )(a -2b )=2a (a -2b )(a +b )(a -2b )=2aa +b.点拨:本题是类比思想的典范,分式的性质、运算顺序、运算律都可以类比分数的相关知识.专训2 分式的意义及性质的四种题型名师点金:1.从以下几个方面透彻理解分式的意义:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零;(4)分式值为正数⇔分子、分母同号;(5)分式值为负数⇔分子、分母异号.2.分式的基本性质是约分、通分的依据,而约分、通分为分式的化简求值奠定了基础.)分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m中,不是分式的式子有( ) A .1个 B .2个 C .3个 D .4个2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个.分式有无意义的条件3.无论a 取何值,下列分式总有意义的是( )A .a +1a 2B .a -1a 2+1C .1a 2-1D .1a +1 4.当x =________时,分式x -1x 2-1无意义. 5.已知不论x 为何实数,分式3x +5x 2-6x +m总有意义,试求m 的取值范围.分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是( ) A .x <-2 B .x <1C .x >-2且x≠1D .x >17.若分式3x -42-x的值为负数,则x 的取值范围是________. 8.已知分式a -1a 2-b 2的值为0,求a 的值及b 的取值范围.分式的基本性质及其应用9.下列各式正确的是( )A.ab=a2b2B.ab=aba+bC.ab=a+cb+cD.ab=abb210.要使式子1x-3=x+2x2-x-6从左到右变形成立,x应满足的条件是( )A.x>-2 B.x=-2 C.x<-2 D.x≠-211.已知x4=y6=z7≠0,求x+2y+3z6x-5y+4z的值.12.已知x+y+z=0,xyz≠0,求x|y+z|+y|z+x|+z|x+y|的值.专训2 分式运算的八种技巧名师点金分式的加减运算中起关键作用的就是通分.但对某些较复杂或具有特定结构的题目,使用一般方法有时计算量太大,容易出错,有时甚至算不出来,若能结合题目结构特征,灵活运用相关性质、方法、解题技巧,选择恰当的运算方法与技能,常常能达到化繁为简、事半功倍的效果.约分计算法1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.整体通分法2.计算:a -2+4a +2.顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.换元通分法4.计算:(3m -2n)+(3m -2n )33m -2n +1-(3m -2n)2+2n -3m 3m -2n -1.裂项相消法⎝ ⎛⎭⎪⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abc ab +bc +ac的值.倒数求值法7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.答案专训11.C 点拨:4x -25,2m ,x 2π+1不是分式. 2.6 点拨:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,所以共可构成6个分式.3.B 4.±15.解:x 2-6x +m =(x -3)2+(m -9).因为(x -3)2≥0,所以当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.6.C 点拨:x 2-2x +1=(x -1)2.因为分式的值为正数,所以x +2>0且x -1≠0.解得x >-2且x≠1.7.x >2或x <438.解:因为分式a -1a 2-b 2的值为0,所以a -1=0且a 2-b 2≠0.解得a =1且b≠±1. 9.D 10.D11.解:设x 4=y 6=z 7=k(k≠0),则x =4k ,y =6k ,z =7k. 所以x +2y +3z 6x -5y +4z =4k +2×6k+3×7k 6×4k-5×6k+4×7k =37k 22k =3722. 12.解:由x +y +z =0,xyz≠0可知,x ,y ,z 必为两正一负或两负一正.当x ,y ,z 为两正一负时,不妨设x >0,y >0,z <0,则原式=x |-x|+y |-y|+z |-z|=1+1-1=1;当x ,y ,z 为两负一正时,不妨设x >0,y <0,z <0,则原式=x |-x|+y |-y|+z |-z|=1-1-1=-1. 综上所述,所求式子的值为1或-1.专训21.解:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 点拨:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程.2.解:原式=a -21+4a +2=a 2-4a +2+4a +2=a 2a +2. 点拨:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减.3.解:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1)=8x 7x 8-1. 点拨:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.4.解:设3m -2n =x ,则原式=x +x 3x +1-x 2-x x -1= x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x (x +1)(x -1)=4n -6m (3m -2n +1)(3m -2n -1). 5.解:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100=100a (a +100).点拨:对于分子是1,分母是相差为1的两个整式的积的分式相加减,常用1n(n+1)=1 n -1n+1进行裂项,然后相加减,这样可以抵消一些项.6.解:1a+1b=16,1b+1c=19,1a+1c=115,上面各式两边分别相加,得⎝⎛⎭⎪⎫1a+1b+1c×2=16+19+115,所以1a+1b+1c=31180.易知abc≠0,所以abcab+bc+ac=11c+1a+1b=18031.7.解:由xx2-3x+1=-1,知x≠0,所以x2-3x+1x=-1.所以x-3+1x=-1.即x+1x=2.所以x4-9x2+1x2=x2-9+1x2=⎝⎛⎭⎪⎫x+1x2-11=22-11=-7.所以x2x4-9x2+1=-17.8.解:以x,y为主元,将已知的两个等式化为⎩⎨⎧4x-3y=6z,x+2y=7z.解得x=3z,y=2z.因为xyz≠0,所以z≠0.所以原式=5×9z2+2×4z2-z22×9z2-3×4z2-10z2=-13.点拨:此题无法直接求出x,y,z的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.专训3 巧用分式方程的解求字母的值名师点金:巧用分式方程的解求字母的值主要体现在以下几方面:(1)利用方程解的定义求字母的值,解决这类问题的方法是将其解代入分式方程,即可求出待定字母的值;(2)利用分式方程有解、有增根、无解求字母的取值范围或值时,一般都是列出关于待定字母的不等式或方程,通过解不等式或方程得到字母的取值范围或值.利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=m x -3+2有解,求m 的取值范围.利用分式方程有增根求字母的值3.若分式方程x x -1-m 1-x=2有增根,则m =________. 4.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.利用分式方程无解求字母的值5.(中考·东营)若分式方程x -a x +1=a 无解,则a =________. 6.已知关于x 的方程x -4x -3-m -4=m 3-x无解,求m 的值.7.已知关于x 的分式方程x +a x -2-5x=1. (1)若方程的增根为x =2,求a 的值;(2)若方程有增根,求a 的值;(3)若方程无解,求a 的值.答案专训1.解:解分式方程32x =1x -1,得x =3. 经检验,x =3是该方程的解.将x =3代入2x +4=m x, 得27=m 3.解得m =67. ∴m 2-2m =⎝ ⎛⎭⎪⎫672-2×67=-4849. 2.解:去分母并整理,得x +m -4=0.解得x =4-m.∵分式方程有解,∴x=4-m 不能为增根.∴4-m≠3.解得m≠1.∴当m≠1时,原分式方程有解.3.-14.解:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0,所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3.当x =3时,m +2×(3-3)=3+3,解得m =6;当x=-3时,m+2×(-3-3)=-3+3,解得m=12.综上所述,原方程的增根是x=3或x=-3.当x=3时,m=6;当x=-3时,m=12.点拨:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m的值.5.1或-16.解:原方程可化为(m+3)x=4m+8.由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m+3=0且4m+8≠0,此时m=-3;(2)若整式方程的根是原方程的增根,则4m+8m+3=3,解得m=1.经检验,m=1是方程4m+8m+3=3的解.综上所述,m的值为-3或1.7.解:(1)原方程去分母并整理,得(3-a)x=10.因为原方程的增根为x=2,所以(3-a)×2=10.解得a=-2.(2)因为原分式方程有增根,所以x(x-2)=0.解得x=0或x=2.因为x=0不可能是整式方程(3-a)x=10的解,所以原分式方程的增根为x=2.所以(3-a)×2=10.解得a=-2.(3)①当3-a=0,即a=3时,整式方程(3-a)x=10无解,则原分式方程也无解;②当3-a≠0时,要使原方程无解,则由(2)知,此时a=-2.综上所述,a的值为3或-2.点拨:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解.。

(完整版)新人教版八年级下数学第十六章分式单元检测题及答案

(完整版)新人教版八年级下数学第十六章分式单元检测题及答案

八年级(下)数学单元检测题(第十六章 分式)一、选择题(每小题3分,共30分)1.下列式子是分式的是( B )A .2xB .x 2C .πx D .2y x + 2.下列各式计算正确的是(C )A .11--=b a b aB .ab b a b 2=C .()0,≠=a ma na m nD .am a n m n ++= 3.下列各分式中,最简分式是( A )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222yxy x y x +-- 4.化简2293m m m --的结果是( B ) A.3+m m B.3+-m m C 。

3-m m D 。

m m -3 5.若把分式xy y x +中的x 和y 都扩大2倍,那么分式的值( C ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍6.若分式方程xa x a x +-=+-321有增根,则a 的值是( D ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则cb a +的值是( D ) A .54 B. 47 C.1 D 。

45 8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( A )A .x x -=+306030100B .306030100-=+x x C .x x +=-306030100 D .306030100+=-x x 9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。

设原计划行军的速度为xkm/h ,,则可列方程( D )A .1%206060++=x x B. 1%206060-+=x x C 。

八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)

八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)

八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)一、选择题1.若分式y 1y 3-+的值是0,则y 的值是( ) A .3-B .0C .1D .1或3-2.下列分式中,是最简分式的是( )A .2xy xB .3333x x +- C .x yx y+- D .211x x +- 3.计算1a a÷的结果为( ) A .a B .21aC .1D .2a4.下列等式成立的是( )A .4453m n m n m n⋅=B .213m n m n +=+ C .2121m m n n=++D .m mm n m n=--++5.下列方程①4x x y y -=+,②15x =,③13πx x -=-,④11x a b =-中,是关于x 的分式方程的有( )个. A .1B .2C .3D .46.将分式2x yx y-中的x y ,的值同时扩大为原来的10倍,则分式的值( )A .扩大1000倍B .扩大100倍C .扩大10倍D .不变7.设11a b p a b =-++,1111q a b =-++则p ,q 的关系是( ) A .p q = B .p q > C .p q =-D .p q <8.根据规划设计,某工程队准备修建一条长1120米的盲道.由于情况改变,实际每天修建盲道的长度比原计划增加10米,结果提前2天完成了这一任务,假设原计划每天修建盲道x 米,根据题意可列方程为( )A .11201120210x x -=+ B .11201120210x x -=- C .11201120210x x-=+ D .11201120210x x-=-9.下列运算正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()2139--= 10.成人体内成熟的红细胞的平均直径一般为0.000007245m ,保留三个有效数字的近似数,可以用科学记数法表示为( ) A .7.25×10﹣5m B .7.25×106m C .7.25×10﹣6mD .7.24×10﹣6m二、填空题11.分式256x y 和214xy 的最简公分母为 . 12.若12a b =,则分式3a b b+= . 13.已知,ab=-1,a+b=2,则式子b aa b+= .14.某化肥厂原计划五月份生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨.设原计划每天生产化肥x 吨.根据题意,列方程为 .三、解答题15.计算:.16.先化简,再求值:(21a a - ﹣a ﹣1)÷ 21a a - ,其中a =﹣2. 17.先化简,再求值:22121121x x x x x --⎛⎫-÷⎪+++⎝⎭,其中x 是1-,1,2中的一个合适的数.18.我国5G 手机产业迅速发展,5G 网络建成后,下载完一部1000MB 大小的电影,使用5G 手机比4G 手机少花190秒.已知使用5G 手机比4G 手机每秒多下载95MB ,求使用5G 手机每秒下载多少MB ?四、综合题19.我市某文具店准备购进A 、B 两种文具,A 种文具每件的进价比B 种文具每件的进价多20元,用4000元购进A 种文具的数量和用2400元购进B 种文具的数量相同.文具店将A 种文具每件的售价定为80元,B 种文具每件的售价定为45元.(1)A 种文具每件的进价和B 种文具每件的进价各是多少元?(2)文具店计划用不超过1600元的资金购进A 、B 两种文具共40件,其中A 种文具的数量不低于17件,该文具店有几种进货方案?(3)在(2)的条件下,文具店利用销售这40件文具获得的最大利润再次购进A 、B 两种文具(两种文具都买),直接写出再次购进A 、B 两种文具获利最大的进货方案.20.阅读下列材料:我们知道,分子比分母小的数叫做“真分数”:分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”:当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221x x +这样的分式就是真分式,假分数74可以化成314+(即314)带分数的形式,类似的,假分式也可以化为带分式.如:()12121111x x x x x +--==-+++. 解决下列问题: (1)分式 5x 是 (填“真分式”或“假分式”);假分式52x x ++可化为带分式 形式;(2)如果分式41x x --的值为整数,求满足条件的整数x 的值; (3)若分式22382x x ++的值为m ,则m 的取值范围是 (直接写出结果)21.佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,且很快售完,由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次购进的数量多20千克.(1)求第一次购进该水果的进价?(2)已知第一次购进的水果以每千克8元很快售完,第二次购进的水果,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?答案解析部分1.【答案】C【解析】【解答】解:由题意得:y-1=0且y+3≠0解得:y=1; 故答案为:C.【分析】分式值为0的条件:分子为0且分母不为0,据此解答即可.2.【答案】C【解析】【解答】解:A 、2xy yx x= 故此选项不合题意; B 、 ()()3133133311x x x x x x +++==--- 故此选项不合题意; C 、x yx y+- 是最简分式,故此选项符合题意; D 、 ()()21111111x x x x x x ++==-+-- 故此选项不合题意; 【分析】把一个分式中相同的因式约去的过程叫做约分,如果分式中没有可约的因式,则为最简分式,据此判断.3.【答案】B【解析】【解答】解:21111a aa a a ÷=⋅= 故答案为:B .【分析】利用分式的乘除法则计算求解即可。

八年级下期数学第十六章分式单元测试题及答案

八年级下期数学第十六章分式单元测试题及答案

八年级下期数学第十六章分式单元测试题及答案一、选择题(本题共16分,每小题2分)1、在x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个2、下列各式中,一定成立的是( )A 、1-=---b a a b B 、()222b a b a -=- C 、y x yx xy y x -=---1222 D 、()2222a b b ab a -=+- 3、与分式23.015.0+-x x 的值,始终相等的是( ) A 、2315+-x x B 、203105+-x x C 、2032+-x x D 、2315 4、下列分式中的最简分式(不能再约分的)是( )A 、112++a aB 、aa a 222++ C 、cd ab 42 D 、2)1(22++a a 5、下列说法正确的是 ( )A 、若n m >,则88->-n mB 、42≤-x 的解集是2≥xC 、当m =32时, m m 23-无意义 D 、分式2)2(++m m m 总有意义6、下列从左边到右边的变形正确的是( )A 、)32(4124822b a ab ab ab b a -=--B 、22)21(41-=+-x x x C 、mm m 2321=+ D 、1=-+-b a b b a a7、若分式)1)(4()4)(4(--+-m m m m 的值为零,则m = ( )A 、±4B 、 4C 、 4-D 、 18、下列化简正确的是 ( )A 、b a b a b a +=++2B 、1-=+--b a b aC 、1-=---b a b aD 、b a b a b a -=--22二、填空题(本题共16分,每小题2分)1、 当x 时,分式42+-x x 有意义。

2、若32=a b ,则=+-ba b a 。

3、当x 时,分式242+-x x 的无意义;(1分) 当x 时,分式242+-x x 值为零;(1分) 4、计算(结果用科学计数技术法表示)(1) (3×10-8)×(4×103)= (1分) (2) (2×10-3)2÷(10-3)3 = (1分)5、化简:ab bc a 2= ,(1分) 12122+--x x x -2122x x -- = ;(1分) 6、化简:a y ya 242-⋅= ,(1分) =-÷+-)1(11m m m . (1分) 7、如果分式333++x x x 与的差为2 ,那么x 的值是 . 8、若=++≠==a c b a a c b a 则),0(753 .三、化简、计算(本题共25分,第1—5题每小题4分,第6题5分)1、a b a b a b a -+-+2、y y y y y y 93322-⋅⎪⎪⎭⎫ ⎝⎛+--3、 19)1(961222--⨯+÷++-a a a a a a4、x x x x x x x x -÷+----+4)44122(225、2224442yx x y x y x y x y y x x +÷--+⋅-6、已知:ba ab ab b a ++-==+21,4求:的值。

新冀教版八年级数学上册第十六章分式单元测试(附答案)

新冀教版八年级数学上册第十六章分式单元测试(附答案)

新冀教版八年级数学上册第十六章分式单元测试【知识要点】一、分式的概念1形如__________________________________________________叫做分式.2.分式有意义的条件是_____________,分式的值为零的条件是____________.二、分式的基本性质1.分式的基本性质:分式的分子与分母____________________________,分式的值不变.用式子表示为:_________________________,(其中A、B、C是整式,0C≠).2.分式的变号法则:_______________________________,可简记为“________,值不变”.3.通分:根据分式的基本性质,分子和分母同乘以适当的整式,不改变分式的值.把几个异分母的分式化成同分母的分式,这样的分式变形叫做分式的通分.通分的关键是__________________.最简公分母用下面的方法确定:(1)最简公分母的系数,取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取(3) 相同字母的幂的因式取指数最大的特别注意:为了确定最简公分母,通常先将各分母分解因式.4.约分:根据分式的基本性质,把一个分式的分子和分母的________约去,这样的分式变形叫做分式的约分.约分的关键是确定分子与分母的__________.约分的结果应化为最简分式.三、分式的运算法则1.分式的乘法法则:_________________________________________用式子表示为:a c a cb d b d⋅⋅=⋅.2.分式的除法法则:__________________________________________用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅.3.分式的乘方法则:___________________________,用式子表示为:()n nna ab b=.4.分式的加减法法则:同分母分式相加减,_________________异分母分式相加减,_______________________________用式子表示为:a c a bc d c±±=;a c ad bc ad bcb d bd bd bd±±=±=.5.分式的混合运算分式的混合运算,关键是弄清楚运算顺序.进行运算时要先算__________,再算___________,最后算__________;有括号要先算括号里面的;计算结果_________________________.四、分式方程1.分式方程的特征是_________________,这是分式方程与整式方程的根本区别. 2.解分式方程的基本思路是“___________”,即把分式方程化为我们熟悉的____________,转化的途径是“____________”,即方程两边都乘以____________.3.解分式方程的一般步骤:①_________________________________________;②_____________;③_______________,把整式方程的解代人__________________,使__________________不等于零的解是原分式方程的解,使__________________等于零的解不是原分式方程的解.注意:因为解分式方程时可能产生_____________,所以解分式方程必须_________.【例题精析】考点一:分式的有关概念 1、分式的概念例1:在 x 1 ,32ba ,-0.5xy+y2,a cb + ,yzx +-5 , πa 3中,是分式的有 ;练习1:在下列有理式中,哪些是整式?哪些是分式?43a ,a 34,3n m +,n m a -8,xx 2,π45-x2、分式有意义:例2:当x 取什么值时,下列分式有意义:(1) 32-x x (2) 141+-x x (3) 422+x x(4)1212+-+x x x (5) 4-x x(6)21102x x -+3、分式的值为零:例3:当x 为什么数时,下列分式的值为零(1) 5412+-x x (2) 221--x x练习2:(1) 13+x x (2) 392--x x例4:(1)当x 时,分式x -84的值为正; (2)当x 时,分式1212+-x x的值为负.练习3:(1) 若分式122+--m m m 的值为零,则m=(2) 若分式x417--的值为正数,则x 范围是 (3) 若分式122+-x x 的值为负,则x 范围是(4) 若分式632-x x无意义,则x= 考点二:分式的性质: 1、基本性质例5:下列等式的右边是怎样从左边得到的?(1)22a acb bc=;(0)c ≠ (2)32x x xy y =.例6:在什么条件下,下列各等式中的左式可以化为右式? (1)22(3)2(3)(2)x x x x +=-+-; (2)232132x x x x-=-. 练习4:填空:(1)b a ab b a 2)(=+ (2)ba ab a 22)(2=- (3))(22yx x xy x +=+ (4)2)(22-=-x x x x (5))()(222yx y x y x -=+- (6))(232622=-++x x x例7:不改变分式的值,把下列分式的值,把下列各式的分子与分母中各项的系数都化为整数:(1)=-+y x yx 32213221 (2)=+-+7.04.03.02.01.0b a b a2、分式的符号法则:例8:不改变分式的值,使下列分子与分母都不含“-”号: (1)=-yx52 (2)=-n m 2 (3)=--b a 73 (4)=--n m 310例9:不改变分式的值,使下列各式的分子与分母按降幂排列,并使最高次项系数是正数:(1)22;3x x --+ (2)22132x x x +--- (3)22312x x x--+--练习5: 1、填空:)()()(-+=+--=+-=-+yx y x y x y x y x 2、(1)如果把分式63xx y-中的x,y 都扩大10倍,那么分式的值一定( )A.扩大10倍B.扩大100倍C.缩小10倍D.不变 (2)在分式a bab+(a 、b 为正数)中,字母a 、b 的值分别扩大为原来的2倍,则分式的值是原来的( )倍? 3.下列从左到右的变形正确的是( ).A .122122x y x y x y x y --=++ B .0.220.22a b a b a b a b ++=++ C .11x x x y x y+--=-- D .a b a b a b a b +-=-+ 3、分式的通分、约分:例10:下面的等式中右式是怎样从左式得到的?这种变换的根据是什么?(1)23326384a b b a b a =; (2)222x xy xx y x y+=--. 最简分式:例11:约分:(1)2322515a bc ab c - (2)22969x x x -++ (3)2239m mm --例12:通分: (1)2232a b a b ab c -与 (2)2355x x x x -+与 (3)2142x x -与214x -. 最简公分母是:考点三、分式的运算例13.计算:(1))(22a b abb a -÷-; (2)a a --+242;(3)a a a 2)441(2+⋅-+; (4))242(2222aa a a a a -+-⋅+;(5)11)1211(22-÷-++-x x x x x ; (6)x x x x xx x --+⋅+÷+--36)3(446222.考点四、分式的化简求值例14.(1)已知:a =3,2b =-,求222)11(b ab a ab b a ++⋅+的值.(2)先化简xx x x x x x 1)121(22÷+---+,再选择一个适当的x 值代入并求值.例15.(1)已知(3)(2)0x x -=,求xx x x x x x x 36)431(22+-+÷----的值.(2)已知12x x -+=,求22x x -+的值.考点五、零指数和负整指数练习6:(1)3132)2(b a b a - (2)3132)()(---bc a(3)2322123)5()3(z xy z y x --- (4)33222)4()3(----mn n m例16:计算:(1)2231)32(--÷x xy (2)3323)25()23(--÷-y x xy例17:计算:(1)2321326)3(------b a b a b a (2)23232222)()3()()2(--⋅⋅ab b a b a ab考点五、科学记数法例18.一种细胞的直径约为61.5610-⨯米,那么它的一百万倍相当于( ).A .玻璃跳棋棋子的直径B .数学课本的宽度C .初中学生小丽的身高D .五层楼房的高度练习7:用科学计数法表示下列小数:0.1= 0.01= 0.001= 0.0001= 0.00001= 0.000001= 0.000 000 000 001= 0.0012= 0.000 000 345= -0.00003= 0.000 000 010 8=310102112)1(,,)384(,1,)1.0(,3,)21(,1001----------a 、计算例19:把下列科学计数法表示的数还原成小数: =⨯-4105.3 =⨯-81034.2考点六、解分式方程 例20.解方程:(1)132x x =-; (2)11522xx x-+=--.例21.解关于x 的方程:01m nx x-=-(m n ≠).例22.已知:公式21111R R R +=中,(R )1R ≠,求出表示R 2的公式.练习14:解下列分式方程(4)2142111x x x x x -+-=+--(5)11114736x x x x -=-++++3(1)2122x x x =---33(2)122x x x -+=--22(3)1212x x x =--+例23:(1)关于x 的方程2323=---x a x x 有增根,那么增根是多少?此时a 是多少?(2)当a 为何值时,关于x 的方程234222+=-+-x x ax x 有增根?(3)当a 为何值时,关于x 的方程21122---+=--x x x x x x m 的解为正数?【创新题型】例24.请你阅读下列计算过程,再回答所提出的问题.23311x x x---- =()()33111x x x x --+-- (A ) = ()()()()()3131111x x x x x x +--+-+- (B ) = x - 3 - 3 (x +1) (C ) = -2x - 6 (D )(1) 上述计算过程中, 哪一步开始出现错误? __________;(2) 从(B )到(C )是否正确? _________;若不正确,错误的原因是 _________. (3) 请你写出正确的解答过程.例25.对于正数x ,规定f(x)=1x x +.例如33(3)134f ==+,1113()13413f ==+; 计算:++)20061()20071(f f …+++++)2()1()1()21(f f f f …+)2007()2006(f f += .【专题复习】一、分式的条件求值例1.已知43x y =,则分式3223x yx y --的值为 . 例2.已知2232x y xy -=(x 、y 均为正数),则22x yx y+-的值为 .例3.已知115a b a b +=+,求b aa b+的值.例4.若2210a a --=,求代数式441a a +的值.二、含字母系数的分式方程例5.m 为何值时,关于x 的方程361(1)x m x x x x ++=--有解? 例6.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ). A .1a < B .1a <且0a ≠ C .1a ≤ D .1a ≤且0a ≠ 例7.已知关于x 的方程233x m x x -=--有正数解,则( ). A .0m >且3m ≠ B .6m <且3m ≠ C .0m < D .6m > 例8.当m 为何值时,关于x 的方程223242mx x x x +=--+无解?.。

第16章分式单元复习训练卷2021-2022学年华东师大版八年级数学下册(word版含答案)

第16章分式单元复习训练卷2021-2022学年华东师大版八年级数学下册(word版含答案)

华东师大版八年级数学下册第16章 分式单元复习训练卷一、选择题(共10小题,每小题4分,共40分)1. 若分式|x|-1x -1的值等于0,则x 的值为( ) A .-1 B .0 C .1 D .±12. 某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ) A .8-a b 分钟 B .8a +b分钟 C .(8-a b +1)分钟 D .8-a -b b分钟 3. 若x ,y 的值均扩大为原来的5倍,则下列分式的值保持不变的是( ) A.2+x 2+y B.x 2y 3 C.x +y x 2-y 2 D.x 3(x +y)34. 下列说法:①解分式方程一定会产生增根;②方程x -2x2-4x +4=0的根为x =2;③方程12x =12x -4的最简公分母为2x(2x -4);④x +1x -1=1+1x +1是分式方程. 其中正确的个数有( )A .1个B .2个C .3个D .4个5. 已知两个分式:A =-4x 2-4,B =1x +2+12-x,其中x≠±2,则A 与B 的关系是( ) A .相等 B .互为倒数C .互为相反数D .A 大于B6. 化简⎝⎛⎭⎫1-2x -1x 2÷⎝⎛⎭⎫1-1x 2的结果为( ) A.x -1x +1 B.x +1x -1 C.x +1x D.x -1x 7. 如图,点A 、B 在数轴上,它们所对应的数分别是-4与2x +23x -5,且点A 、B 到原点的距离相等,则x 的值为( )A .2.2B .2C .4D .38. 已知13m -12n =1,则4n +3mn -6m 9m +6mn -6n的值是( ) A .-53 B .-54 C.58 D.539.由(1+c 2+c -12 )值的正负可以比较A =1+c 2+c 与12的大小,下列正确的是( ) A .当c =-2时,A =12 B .当c =0时,A≠12C .当c <-2时,A >12D .当c <0时,A <1210. 小明用18元买售价相同的一次性医用口罩,小美用290元买售价相同的N95口罩(两人的钱恰好用完),已知每个N95口罩比一次性医用口罩贵27.2元.且小明和小美买到数量相同的口罩.设一次性医用口罩每个x 元,根据题意可列方程为( )A.18x =290x +27.2B.18x =290x -27.2C.18x +27.2=290xD.18x -27.2=290x二.填空题(共6小题,每小题4分,共24分)11. 计算:3y 10x ÷3y 25x 2 =________. 12.计算:2x x -1 -x x -1=__________. 13.若分式x 2-2x x的值为0,则x 的值是____. 14.化简:(1x -4 -8x 2-16)·(x +4)=______. 15. 中华优秀传统文化是中华民族的“根”和“魂”.为了大力弘扬中华优秀传统文化,某校决定开展名著阅读活动.用3600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2400元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x 元,则符合题意的方程是__ __.16.观察下列一组数:32,1,710,917,1126,…,它们是按一定规律排列的,那么这组数的第n 个数是__________.(n 为正整数)三.解答题(共6小题, 56分)17.(6分) 化简:⎝⎛⎭⎪⎫2a -b a +b -b a -b ÷a -2b a -b.18.(8分) 先化简:⎝ ⎛⎭⎪⎫x -4-x x -1÷x 2-4x +4x -1,并将x 从0,1,2中选一个合理的数代入求值.19.(8分) 已知x 2+y 2+8x +6y +25=0,求x 2-4y 2x 2+4xy +4y 2-x x +2y的值.20.(10分) 解下列分式方程:(1)1-x x -2+2=12-x;(2)3x 2-9+x x -3=1.21.(12分) 某工厂计划在规定时间内生产24 000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人按原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排多少工人.22.(12分) 阅读下面的材料,解答后面的问题.解方程:x -1x -4x x -1=0. 解:设y =x -1x ,则原方程可化为y -4y=0,方程两边同时乘以y ,得y 2-4=0,解得y 1=2,y 2=-2.经检验,y 1=2,y 2=-2都是方程y -4y=0的解. 当y =2时,x -1x =2,解得x =-1;当y =-2时,x -1x =-2,解得x =13. 经检验,x =-1或x =13都是原分式方程的解.∴原分式方程的解为x =-1或x =13. 上述这种解分式方程的方法称为换元法.问题:(1)若在方程x -14x -x x -1=0中,设y =x -1x ,则原方程可化为______________; (2)若在方程x -1x +1-4x +4x -1=0中,设y =x -1x +1,则原方程可化为_____________; (3)模仿上述换元法解方程:x -1x +2-3x -1-1=0.参考答案1-5ACDAA 6-10AABCA11.x 2y12. x x -113.214.115.3600x -24000.8x=4 16.2n +1n 2+117.解:原式=(2a -b )(a -b )-b (a +b )(a +b )(a -b )·a -b a -2b =2a 2-2ab -ab +b 2-ab -b 2(a +b )(a -2b )=2a 2-4ab (a +b )(a -2b )=2a (a -2b )(a +b )(a -2b )=2a a +b. 18.解:原式=x 2-x -4+x x -1·x -1x 2-4x +4=(x +2)(x -2)x -1·x -1(x -2)2=x +2x -2.因为x -1≠0,x -2≠0,所以x≠1,x≠2.所以0,1,2中只能选0.当x =0时,原式=-1.19.解:因为x 2+y 2+8x +6y +25=0,所以(x +4)2+(y +3)2=0.所以x =-4,y =-3. x 2-4y 2x 2+4xy +4y 2-x x +2y =(x +2y )(x -2y )(x +2y )2-x x +2y =x -2y x +2y -x x +2y =-2y x +2y.当x =-4,y =-3时,原式=-35. 20.(1)解:原方程无解.(2)解:x =-4.21.解:(1)设原计划每天生产零件x 个,由题意得24 000x =24 000+300x +30,解得x =2 400.经检验,x =2 400是原方程的解,且符合题意,所以规定的天数为24 000÷2 400=10(天).答:原计划每天生产的零件个数是2 400个,规定的天数是10天.(2)设原计划安排y 个工人.由题意得[5×20×(1+20%)×2 400y+2 400]×(10-2)=24 000,解得y =480.经检验,y =480是原方程的解,且符合题意.答:原计划安排480个工人.22.解:(1)y 4-1y=0 (2)y -4y=0 (3)原方程可化为x -1x +2-x +2x -1=0,①,设y =x -1x +2,则方程①可化为y -1y =0.方程两边同时乘以y ,得y 2-1=0,解得y 1=1,y 2=-1.经检验,y 1=1,y 2=-1都是方程y -1y=0的解.当y =1时,x -1x +2=1,该方程无解;当y =-1时,x -1x +2=-1,解得x =-12,经检验,x =-12是原分式方程的解.∴原分式方程的解为x =-12.。

数学:第16章《分式》整章水平测试(一)(人教版八年级下)

数学:第16章《分式》整章水平测试(一)(人教版八年级下)

第十六章《分式》整章水平测试(一)一、选择题:(每小题3分,共24分)1、当x=2时,其值为零的分式是 ( ) 22A.32x x x --+ 1B.2x - 24C.1x x -- 2D.1x x ++ 2、使分式22256x x x x +-++的值等于零,则x 的值为 ( ) A.1 B.-2 C.1或-2 D.-1或23、分式()()113x x x -+-有意义,则x 应满足条件 ( ) A 、1-≠x B 、3≠x C 、1-≠x 或3≠x D 、1-≠x 且3≠x4、分式ax y 434+,1142--x x ,y x y xy x ++-22,2222b ab ab a -+中,最简分式有( ) A.1个 B.2个 C.3个 D.4个.5、若x 等于它的倒数,则分式1332622+-+÷--+x x x x x x 的值为 ( ) A.-1 B.5 C.-1或5 D.-41或4. 6.已知为整数,且918232322-++-++x x x x 为整数,则符合条件的有( ) A .2个 B .3个 C .4个 D .5个7、使方程(m+1)x=m-1有解的m 值是 ( )A.0m ≠B.1m ≠-C.1m =±D. 1m ≠8、现有20%的盐水10千克,问加食盐多少千克,才能恰好配得40%的盐水?解设加食盐x 千克,则正确的方程是 ( )A 、004010=+x xB 、0040101002010=++⨯x xC 、004010020=+x xD 、0040100201002010=++⨯x x 二、填空题(每小题3分,共24分)9、对于分式521-+x x ,当x 时,该分式有意义。

10、当x= 时,分式242--x x 的值为零. 11、化简:1342+⋅⎪⎭⎫ ⎝⎛+-x x x 得__________。

12、计算:3)3(32-+-x x x x =_________。

新人教版八年级数学下册第十六章分式过关练习题附答案-副本(最新整理)

新人教版八年级数学下册第十六章分式过关练习题附答案-副本(最新整理)

分式综合检测题A 卷一、选择题1.在下列各式中,分式的个数是 ( ),,,,,,22a 1a b +1a x -2x x 2m -x y x+A .3 B .4 C .5 D .22.下列各式中不是分式的是( )A .B .C .D . 3x x x ab xy 11x-3.已知分式的值等于零,的值为( )2133x x -+x A . B . C . D .11±1-124.有理数、 在数轴上的对应点如图:a b代数式的值( )a b a b-+A .大于0 B .小于0 C .等于0 D .不能确定5.如果分式有意义,那么的取值范围是 ( )13x x +-x A . B . C . D .0x ≠1x ≠-3x ≠±3x =±6.下列式子正确的是( )A .B .C .D .22b b a a =0a b a b +=+1a b a b -+=--0.10.330.22a b a b a b a b--=++7.表示一个整数,则整数的可能取值的个数是( )61x+x A .8 B .6 C .5 D .48.汽车从甲地开往乙地,每小时行驶千米,小时后可以到达,如果每小时多行驶1v t 2v 千米,那么可以提前到达的小时数是 ( )A .B .C .D .212v t v v +112v t v v +1212v v v v +1221v t v t v v -二、填空题(每空3分,共30分)1.若分式中的和都扩大到10和10,则分式的值扩大__________倍.ab a b+a b a b 2.分式,,的最简公分母是___________.1x 224x x -32y x-3.当时,方程的解是___________.4m ≠4mx n x -=4.计算__________.11r r s r s ⎛⎫+= ⎪+⎝⎭5.已知,用含有、的代数式表示,则_________.()()2420b k k a k =--≠b k a a =6.如果有增根,那么增根是_________.11322x x x-+=--7.如果 ,那么_________.213x y x -=x y =8.(08年宁夏回族自治区)某市对一段全长1500米的道路进行改造.原计划每天修米,x 为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了 天。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学第十六章《分式》整章水平测试(D )一、选择题1. 下列各式:()2221451, , , 532x x y x x xπ---其中分式共有( ) A .1个 B .2个 C .3个 D .4个2.下列计算正确的是( ) A.m m m x x x 2=+ B.22=-n n x x C.3332x x x =⋅ D.264x x x -÷=3. 下列约分正确的是( )A .313m m m +=+B .212y x y x -=-+ C .123369+=+a b a b D .()()y x a b y b a x =-- 4.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( ) A.y x 23 B.223y x C.y x 232 D.2323yx 5.计算xx -++1111的正确结果是( ) A.0 B.212x x - C.212x - D.122-x 6. 在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )A .221v v +千米B .2121v v v v +千米C .21212v v v v +千米 D .无法确定 7. 某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为( )A .x +48720─548720= B .x +=+48720548720 C .572048720=-xD .-48720x +48720=5 8. 若0≠-=y x xy ,则分式=-xy 11( ) A .xy1 B .x y - C .1 D .-1 9. 已知xy x y +=1,yz y z +=2,zx z x +=3,则x 的值是( )A .1 B.125 C.512D.-1 10.小明骑自行车沿公路以akm/h 的速度行走全程的一半,又以bkm/h 的速度行走余下的一半路程;小明骑自行车以akm/h 的速度走全程时间的一半,又以bkm/h 的速度行走另一半时间(a b ≠),则谁走完全程所用的时间较少?( )A .小明 B.小刚 C.时间相同 D.无法确定二、填空题11. 分式12x ,212y ,15xy-的最简公分母为 . 12. 约分:(1)=b a ab 2205__________,(2)=+--96922x x x __________. 13. 方程xx 527=-的解是 . 14. 使分式2341x x -+的值是负数x 的取值范围是 . 15. 一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时.16. 一个两位数的十位数字是6,如果把十位数字与个位数字对调,那么所得的两位数与原来的两位数之比是74,原来得两位数是______________. 17. 若13x x +=,则4221x x x ++__________. 18. 对于正数x ,规定f (x )= x 1x +,例如f (3)=33134=+,f (13)=1131413=+, 计算f (12006)+ f (12005)+ f (12004)+ …f (13)+ f (12x )+ f (1)+ f (1)+ f (2)+ f (3)+ … + f (2004)+ f (2005)+ f (2006)= .三、解答题19.计算:(1) 333x x x --- (2) 222246⎪⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛x y x y20.计算:(1)bc c b ab b a +-+ (2)÷+--4412a a a 214a a --21.计算:⎪⎭⎫ ⎝⎛-÷⎪⎭⎫⎝⎛----42318521q p q p22.计算:2222221m n mn n mn m mn n m n n ⎡⎤-+-⋅⎢⎥-+--⎣⎦23.解分式方程:(1)3215122=-+-x x x (2)1637222-=-++x x x x x24.先化简,再求值: 已知12+=x ,求xx x x x x x 112122÷⎪⎭⎫ ⎝⎛+---+的值25.一根约为1m 长、直径为80mm 的圆柱形的光纤预制棒,可拉成至少400km 长的光纤.试问:光纤预制棒被拉成400km 时,12cm 是这种光纤此时的横截面积的多少倍?(结果保留两位有效数字,要用到的公式:圆柱体体积=底面圆面积×圆柱的高)26.从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km 的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km /h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.27. 问题探索:(1)已知一个正分数m n (m >n >0),如果分子、分母同时增加1,分数的值是增大还是减小?请证明你的结论.(2)若正分数mn (m >n >0)中分子和分母同时增加2,3…k (整数k >0),情况如何? (3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.16章《分式》单元测试卷B一、选择题1.A 2.D 3.C 4.A 5.C 6.C 7.D 8.C 9.A 10.B(提示:设全程为1,小明所用时间是1122a b +=1()2a b ab+,小刚所用时间是1a b +,小明所用时间减去小刚所用时间得1()2a b ab +-1a b+=21()2()a b ab ab a b +-+=221()2()a b ab a b ++>0,显然小明所用时间较多)二、填空题11.210xy 12.(1)14a (2)33x x +- 13.x =-5 14.x >34 15.xy x y+ 16.63 17.18(提示:由13x x +=得21()9x x +=,2217x x +=,∴4221x x x++=22118x x ++=) 18.2007(提示:原式=12007+12006+…+13+12+12+23+…12006+20062007= (12007+20062007)+(12006+12006)+…+(12+12)=2007 三、解答题19.(1)原式=3(3)33x x x x ---=--=-1 (2)原式=24423616y y x x ÷=22441636y x x y =2249x y 20.(1)原式=()()c a b a b c abc abc ++-=()()c a b a b c abc abc ++-=ac bc ab ac abc+-- bc ab abc -=()b c a abc -=c a ac- (2)原式=211(2)(2)(2)a a a a a --÷-+-=21(2)(2)(2)1a a a a a -+--- =2a + 21.原式=1(2)3(4)15()28p q ------÷-=45pq - 22.原式=2()()()()1m n n m n mn m n m n m n n ⎡⎤-+-⎢⎥-+--⎣⎦=1()1n mn m n m n n ----1 1n mn m n n --- =mn m n-- 23.(1)原方程变形为252121x x x ---=3,方程两边同乘以(21)x -,得253(21)x x -=-, 解得x =12-,检验:把12x =-代入(21)x -,(21)x -≠0,∴12x =-是原方程的解,∴原方程的解是12x =-. (2)原方程变形为736(1)(1)(1)(1)x x x x x x +=+-+-,方程两边同乘以最简公分母(1)(1)x x x +-,得7(1)3(1)6x x x -++=,解得x =1,检验:把1=x 代入最简公分母(1)(1)x x x +-,(1)(1)x x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解.24.原式=211(1)(1)x x x x x x ⎛⎫+-÷ ⎪--⎝⎭=222(1)(1)1(1)(1)x x x x x x x x ⎛⎫+--÷ ⎪--⎝⎭ =22211(1)x x x x x --÷-=21(1)x x x -- =21(1)x --, 当12+=x 时,原式=2(211)+-212-=12- 25.光纤的横截面积为:1×π)10400()21080(323⨯÷⨯⨯-=4π910-⨯(平方米), ∴()9410410--⨯÷π≈8.0310⨯.答:平方厘米是这种光纤的横截面积8.0310⨯倍. 26.设客车由高速公路从甲地到乙地需x 小时,则走普通公路需2x 小时,根据题意得: 6004804.52x x-=,解得x =8,经检验,x =8是原方程的根,答:客车由高速公路从甲地到乙地需8小时.27.(1)m n <11++m n (m >n >0) 证明:∵m n -11++m n =()1+-m m m n ,又∵m >n >0,∴()1+-m m m n <0,∴m n <11++m n (2)m n <k m k n ++(m >n >0,k >0) (3)设原来的地板面积和窗户面积分别为x 、y ,增加面积为a ,则由(2)知:a x a y ++>x y ,所以住宅的采光条件变好了.。

相关文档
最新文档