2007年江苏省苏州市中考数学试卷(含答案)
【苏州市中考】--2007年苏州市初中毕业暨升学考试试卷及答案】
2007年苏州市初中毕业暨升学考试试卷化学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷l至2页,第Ⅱ卷3至8页;共5大题、30小题,满分100分;考试用时100分钟。
注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考点名称用钢笔或圆珠笔写在答题卡的相应位置上;将考场号、座位号、准考证号、考试科目用2B铅笔涂在答题卡上。
2.答第Ⅰ卷时,用2B铅笔将第Ⅰ卷答案涂在答题卡上相对应的位置,不能答在试卷上,否则答案无效。
3.考试结束,请将本试卷和答题卡一并交回。
可能用到的相对原子质量:H-1 C-12 O-16 Na-23 Mg-24 S-32 Ca-35.5第Ⅰ卷(选择题,共30分)一、选择题(本题包括15小题,每小题2分,共30分。
每小题只有一个....选项符合题意。
)1.2007年苏州市政府对公共交通的财政支持力度不断加强,对购置低污染排放公交车辆的补贴预计达1600万元。
下列说法与改善空气质量关系最为密切的是A.抑制过快增长的私家车拥有量B.减缓城市交通拥堵的压力C.减少机动车燃油排放含氮、硫的氧化物的量D.提供市民乘公交车出行的便利2.下列物质中属于糖类的是A.蔗糖B.汽油C.油脂D.石蜡3.下列物质属于氧化物是是A.氧气(O2) B.水(H2O)C.乙醇(C2H6O) D.氯化钴(CoCl2)4.某含铁盐溶液能够在高浓度的碱性环境下长期稳定存在,且具有较强的灭菌消毒功能,该盐是一种绿色、无污染的净水剂,其化学式为Na2FeO3。
则其中铁元素的化合价是A.+2 B.+3 C.+4 D.+65.下列有关二氧化碳说法正确的是A.二氧化碳可由甲烷在足量氧气中充分燃烧产生B.二氧化碳可用燃着的木条鉴定C.二氧化碳在实验室可以用块状石灰石和浓硫酸反应制备D.干冰用于制造舞台云雾是因为二氧化碳能溶于水6.在做镁条燃烧实验时,用于夹持镁条的仪器是A.弹簧夹B.坩埚钳C.铁夹D.试管夹7.下列物质名称与其化学式相符合的是A.氢气(H) B.碳酸钠(NaCO3)C.氢氧化铁[Fe(OH)2] D.五氧化二磷(P2O5)8.是以土豆等副食品废料为原料,经多步处理而制成,是一种新型的可降解塑料。
2007中考试题(参考答案)
[参考答案]一、选择题(每小题3分,共24分)二、填空题(每小题3分,共24分)9.2x≠10.xy1-=等11.4(填空2分,画图1分)12.25%13.2014.29215.n)2(16.如图三、(每题8分,共16分)17.解:=原式······················6分2=2=·······························8分18.解:设原来每天加固x米,根据题意,得·················1分926004800600=-+xx.·························3分去分母,得 1200+4200=18x(或18x=5400)················5分解得300x=.··············6分检验:当300x=时,20x≠(或分母不等于0).∴300x=是原方程的解.··············7分答:该地驻军原来每天加固300米.··············8分四、(每题10分,共20分)19.解:(1)1600wt=··························4分(2)160016004t t--····························8分16001600(4)(4)t tt t--=-64006400()(4)4t t t t--=.或··························9分答:每天多做)4(6400-t t(或tt464002-)件夏凉小衫才能完成任务.········ 10分20.解:在Rt△AEF和Rt△DEC中,∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.·····················3分又∠FAE=∠EDC=90°.EF=EC∴Rt△AEF≌Rt△DCE.····················5分AE=CD.····················6分AD=AE+4.∵矩形ABCD的周长为32 cm,∴2(AE+AE+4)=32.····················8分解得,AE=6 (cm).···················· 10分五、(每题10分,共20分)21.(1)300;···················2分(2)1060;···················5分(3)15;···················8分(4)合理.理由中体现用样本估计总体即可.(只答“合理”得1分)···· 10分′AB CABC′′O第11题图t(时)第16题图2236223622362236223622.解:(1)法一:过O 作OE ⊥AB 于E ,则AE =21AB =23. ················ 1分 在Rt △AEO 中,∠BAC =30°,cos30°=OAAE. ∴OA =︒30cos AE =2332=4. …………………………3分又∵OA =OB ,∴∠ABO =30°.∴∠BOC =60°. ∵AC ⊥BD ,∴BC CD =.∴∠COD =∠BOC =60°.∴∠BOD =120°. ················· 5分∴S 阴影=2π360n OA ⋅=212016π4π3603=. ···················· 6分法二:连结AD . ······················ 1分∵AC ⊥BD ,AC 是直径,∴AC 垂直平分BD . ……………………2分 ∴AB =AD ,BF =FD ,BC CD =. ∴∠BAD =2∠BAC =60°,∴∠BOD =120°. ……………………3分 ∵BF =21AB =23,sin60°=AB AF ,AF =AB ·sin60°=43×23=6. ∴OB 2=BF 2+OF 2.即222(6)OB OB +-=.∴OB =4. ······················· 5分∴S 阴影=31S 圆=16π3. ······················ 6分法三:连结BC .………………………………………………………………………………1分∵AC 为⊙O 的直径, ∴∠ABC =90°.∵AB =43,∴8cos30AB AC ==︒. ……………………3分∵∠A =30°, AC ⊥BD , ∴∠BOC =60°,∴∠BOD =120°.∴S 阴影=360120π·OA 2=31×42·π=16π3.……………………6分以下同法一.(2)设圆锥的底面圆的半径为r ,则周长为2πr , ∴1202ππ4180r =. ∴43r =. ·························· 10分 23.解:(1)P (抽到2)=142=.…………………………………………………………3分 (2)根据题意可列表第一次抽第二次抽····················· 5分从表(或树状图)中可以看出所有可能结果共有16种,符合条件的有10种, ∴P (两位数不超过32)=851610=. ·················· 7分 ∴游戏不公平. ·················· 8分调整规则:法一:将游戏规则中的32换成26~31(包括26和31)之间的任何一个数都能使游戏公平.································ 10分法二:游戏规则改为:抽到的两位数不超过32的得3分,抽到的两位数不超过32的得5分;能使游戏公平. ················· 10分 法三:游戏规则改为:组成的两位数中,若个位数字是2,小贝胜,反之小晶胜.(只要游戏规则调整正确即得2分)六、(每题10分,共20分)24. 解:(1)设按优惠方法①购买需用1y 元,按优惠方法②购买需用2y 元 ··· 1分 ,6054205)4(1+=⨯+⨯-=x x y725.49.0)4205(2+=⨯⨯+=x x y . ············· 3分 (2)设12y y >,即725.4605+>+x x ,∴24>x .当24>x 整数时,选择优惠方法②. ··········· 5分设12y y =,∴当24=x 时,选择优惠方法①,②均可.∴当424x <≤整数时,选择优惠方法①. ·········· 7分(3)因为需要购买4个书包和12支水性笔,而2412<,购买方案一:用优惠方法①购买,需12060125605=+⨯=+x 元; ···· 8分购买方案二:采用两种购买方式,用优惠方法①购买4个书包,需要204⨯=80元,同时获赠4支水性笔;用优惠方法②购买8支水性笔,需要8590%36⨯⨯=元.共需80+36=116元.显然116<120. ············ 9分 ∴最佳购买方案是:用优惠方法①购买4个书包,获赠4支水性笔;再用优惠方法②购买8支水性笔.··············· 10分七、(12分) 25.(1)判断:EN 与MF 相等 (或EN=MF ),点F 在直线NE 上, ······· 3分 (说明:答对一个给2分) (2)成立. ······························ 4分 证明:法一:连结DE ,DF . ·························· 5分∵△ABC 是等边三角形, ∴AB =AC =BC . 又∵D ,E ,F 是三边的中点,∴DE ,DF ,EF 为三角形的中位线.∴DE =DF =EF ,∠FDE =60°.又∠MDF +∠FDN =60°, ∠NDE +∠FDN =60°, ∴∠MDF =∠NDE . ··························· 7分 在△DMF 和△DNE 中,DF =DE ,DM =DN , ∠MDF =∠NDE ,∴△DMF ≌△DNE . ··························8分 ∴MF =NE . ··························9分法二:延长EN ,则EN 过点F . ······················· 5分∵△ABC 是等边三角形, ∴AB =AC =BC . 又∵D ,E ,F 是三边的中点, ∴EF =DF =BF . ∵∠BDM +∠MDF =60°, ∠FDN +∠MDF =60°, ∴∠BDM =∠FDN . ···························· 7分又∵DM =DN , ∠ABM =∠DFN =60°,∴△DBM ≌△DFN . ··························· 8分 ∴BM =FN .∵BF =EF , ∴MF =EN . ························· 9分 法三:连结DF ,NF . ···························· 5分 ∵△ABC 是等边三角形, ∴AC =BC =AC .又∵D ,E ,F 是三边的中点, ∴DF 为三角形的中位线,∴DF =21AC =21AB =DB . 又∠BDM +∠MDF =60°, ∠NDF +∠MDF =60°,∴∠BDM =∠FDN . ··························· 7分N C A B F M D E NC A B F MD EFBC在△DBM 和△DFN 中,DF =DB ,DM =DN , ∠BDM =∠NDF ,∴△DBM ≌△DFN .∴∠B =∠DFN =60°. ·························· 8分 又∵△DEF 是△ABC 各边中点所构成的三角形, ∴∠DFE =60°. ∴可得点N 在EF 上,∴MF =EN . ·························· 9分 (3)画出图形(连出线段NE ), ····················· 11分MF 与EN 相等的结论仍然成立(或MF =NE 成立). ·············· 12分八、(14分)26.(1) 利用中心对称性质,画出梯形OABC . ················ 1分∵A ,B ,C 三点与M ,N ,H 分别关于点O 中心对称,∴A (0,4),B (6,4),C (8,0) ·················· 3分(写错一个点的坐标扣1分)(2)设过A ,B ,C 三点的抛物线关系式为2y ax bx c =++, ∵抛物线过点A (0,4),∴4c =.则抛物线关系式为24y ax bx =++. ············· 4分 将B (6,4), C (8,0)两点坐标代入关系式,得3664464840a b a b ++=⎧⎨++=⎩,.·························· 5分 解得1432a b ⎧=-⎪⎪⎨⎪=⎪⎩,. ···························· 6分所求抛物线关系式为:213442y x x =-++. ·············· 7分 (3)∵OA =4,OC =8,∴AF =4-m ,OE =8-m . ··············· 8分∴AGF EOF BEC EFGB ABCO S S S S S =---△△△四边形梯形 21=OA (AB +OC )12-AF ·AG 12-OE ·OF 12-CE ·OAm m m m m 421)8(21)4(2186421⨯-----+⨯⨯=)( 2882+-=m m ( 0<m <4) ············· 10分∵2(4)12S m =-+. ∴当4m =时,S 的取最小值.又∵0<m <4,∴不存在m 值,使S 的取得最小值. ············ 12分 (4)当2m =-+GB =GF ,当2m =时,BE =BG . ·········· 14分OMN HA C E F DB↑ → -8(-6,-4)xy。
2007年江苏省扬州市中考数学试卷
2007年江苏省扬州市中考数学试卷2007年江苏省扬州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)2.(3分)(2010•徐州)一个几何体的三视图如图所示,这个几何体是()3.(3分)(2007•江苏)不等式组的解集为()4.(3分)(2007•江苏)如图,数轴上点P表示的数可能是().C.5.(3分)(2007•江苏)已知圆柱体体积V (m3)一定,则它的底面积Y(m2)与高x(m)之间的函数图象大致.C D.6.(3分)(2008•兰州)正方形网格中,∠AOB如图放置,则cos∠AOB的值为().C D7.(3分)(2007•江苏)用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光经过4×10﹣5秒到达另一座88.(3分)(2007•江苏)如图是一个废弃的扇形统计图,小华利用它的阴影部分来制作一个圆锥,则这个圆锥的底面半径是()9.(3分)(2007•江苏)烟花厂为扬州烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要10.(3分)(2007•江苏)有一列数:a1、a2、a3、…a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数D二、填空题(共8小题,每小题4分,满分32分)11.(4分)(2010•连云港)在函数中,自变量x的取值范围是_________.12.(4分)(2009•铁岭)因式分解:a3﹣4a=_________.13.(4分)(2007•江苏)用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为_________度.14.(4分)(2007•江苏)如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为_________mm.15.(4分)(2007•江苏)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是_________%.16.(4分)(2007•江苏)仔细观察如图所示的卡通脸谱,图中没有出现的两圆的位置关系是_________.17.(4分)(2007•江苏)学校篮球队五名队员的年龄分别为17,15,16,15,其方差为0.8,则三年后这五名队员年龄的方差为_________.18.(4分)(2007•江苏)如图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=_________度.三、解答题(共8小题,满分88分)19.(8分)(2007•江苏)计算:|﹣3|+16÷(﹣2)3+(2007﹣)0﹣tan60°.20.(10分)(2007•江苏)某校八年级共有150名男生,从中随机抽取30名男生在“阳光体育活动”启动日进行“引:测试情况,请你选择一种合适的统计表或统计图整理表示上述数据;(2)观察分析(1)中的统计表或统计图,请你写出两条从中获得的信息:①_________②_________(3)规定八年级男生“引体向上”4个及以上为合格.若学校准备对“引体向上”不合格的男生提出锻炼建议,试估计要对八年级多少名男生提出这项建议?21.(10分)(2007•江苏)如图,△ABC中A(﹣2,3),B(﹣3,1),C(﹣1,2).(1)将△ABC各点的横坐标增加4个单位长度,纵坐标保持不变,得△A1B1C1,画出△A1B1C1;(2)将△ABC各点的横坐标保持不变,纵坐标分别乘以﹣1,得△A2B2C2,画出△A2B2C2;(3)将△A2B2C2各点的纵坐标保持不变,横坐标分别乘以﹣1,得△A3B3C3,画出△A3B3C3;(4)在△A1B1C1,△A2B2C2,△A3B3C3中,△_________与△_________成轴对称,对称轴是_________;△_________与△_________成中心对称,对称中心的坐标是_________.22.(10分)(2007•江苏)如图,正方形ABCD绕点A逆时针旋转n°后得到正方形AEFG,边EF与CD交于点O.(1)以图中已标有字母的点为端点连接两条线段(正方形的对角线除外),要求所连接的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由;(2)若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为,求旋转的角度n.23.(12分)(2010•鞍山)端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一只香肠馅,两只红枣馅,四只粽子除内部馅料不同外其他均一切相同.小明喜欢吃红枣馅的粽子.(1)请你用树状图为小明预测一下吃两只粽子刚好都是红枣馅的概率;(2)在吃粽子之前,小明准备用一个均匀的正四面体骰子(如图所示)进行吃粽子的模拟试验,规定:掷得点数1向上代表肉馅,点数2向上代表香肠馅,点数3,4向上代表红枣馅,连续抛掷这个骰子两次表示随机吃两只粽子,从而估计吃两只粽子刚好都是红枣馅的概率.你认为这样模拟正确吗?试说明理由.24.(12分)(2007•江苏)为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水8m3,则应收水费:2×6+4×(8﹣6)=20元.(1)若该户居民2月份用水12.5m3,则应收水费_________元;(2)若该户居民3、4月份共用水15m3(4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?25.(12分)(2007•江苏)连接上海市区到浦东国际机场的磁悬浮轨道全长约为30km,列车走完全程包含启动加速、匀速运行、制动减速三个阶段.已知磁悬浮列车从启动加速到稳定匀速动行共需200秒,在这段时间内记录下下列0≤t≤200)速度υ与时间t的函数关系、路程s与时间t的函数关系.(2)最新研究表明,此种列车的稳定动行速度可达180米/秒,为了检测稳定运行时各项指标,在列车达到这一速度后至少要运行100秒,才能收集全相关数据.若在加速过程中路程、速度随时间的变化关系仍然满足(1)中的函数关系式,并且制作减速所需路程与启动加速的路程相同.根据以上要求,至少还要再建多长轨道就能满足试验检测要求?(3)若减速过程与加速过程完全相反.根据对问题(2)的研究,直接写出列车在试验检测过程中从启动到停车这段时间内,列车离开起点的距离y(米)与时间t(秒)的函数关系式.(不需要写出过程)26.(14分)(2010•鞍山)如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B⇒A,B⇒C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM=_________厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.2007年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)2.(3分)(2010•徐州)一个几何体的三视图如图所示,这个几何体是()3.(3分)(2007•江苏)不等式组的解集为()4.(3分)(2007•江苏)如图,数轴上点P表示的数可能是().C.解:∵≈,﹣符合题意的数为5.(3分)(2007•江苏)已知圆柱体体积V(m3)一定,则它的底面积Y(m2)与高x(m)之间的函数图象大致.C D.(的图象是双曲线,当6.(3分)(2008•兰州)正方形网格中,∠AOB如图放置,则cos∠AOB的值为().C DOE=AOB==7.(3分)(2007•江苏)用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光经过4×10﹣5秒到达另一座88.(3分)(2007•江苏)如图是一个废弃的扇形统计图,小华利用它的阴影部分来制作一个圆锥,则这个圆锥的底面半径是()9.(3分)(2007•江苏)烟花厂为扬州烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要t(∵10.(3分)(2007•江苏)有一列数:a1、a2、a3、…a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数D=,二、填空题(共8小题,每小题4分,满分32分)11.(4分)(2010•连云港)在函数中,自变量x的取值范围是x≠﹣2.12.(4分)(2009•铁岭)因式分解:a3﹣4a=a(a+2)(a﹣2).13.(4分)(2007•江苏)用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为22度.14.(4分)(2007•江苏)如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为150mm.AB==15.(4分)(2007•江苏)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是20%.16.(4分)(2007•江苏)仔细观察如图所示的卡通脸谱,图中没有出现的两圆的位置关系是相交.17.(4分)(2007•江苏)学校篮球队五名队员的年龄分别为17,15,16,15,其方差为0.8,则三年后这五名队员年龄的方差为0.8.,每位同学的年龄三年后都变大了岁,则平均年龄变为[﹣﹣)[﹣﹣﹣﹣))18.(4分)(2007•江苏)如图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=40度.三、解答题(共8小题,满分88分)19.(8分)(2007•江苏)计算:|﹣3|+16÷(﹣2)3+(2007﹣)0﹣tan60°.).﹣×=320.(10分)(2007•江苏)某校八年级共有150名男生,从中随机抽取30名男生在“阳光体育活动”启动日进行“引:(1)我们已经会列频数分布表、画条形统计图、折线统计图和扇形统计图.为了能让体育老师一目了然知道整个测试情况,请你选择一种合适的统计表或统计图整理表示上述数据;(2)观察分析(1)中的统计表或统计图,请你写出两条从中获得的信息:①成绩为五个的有3人,占10%②成绩为2个的人数最多.(3)规定八年级男生“引体向上”4个及以上为合格.若学校准备对“引体向上”不合格的男生提出锻炼建议,试估计要对八年级多少名男生提出这项建议?21.(10分)(2007•江苏)如图,△ABC中A(﹣2,3),B(﹣3,1),C(﹣1,2).(1)将△ABC各点的横坐标增加4个单位长度,纵坐标保持不变,得△A1B1C1,画出△A1B1C1;(2)将△ABC各点的横坐标保持不变,纵坐标分别乘以﹣1,得△A2B2C2,画出△A2B2C2;(3)将△A2B2C2各点的纵坐标保持不变,横坐标分别乘以﹣1,得△A3B3C3,画出△A3B3C3;(4)在△A1B1C1,△A2B2C2,△A3B3C3中,△ABC与△A2B2C2成轴对称,对称轴是x轴;△ABC与△A3B3C3成中心对称,对称中心的坐标是原点O.22.(10分)(2007•江苏)如图,正方形ABCD绕点A逆时针旋转n°后得到正方形AEFG,边EF与CD交于点O.(1)以图中已标有字母的点为端点连接两条线段(正方形的对角线除外),要求所连接的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由;(2)若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为,求旋转的角度n.的面积为DO=23.(12分)(2010•鞍山)端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一只香肠馅,两只红枣馅,四只粽子除内部馅料不同外其他均一切相同.小明喜欢吃红枣馅的粽子.(1)请你用树状图为小明预测一下吃两只粽子刚好都是红枣馅的概率;(2)在吃粽子之前,小明准备用一个均匀的正四面体骰子(如图所示)进行吃粽子的模拟试验,规定:掷得点数1向上代表肉馅,点数2向上代表香肠馅,点数3,4向上代表红枣馅,连续抛掷这个骰子两次表示随机吃两只粽子,从而估计吃两只粽子刚好都是红枣馅的概率.你认为这样模拟正确吗?试说明理由.24.(12分)(2007•江苏)为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水8m3,则应收水费:2×6+4×(8﹣6)=20元.(1)若该户居民2月份用水12.5m3,则应收水费48元;(2)若该户居民3、4月份共用水15m(4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?25.(12分)(2007•江苏)连接上海市区到浦东国际机场的磁悬浮轨道全长约为30km,列车走完全程包含启动加速、匀速运行、制动减速三个阶段.已知磁悬浮列车从启动加速到稳定匀速动行共需200秒,在这段时间内记录下下列0≤t≤200)速度υ与时间t的函数关系、路程s与时间t的函数关系.(2)最新研究表明,此种列车的稳定动行速度可达180米/秒,为了检测稳定运行时各项指标,在列车达到这一速度后至少要运行100秒,才能收集全相关数据.若在加速过程中路程、速度随时间的变化关系仍然满足(1)中的函数关系式,并且制作减速所需路程与启动加速的路程相同.根据以上要求,至少还要再建多长轨道就能满足试验检测要求?(3)若减速过程与加速过程完全相反.根据对问题(2)的研究,直接写出列车在试验检测过程中从启动到停车这段时间内,列车离开起点的距离y(米)与时间t(秒)的函数关系式.(不需要写出过程)t ts=v=s=y=﹣﹣26.(14分)(2010•鞍山)如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B⇒A,B⇒C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM=厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.,而,∴∴∴∴∵∴∴,∵,,,∴∴.时梯形参与本试卷答题和审题的老师有:ZJX;蓝月梦;CJX;未来;zhjh;ljj;wenming;kuaile;自由人;zhehe;心若在;cook2360;lanyan;csiya;HJJ;bjf;算术;zhangCF;lanchong;mmll852;Liuzhx;HLing;wdxwwzy;开心;haoyujun;郭静慧;hnaylzhyk;zcx;刘超;feng(排名不分先后)菁优网2013年4月10日。
2007年全国各地中考试题130多份标题汇总
2007年全国各地中考试题130多份标题汇总2007年安徽省初中毕业学业考试数学试卷及答案2007年安徽省芜湖市初中毕业学业考试数学试卷及参考答案2007年北京市高级中等学校招生统一考试数学试卷及参考答案2007年福建省福州市毕业会考、高级中等学校招生考试卷及答案(扫描)2007年福建省福州市初中毕业会考、高级中等学校招生考试数学试卷及答案2007年福建省龙岩市初中毕业、升学考试数学试题及参考答案2007年福建省宁德市初中毕业、升学考试数学试题及参考答案2007年福建省泉州市初中毕业、升学考试数学试题2007年福建省三明市初中毕业生学业考试数学试题及参考答案2007年福建省厦门市初中毕业和高中阶段各类学校招生数学试题及答案2007年甘肃省白银等3市旧课程数学试题2007年甘肃省白银等7市新课程中考数学试题及参考答案2007年甘肃省兰州市初中毕业生学业考试数学试卷A卷及参考答案2007年甘肃省陇南市中考数学试题及参考答案2007年广东省初中毕业生学业考试数学试题2007年广东省佛山市高中阶段学校招生考试数学试卷2007年广东省广州市初中毕业生学业考试数学试卷2007年广东省茂名市初中学业与高中阶段学校招生考试试题及答案2007年广东省梅州市初中毕业生学业考试数学试题及参考答案2007年广东省韶关市初中毕业生学业考试数学试题及参考答案2007年广东省深圳市初中毕业生学业考试数学试卷及参考答案2007年广东省中山市初中毕业生学业考试数学试卷及参考答案2007年广西省河池市中等学校招生统一考试数学试题及参考答案(课改区)2007年广西省柳州市、北海市中考数学试卷(课改实验区用)2007年广西省南宁市中等学校招生考试(课改实验区)数学试题及参考答案2007年广西省玉林市、防城港市初中毕业升学考试数学试题及参考答案2007年广西省中等学校招生河池市统一考试数学试题及答案(非课改区)2007年贵州省安顺市初中毕业生学业课改实验区数学科试题2007年贵州省毕节地区高中、中专、中师招生统一考试2007年贵州省贵阳市初中毕业生学业考试数学试卷及参考答案2007年贵州省黔东南高中、中专、中师招生统一考试数学试题2007年贵州省遵义市初中学业统一考试数学试卷2007年海南省初中毕业升学考试数学试题2007年河北省初中毕业生升学考试数学试卷及参考答案2007年河北省课程改革实验区初中毕业生学业考试试题及参考答案2007年河南省高级中等学校招生学业考试试卷2007年河南省开封市高中阶段各类学校招生考试题2007年黑龙江省哈尔滨市初中升学考试数学试卷2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题2007年湖北省恩施自治州初中毕业、升学考试数学及答案2007年湖北省黄冈市普通高中和中等职业学校招生考试数学试题2007年湖北省荆门市初中毕业生学业考试数学试卷(含答案)(扫描版)2007年湖北省荆门市初中毕业生学业考试数学试题及参考答案2007年湖北省荆州市中考数学试题2007年湖北省潜江市、仙桃市、江汉油田初中毕业生学业考试试题及答案2007年湖北省十堰市初中毕业生学业考试数学试卷2007年湖北省武汉市新课程初中毕业生学业考试数学试卷2007年湖北省咸宁市初中毕业生学业考试数学试卷2007年湖北省襄樊市初中毕业、升学统一考试非课改区数学试题及参考答案2007年湖北省孝感市初中毕业生学业考试数学及答案2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案2007年湖南省长沙市初中毕业学业考试试卷及答案2007年湖南省常德市初中毕业学业考试数学试卷2007年湖南省郴州市基教试验区初中毕业学业考试数学试卷及答案2007年湖南省怀化市初中毕业学业考试数学试卷及参考答案2007年湖南省邵阳市初中毕业学业考试试题卷2007年湖南省湘潭市初中毕业学业考试数学试卷2007年湖南省永州市初中毕业学业考试数学试卷2007年湖南省岳阳市初中毕业学业考试试卷及参考答案2007年湖南省株洲市初中毕业学业考试数学试卷2007年吉林省长春市初中毕业生学业考试数学试题及答案2007年吉林省初中毕业生学业考试数学试题及参考答案2007年江苏省常州市初中毕业、升学统一考试数学试卷及参考答案2007年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试题2007年江苏省连云港市中考数学试题与参考答案2007年江苏省南京市初中毕业学业考试数学试题及参考答案2007年江苏省南通市初中毕业、升学考试数学试题2007年江苏省苏州市初中毕业暨升学考试试卷及参考答案2007年江苏省宿迁市中考数学试卷及参考答案2007年江苏省泰州市初中毕业、升学统一考试数学试题及答案2007年江苏省无锡市初中毕业高级中等学校招生考试数学试卷及参考答案2007年江苏省徐州市初中毕业、升学考试数学试题2007年江苏省盐城高中阶段招生统一考试数学试题(扫描版)2007年江苏省扬州市初中毕业、升学考试数学及参考答案(扫描版)2007年江苏省扬州市初中毕业、升学统一考试数学试题及参考答案2007年江苏省中考数学试卷及参考答案2007年江西省南昌市初中毕业暨中等学校招生考试数学试卷及参考答案2007年江西省中等学校招生考试数学试题及参考答案2007年辽宁省大连市初中毕业升学统一考试数学试题2007年辽宁省沈阳市中等学校招生统一考试数学试题及参考答案2007年辽宁省十二市初中毕业生学业考试数学试卷及参考答案2007年内蒙古自治区赤峰市初中毕业、升学统一考试数学试卷及参考答案2007年内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案2007年内蒙古自治区呼和浩特市中考数学试卷及参考答案2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案2007年宁夏回族自治区课改实验区初中毕业暨高中招生考试试题及答案2007年山东省滨州市中等学校招生统一考试数学试卷及参考答案2007年山东省德州市中等学校招生考试数学试题及参考答案2007年山东省东营市初中毕业暨高中阶段教育学校招生考试数学试题及答案2007年山东省济南市高中阶段学校招生考试数学试题及答案2007年山东省济宁市中等学校招生考试数学试题及参考答案2007年山东省聊城市普通高中招生统一考试数学试卷及参考答案2007年山东省临沂市初中毕业与高中招生考试考数学试卷及答案(扫描版)2007年山东省临沂市初中毕业与高中招生考试数学试题(Word版含答案)2007年山东省青岛市中考数学试卷(含答案)2007年山东省日照市中等学校统一招生考试数学试题及参考答案2007年山东省泰安市年中等学校招生考试数学试卷(课改实验区用)2007年山东省泰安市中等学校招生考试数学试卷及参考答案(非课改区)2007年山东省威海市初中升学考试数学试题及参考答案2007年山东省潍坊市初中学业水平考试数学试卷及参考答案2007年山东省烟台市初中毕业、升学统一考试数学试卷2007年山东省枣庄市中等学校招生考试数学试题及答案2007年山东省中等学校招生考试数学试题2007年山东省淄博市中等学校招生考试数学试题2007年山西省临汾市初中毕业生学业数学考试试题及参考答案2007年陕西省基础教育课程改革实验区初中毕业学业考试数学试题2007年上海市初中毕业生统一学业考试试卷及答案2007年四川省巴中市高中阶段教育招生考试2007年四川省成都市高中阶段教育学校统一招生考试试卷及参考答案2007年四川省德阳市初中毕业生学业考试数学试卷及答案2007年四川省乐山市高中阶段教育学校招生统一考试数学试题及参考答案2007年四川省泸州市初中毕业暨高中阶段学校招生统一考试数学试题及答案2007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案2007年四川省绵阳市高级中等教育学校招生统一考试数学试题(含答案)2007年四川省内江初中毕业会考暨高中阶段招生考试试卷2007年四川省内江市初中毕业会考暨高中阶段招生考试数学试卷及参考答案2007年四川省南充市高中阶段学校招生统一考试数学试卷及参考答案2007年四川省宜宾市高中阶段学校招生考试数学试卷2007年四川省资阳市高中阶段学校招生统一考试数学试题及参考答案2007年四川省自贡市初中毕业暨升学考试数学试题及参考答案2007年台湾地区中考数学第一次测验试题及参考答案2007年天津市中考数学试卷及答案2007年云南省高中(中专)招生统一考试(课改实验区)数学试题及答案2007年云南省昆明市高中(中专)招生统一考试数学试卷2007年云南省双柏县初中毕业考试数学试卷(含答案)2007年浙江省初中毕业生学业考试数学试题及参考答案2007年浙江省杭州市数学中考试题及参考答案2007年浙江省湖州市初中毕业生学业考试数学试卷及参考答案2007年浙江省嘉兴市初中毕业生学业考试数学参考答案2007年浙江省嘉兴市初中毕业生学业考试数学试卷2007年浙江省金华中考数学试题及参考答案2007年浙江省丽水市初中毕业生学业考试数学试卷及参考答案2007年浙江省宁波市中考数学试题及参考答案2007年浙江省衢州市初中毕业生学业水平考试数学试题及参考答案2007年浙江省绍兴市初中毕业生学业考试数学试卷2007年浙江省台州市初中毕业生学业考试数学试卷及参考答案2007年浙江省温州市初中毕业学业考试数学试卷2007年浙江省义乌市初中毕业生学业考试数学试题及参考答案2007年浙江省舟山市初中毕业生学业考试数学试题及参考答案2007年重庆市初中毕业生学业暨高中招生考试试卷及参考答案。
2007年江苏省南京市中考数学试题及答案
南京市2007年初中毕业学业考试数学注意事项:1.本试卷1至2页为选择题,共24分,3页6页为非选择题,共96分,全卷满分120分.考试时间120分钟,选择题答在答题卡上,非选择题答在答卷纸上.2.答选择题前考生务必将自己的考试证号,考试科目用2B铅笔填涂在答题卡上,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.3.答非选择题前考生务必将答纸密封线内的项目及桌号填写清楚.用铅笔或圆珠笔(蓝色或黑色)答在答卷纸上,不能答在试卷上.下列各题所用的四个选项中,有且只有一个是正确的.一、选择题(每小题2分,共24分)1.计算12-+的值是()A.3-B.1-C.1D.32.2007年5月2日,南京夫子庙、中山陵、玄武湖、雨花台四大景区共接待游客约518 000人,这个数可用科学记数法表示为()A.40.51810⨯B.55.1810⨯C.651.810⨯D.351810⨯3.计算3x x÷的结果是()A.4xB.3xC.2xD.34.14的算术平方根是()A.12-B.12C.12±D.1165.不等式组2110xx>-⎧⎨-⎩,≤的解集是()A.12x>-B.12x<-C.1x≤D.112x-<≤6.反比例函数2kyx=-(k为常数,0k≠)的图象位于()A.第一、二象限B.第一、三象限C.第二、四角限D.第三、四象限7.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是()A.16B.13C.12D.23(第7题)8.下列轴对称图形中,对称轴条数最少的是( )A.等边三角形 B.正方形 C.正六边形 D.圆9.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是( ) A.球体 B.长方体 C.圆锥体 D.圆柱体 10.如果a ∠是等腰直角三角形的一个锐角,则tan α的值是( ) A.12B.2C.111.下列各数中,与 )A.2+B.2-C.2-+12.如图,在平面直角坐标系中,点P 在第一象限,P 与x 轴相切于点Q ,与y 轴交于(02)M ,,(08)N ,两点,则点P 的坐标是( ) A.(53), B.(35), C.(54), D.(45),二、填空题(每小题3分,共12分) 13.如果40a ∠= ,那么a ∠的补角等于.14.已知5筐苹果的质量分别为(单位:kg );5249505351,,,,,则这5筐苹果的平均质量为 kg .15.如图,O 是A B C △的外接圆,30C ∠= ,2cm A B =,则O 的半径为cm .16.已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标: .三、(每小题6分,共18分) 17.解方程组42 5.x y x y +=⎧⎨-=⎩,18.计算:221111a a a a a a -÷----.(第15题)19.某养鸡场分3次用鸡蛋孵化出小鸡,每次孵化所用的鸡蛋数、每次的孵化率(孵化率=100%⨯孵化出的小鸡数孵化所用的鸡蛋数)分别如图1,图2所示:(1)求该养鸡场这3次孵化出的小鸡总数和平均孵化率;(2)如果要孵化出2000只小鸡,根据上面的计算结果,估计该养鸡场要用多少个鸡蛋? 四、(第20题8分,第21题6分,第22题7分,共21分) 20.两组邻边分别相等的四边形我们称它为筝形.如图,在筝形A B C D 中,AB AD =,BC D C =,A C ,B D 相交于点O , (1)求证:①A B C A D C △≌△; ②O B O D =,A C B D ⊥;(2)如果6A C =,4B D =,求筝形A B C D 的面积.21.将A B C D ,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人. (1)A 在甲组的概率是多少? (2)A B ,都在甲组的概率是多少?22.如图,A B ,两地之间有一座山,汽车原来从A 地到B 地须经C 地沿折线A C B --行驶,现开通隧道后,汽车直接沿直线A B 行驶.已知10km A C =,30A ∠=,45B ∠=,则隧道开通后,汽车从A 地到B 地比原来少走多少千米?(结果精确到0.1km )1.41≈1.73≈)CAB3045图1孵化出用的鸡蛋数统计图批次第3次第2次 第1次 图2孵化率统计图五、(每小题7分,共14分)23.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过203m 时,按2元/3m 计费;月用水量超过203m 时,其中的203m 仍按2元/3m 收费,超过部分按2.6元/3m 计费.设每户家庭用用水量为3m x 时,应交水费y 元. (1)分别求出020x ≤≤和20x >时y 与x 的函数表达式; (2)小明家第二季度交纳水费的情况如下:24.如图,A 是半径为12cm 的O 上的定点,动点P 从A 出发,以2πcm /s 的速度沿圆周逆时针运动,当点P 回到A 地立即停止运动.(1)如果90POA ∠= ,求点P 运动的时间;(2)如果点B 是O A 延长线上的一点,A B O A =,那么当点P 运动的时间为2s 时,判断直线B P 与O 的位置关系,并说明理由.六、(每小题7分,共14分)25.某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60 000kg ,求南瓜亩产量的增长率.26.在梯形A B C D 中,A D B C ∥,6A B D C A D ===,60ABC ∠=,点E F ,分别在线段A D D C ,上(点E 与点A D ,不重合),且120BEF ∠=,设A E x =,DF y =.(1)求y 与x 的函数表达式; (2)当x 为何值时,y 有最大值,最大值是多少?七、(本题10分)27.在平面内,先将一个多边形以点O 为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k ,并且原多边形上的任一点P ,它的对应点P '在线段O P 或其延长线上;接着将所得多边形以点O 为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为()O k θ,,其中点O 叫做旋转相似中心,k 叫做相似比,θ叫做旋转角.A EDFCB(1)填空:①如图1,将A B C △以点A 为旋转相似中心,放大为原来的2倍,再逆时针旋转60 ,得到A D E △,这个旋转相似变换记为A (,);②如图2,A B C △是边长为1cm的等边三角形,将它作旋转相似变换)A,得到AD E △,则线段B D 的长为 cm ;(2)如图3,分别以锐角三角形ABC 的三边A B ,B C ,C A 为边向外作正方形A D E B ,B F GC ,C H IA ,点1O ,2O ,3O 分别是这三个正方形的对角线交点,试分别利用12AO O △与A B I △,C IB △与2C AO △之间的关系,运用旋转相似变换的知识说明线段12O O 与2A O 之间的关系.八、(本题7分)28.已知直线l 及l 外一点A ,分别按下列要求写出画法,并保留两图痕迹. (1)在图1中,只用圆规....在直线l 上画出两点B C ,,使得点A B C ,,是一个等腰三角形的三个顶点;(2)在图2中,只用圆规....在直线l 外画出一点P ,使得点A P ,所在直线与直线l 平行.南京市2007年初中毕业生学业考试 数学试题参考答案及评分标准二、填空题(每小题3分,共12分)A I图1I图2CB DE图1 ABCDE图2EDBFGCHAI3O1O2O图313.14014.5115.216.(13)-,,(12)-,,(11)-,,(21)-,,(22)-,,(31)-,六个中任意写出一个即可三、(每小题6分,共24分)17.(本题6分) 解:①+②,得39x =.解得3x =. ················································································································· 3分 把3x =代入②,得1y =. ·························································································· 5分∴原方程组的解是31x y =⎧⎨=⎩,. ························································································· 6分 18.(本题6分) 解:原式221111aa a a a a -=---- ···················································································· 2分 (1)(1)11(1)1aa a a a a a -+=---- ························································································· 4分 1111a a a +=---·············································································································· 5分1a a =-. ····················································································································· 6分19.(本题6分)解:(1)该养鸡场这3次孵化出的小鸡总数为4082.550786080120⨯+⨯+⨯=%%%(只). ················································································································· 2分 这3次的平均孵化率为12010080405060⨯=++%%. ·················································· 4分(2)2000802500÷= % (个).∴估计该养鸡场要用2 500个鸡蛋. ············································································· 6分 四、(第20题8分,第21题6分,第22题7分,满分21分)20.证明:(1)①在A B C △和A D C △中, AB AD =,BC D C =,AC AC =, ········································································ 2分A B C A D C ∴△≌△. ································································································· 3分②A B C A D C △≌△,E A O D A O ∴=∠∠. ································································································· 4分 AB AD = ,O B O D ∴=,A C B D ⊥. ························································································· 6分(2)筝形A B C D 的面积A B C =△的面积+A C D △的面积 1122A CB O ACD O =⨯⨯+⨯⨯116422A C B D =⨯⨯=⨯⨯12=. ························································································································· 8分 21.(本题6分)解:所有可能出现的结果如下:总共有6(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12, ·········· 2分(2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16.·············································································· 6分22.(本题7分) 解:过点C 作C D AB ⊥,垂足为D .········································································· 1分 在R t C A D △中,30A = ∠,10km A C =,15km 2C D A C ∴==,cos 30AD AC ==. ···················································································· 3分在R t BC D △中,45B =∠,5km B D C D ∴==,sin 45C D B C ==. ··························································································· 5分5)km AB AD BD ∴=+=,105)AC BC AB ∴+-=+-555 1.415 1.73 3.4(km )=++⨯-⨯≈. ················································ 6分答:隧道开通后,汽车从A 地到B 地比原来少走约3.4km . ········································· 7分 五、(每小题7分,共14分) 23.(本题7分)解:(1)当020x ≤≤时,y 与x 的函数表达式是2y x =; 当20x >时,y 与x 的函数表达式是220 2.6(20)y x =⨯+-,即 2.612y x =-; ········································································································ 3分 (2)因为小明家四、五月份的水费都不超过40元,六月份的水费超过40元,所以把30y =代入2y x =中,得15x =;把34y =代入2y x =中,得17x =;把42.6y =代入2.612y x =-中,得21x =. ······················································································ 5分 所以15172153++=. ······························································································· 6分 答:小明家这个季度共用水253m . ············································································· 7分 24.(本题7分)解:(1)当90POA = ∠时,点P 运动的路程为O 周长的14或34.设点P 运动的时间为s t . 当点P 运动的路程为O 周长的14时,122124t π=π .解得3t =; ·················································································································· 2分 当点P 运动的路程为O 周长的34时,322124t π=π .解得9t =.∴当90POA =∠时,点P 运动的时间为3s 或9s . ···················································· 4分 (2)如图,当点P 运动的时间为2s 时,直线B P 与O 相切. ··································· 5分理由如下:当点P 运动的时间为2s 时,点P 运动的路程为4cm π. 连接O P P A ,.O 的周长为24cm π,AP ∴的长为O 周长的16,60POA ∴=∠.BAPOO P O A = ,O AP ∴△是等边三角形. O P O A A P ∴==,60OAP = ∠, AB O A = ,AP AB ∴=. O A P A P B B =+ ∠∠∠,30APB B ∴==∠∠.90OPB OPA APB ∴=+=∠∠∠.O P B P ∴⊥.∴直线B P 与O 相切. ······························································································ 7分 六、(每小题7分,共14分)25.(本题7分)解:设南瓜亩产量的增长率为x ,则种植面积的增长率为2x .····································· 1分 根据题意,得10(12)2000(1)60000x x ++= . ············································································ 4分 解这个方程,得10.5x =,22x =-(不合题意,舍去). ············································· 6分 答:南瓜亩产量的增长率为50%. ··············································································· 7分26.(本题7分) 解:(1)在梯形A B C D 中,A D B C ∥,6A B D C A D ===,60ABC = ∠,120A D ∴==∠∠,18012060AEB ABE ∴+=-=∠∠. 120BEF =∠,18012060AEB DEF ∴+=-=∠∠, ABE D EF ∴=∠∠.ABE D EF ∴△∽△. ································································································· 2分 A E A B D F D E ∴=. ············································································································ 3分 A E x = ,DF y =,66x yx∴=-. ·············································································································· 4分∴y 与x 的函数表达式是 211(6)66y x x x x =-=-+ ; ······················································································ 5分(2)216y x x =-+ 213(3)62x =--+. ····································································································· 6分∴当3x =时,y 有最大值,最大值为32.··································································· 7分七、(本题10分)27.解:(1)①2,60 ;···························································································· 2分 ②2; ·························································································································· 4分(2)12AO O △经过旋转相似变换45)A,得到A B I △,此时,线段12O O 变为线段B I ; ························································································· 6分C IB △经过旋转相似变换452C ⎛⎫ ⎪ ⎪⎝⎭,得到2C AO △,此时,线段B I 变为线段1AO .···························································································· 8分12=,454590+=,122O O AO ∴=,122O O AO ⊥. ·················································································10分八、(本题7分)28.(1)画法一:以点A 为圆心,大于点A 到直线l 的距离长为半径画弧,与直线l 交于B C ,两点,则点B C ,即为所求. ······················································································· 1分画图正确. ··················································································································· 2分 画法二:在直线l 上任取一点B ,以点B 为圆心,A B 长为半径画弧,与直线l 交于点C ,则点B C ,即为所求. ·································································································· 1分画图正确. ··················································································································· 2分 (2)画法:在直线l 上任取B C ,两点,以点A 为圆心,B C 长为半径画弧,以点C 为圆心,A B 长为半径画弧,两弧交于点P .则点P 即为所求.······························································ 5分AlA lAlP。
2007年江苏省苏州市中考数学试卷(含答案)
2007年苏州市初中毕业暨升学考试试卷数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共三大题、29小题,满分125分;考试用时120分钟。
第Ⅰ卷(选择题,共27分)一、选择题(本大题共9小题,每小题3分,共27分。
在每小题给出的四个选项中,只有一个....选项符合题意的。
请将选择题的答案填在第Ⅱ卷前的《第Ⅰ卷答题表》内) 1.若4x =,则5x -的值是A .1B .-1C .9D .-9 2.若 4a b +=,则222a ab b ++的值是A .8B .16C .2D .43.根据苏州市海关统计,2007年1月4日,苏州市共出口钢铁1488000吨,1488000这个数学用科学记数法表示为A .1.488×104B .1.488×105C .1.488×106D .1.488×1074.如图,MN 为⊙O 的弦,∠M=50°,则∠MON 等于 A .50° B .55° C .65° D .80°5.某同学7次上学途中所花时间(单位:分钟)分别为10,9,11,12,9,10,9。
这组数的众数为 A .9 B .10 C .11 D .12 6.方程组379475x y x y +=⎧⎨-=⎩的解是A .21x y =-⎧⎨=⎩B .237x y =-⎧⎪⎨=⎪⎩C .237x y =⎧⎪⎨=-⎪⎩D .237x y =⎧⎪⎨=⎪⎩7.下列图形中,不能..表示长方体平面展开图的是8.右图是一个旋转对称图形,以O 为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合A .60°B .90°C .120°D .180°9.如图,小明作出了边长为的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积。
然后分别取△A 1B 1C 1的三边中点A 2、B 2、C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积。
往年江苏省苏州市中考数学真题及答案
往年江苏省苏州市中考数学真题及答案一、选择题(共10小题,每小题3分,共30分)1.(3分)(往年•苏州)(﹣3)×3的结果是()A.﹣9B.0C.9D.﹣62.(3分)(往年•苏州)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°3.(3分)(往年•苏州)有一组数据:1,3,3,4,5,这组数据的众数为()A.1B.3C.4D.54.(3分)(往年•苏州)若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4B.x≥﹣4C.x≤4D.x≥45.(3分)(往年•苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.6.(3分)(往年•苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°7.(3分)(往年•苏州)下列关于x的方程有实数根的是()A.x2﹣x+1=0B.x2+x+1=0C.(x﹣1)(x+2)=0D.(x﹣1)2+1=08.(3分)(往年•苏州)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3B.﹣1C.2D.59.(3分)(往年•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4kmB.2kmC.2kmD.(+1)km10.(3分)(往年•苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x 轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)二、填空题(共8小题,每小题3分,共24分)11.(3分)(往年•苏州)的倒数是.12.(3分)(往年•苏州)已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为.13.(3分)(往年•苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为.14.(3分)(往年•苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解各门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有人.15.(3分)(往年•苏州)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.16.(3分)(往年•苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为.17.(3分)(往年•苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为.18.(3分)(往年•苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是.三、解答题(共11小题,共76分)19.(5分)(往年•苏州)计算:22+|﹣1|﹣.20.(5分)(往年•苏州)解不等式组:.21.(5分)(2015•东莞)先化简,再求值:÷(1+),其中x=﹣1.22.(6分)(往年•苏州)解分式方程:+=3.23.(6分)(往年•苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.24.(7分)(往年•苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.25.(7分)(往年•苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.26.(8分)(往年•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.27.(8分)(往年•苏州)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.28.(9分)(往年•苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD 的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O 的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).29.(10分)(往年•苏州)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a>0,m >0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D 在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.往年年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(往年•苏州)(﹣3)×3的结果是()A.﹣9B.0C.9D.﹣6【解答】解:原式=﹣3×3=﹣9,故选:A.2.(3分)(往年•苏州)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°【解答】解:∵∠α和∠β是对顶角,∠α=30°,∴根据对顶角相等可得∠β=∠α=30°.故选:A.3.(3分)(往年•苏州)有一组数据:1,3,3,4,5,这组数据的众数为()A.1B.3C.4D.5【解答】解:这组数据中3出现的次数最多,故众数为3.故选:B4.(3分)(往年•苏州)若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4B.x≥﹣4C.x≤4D.x≥4【解答】解:依题意知,x﹣4≥0,解得x≥4.故选:D.5.(3分)(往年•苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.【解答】解:设圆的面积为6,∵圆被分成6个相同扇形,∴每个扇形的面积为1,∴阴影区域的面积为4,∴指针指向阴影区域的概率==.故选:D.6.(3分)(往年•苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【解答】解:∵△AB D中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选:B.7.(3分)(往年•苏州)下列关于x的方程有实数根的是()A.x2﹣x+1=0B.x2+x+1=0C.(x﹣1)(x+2)=0D.(x﹣1)2+1=0【解答】解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A选项错误;B、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B选项错误;C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,所以C选项正确;D、(x﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误.故选:C.8.(3分)(往年•苏州)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3B.﹣1C.2D.5【解答】解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.故选:B.9.(3分)(往年•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4kmB.2kmC.2kmD.(+1)km【解答】解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选:C.10.(3分)(往年•苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x 轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选:C.二、填空题(共8小题,每小题3分,共24分)11.(3分)(往年•苏州)的倒数是.【解答】解:的倒数是,故答案为:.12.(3分)(往年•苏州)已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为 5.1×108.【解答】解:510 000 000=5.1×108.故答案为:5.1×108.13.(3分)(往年•苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为 4 .【解答】解:∵正方形ABCD的对角线AC=,∴边长AB=÷=1,∴正方形ABCD的周长=4×1=4.故答案为:4.14.(3分)(往年•苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解各门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有240 人.【解答】解:C占样本的比例,C占总体的比例是,选修C课程的学生有1200×=240(人),故答案为:240.15.(3分)(往年•苏州)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.【解答】解:过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE=,∴tan∠BPC=tan∠BAE=.故答案为:.16.(3分)(往年•苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为20 .【解答】解:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,由题意,得,解得:.∴x+y=20.故答案为:20.17.(3分)(往年•苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为 5 .【解答】解:如图,连接BE,则BE=BC.设AB=3x,BC=5x,∵四边形ABCD是矩形,∴AB=CD=3x,AD=BC=5x,∠A=90°,由勾股定理得:AE=4x,则DE=5x﹣4x=x,∵AE•ED=,∴4x•x=,解得:x=(负数舍去),则AB=3x=,BC=5x=,∴矩形ABCD的面积是AB×BC=×=5,故答案为:5.18.(3分)(往年•苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是 2 .【解答】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴,∵PA=x,PB=y,半径为4,∴=,∴y=x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.三、解答题(共11小题,共76分)19.(5分)(往年•苏州)计算:22+|﹣1|﹣.【解答】解:原式=4+1﹣2=3.20.(5分)(往年•苏州)解不等式组:.【解答】解:,由①得:x>3;由②得:x≤4,则不等式组的解集为3<x≤4.21.(5分)(2015•东莞)先化简,再求值:÷(1+),其中x=﹣1.【解答】解:=÷(+)=÷=×=,把,代入原式====.22.(6分)(往年•苏州)解分式方程:+=3.【解答】解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.23.(6分)(往年•苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.【解答】(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.24.(7分)(往年•苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.【解答】解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣a+3),D点坐标为(a,a)∴a﹣(﹣a+3)=3,∴a=4.25.(7分)(往年•苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.【解答】解:画树状图,如图所示:所有等可能的情况8种,其中A、C两个区域所涂颜色不相同的有4种,则P=.26.(8分)(往年•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.【解答】解;(1)y=(x>0)的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴.(2)∵BE=,∴.∵BE⊥CD,点B的纵坐标=2﹣=,由反比例函数y=,点B的横坐标x=2÷=,∴点B的横坐标是,纵坐标是.∴CE=.27.(8分)(往年•苏州)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.【解答】(1)解:连接OB,OD,∵∠DAB=120°,∴所对圆心角的度数为240°,∴∠BOD=360°﹣240°=120°,∵⊙O的半径为3,∴劣弧的长为:×π×3=2π;(2)证明:连接AC,∵AB=BE,∴点B为AE的中点,∵F是EC的中点,∴BF为△EAC的中位线,∴BF=AC,∵=,∴+=+,∴=,∴BD=AC,∴BF=BD;(3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,∵BF为△EAC的中位线,∴BF∥AC,∴∠FBE=∠CAE,∵=,∴∠CAB=∠DBA,∵由作法可知BP⊥AE,∴∠GBP=∠FBP,∵G为BD的中点,∴BG=BD,∴BG=BF,在△PBG和△PBF中,,∴△PBG≌△PBF(SAS),∴PG=PF.28.(9分)(往年•苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD 的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O 的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105 °;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).【解答】解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E, 连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图位置一,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置, 设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2C2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t1,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.29.(10分)(往年•苏州)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a>0,m >0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D 在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【解答】(1)解:将C(0,﹣3)代入二次函数y=a(x2﹣2mx﹣3m2),则﹣3=a(0﹣0﹣3m2),解得 a=.(2)方法一:证明:如图1,过点D、E分别作x轴的垂线,垂足为M、N.由a(x2﹣2mx﹣3m2)=0,解得 x1=﹣m,x2=3m,则 A(﹣m,0),B(3m,0).∵CD∥AB,∴D点的纵坐标为﹣3,又∵D点在抛物线上,∴将D点纵坐标代入抛物线方程得D点的坐标为(2m,﹣3).∵AB平分∠DAE,∴∠DAM=∠EAN,∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴==.设E坐标为(x,),∴=,∴x=4m,∴E(4m,5),∵AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m,∴==,即为定值.方法二:过点D、E分别作x轴的垂线,垂足为M、N,∵a(x2﹣2mx﹣3m2)=0,∴x1=﹣m,x2=3m,则A(﹣m,0),B(3m,0),∵CD∥AB,∴D点的纵坐标为﹣3,∴D(2m,﹣3),∵AB平分∠DAE,∴K AD+K AE=0,∵A(﹣m,0),D(2m,﹣3),∴K AD==﹣,∴K AE=,∴⇒x2﹣3mx﹣4m2=0,∴x1=﹣m(舍),x2=4m,∴E(4m,5),∵∠DAM=∠EAN=90°∴△ADM∽△AEN,∴,∵DM=3,EN=5,∴.(3)解:如图2,记二次函数图象顶点为F,则F的坐标为(m,﹣4),过点F作FH⊥x轴于点H.连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.∵tan∠CGO=,tan∠FGH=,∴=,∴,∵OC=3,HF=4,OH=m,∴OG=3m.∵GF===4,AD===3,∴=.∵=,∴AD:GF:AE=3:4:5,∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为﹣3m.。
2007年江苏省苏州市初中毕业暨升学考试
2007年江苏省苏州市初中毕业暨升学考试语文试卷参考答案及其评分标准第一部分1.①浑②憬③壮④垠2.3.①她在丛中笑②天涯若比邻王勃③剪不断,理还乱④商女不知亡国恨泊秦淮⑤小桥流水人家⑥落红不是无情物⑦温故而知新⑧奉命于危难之间4.《西游记》是一部古典长篇章回体小说。
这部小说故事情节曲折、人物形象生动,深受读者特别是广大青少年的欢迎。
这是明代文学家吴承恩在民间文学的基础上经过加工、整合,再创作的。
5.①短小、优美(娇媚可爱)、精致(基本意思对即可)②这是一道开放性试题,比喻要符合桥的造型特点“柔婉的弧型,小小的,曲曲的,娇媚可爱”。
例:如一钩新月,似一弯初弓。
6.A、B7.B8.现在逃跑(被抓回来)也是死,发动起义也是死,同样是死,为国事而死好吗?9.①制造舆论,鼓动人心,树立威信,让卒相信“大楚兴,陈胜王”的必然趋势。
②利用当时普遍存在的敬奉鬼神的习惜来制造舆论.达到了很好的宣传效果,这样做显出了阵胜等组织起义的足智多谋。
10.①最根本的原因是:天下苦秦久矣。
最直接的原因是:会天大雨,道下通,度已失期。
失期,法皆斩。
②在秦王朝的残暴统治下,那些边的贫苦百姓走投无路的境遇正是“天下苦秦久矣”的具体体现。
(或:“失期,法皆斩”是秦残暴统治的体现)11.建筑色彩的特点:①“极少使用彩绘”,②色彩淡雅,如:梁柱、木窗、阑干是不刺眼的颜色,墙壁是白色,水磨方砖是淡灰色,屋瓦和檐漏也是淡灰色。
达到的效果:①这些颜色与草木的绿色和谐地统一在一起,“引起人们安静闲适的感觉”:②到了花开的季节,这些颜色与花相映成趣,把花衬托得更加“明艳照眼”。
12.追求自然之趣,体现出图画之美,营造柔和、恬静的意境,凸现“雅趣”,“雅致”。
13.孔乙己坐着用手“走”这一细节,把故事情节推向高潮,表现孔乙己此时所遭到的摧残的严重。
同时,我们也看到,孔乙己“坐着”用手“走”来“走”去,就是为了喝一碗酒,这一细节描写又活脱脱地表现出孔乙己好喝成性等习性。
2007年江苏省苏州市中考数学试卷
2007年江苏省苏州市中考数学试卷一、选择题(共9小题,每小题3分,满分27分) 1.(3分)若4x =,则|5|x -的值是( ) A .1B .1-C .9D .9-2.(3分)若4a b +=,则222a ab b ++的值是( ) A .8B .16C .2D .43.(3分)据某市海关统计,2007年1月至4月,某市共出口钢铁1 488 000吨.1 488 000这个数用科学记数法表示为( )A .41.48810⨯B .51.48810⨯C .61.48810⨯D .71.48810⨯4.(3分)如图,MN 为O 的弦,50M ∠=︒,则MON ∠等于( )A .50︒B .55︒C .65︒D .80︒5.(3分)某同学7次上学途中所花时间(单位:分钟)分别为10、9、11、12、9、10、9.这组数的众数为( ) A .9B .10C .11D .126.(3分)方程组:379475x y x y +=⎧⎨-=⎩的解是( )A .21x y =-⎧⎨=⎩B .237x y =-⎧⎪⎨=⎪⎩C .237x y =⎧⎪⎨=-⎪⎩D .237x y =⎧⎪⎨=⎪⎩7.(3分)下列图形中,不能表示长方体平面展开图的是( )A .B .C .D .8.(3分)如图是一个旋转对称图形,以O 为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合( )A .60︒B .90︒C .120︒D .180︒9.(3分)如图,小明作出了边长为1的第1个正△111A B C ,算出了正△111A B C 的面积.然后分别取△111A B C 三边的中点2A 、2B 、2C ,作出了第2个正△222A B C ,算出了正△222A B C 的面积.用同样的方法,作出了第3个正△333A B C ,算出了正△333A B C 的面积⋯,由此可得,第10个正△101010A B C 的面积是( )A 91()4B 101()4C 91()2D 101()2二、填空题(共8小题,每小题3分,满分24分) 10.(3分)53的倒数是 .11.(3分)9的算术平方根是 .12.(3分)一只口袋中放着8只红球和16只白球,现从口袋中随机摸一只球,则摸到白球的概率是 .13.(3分)将抛物线2y x =的图象向右平移3个单位,则平移后的抛物线的解析式为 . 14.(3分)一个扇形所在圆的半径为3cm ,扇形的圆心角为120︒,则扇形的面积是2cm .(结果保留)π 15.(3分)某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学共有 名.16.(3分)已知点P 在函数2(0)y x x=>的图象上,PA x ⊥轴、PB y ⊥轴,垂足分别为A 、B ,则矩形OAPB 的面积为 .17.(3分)如图,将纸片ABC ∆沿DE 折叠,点A 落在点A '处,已知12100∠+∠=︒,则A ∠的大小等于 度.三、解答题(共12小题,满分74分)18.(5分)计算:1301()(2)|3|9-+-+--19.(5分)如图所示,在直角坐标系xOy 中,(1,5)A -,(3,0)B -,(4,3)C -. (1)在图中作出ABC ∆关于y 轴的轴对称图形△A B C '''; (2)写出点C 关于y 轴的对称点C '的坐标( , ).20.(5分)解不等式组:22(1)43x xxx-<-⎧⎪⎨-⎪⎩…21.(5分)如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线相交于点F.(1)求证:ABE DFE∆≅∆;(2)试连接BD、AF,判断四边形ABDF的形状,并证明你的结论.22.(6分)先化简,再求值:224242xx x+---,其中2x=.23.(6分)解方程:22(2)3(2)20 x xx x++-+=24.(6分)2007年5月30日,在“六一国际儿童节”来临之际,某初级中学开展了向山区“希望小学”捐赠图书活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例分布扇形统计图如图①所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生,进行了捐赠情况的统计调查,绘制成如图②的频数分布直方图.根据以上信息解答下列问题:(1)从图②中,我们可以看出人均捐赠图书最多的是年级;(2)估计九年级共捐赠图书多少册?(3)全校大约共捐赠图书多少册?25.(6分)某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶 . 已知看台高为 1.6 米, 现要做一个不锈钢的扶手AB 及两根与FG 垂直且长为l 米的不锈钢架杆AD 和BC (杆 子的底端分别为D ,)C ,且66.5D A B ∠=︒.(1) 求点D 与点C 的高度差DH ;(2) 求所用不锈钢材料的总长度l . (即AD AB BC ++,结果精确到 0.1 米) (参 考数据:sin66.50.92︒≈,cos66.50.40︒≈,tan 66.5 2.30)︒≈26.(7分)小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A 棋1只,B 棋2只,C 棋3只,D 棋4只.“字母棋”的游戏规则为:①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回; ②A 棋胜B 棋、C 棋;B 棋胜C 棋、D 棋;C 棋胜D 棋;D 棋胜A 棋; ③相同棋子不分胜负.(1)若小玲先摸,问小玲摸到C 棋的概率是多少?(2)已知小玲先摸到了C 棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?27.(7分)如图,已知AD 与BC 相交于E ,123∠=∠=∠,BD CD =,90ADB ∠=︒,CH AB ⊥于H ,CH 交AD 于F . (1)求证://CD AB ; (2)求证:BDE ACE ∆≅∆; (3)若O 为AB 中点,求证:12OF BE =.28.(8分)如图,BC 是O 的直径,点A 在圆上,且4AB AC ==.P 为AB 上一点,过P 作PE AB ⊥分别交BC 、OA 于E 、F . (1)设1AP =,求OEF ∆的面积;(2)设(02)AP a a =<<,APF ∆、OEF ∆的面积分别记为1S 、2S . ①若12S S =,求a 的值;②若12S S S =+,是否存在一个实数a ,使S <?若存在,求出一个a 的值;若不存在,说明理由.29.(8分)设抛物线22y ax bx =+-与x 轴交于两个不同的点(1,0)A -、(,0)B m ,与y 轴交于点C ,且90ACB ∠=度. (1)求m 的值和抛物线的解析式;(2)已知点(1,)D n 在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x 轴上,以点P 、B 、D 为顶点的三角形与AEB ∆相似,求点P 的坐标; (3)在(2)的条件下,BDP ∆的外接圆半径等于 .2007年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共9小题,每小题3分,满分27分) 1.(3分)若4x =,则|5|x -的值是( ) A .1B .1-C .9D .9-【解答】解:把4x =代入,|5||45||1|1x -=-=-=. 故选:A .2.(3分)若4a b +=,则222a ab b ++的值是( ) A .8B .16C .2D .4【解答】解:4a b +=,22222()416a ab b a b ∴++=+==. 故选:B .3.(3分)据某市海关统计,2007年1月至4月,某市共出口钢铁1 488 000吨.1 488 000这个数用科学记数法表示为( )A .41.48810⨯B .51.48810⨯C .61.48810⨯D .71.48810⨯【解答】解:1 488 6000 1.48810=⨯. 故选:C .4.(3分)如图,MN 为O 的弦,50M ∠=︒,则MON ∠等于( )A .50︒B .55︒C .65︒D .80︒【解答】解:OM ON =, 50N M ∴∠=∠=︒.再根据三角形的内角和是180︒,得:18050280MON ∠=︒-︒⨯=︒. 故选:D .5.(3分)某同学7次上学途中所花时间(单位:分钟)分别为10、9、11、12、9、10、9.这组数的众数为()A.9B.10C.11D.12【解答】解:在这一组数据中9是出现次数最多的,则众数是9.故选:A.6.(3分)方程组:379475x yx y+=⎧⎨-=⎩的解是()A.21xy=-⎧⎨=⎩B.237xy=-⎧⎪⎨=⎪⎩C.237xy=⎧⎪⎨=-⎪⎩D.237xy=⎧⎪⎨=⎪⎩【解答】解:两方程相加,得714x=,2x=,代入(1),得3279y⨯+=,37y=.故原方程组的解为237xy=⎧⎪⎨=⎪⎩.故选:D.7.(3分)下列图形中,不能表示长方体平面展开图的是()A .B .C .D .【解答】解:选项A,B,C经过折叠均能围成长方体,D两个底面在侧面的同一侧,缺少一个底面,所以不能表示长方体平面展开图.故选:D.8.(3分)如图是一个旋转对称图形,以O为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合()A .60︒B .90︒C .120︒D .180︒【解答】解:O 为圆心,连接三角形的三个顶点, 即可得到120AOB BOC AOC ∠=∠=∠=︒, 所以旋转120︒后与原图形重合. 故选:C .9.(3分)如图,小明作出了边长为1的第1个正△111A B C ,算出了正△111A B C 的面积.然后分别取△111A B C 三边的中点2A 、2B 、2C ,作出了第2个正△222A B C ,算出了正△222A B C 的面积.用同样的方法,作出了第3个正△333A B C ,算出了正△333A B C 的面积⋯,由此可得,第10个正△101010A B C 的面积是( )A 91()4B 101()4C 91()2D 101()2【解答】解:正△111A B C , 而△222A B C 与△111A B C 相似,并且相似比是1:2,则面积的比是14,则正△222A B C 14;因而正△333A B C 与正△222A B C 的面积的比也是1421()4;依此类推△n n n A B C 与△111n n n A B C ---的面积的比是14,第n 11()4n -.所以第10个正△101010A B C 91()4,故选:A .二、填空题(共8小题,每小题3分,满分24分) 10.(3分)53的倒数是 35 .【解答】解:53的倒数是35.11.(3分)9的算术平方根是 3 . 【解答】解:2(3)9±=, 9∴的算术平方根是|3|3±=.故答案为:3.12.(3分)一只口袋中放着8只红球和16只白球,现从口袋中随机摸一只球,则摸到白球的概率是23. 【解答】解:一只口袋中放着8只红球和16只白球,现从口袋中随机摸一只球,则摸到白球的概率是1624即23. 13.(3分)将抛物线2y x =的图象向右平移3个单位,则平移后的抛物线的解析式为2(3)y x =- .【解答】解:根据题意2y x =的图象向右平移3个单位得2(3)y x =-.14.(3分)一个扇形所在圆的半径为3cm ,扇形的圆心角为120︒,则扇形的面积是 3π 2cm .(结果保留)π 【解答】解:223360n r s cm ππ==.15.(3分)某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学共有 40 名.【解答】解:设参加美术活动的同学有x 人,根据题意得: 32240x x x ++=,即6240x =, 解得:40x =,即参加美术活动的同学有40人.故填40.16.(3分)已知点P 在函数2(0)y x x=>的图象上,PA x ⊥轴、PB y ⊥轴,垂足分别为A 、B ,则矩形OAPB 的面积为 2 .【解答】解:由于点P 在函数2(0)y x x=>的图象上, 矩形OAPB 的面积||2S k ==.故答案为:2.17.(3分)如图,将纸片ABC ∆沿DE 折叠,点A 落在点A '处,已知12100∠+∠=︒,则A∠的大小等于 50 度.【解答】解:连接AA ',易得AD A D =',AE A E =';故122()2100DAA EAA A ∠+∠=∠'+∠'=∠=︒;故50A ∠=︒.三、解答题(共12小题,满分74分)18.(5分)计算:1301()(2)|3|9-+-+-- 【解答】解:原式98313=-+-=.19.(5分)如图所示,在直角坐标系xOy 中,(1,5)A -,(3,0)B -,(4,3)C -.(1)在图中作出ABC ∆关于y 轴的轴对称图形△A B C ''';(2)写出点C 关于y 轴的对称点C '的坐标( 4 , ).【解答】解:(1)如图;(2)根据轴对称图形的性质可:(4,3)C '.20.(5分)解不等式组:22(1)43x x x x -<-⎧⎪⎨-⎪⎩… 【解答】解:由22(1)x x -<-得:0x > 由443x -…得:3x … ∴原不等式组的解集为03x <….21.(5分)如图,在平行四边形ABCD 中,点E 是边AD 的中点,BE 的延长线与CD 的延长线相交于点F .(1)求证:ABE DFE ∆≅∆;(2)试连接BD 、AF ,判断四边形ABDF 的形状,并证明你的结论.【解答】(1)证明:四边形ABCD 是平行四边形,//AB CF ∴.12∴∠=∠,34∠=∠ E 是AD 的中点,AE DE ∴=.ABE DFE ∴∆≅∆.(2)解:四边形ABDF 是平行四边形.ABE DFE ∆≅∆,AB DF ∴=又//AB DF∴四边形ABDF 是平行四边形.22.(6分)先化简, 再求值:224242x x x +---,其中2x =. 【解答】解: 原式22224224242x x x x x x x x +-=-==---+;当2x =时,原式1==23.(6分)解方程:22(2)3(2)20 x xx x++-+=【解答】解:方程两边都乘2x,得22(2)3(2)20x x x x+-++=,解得2x=.经检验,2x=是原方程的根.24.(6分)2007年5月30日,在“六一国际儿童节”来临之际,某初级中学开展了向山区“希望小学”捐赠图书活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例分布扇形统计图如图①所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生,进行了捐赠情况的统计调查,绘制成如图②的频数分布直方图.根据以上信息解答下列问题:(1)从图②中,我们可以看出人均捐赠图书最多的是八年级;(2)估计九年级共捐赠图书多少册?(3)全校大约共捐赠图书多少册?【解答】解:(1)八.(2)九年级的学生人数为120035%420⨯=(人),估计九年级共捐赠图书为42052100⨯=(册).(3)七年级的学生人数为120035%420⨯=(人),估计七年级共捐赠图书为420 4.51890⨯=(册),八年级的学生人数为120030%360⨯=(人),估计八年级共捐赠图书为36062160⨯=(册),全校大约共捐赠图书为1890216021006150++=(册).答:估计九年级共捐赠图书2100册,全校大约共捐赠图书6150册.25.(6分)某学校体育场看台的侧面如图阴影部分所示, 看台有四级高度相等的小台阶 . 已知看台高为 1.6 米, 现要做一个不锈钢的扶手AB 及两根与FG 垂直且长为l 米的不锈钢架杆AD 和BC (杆 子的底端分别为D ,)C ,且66.5D A B ∠=︒.(1) 求点D 与点C 的高度差DH ;(2) 求所用不锈钢材料的总长度l . (即AD AB BC ++,结果精确到 0.1 米) (参 考数据:sin66.50.92︒≈,cos66.50.40︒≈,tan 66.5 2.30)︒≈【解答】解: (1)31.6 1.24DH =⨯=(米); (2) 过B 作BM AH ⊥于M ,则四边形BCHM 是矩形 .1MH BC ∴==1 1.21 1.2AM AH MH ∴=-=+-=.在Rt AMB ∆中,66.5A ∠=︒.1.2 3.0cos66.50.40AM AB ∴=≈=︒(米). 1 3.01 5.0l AD AB BC ∴=++≈++=(米).答: 点D 与点C 的高度差DH 为 1.2 米;所用不锈钢材料的总长度约为 5.0 米 .26.(7分)小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A棋1只,B棋2只,C棋3只,D棋4只.“字母棋”的游戏规则为:①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;②A棋胜B棋、C棋;B棋胜C棋、D棋;C棋胜D棋;D棋胜A棋;③相同棋子不分胜负.(1)若小玲先摸,问小玲摸到C棋的概率是多少?(2)已知小玲先摸到了C棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?【解答】解:(1)小玲摸到C棋的概率等于310;(2)小玲在这一轮中胜小军的概率是49.(3)①若小玲摸到A棋,小玲胜小军的概率是59;②若小玲摸到B棋,小玲胜小军的概率是79;③若小玲摸到C棋,小玲胜小军的概率是49;④若小玲摸到D棋,小玲胜小军的概率是19.由此可见,小玲希望摸到B棋,小玲胜小军的概率最大.27.(7分)如图,已知AD与BC相交于E,123∠=∠=∠,BD CD=,90ADB∠=︒,CH AB⊥于H,CH交AD于F.(1)求证://CD AB;(2)求证:BDE ACE∆≅∆;(3)若O 为AB 中点,求证:12OF BE =.【解答】证明:(1)BD CD =,1BCD ∴∠=∠;12∠=∠,2BCD ∴∠=∠;//CD AB ∴.(2)//CD AB ,3CDA ∴∠=∠.23BCD ∠=∠=∠,BE AE ∴=.且CDA BCD ∠=∠,DE CE ∴=.在BDE ∆和ACE ∆中,DE CE DEB CEA BE AE =⎧⎪∠=∠⎨⎪=⎩.()BDE ACE SAS ∴∆≅∆;(3)BDE ACE ∆≅∆,41∴∠=∠,90ACE BDE ∠=∠=︒90ACH BCH ∴∠=︒-∠;又CH AB ⊥,290BCH ∴∠=︒-∠;214ACH ∴∠=∠=∠=∠,AF CF ∴=;904AEC ∠=︒-∠,90ECF ACH ∠=︒-∠,又4ACH ∠=∠,AEC ECF ∴∠=∠;CF EF ∴=;EF AF ∴=; O 为AB 中点,OF ∴为ABE ∆的中位线;12OF BE ∴=. 28.(8分)如图,BC 是O 的直径,点A 在圆上,且4AB AC ==.P 为AB 上一点,过P作PE AB ⊥分别交BC 、OA 于E 、F .(1)设1AP =,求OEF ∆的面积;(2)设(02)AP a a =<<,APF ∆、OEF ∆的面积分别记为1S 、2S . ①若12S S =,求a 的值;②若12S S S =+,是否存在一个实数a ,使S <?若存在,求出一个a 的值;若不存在,说明理由.【解答】解:(1)BC 是O 的直径, 90BAC ∴∠=︒,AB AC =45B C ∴∠=∠=︒,OA BC ⊥,145B ∴∠=∠=︒,PE AB ⊥2145∴∠=∠=︒4345∴∠=∠=︒,则APF ∆、OEF ∆与OAB ∆均为等腰直角三角形. AP l =,4AB =,AF ∴=OA =OE OF ∴==OEF ∴∆的面积为112OE OF =.(2)①FP AP a ==,2112S a ∴=且AF =,)OE OF a ∴===-, 212(2)2S OE OF a ∴==- 12S S = ∴212(2)2a a =-4a ∴=±02a <<∴4a =- ②22221213344(2)44()22233S S S a a a a a =+=+-=-+=-+, ∴当43a =时,S 取得最小值为43,43<,∴不存在这样实数a ,使S29.(8分)设抛物线22y ax bx =+-与x 轴交于两个不同的点(1,0)A -、(,0)B m ,与y 轴交于点C ,且90ACB ∠=度.(1)求m 的值和抛物线的解析式;(2)已知点(1,)D n 在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x 轴上,以点P 、B 、D 为顶点的三角形与AEB ∆相似,求点P 的坐标;(3)在(2)的条件下,BDP ∆的外接圆半径等于或 .【解答】解:(1)令0x =,得2y =-, (0,2)C ∴-,90ACB ∠=︒,CO AB ⊥,AOC COB ∴∆∆∽,2OA OB OC ∴=22241OC OB OA ∴===, 4m ∴=,将(1,0)A -,(4,0)B 代入22y ax bx =+-, 得1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为213222y x x =--.(2)(1,)D n 代入213222y x x =--,得3n =-, 由2132221y x x y x ⎧=--⎪⎨⎪=+⎩,得1110x y =-⎧⎨=⎩,2267x y =⎧⎨=⎩, (6,7)E ∴,过E 作EH x ⊥轴于H ,则(6,0)H 7AH EH ∴==45EAH ∴∠=︒过D 作DF x ⊥轴于F ,则(1,0)F第21页(共22页)3BF DF ∴==45DBF ∴∠=︒45EAH DBF ∴∠=∠=︒135DBH ∴∠=︒,90135EBA ︒<∠<︒则点P 只能在点B 的左侧,有以下两种情况: ①若1DBP EAB ∆∆∽,则1BP BD AB AE =1157AB BD BP AE ∴== 11513477OP ∴=-=, 113(7P ∴,0). ②若2DBP BAE ∆∆∽,则2BP BD AE AB = 272425AE BD BP AB ∴=== 24222455OP ∴=-= 222(5P ∴-,0). 综合①、②,得点P 的坐标为:113(7P ,0)或222(5P -,0).(3如图所示:先作BPD ∆的外接圆,过P 作直径PM ,连接DM , PMD PBD ∠=∠,DFP PDM ∠=∠, PMD ∴∆和FBD ∆相似,∴DP DFPM BD=,PD ∴== 3DF =, BD =,3106DP BD PM DF ∴==,第22页(共22页)BPD ∴∆的外接圆的半径; 同理可求出当P 点在x 轴的负半轴上时,BPD ∆的外接圆的半径=。
2007年苏州市初中毕业暨升学考试
2007年苏州市初中毕业暨升学考试英语本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共6大题,满分113分(不含口试12分)。
考试时间100分钟。
第Ⅰ卷(三大题,共68分)一、听力选择(满分24分)(请先用两分钟时间熟悉听力试题,然后再动笔答题。
)A)回答问题(共6小题;每小题1分,满分6分)听下面6个问题,从每小题所给的A、B、C三个选项中选出最佳选项。
每个问题读两遍。
1. A. At school. B. In the evenings. C. In the library.2. A. It’s Thursday. B. The third, I think. C. I’m 22 today.3. A. About two months. B. It’s quite long. C. Almost 30 kilometres.4. A. Here you are. B. Thank you. C. I don’t know.5. A. I lost my wallet. B. I had no money. C. I paid 50 dollars.6. A. My sister is. B. The windows is clean. C. She is singing.B)对话理解(共8小题;每小题1分,满分8分)听下面8段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
每段对话读两遍。
7. When did the match start this week?A. 11:45.B. 12:15.C. 2:00.8. What did Jane buy today?A. A coat.B. A skirt.C. A pair of boots.9. How much should the man pay if he buys two shirts?A. Ten dollars.B. Twelve dollars.C. Six dollars.10. Where is the theatre?A. Next to a bank.B. Next to a supermarket.C. Next to a school.11.What is the man looking for?A. His shoes.B. His trousers.C. His sweater.12. What gift is the man going to buy for his mother’s birthday?A. A round box.B. Some flowers.C. A box of chocolates.13. What is Susan going to do this afternoon?A. She is going to watch TV at home.B. She is going to do some shopping.C. She is going to learn English.14. What is the probable relationship between the two speakers?A.Teacher and student.B. Classmates.C. Mother and son.C)短文理解(共5小题;每小题2分,满分10分)听下面的短文。
中考数学试题2007年江苏省徐州市初中毕业、升学考试数学试题
徐州市2007年初中毕业、升学考试数 学 试 题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷共120分,考试时间120分钟。
第Ⅰ卷(共24分)注意事项:1.答第Ⅰ卷前考生务必将自己的考试证号、考试科目用2B 铅笔填涂在答题卡上。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选择其他答案标号,不能答在试卷上。
一、选择题(本大题共12小题,每小题2分,共24分,在每小题给出的四个选项中,有且只有一项是正确的) 1.-2的绝对值是A.-2B.2C.-12D.122.徐州市2007年中考考生总数约为158 000人,这个数用科学记数法可以表示为 A.158×310 B.15.8×410 C.1.58×510 D.0.158×610 3.函数1+=x y 中自变量x 的取值范围是A.x ≥-1B. x ≤-1C.x >-1D.x <-1 4.下列运算中错误的是A. 2 +3= 5B. 2×3= 6C. 6÷3= 2D.(-22)=2 5.方程x 3=22-x 的解的情况是 A.2=x B.6=x C.6-=x D.无解6.如图,水平放置的甲、乙两区域分别由若干大小完全相同的黑色、白色正三角形组成,小明随意向甲、乙两个区域各抛一个小球,P (甲)表示小球停在甲中黑色三角形上的概率,P (乙)表示小球停在乙中黑色三角形上的概率,下列说法中正确的是 A.P(甲)>P(乙) B. P(甲)= P(乙)C. P(甲)< P(乙)D. P(甲)与P(乙)的大小关系无法确定 ``根据以上统计图,下列判断中错误的是A.选A 的人有8人B. 选B 的人有4人C. 选C 的人有26人D.该班共有50人参加考试 8.图1是由6个大小相同的正方形组成的几何体,它的俯视图是10 A 30 20 人数 D C 选项 B 0(图2)9.梯形的上底长为a ,下底长是上底长的3倍,则该梯形的中位线长为 A. a B.1.5a C.2a D.4a10.等腰三角形的顶角为 120,腰长为2cm ,则它的底边长为 A.3cm B.334cm C.2cm D.32cm 11.如图2,将两张完全相同的正方形透明纸片完全重合地叠放在一起,中心是点O ,按住下面的纸片不动,将上面的纸片绕点O 逆时针旋转15,所得重叠部分....的图形 A.既不是轴对称图形也不是中心对称图形 B.是轴对称图形但不是中心对称图形 C.是中心对称图形但不是轴对称图形 D.既是轴对称图形也是中心对称图形12.在图3的扇形重, 90=∠AOB ,面积为4πcm 2,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为A.1cmB.2cmC. 15cmD.4cmA B C D.OABO第Ⅱ卷(共96分)注意事项:1. 第Ⅱ卷共6写在试卷上。
江苏省苏州市中考数学试卷及答案解析()
江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A. B. C. D.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣53.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.45.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,258.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D 是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B. C. D.3二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣1=.12.当x=时,分式的值为0.13.要从甲、乙两名运动员中选出一名参加“里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.不等式组的最大整数解是.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC 内),连接AB′,则AB′的长为.18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP 所在直线与EC所在直线第一次垂直时,点P的坐标为.三、解答题(共10小题,满分76分)19.计算:()2+|﹣3|﹣(π+)0.20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.21.先化简,再求值:÷(1﹣),其中x=.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.27.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A. B. C. D.【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵×=1,∴的倒数是.故选A.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.3.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2﹣2a2=a2,故此选项错误;C、a2•a4=a6,故此选项错误;D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确;故选:D.4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【考点】频数与频率.【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.5.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°【考点】平行线的性质.【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选C.6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【考点】众数;中位数.【分析】根据众数、中位数的定义即可解决问题.【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.8.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【考点】解直角三角形的应用-坡度坡角问题.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D 是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B. C. D.3【考点】三角形的面积.【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△ADC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△AB C=•AB•AC=×2×2=4,∴S△ADC=2,∵=2,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△B EF=•EF•BH=×2×=,故选C.二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣1=(x+1)(x﹣1).【考点】因式分解-运用公式法.【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).12.当x=2时,分式的值为0.【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵分式的值为0,∴x﹣2=0,解得:x=2.故答案为:2.13.要从甲、乙两名运动员中选出一名参加“里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是乙运动员.(填“甲”或“乙”)【考点】方差.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S甲2=0.024>S乙2=0.008,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是72度.【考点】条形统计图;扇形统计图.【分析】根据文学类人数和所占百分比,求出总人数,然后用总人数乘以艺术类读物所占的百分比即可得出答案.【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,则本次调查中,一共调查了:90÷30%=300(人),则艺术类读物所在扇形的圆心角是的圆心角是360°×=72°;故答案为:72.15.不等式组的最大整数解是3.【考点】一元一次不等式组的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式x+2>1,得:x>﹣1,解不等式2x﹣1≤8﹣x,得:x≤3,则不等式组的解集为:﹣1<x≤3,则不等式组的最大整数解为3,故答案为:3.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.【考点】切线的性质;圆周角定理;扇形面积的计算.【分析】连接OC,可求得△OCD和扇形OCB的面积,进而可求出图中阴影部分的面积.【解答】解:连接OC,∵过点C的切线交AB的延长线于点D,∴OC⊥CD,∴∠OCD=90°,即∠D+∠COD=90°,∵AO=CO,∴∠A=∠ACO,∴∠COD=2∠A,∵∠A=∠D,∴∠COD=2∠D,∴3∠D=90°,∴∠D=30°,∴∠COD=60°∵CD=3,∴OC=3×=,∴阴影部分的面积=×3×﹣=,故答案为:.17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC 内),连接AB′,则AB′的长为2.【考点】翻折变换(折叠问题).【分析】作DF⊥B′E于点F,作B′G⊥AD于点G,首先根据有一个角为60°的等腰三角形是等边三角形判定△BDE是边长为4的等边三角形,从而根据翻折的性质得到△B′DE也是边长为4的等边三角形,从而GD=B′F=2,然后根据勾股定理得到B′G=2,然后再次利用勾股定理求得答案即可.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G===2,∵AB=10,∴AG=10﹣6=4,∴AB′===2.故答案为:2.18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP 所在直线与EC所在直线第一次垂直时,点P的坐标为(1,).【考点】坐标与图形性质;平行线分线段成比例;相似三角形的判定与性质.【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标.【解答】解:∵点A、B的坐标分别为(8,0),(0,2)∴BO=,AO=8由CD⊥BO,C是AB的中点,可得BD=DO=BO==PE,CD=AO=4设DP=a,则CP=4﹣a当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP又∵EP⊥CP,PD⊥BD∴∠EPC=∠PDB=90°∴△EPC∽△PDB∴,即解得a1=1,a2=3(舍去)∴DP=1又∵PE=∴P(1,)故答案为:(1,)三、解答题(共10小题,满分76分)19.计算:()2+|﹣3|﹣(π+)0.【考点】实数的运算;零指数幂.【分析】直接利用二次根式的性质以及结合绝对值、零指数幂的性质分析得出答案.【解答】解:原式=5+3﹣1=7.20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据分式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,将不等式解集表示在数轴上如图:21.先化简,再求值:÷(1﹣),其中x=.【考点】分式的化简求值.【分析】先括号内通分,然后计算除法,最后代入化简即可.【解答】解:原式=÷=•=,当x=时,原式==.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【考点】二元一次方程组的应用.【分析】先设中型车有x辆,小型车有y辆,再根据题中两个等量关系,列出二元一次方程组进行求解.【解答】解:设中型车有x辆,小型车有y辆,根据题意,得解得答:中型车有20辆,小型车有30辆.23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.【考点】列表法与树状图法;坐标与图形性质;概率公式.【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,然后根据概率公式求解.【解答】解:(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,所以点M落在如图所示的正方形网格内(包括边界)的概率==.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【考点】菱形的性质;平行四边形的判定与性质.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.【考点】反比例函数与一次函数的交点问题.【分析】将点B(2,n)、P(3n﹣4,1)代入反比例函数的解析式可求得m、n 的值,从而求得反比例函数的解析式以及点B和点P的坐标,过点P作PD⊥BC,垂足为D,并延长交AB与点P′.接下来证明△BDP≌△BDP′,从而得到点P′的坐标,最后将点P′和点B的坐标代入一次函数的解析式即可求得一次函数的表达式.【解答】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y=(x>0)的图象上,∴.解得:m=8,n=4.∴反比例函数的表达式为y=.∵m=8,n=4,∴点B(2,4),(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).将点P′(﹣4,1),B(2,4)代入直线的解析式得:,解得:.∴一次函数的表达式为y=x+3.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.【考点】圆的综合题.【分析】(1)直接利用圆周角定理得出AD⊥BC,劲儿利用线段垂直平分线的性质得出AB=AC,即可得出∠E=∠C;(2)利用圆内接四边形的性质得出∠AFD=180°﹣∠E,进而得出∠BDF=∠C+∠CFD,即可得出答案;(3)根据cosB=,得出AB的长,再求出AE的长,进而得出△AEG∽△DEA,求出答案即可.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=AE2=18.27.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.【考点】圆的综合题.【分析】(1)先利用△PBQ∽△CBD求出PQ、BQ,再根据角平分线性质,列出方程解决问题.(2)由△QTM∽△BCD,得=列出方程即可解决.(3)①如图2中,由此QM交CD于E,求出DE、DO利用差值比较即可解决问题.②如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.由△OHE∽△BCD,得=,列出方程即可解决问题.利用反证法证明直线PM不可能由⊙O相切.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴BD===10,∵PQ⊥BD,∴∠BPQ=90°=∠C,∵∠PBQ=∠DBC,∴△PBQ∽△CBD,∴==,∴==,∴PQ=3t,BQ=5t,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=6﹣5t,∴t=,故答案为.(2)解:如图2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,由(1)可知TQ=(8﹣5t),QM=3t,∵MQ∥BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90°,∴△QTM∽△BCD,∴=,∴=,∴t=(s),∴t=s时,△CMQ是以CQ为底的等腰三角形.(3)①证明:如图2中,由此QM交CD于E,∵EQ∥BD,∴=,∴EC=(8﹣5t),ED=DC﹣EC=6﹣(8﹣5t)=t,∵DO=3t,∴DE﹣DO=t﹣3t=t>0,∴点O在直线QM左侧.②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD 交于点E.∵EC=(8﹣5t),DO=3t,∴OE=6﹣3t﹣(8﹣5t)=t,∵OH⊥MQ,∴∠OHE=90°,∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴=,∴=,∴t=.∴t=s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=PMQ=22.5°,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=0.8,FO=FM=0.8,∴MH=0.8(+1),由=得到HE=,由=得到EQ=,∴MH=MQ﹣HE﹣EQ=4﹣﹣=,∴0.8(+1)≠,矛盾,∴假设不成立.∴直线MQ与⊙O不相切.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).【考点】二次函数综合题.【分析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值;(2)过点M作ME⊥y轴于点E,交AB于点D,所以△ABM的面积为DM•OB,设M的坐标为(m,﹣m2+2m+3),用含m的式子表示DM,然后求出S与m的函数关系式,即可求出S的最大值,其中m的取值范围是0<m<3;(3)①由(2)可知m=,代入二次函数解析式即可求出纵坐标的值;②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,所以d1+d2=BF,所以求出BF 的最小值即可,由题意可知,点F在以BM′为直径的圆上,所以当点F与M′重合时,BF可取得最大值.【解答】解:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,过点M作ME⊥y轴于点E,交AB于点D,由题意知:M的坐标为(m,﹣m2+2m+3),∴D的纵坐标为:﹣m2+2m+3,∴把y=﹣m2+2m+3代入y=﹣3x+3,∴x=,∴D的坐标为(,﹣m2+2m+3),∴DM=m﹣=,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;(3)①由(2)可知:M′的坐标为(,);②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90°,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得:AB=,M′B=,M′A=,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴﹣(﹣x)2=﹣x2,∴x=,cos∠M′BG==,∵l1∥l′,∴∠BCA=90°,∠BAC=45°6月30日。
2007年苏州市初中毕业暨升学考试试卷
2007年苏州市初中毕业暨升学考试试卷政治本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共4大题、38小题。
开卷考试。
考试时间100分钟.满分80分。
第Ⅰ卷(选择题,共24分)一、单项选择(以下各题都有四个选项.其中只有一个是正确的,选出正确答案。
1—16题.每小题1分:17—20题.每小题2分。
共24分)1.纪念红军长征胜利周年大会于2006年10月22日在北京隆重举行。
A.50 B.60 C.70 D.802.2006年11月3日至5日,合作论坛北京峰会暨第三届部长级会议在北京成功召开。
A.中美B.中欧C.中澳D.中非3.2006年12月11日,教育部透露,2007年,我国全免学杂费。
A.大中小学B.中小学C.城市中小学D.农村中小学4.2006年12月14日,宣誓就任联合国第八任秘书长。
A.潘基文B.加利C.沙祖康D.安南5.2007年1月29日,中央“一号文件”公布,指出是解决农民、农业、农村问题的一个着力点。
这是2004年以来连续第四份指导“三农”工作的中央一号文件。
A.推进社会主义新农村建设B.积极发展现代农业C.促进农民增加收入D.提高农业综合生产能力6.2007年2月27日.国家科学技术奖励大会在北京举行。
中国科学院院士,“小麦育种专家”获得2006年度国家最高科技奖。
A.黄昆B.李振声C.王选D.袁隆平7.2007年3月5日至l 6日召开的中华人民共和国第十届全国人民代表大会第五次会议,审议并表决通过了A.物权法和企业所得税法B.物权法和反洗钱法C.反分裂国家法和反洗钱法D.反分裂国家法和企业所得税法8.2007年3月19日,第六轮问题六方会谈在北京开幕。
A.人权B.经济C.朝核D.伊朗9.我国位未成年人保护法中规定,要促进未成年人学生全面发展。
为此,2007年2月苏州市教育局下发了《苏州市深化素质数育,丰富校园生活.促进学生全面发展的三项规定的通知》。
这属于对未成年人学生实施的A.家庭保护B.学校保护C.社会保护D.司法保护10.在我国,任何人不论职位高低、功劳大小,一旦触犯法律,都要受到法律的制裁。
2007年苏州市中考试卷及答案
2007年苏州市初中毕业暨升学考试试卷语文本试卷共25题,满分125分;考试用时150分钟。
第一部分(26分)1.根据汉语拼音写出汉宇。
(4分)①雄(hún) ②憧(jǐng)③理直气(zhuàng) ④无边无(yín)2.下面的句子中每句都有两个错别字,把它们找出来填入表中,然后改正。
(4分)①正宫前面是一座风格独特的法兰西式大花园。
园内树木花草的栽植别俱匠心,景色优美甜静,令人心旷神怡。
②在这泉水的交响之中,我们仿佛能够听到生命在诞生、成长、繁延、死亡,新陈待谢的声部,由弱到强,渐渐展开。
3.默写古诗文名句,并在括号内的横线上填写相应的作家、篇名。
(10分)①待到山花烂漫时,。
(毛泽东《卜算子咏梅》)②海内存知己,。
( 《送杜少府之任蜀川》)③,,是离愁。
别是一般滋味在心头。
(李煜《相见欢》)④,隔江犹唱《后庭花》。
(杜牧《》)⑤枯藤老树昏鸦,……(马致远《天静沙秋思》)⑥,化作春泥更护花。
(龚自珍《己亥杂诗》)⑦子曰:“,可以为师矣。
”(《论语》八则)⑧受任于败军之际,……(诸葛亮《出师表》)4.把下面的长句改成三个短句.(可适当增删字数和标点符号,但不能改变原意)(3分)《西游记》是明代文学家吴承恩在民间文学的基础上经过加工整合再创作的一部故事情节曲折人物形象生动深受读者特别是广大青少年欢迎的古典长篇章回体小说。
①②③5.阅读下面的文字,回答问题。
(5分)苏州网狮园的引静桥是中国园林里最短最小的拱形桥,颇像苏州出产的精雕细刻的工艺品。
这座桥全长只有两米多,游人只需三四步即可跨过。
它造型优美,侧立而为柔婉的弧形,小小的,曲曲的,妩媚可爱。
桥面两侧,均有石栏,石栏两端,刻作依次递减而连接的三个半圆形,以示桥栏两端美丽而明确的终止。
桥面正中,则刻以圆花形浅浮雕纹饰,避免了平板单调。
①根据上面的文字提供的信息,用三个词语概括引静桥的特点。
_____________________________________________________________②从侧面看,引静桥“为柔婉的弧形,小小的,曲曲的”。
江苏省无锡市2007年初中毕业高级中等学校招生考试数学试卷附答案word版
江苏省无锡市2007年初中毕业高级中等学校招生考试数学试卷注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.一、细心填一填(本大题共有12小题,15空,每空2分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细计算,相信你一定会填对的!) 1.5-的相反数是 ,9的算术平方根是 . 2.分解因式:24b -= .3.设一元二次方程2640x x -+=的两个实数根分别为1x 和2x ,则12x x += ,12x x = .4.据国家考试中心发布的信息,我国今年参加高考的考生数达10 100 000人,这个数据用科学记数法可表示为 人. 5.函数22y x =-中自变量x 的取值范围是 , 函数23y x =-中自变量x 的取值范围是 .6.某商场今年五月份的销售额是200万元,比去年五月份销售额的2倍少40万元,那么去年五月份的销售额是 万元. 7.反比例函数ay x=的图象经过点(12)-,,则a 的值为 .8.八边形的内角和为度.9.如图,已知a b ∥,170∠=,则2∠=.10.如图,AB 是O 的弦,OC AB ⊥于C ,若25cm AB =,1cm OC =,则O 的半径长为 cm .11.写出生活中的一个随机事件: .12.如图1是一种带有黑白双色、边长是20cm 的正方形装饰瓷砖,用这样的四块瓷砖可以拼成如图2的图案.已知制作图1这样的瓷砖,其黑、白两部分所用材料的成本分别为0.02元/2cm 和0.01元/2cm ,那么制作这样一块瓷砖所用黑白材料的最低成本是元(π取3.14,结果精确到0.01元).ACBO第10题 c2 ab1第9题图1 图2二、精心选一选(本大题共有7小题,每小题3分,共21分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!)13.化简分式2bab b +的结果为( ) A.1a b+ B.11a b +C.21a b+ D.1ab b+ 14.下面与2是同类二次根式的是( ) A.3B.12C.8D.21-15.下面四个图案中,是旋转对称图形的是( )A. B. C. D. 16.一元二次方程2(1)2x -=的解是( ) A.112x =--,212x =-+ B.112x =-,212x =+ C.13x =,21x =-D.11x =,23x =-17.圆锥的底面半径为2,母线长为4,则它的侧面积为( ) A.8πB.16πC.43πD.4π18.如图是一个圆柱体和一长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为( )上面19.任何一个正整数n 都可以进行这样的分解:n s t =⨯(s t ,是正整数,且s t ≤),如果p q ⨯在n 的所有这种分解中两因数之差的绝对值最小,我们就称p q ⨯是n 的最佳分解,并规定:()pF n q=.例如18可以分解成118⨯,29⨯,36⨯这三种,这时就有A . 第18题 B . C . D .31(18)62F ==.给出下列关于()F n 的说法:(1)1(2)2F =;(2)3(24)8F =;(3)(27)3F =;(4)若n 是一个完全平方数,则()1F n =.其中正确说法的个数是( )A.1 B.2 C.3 D.4三、认真答一答(本大题共有8小题,共60分.解答需写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 20.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分) (1)计算:3124sin60(1)-+-;(2)解不等式组12512x x x +⎧⎪⎨->⎪⎩≤,,并写出它的所有整数解.21.(本小题满分7分)如图,已知四边形ABCD 是菱形,点E F ,分别是边CD ,AD 的中点.求证:AE CF =.22.(本小题满分6分) 如图,AB 是O 的直径,PA 切O 于A ,OP 交O 于C ,连BC .若30P ∠=,求B ∠的度数.23.(本小题满分8分)如图是甲、乙两人在一次射击比赛中击中靶的情况(击中靶中心的圆面为10环,靶中各数字表示该数所在圆环被击中所得的环数)每人射击了6次. (1)请用列表法将他俩的射击成绩统计出来;(2)请你用学过的统计知识,对他俩的这次射击情况进行比较.AECD BFABCPO 9 8 7 6 98 7 6 甲射击的靶 乙射击的靶24.(本小题满分6分) 某商场搞摸奖促销活动:商场在一只不透明的箱子里放了三个相同的小球,球上分别写有“10元”、“20元”、“30元”的字样.规定:顾客在本商场同一日内,每消费满100元,就可以在这只箱子里摸出一个小球(顾客每次摸出小球看过后仍然放回箱内搅匀),商场根据顾客摸出小球上所标金额就送上一份相应的奖品.现有一顾客在该商场一次性消费了235元,按规定,该顾客可以摸奖两次,求该顾客两次摸奖所获奖品的价格之和超过40元的概率. 25.(本小题满分6分)图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为(1)1232n n n +++++=. 图1 图2 图3 图4 如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1234,,,,,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,,求图4中所有圆圈中各数的绝对值之和. 26.(本小题满分9分)小明早晨从家里出发匀速步行去上学,小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后t 分钟时,他所在的位置与家的距离为s 千米,且s 与t 之间的函数关系的图像如图中的折线段OA AB -所示. (1)试求折线段OA AB -所对应的函数关系式; (2)请解释图中线段AB 的实际意义;(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在位置与家的距离s (千米)与小明出发后的时间t (分钟)之间函数关系的图像.(友情提醒:请对画出的图像用数据作适当的标注)27.(本小题满分8分)王大伯要做一张如图1的梯子,梯子共有8级互相平行的踏板,每相邻两级踏板之间的距离都相等.已知梯子最上面一级踏板的长度110.5m A B =,最下面一级踏板的长度880.8m A B =.木工师傅在制作这些踏板时,截取的木板要比踏板长,以保证在每级踏板的两个外端各做出一个长为4cm 的榫头(如图2所示),以此来固定踏板.现市场上有长度1AB2012 t (分钟)s (千米)O第2层 第1层 …… 第n 层为2.1m 的木板可以用来制作梯子的踏板(木板的宽厚和厚度正好符合要制作梯子踏板的要求),请问:制作这些踏板,王大伯最少需要买几块这样的木板?请说明理由.(不考虑锯缝的损耗)四、实践与探索(本大题共2小题,满分19分.只要你开动脑筋,大胆实践,勇于探索,你一定会成功!) 28.(本小题满分10分) 如图,平面上一点P 从点(31)M ,出发,沿射线OM 方向以每秒1个单位长度的速度作匀速运动,在运动过程中,以OP 为对角线的矩形OAPB 的边长:1:3OA OB =;过点O 且垂直于射线OM 的直线l 与点P 同时出发,且与点P 沿相同的方向、以相同的速度运动. (1)在点P 运动过程中,试判断AB 与y 轴的位置关系,并说明理由.(2)设点P 与直线l 都运动了t 秒,求此时的矩形OAPB 与直线l 在运动过程中所扫过的区域的重叠部分的面积S (用含t 的代数式表示).29.(本小题满分9分)(1)已知ABC △中,90A ∠=,67.5B ∠=,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知ABC △中,C ∠是其最小的内角,过顶点B 的一条直线把这个三角形分割成了两个等腰三角形,请探求ABC ∠与C ∠之间的关系.xy Ol BPMAABC备用图①ABC备用图②ABC备用图③1A 1B8B8A踏板长 榫头图2图1[参考答案]一、细心填一填(本大题共有12小题,15空,每空2分,共30分)1.5,3 2.(2)(2)b b +- 3.6,4 4.71.0110⨯ 5.322x x ≠,≥ 6.120 7.2- 8.1080 9.110 10.6 11.明天我市下雨(答案不唯一) 12.6.37二、精心选一选(本大题共有7个小题,每小题3分,共21分) 13.A 14.C 15.D 16.B 17.A 18.C 19.B 三、认真答一答(本大题共有8小题,共60分)20.解:(1)原式23231=-- ······················ 3分1=-. ·························· 4分(2)由12x x +≤,得1x ≥. ······················· 2分 由512x->,得3x <. ·························· 4分 ∴不等式组的解集是13x <≤.······················· 5分 它的所有整数解为12x =,. ························· 6分21.证明:菱形ABCD 中,AD CD =. ··················· 1分 E F ,分别是CD AD ,的中点,1122DE CD DF AD DE DF ∴==∴=,,. ················· 3分又ADE CDF ∠=∠,AED CFD ∴△≌△. ················ 5分 AE CF ∴=. ······························ 7分22.解:PA 切O 于A AB ,是O 的直径,90PAO ∴∠=. ········ 2分30P ∠=,60AOP ∴∠=. ······················· 4分 1302B AOP ∴∠=∠=. ························· 6分 23.(1)解:环数 6 7 8 9 10 甲命中次数 2 2 2 乙命中次数132列表正确得2分.(2)9x =甲环,9x =乙环,22213S S ==乙甲,, ······· 6分(算对一个得1分) x x =乙甲,22S S <乙甲,∴甲与乙的平均成绩相同,但甲发挥的比乙稳定. ···· 8分24.解:列树状图如下:第一次摸得奖品价格 10 20 30第二次摸得奖品价格 10 20 30 10 20 30 10 20 30 ···· 4分两次奖品价格之和 20 30 40 30 40 50 40 50 60两次摸奖结果共有9种情况,其中两次奖品价格之和超过40元的有3种情况,故所求概率为13. ·································· 6分 25.解:(1)67. ····························· 2分 (2)图4中所有圆圈中共有12(121)12312782+++++==个数, 其中23个负数,1个0,54个正数, ····················· 4分∴图4中所有圆圈中各数的绝对值之和|23||22||1|01254=-+-++-+++++(12323)(12354)27614851761=+++++++++=+=. ········ 6分26.解:(1)线段OA 对应的函数关系式为:112s t =(012t ≤≤) ······ 2分 线段AB 对应的函数关系式为:1(1220)s t =<≤. ·············· 4分 (2)图中线段AB 的实际意义是:小明出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟. ····················· 7分 (3)如图中折线段CD DB -. ······················· 9分27.解法一:如图,设自上往下第2,3,4,5,6,7级踏板的 长依次为22A B ,33A B ,…,77A B ,过1A 作18B B 的平行线分别 交22A B ,33A B ,…,88A B 于点2C ,3C ,…,8C . 每两级踏板之间的距离相等,8877221150cm C B C B C B A B ∴=====,88805030cm A C =-=.2288A C A B ∥,∴122188A A C A A C ∠=∠,122188AC A AC A ∠=∠,122188A A C A A C ∴△∽△,2288:1:7A C A C ∴=,22307A C ∴=,2230507A B ∴=+, ····································· 2分1A B 2012 t (分钟)s (千米)O10 16 D C 1A 1B 8B8A 8C2C2B2A设要制作11A B ,22A B ,…,77A B ,88A B 这些踏板需用木板的长度分别为1cm a ,2cm a ,…,8cm a ,则150858a =+=,230305085877a =++=+,360587a =+,490587a =+,5120587a =+,6150587a =+,7180587a =+,85830a =+. ········ 5分12341802322107a a a a +++=+>,∴王大伯买的木板肯定不能少于3块. ···················· 6分又1362101742042107a a a ++=+=<,24527025217417421077a a a ++=+<+=, 78180514617121077a a +=+=<,∴王大伯最少买3块这样的木板就行了. ··················· 8分解法二:如图,分别取18A A ,18B B 的中点P Q ,, 连结PQ .设自上往下第2,3,4,5,6,7级踏板的长依次为22A B ,33A B ,…,77A B ,则由梯形中位线定理可得11882277336644552A B A B A B A B A B A B A B A B PQ +=+=+=+=.······ 2分 118850cm 80cm A B A B ==,,∴1188227733664455130A B A B A B A B A B A B A B A B +=+=+=+=. ······· 3分设要制作11A B ,22A B ,…,77A B ,88A B 这些踏板需用木板的长度为1cm a ,2cm a ,…,8cm a ,则182********a a a a a a a a +=+=+=+=. 12814645842102a a a +++=⨯=>⨯,∴王大伯买的木板肯定不能少于3块.····································· 4分 过1A 作18B B 的平行线分别交22A B ,33A B ,,88A B 于点2C ,3C ,,8C .每两级踏板之间的距离相等,8877221150cm C B C B C B A B ∴=====,88805030cm A C =-=.2288A C A B ∥,122188A A C A A C ∴∠=∠,122188AC A AC A ∠=∠,122188A A C A A C ∴△∽△,2288:1:7A C A C ∴=,22307A C ∴=,2230507A B ∴=+, ····································· 6分1A 1B8B8A 8C2C2B 2AP Q230587a ∴=+.而158a =,888a =,13658146204210a a a ∴++=+=<, 24530305814620421077a a a ++=++=+<,7888882210a a a a +<+=⨯<.∴王大伯最少买3块这样的木板就行了. ··················· 8分解法三:如果在梯子的下面再做第9级踏板,它与其上 面一级踏板之间的距离等于梯子相邻两级踏板之间的距 离(如图),设第9级踏板的长为x cm ,则由梯形中位 线的性质,可得第5级踏板的长551(50)cm 2A B x =+, 第7级踏板的长7711(50)cm 22A B x x ⎛⎫=++ ⎪⎝⎭,由题意,得第8级踏板的长()881115080222A B x x x ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭,解这个方程,得2847x =,····································· 2分 由此可求得775757A B =cm ,55167cm 7A B =,66371cm 7A B =,33458cm 7A B =,22254cm 7A B =,44662cm 7A B =.设要制作11A B ,22A B ,…,77A B ,88A B 这些踏板需截取的木板长度分别为1cm a ,2cm a ,…,8cm a ,则150858a =+=,22627a =,32667a =,46707a =,51757a =,63797a =,75837a =,888a =. ··························· 5分(下同解法一)四、实践与探索(本大题共2小题,满分19分)28.解:(1)AB y ∥轴. ························· 1分 理由:Rt OAB △中,tan :ABO OA OB ∠=1:3=,30ABO ∴∠=. ···· 2分设AB 交OP 于点Q ,交x 轴于点S ,矩形的对角线互相平分且相等,则QO QB =,30QOB ∴∠=,过点M 作MT x ⊥轴于T ,则3t a n 1:33M O T ∠==,30MOT ∴∠=,60BOS ∴∠=,90BSO ∴∠=,AB y ∴∥轴. ······· 3分(2)设l 在运动过程中与射线OM 交于点C ,过点A 且垂直于射线OM 的直线交OM 于点D ,过点B 且垂直于射线OM 的直线交OM 于点E ,则OC t =.2OP t =+,3(2)2OB t ∴=+,3(2)4OE t =+,1(2)2OA t =+,1(2)4OD t =+.1A 1B8B8Ax····································· 4分 ①当10(2)4t t <+≤,即203t <≤时,2233S t =. ············· 6分 ②当13(2)(2)44t t t +<+≤,即263t <≤时,设直线l 交OB 于F ,交PA 于G ,则23OF t =,2433PG CP ==,433233AG PA t ∴=-=-, 2133217333(2)223224263S t t t t t ⎛⎫=-++=+- ⎪ ⎪⎝⎭. ·········· 8分 ③当3(2)4t t >+,即6t >时,2CP =, 1431834(2)(2)22233S S t t ∴=-⨯⨯=+⨯+-矩 22383353(2)34343t t t =+-=+-………………………………………………10分29.解:(1)如图(共有2种不同的分割法,每种1分,共2分)(2)设ABC y ∠=,C x ∠=,过点B 的直线交边AC 于D .在DBC △中, ①若C ∠是顶角,如图1,则90ADB ∠>,11(180)9022CBD CDB x x ∠=∠=-=-,180A x y ∠=--. 此时只能有A ABD ∠=∠,即1180902x y y x ⎛⎫--=--⎪⎝⎭, 34540x y ∴+=,即31354ABC C ∠=-∠. ················ 4分②若C ∠是底角,则有两种情况.第一种情况:如图2,当DB DC =时,则DBC x ∠=, ABD △中,2ADB x ∠=,ABD y x ∠=-.1.由AB AD =,得2x y x =-,此时有3y x =,即3ABC C ∠=∠. ····· 5分ABC备用图① 67.567.5 22.522.5ABC备用图②22.522.54545Page 11 12/3/2018 2.由AB BD =,得1802x y x --=,此时3180x y +=,即1803ABC C ∠=-∠. ····································· 6分 3.由AD BD =,得180x y y x --=-,此时90y =,即90ABC ∠=,C ∠为小于45的任意锐角. ····························· 7分 第二种情况,如图3,当BD BC =时,BDC x ∠=,18090ADB x ∠=->,此时只能有AD BD =, 从而12A ABD C C ∠=∠=∠<∠,这与题设C ∠是最小角矛盾. ∴当C ∠是底角时,BD BC =不成立. ··················· 9分BDC A图 1B DC A 图2 BD C A 图3。
2007年江苏省南通市初中毕业、升学考试数学试题(Word版)
2007年江苏省南通市初中毕业、升学考试数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共32分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考试号、科目名称用2B 铅笔涂写在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮插干净后,再选涂其它答案.不能答在试卷上.一.选择题:本大题共10小题,第1~8题每小题3分,第9~10小题每小题4分,共32分.在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题卡上.01.-6+9等于( ).A 、-15B 、+15C 、-3D 、+302.(m 2)3•m 4等于( ).A 、m 9B 、m 10C 、m 12D 、m 1403.某几何体的三视图如图所示,则该几何体是( ).A 、长方体B 、圆锥C 、圆柱D 、球04.两个圆的半径分别为4cm 和3cm ,圆心距是7cm ,则这两个圆的位置关系是( ).A 、内切B 、相交C 、外切D 、外离05.某校初三(2)班的10名团员向“温暖工程”捐款,10个人的捐款情况如下(单位:元):2、5、3、3、4、5、3、6、5、3,则上面这组数据的众数是( ).A 、3B 、3.5C 、4D 、506.如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( ). A 、1cm B 、2cm C 、3cm D 、4cm07.有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg .已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜xkg ,根据题意,可得方程( ).A 、x 1500300x 900=+ B 、300x 1500x 900-= C 、300x 1500x 900+= D 、x1500300x 900=- 08.设一元二次方程7x 2-6x -5=0的两个根分别是x 1、x 2,则下列等式正确的是( ).A 、x 1+x 2=76 B 、x 1+x 2=76- C 、x 1+x 2=6 D 、x 1+x 2=6-09.如图,把直线y =-2x 向上平移后得到直线AB ,直线AB 经过点(m ,n),且2m +n =6,则直线AB 的解析式是( ).A 、y =-2x -3B 、y =-2x -6C 、y =-2x +3D 、y =-2x +6(第03题图)主视图 俯视图左视图A (第06题图)B C D E Ay A D10.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是( ). A 、6cm B 、10cm C 、32cm D 、52cm第Ⅱ卷(非选择题 共118分)注意事项:除作图可使用2B 铅笔外,其余各题请使用钢笔或圆珠笔直接答在试卷上.题号二三Ⅱ卷总分 结分人 核分人 19~2021~22 23~24 25~26 27 28 得分二.填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上.11.函数2x y -=中,自变量x 的取值范围是_______________.12.为了适应南通经济快速发展的形势以及铁路运输和客流量大幅上升的需要,南通火车站扩建工程共投资73150000元.将73150000用科学记数法表示为___________________. 13.已知△ABC 中,D 、E 分别是AB 、AC 边上的中点,且DE =3cm ,则BC =___________cm . 14.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于__________度. 15.一元二次方程(2x -1)2=(3-x)2的解是_______________________.16.在平面直角坐标系中,已知A(6,3)、B(6,0)两点,以坐标原点O 为位似中心,相似比为31,把线段AB 缩小后得到线段A ’B ’,则A ’B ’的长度等于____________. 17.把6张形状完全相同的卡片的正面分别写上数字1、2、3、4、5、6,且洗匀后正面朝下放在桌子上,从这6张卡片中同时随机抽取两张卡片,则两张卡片上的数字之和等于7的概率是___________.18.如图,已知矩形OABC 的面积为3100,它的对角线OB 与双曲线x k y =相交于点D ,且OB ∶OD =5∶3,则k =____________.三.解答题:本大题共10小题,共94分.解答时应写出文字说明、证明过程或演算步骤.(19~20题,第19题20分,第20题7分,共19分)19.(1)计算:12)21()13(2-+--; (2)已知x =2007,y =2008,求x yx y 4x 5y x xy4x 5y xy 2x 2222-+-+÷-++的值.得 分评卷人得 分评卷人A(第18题图)BCDOx y20.已知2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围.(21~22题,第21题6分,第22题9分,共15分)21.如图,网格中每一个小正方形的边长为1个单位长度.(1)请在所给的网格内画出以线段AB 、BC 为边的菱形ABCD ; (2)填空:菱形ABCD 的面积等于________________.22.周华早起锻炼,往返于家与体育场之间,离家的距离y (米)与时间x (分)的关系如图所示.回答下列问题:(1)填空:周华从体育场返回行走的行走速度时___________米/分;(2)刘明与周华同时出发,按相同的路线前往体育场,刘明离周华家的距离y (米)与时间x (分)的关系式为y =kx +400,当周华回到家时,刘明刚好到达体育场. ①直接在图中画出刘明离周华家的距离y (米)与时间x (分)的函数图象; ②填空:周华与刘明在途中共相遇___________次; ③求周华出发后经过多少分钟与刘明最后一次相遇.得 分 评卷人10 (第22题图)15 20 25 30 35 405 400800 1200 1600 20002400 O y/米x/分 A B C (第21题图)(23~24题,第23题6分,第24题10分,共16分)23.某商场门前的台阶截面如图所示.已知每级台阶的宽度(如CD )均为30cm ,高度(如BE )均为20cm .为了方便残疾人行走,商场决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角为9°.请计算从斜坡起点A 到台阶前的点B 的水平距离.(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)24.如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AE ⊥CD ,垂足为E ,DA 平分∠BDE .(1)求证:AE 是⊙O 的切线;(2)若∠DBC =30°,DE =1cm ,求BD 的长.得 分 评卷人A (第23题图)B C DE A (第24题图) B C D EO(25~26题,第25题8分,第26题9分,共17分)25.某市图书馆的自然科学、文学艺术、生活百科和金融经济四类图书比较受读者的欢迎.为了更好地为读者服务,该市图书馆决定近期添置这四方面的图书,为此图书管理员对2007年5月份四类图书的借阅情况进行了统计,得到了四类图书借阅情况的频数表. 图书种类 自然科学 文学艺术 生活百科 金融经济 频数(借阅人数)2000240016002000请你根据表中提供的信息,解答以下问题:(1)填空:表中数据的极差是______________;(2)请在右边的圆中用扇形统计图表示四类图书的借阅情况;(3)如果该市图书馆要添置这四类图书10000册,请你估算“文学艺术”类图书应添置多少册较合适?26.某商场将每台进价为3000元的彩电以3900元的销售价售出,每天可销售出6台.假设这种品牌的彩电每台降价100x (x 为正整数)元,每天可多售出3x 台.(注:利润=销售价-进价)(1)设商场每天销售这种彩电获得的利润为y 元,试写出y 与x 之间的函数关系式; (2)销售该品牌彩电每天获得的最大利润是多少?此时,每台彩电的销售价是多少时,彩电的销售量和营业额均较高?得 分评卷人 (第25题图)(第27题12分)27.如图①,在Rt △ABC 中,∠BAC =90°,AB =AC =32,D 、E 两点分别在AC 、BC上,且DE ∥AB ,CD =22.将△CDE 绕点C 顺时针旋转,得到△CD ’E ’(如图②,点D ’、E ’分别与点D 、E 对应),点E ’在AB 上,D ’E ’与AC 相交于点M . (1)求∠ACE ’的度数;(2)求证:四边形ABCD ’是梯形; (3)求△AD ’M 的面积.得 分 评卷人A 图①BC M (第27题图)DE A B CD ’E ’图②(第28题15分)28.已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x轴的正半轴上.关于y轴对称的抛物线y=ax2+bx+c经过A、D(3,-2)、P三点,且点P关于直线AC的对称点在x轴上.(1)求直线BC的解析式;(2)求抛物线y=ax2+bx+c的解析式及点P的坐标;(3)设M是y轴上的一个动点,求PM+CM的取值范围.得分评卷人ABO(第28题图) Dxy。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年苏州市初中毕业暨升学考试试卷数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共三大题、29小题,满分125分;考试用时120分钟。
第Ⅰ卷(选择题,共27分)一、选择题(本大题共9小题,每小题3分,共27分。
在每小题给出的四个选项中,只有一个....选项符合题意的。
请将选择题的答案填在第Ⅱ卷前的《第Ⅰ卷答题表》内) 1.若4x =,则5x -的值是A .1B .-1C .9D .-9 2.若 4a b +=,则222a ab b ++的值是A .8B .16C .2D .43.根据苏州市海关统计,2007年1月4日,苏州市共出口钢铁1488000吨,1488000这个数学用科学记数法表示为A .1.488×104B .1.488×105C .1.488×106D .1.488×1074.如图,MN 为⊙O 的弦,∠M=50°,则∠MON 等于 A .50° B .55° C .65° D .80°5.某同学7次上学途中所花时间(单位:分钟)分别为10,9,11,12,9,10,9。
这组数的众数为 A .9 B .10 C .11 D .12 6.方程组379475x y x y +=⎧⎨-=⎩的解是A .21x y =-⎧⎨=⎩B .237x y =-⎧⎪⎨=⎪⎩C .237x y =⎧⎪⎨=-⎪⎩D .237x y =⎧⎪⎨=⎪⎩7.下列图形中,不能..表示长方体平面展开图的是8.右图是一个旋转对称图形,以O 为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合A .60°B .90°C .120°D .180°9.如图,小明作出了边长为的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积。
然后分别取△A 1B 1C 1的三边中点A 2、B 2、C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积。
用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积……,由此可得,第10个正△A 10B 10C 10的面积是A .931()44⨯ B .1031()44⨯ C .931()42⨯ D . 1031()42⨯第Ⅱ卷(非选择题,共98分)二、填空题:(本大题共8小题,每小题3分,共24分。
把答案填在题中横线上。
) 10.53的倒数是_______________ 11.9的算术平方根是_____________12.一只口袋中放着8只红球和16只白球,现从口袋中随机摸一只球,则摸到白球的概率是___________ 13.将抛物线2y x =的图像向右平移3个单位,则平移后的抛物线的解析式为___________ 14.如图,已知扇形的半径为3cm ,圆心角为120°,则扇形的面积为__________cm 2(结果保留π)15.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名。
16.已知点P 在函数2y x=(x >0)的图象上,PA⊥x 轴、PB⊥y 轴, 垂足分别为A 、B ,则矩形OAPB 的面积为__________. 17.如图,将纸片△ABC 沿DE 折叠,点A 落在点A′处,已知 ∠1+∠2=100°,则∠A 的大小等于____________度.三、解答题:(本大题共12小题.共74分.解答时应写出必要的计算过程、推演步骤或文字说明.)(第18~20题,每题5分,共15分) 18.计算:1313()(2)3()92-+-+--.19.如图所示,在直角坐标系xOy 中, A(一l ,5),B(一3,0),0(一4,3).(1)在右图中作出△ABC 关于y 轴的轴对称图形 △A ′B ′C ′;(2)写出点C 关于,轴的对称点C ′的坐标(_____,_______)。
20.解不等式组:22(1)43x x x x -<-⎧⎪⎨≤-⎪⎩.(第21题5分.第22题6分.共11分)21.如图,在 ABCD 中,点E 是AD 的中点,BE 的延长线与CD 的延长线相交于点F (1)求证:△ABE≌△DFE;(2)试连结BD 、AF ,判断四边形ABDF 的形状,并证明你的结论.22.先化简,再求值:224242x x x +---,其中22x =-.(第23~24题,每题6分.共12分)23.解方程:22(2)3(2)20 x xx x++-+=.24.2007年5月30日,在“六一国际儿童节”来临之际,某初级中学开展了向山区“希望小学”捐赠图书活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例分布扇形统计图如图①所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生,进行了捐赠情况的统计调查,绘制成如图②的频数分布直方图.根据以上信息解答下列问题:(1)从图②中,我们可以看出人均捐赠图书最多的是_______年级;(2)估计九年级共捐赠图书多少册?(3)全校大约共捐赠图书多少册?(第25题6分,第26题7分.共13分)25.某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且∠DAB=66. 5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l(即AD+AB+BC,结果精确到0.1米).(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)26.小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A棋1只,B 棋2只,C 棋3只,D 棋4只.“字母棋”的游戏规则为:①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回; ②A 棋胜B 棋、C 棋;B 棋胜C 棋、D 棋;C 棋胜D 棋;D 棋胜A 棋; ③相同棋子不分胜负.(1)若小玲先摸,问小玲摸到C 棋的概率是多少?(2)已知小玲先摸到了C 棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?(第27题7分)27.如图,已知AD 与BC 相交于E ,∠1=∠2=∠3,BD=CD ,∠ADB=90°,CH⊥AB 于H ,CH 交AD 于F .(1)求证:CD∥AB;(2)求证:△BDE≌△ACE; (3)若O 为AB 中点,求证:OF=12BE .(第28题 8分)28.如图,BC 是⊙O 的直径,点A 在圆上,且AB=AC=4.P 为AB 上一点,过P 作PE⊥AB 分别BC 、OA 于E 、F(1)设AP=1,求△OEF 的面积.(2)设AP=a (0<a <2),△APF 、△OEF 的面积分别记为S 1、S 2。
①若S 1=S 2,求a 的值;②若S= S 1+S 2,是否存在一个实数a ,使S <153? 若存在,求出一个a 的值;若不存在,说明理由.(第29题8分)29.设抛物线22y ax bx =+-与x 轴交于两个不同的点A(一1,0)、B(m ,0),与y 轴交于点C.且∠A C B=90°. (1)求m 的值和抛物线的解析式;(2)已知点D(1,n )在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x 轴上,以点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标. (3)在(2)的条件下,△BDP 的外接圆半径等于________________.参考答案一、选择题:(每题3分.共27分)1.A 2.B 3.C 4.D 5.A 6.D 7.D 8.C 9.A 二、填空题:(每题3分,共24分) 10.35; 11.3; 12.23; 13.2(3)y x =- 14.3π 15.40 16.2 17.50三、解答题:18.解:原式=9—8+3—1=3.19.解:(1)见右图;(2)C ′(4,3 ). 20.解:由22(1)x x -<-,得x >0;由43≤4一x ,得x ≤3. ∴原不等式组的解集为0<x ≤3.21.证明:(1)∵ 四边形ABCD 是平行四边形,∴AB∥CF.∴∠1=∠2,∠3=∠4 ∵E 是AD 的中点,∴ AE=DE. ∴△ABE ≌△DFE .(2)四边形ABDF 是平行四边形.∵△ABE ≌△DFE∴AB=DF 又AB∥CF.∴四边形ABDF 是平行四边形.22.解:原式=22224224242x x x xx x x x +--==---+. 当22x =-时,原式=2212(22)2-=--+.23.解:原方程可化为22(2)3(2)20x x x x +-++=,∴240x -+=.经检验,x=2是原方程的根.24. (1)八.(2)九年级的学生人数为1200×35%=420(人),估计九年级共捐赠图书为 420×5=2100(册).(3)七年级的学生人数为1200×35%=420(人),估计七年级共捐赠图书为420×4.5=1890(册);八年级的学生人数为l200x ×30%=360(人),估计八年级共捐赠图书为360×6=2160(册).全校大约共捐赠图书为1890+2160+2100=6150(册). 答:估计九年级共捐赠图书2l00册,全校大约共捐赠图书6150册. 25.解:(1)DH=1.6×34=l.2(米).(2)过B 作BM ⊥AH 于M ,则四边形BCHM 是矩形.MH=BC=1 ∴AM=AH -MH=1+1.2一l=l.2. 在RtAMB 中,∵∠A=66.5° ∴AB=1.23.0cos 66.50.40AM ≈=︒(米).∴S=AD+AB+BC ≈1+3.0+1=5.0(米).答:点D 与点C 的高度差DH 为l.2米;所用不锈钢材料的总长度约为5.0米 26.解:(1)小玲摸到C 棋的概率等于310; (2)小玲在这一轮中胜小军的概率是49. (3)①若小玲摸到A 棋,小玲胜小军的概率是59; ②若小玲摸到B 棋,小玲胜小军的概率是79;③若小玲摸到C 棋,小玲胜小军的概率是49;④若小玲摸到D 棋,小玲胜小军的概率是19.由此可见,小玲希望摸到B 棋,小玲胜小军的概率最大.27.证明:(1)∵BD=CD ,∴∠BCD=∠1.∵ ∠l=∠2,∠BCD=∠2.∴CD ∥AB . (2) ∵ CD ∥AB ∴∠CDA=∠3.∠BCD=∠2=∠3.且BE=AE .且∠CDA=∠BCD .∴DE=CE .在△BDE 和△ACE 中, DE=CE ,∠DEB=∠CEA ,BE=AE .∴△BDE ≌△ACE (3) ∵△BDE ≌△ACE∠4=∠1,∠ACE=∠BDE=90°.∴∠ACH=90°一∠BCH又CH⊥AB,.∴ ∠2=90°一∠BCH∴∠ACH=∠2=∠1=∠4.AF=CF∵∠AEC=90°一∠4,∠ECF=90°一∠ACH∠ACH=∠4 ∠AEC=∠ECF .CF=EF .∴ EF=AF O 为AB 中点,OF 为△ABE 的中位线 ∴OF=12BE 28.解:(1)BC 是⊙O 的直径,∠BAC=90°.AB=AC .∠B=∠C=45°,OA ⊥BC .∠B=∠1=45°. PE ⊥ AB ,∠2=∠1=45°.∠4=∠3=45°.则△APF 、△OEF 与△OAB 均为等腰直角三角形. AP=l ,AB=4.AF=2,OA=22. OE=OF=2.△OEF 的面积为112OE OF ⋅⋅=. (2)①PF=AP=a .2112S a =. 且AF=2a .OE=OF=22一2a =2 (2一a),221(2)2S OE OF a =⋅⋅=- 12S S = 221(2)2a a =- 422a =± ∵02a <<∴ 422a =- ②22221213344(2)44()22233S S S a a a a a =+=+-=-+=-+ 当43a =时,S 取得最小值为43.∵15433<. ∴不存在这样实数a ,使S <153. 29.解:(1)令x=0,得y=-2 ∴C(0,一2).∵ACB=90°,CO⊥AB,.∴ △AOC ∽△COB,.∴OA ·OB=OC 2;∴OB=22241OC OA == ∴m=4.。