必修二3.2.-直线的方程(教案)
高中数学 第三章 直线与方程 3.2.2 直线的两点式方程教案 新人教A版必修2
§3.2.2直线的两点式方程[教材]人教A版数学必修2:第三章直线与方程 3.2直线的方程第2课时[学情分析]我校为一所普通高中,部分学苗基础较差,学生在态度习惯、知识结构、思维品质、数学能力等方面相对薄弱。
本节课是在学生学习完直线的方程第一节:直线的点斜式方程之后,学生已经建立了两种具体的直线方程:点斜式、斜截式的概念及会应用它们求直线方程,并对直线方程、方程直线的概念有了一定的理解和认识,已形成了一定的认知结构。
另外对于两点确定一条直线,直线的纵截距的概念也已经明确清晰,所以对本节课的学习,学生应该具备了一定的认知和实践能力的条件。
但由于部分学生观察、类比、迁移、化归、计算等方面能力的薄弱,可能在两点式方程形式的导出、综合性应用的问题上会有一定难度。
[学习内容分析]直线方程共有四种特殊形式,本节课是学习第三、四种特殊形式,在本大节3.2直线的方程中重要性略低于前两种形式,使用频率也不高。
但它在体现点斜式方程的应用,衬托点斜式方程的重要性,及为学习一般式方程作铺垫,体现由特殊到一般的知识归纳提升过程有着重要意义。
本节的主要知识点是两个方程的导出及应用,它们的教学基于点斜式方程,同时引领学生学会一个数学方法即待定系数法,说明这种方法在确定曲线方程问题中是常用的重要方法。
另外把方程思想、数形结合思想贯穿于课堂教学的始终,强调解析几何的一般方法和思想。
通过对两点式、截距式方程形式美的认识,让学生感受数学的对称美、和谐美等美的特质。
通过对两点式方程由分式到整式的变形,为学生了解一般式方程中系数A、B的几何意义(直线的方向向量即为(B,-A),法向量为(A,B)),为学习直线的参数方程做一铺垫。
同时教给学生这个整式形式的方程是已知两点求直线方程并化为一般方程的一个小技巧,并为学生感性认识行列式为进一步学习高等数学埋下伏笔。
以体现搭建共同基础,提供发展平台的课程理念。
[教学目标]1.知识与技能:掌握直线的两点式、截距式方程并会用于求直线方程的相关问题;2.过程与方法:理解两点式方程的导出过程,掌握求直线方程的直接法及间接法(待定系数法);3.态度、情感、价值观:通过对方程形式美的发现,感受数学美和数学文化,进一步体会方程思想、数形结合思想、分类讨论思想。
人教版高中必修二《直线与方程》教学案例
人教版高中必修二《直线与方程》教学案例《人教版高中必修二《直线与方程》教学案例》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!第1节直线与方程复习目标:1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线位置的几何要素,掌握直线方程的几种形式,了解斜截式与一次函数的关系.一、课前预习基础回顾考点1 直线的倾斜角与斜率1.直线的倾斜角(1)定义:x轴_____与直线_____的方向所成的角叫做这条直线的倾斜角.当直线与x轴平行或重合时,规定它的倾斜角为0°.动态定义:旋转(2)倾斜角的范围为_______________.2.直线的斜率(1)定义:一条直线的倾斜角α的________叫做这条直线的斜率,斜率常用小写字母k表示,即k=______,倾斜角是90°的直线没有斜率.(2)过两点的直线的斜率公式经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=_________.考点2 直线方程的几种形式关键要素:点,斜率,截距名称条件方程适用范围点斜式斜率k与点(x1,y1)y-y1=k(x-x1)不含直线x=x1斜截式斜率k与直线在y轴上的截距by=kx+b不含垂直于x轴的直线两点式两点(x1,y1),(x2,y2)=不含直线x=x1(x1=x2)和直线y=y1(y1=y2)截距式直线在x轴、y轴上的截距分别为a、b+=1不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A,B不同时为0)平面直角坐标系内的直线都适用[双基夯实]一、疑难辨析判断下列结论的正误.(正确的打“√”,错误的打“×”)1.直线的倾斜角越大,其斜率越大.( )2.当直线的斜率不存在时,其倾斜角存在.( )3.过点P(x1,y1)的直线方程一定可设为y-y1=k(x-x1).( )4.直线方程的截距式+=1中,a,b均应大于0.( )二、小题快练1.[2017·贵州模拟]已知直线l经过点P(-2,5),且斜率为-,则直线l的方程为( )A.3x+4y-14=0B.3x-4y+14=0C.4x+3y-14=0D.4x-3y+14=02.[课本改编]直线x+y+1=0的倾斜角是( )A.B.C.D.3.[课本改编]过两点(0,3),(2,1)的直线方程为( )A.x-y-3=0B.x+y-3=0C.x+y+3=0D.x-y+3=04.若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为______.考向1 直线的倾斜角与斜率看菜如图,比较直线,,的斜率、、的大小.1.直线2x-y+4=0同时过第()象限A.一,二,三B.二,三,四C.一,二,四D.一,三,四2.直线l1:ax-y+b=0,l2:bx-y+a=0,在同一坐标系下l1和l2的图像是()3.如图,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(-2,0),则k的取值范围是_______.拓展:(1)若M在第二象限,则k的取值范围是_______.(2)若M在第四象限,则k的取值范围是_______.【变式训练3】已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;例1 直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为_______________________.探究1若将题中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围.直线l的斜率直线l的倾斜角α区别直线l垂直于x轴时l的斜率不存在直线l垂直于x轴时l的倾斜角是90°联系①直线的斜率与直线的倾斜角(90°除外)为一一对应关系.②当α∈[0°,90°)时,α越大,l的斜率越大;当α∈(90°,180°)时,α越大,l的斜率越大.③所有直线都有倾斜角,但不是所有直线都有斜率.【变式训练1】如果直线l经过A(2,1),B(1,m2)(m∈R)两点,那么直线l的倾斜角α的取值范围是( )A.0≤α≤πB.0≤α≤或<α<πC.0≤α≤D.≤α<或<α<π考向2 求直线的方程例2 根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;(3)直线过点(5,10),且到原点的距离为5.【变式训练2】已知△ABC的三个顶点分别为A(-3,0),B(2,1),C(-2,3),求:(1)BC边所在直线的方程;(2)BC边上中线AD所在直线的方程;(3)BC边的垂直平分线DE的方程.触类旁通求直线方程的两种方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应注意各种形式的方程的适用范围,必要时要分类讨论.(2)待定系数法,即设定含有参数的直线方程,由条件列出方程(组),再求出参数,最后将其代入直线方程.考向3 直线方程的应用例3 已知直线l过点M(1,1),且与x轴,y轴的正半轴分别相交于A,B两点,O为坐标原点.求:(1)当|OA|+|OB|取得最小值时,直线l的方程;(2)当|MA|2+|MB|2取得最小值时,直线l的方程.【变式训练3】已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程.核心规律1.明确直线方程各种形式的适用条件点斜式、斜截式方程适用于不垂直于x轴的直线;两点式方程不能表示垂直于x、y轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法.满分策略1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.1.直线的倾斜角与斜率(1)在平面直角坐标系中,对于一条与x轴相交的直线,把x轴所在的直线绕着交点按__________方向旋转到和直线重合时所转过的____________称为这条直线的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为__________.(2)倾斜角的范围为________________.(3)倾斜角与斜率的关系:α≠90°时,k=________,倾斜角是90°的直线斜率________.(4)过两点的直线的斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=_____________________.2.直线方程的五种基本形式名称方程适用范围点斜式不含直线x=x0斜截式不含垂直于x轴的直线两点式不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)截距式不含垂直于坐标轴和过原点的直线一般式平面直角坐标系内的直线都适用自我检测1.若A(-2,3),B(3,-2),C三点共线,则m的值为________.2.直线l与两条直线x-y-7=0,y=1分别交于P、Q两点,线段PQ的中点为(1,-1),则直线l的斜率为_______________________________________________________.3.下列四个命题中,假命题是________(填序号).①经过定点P(x0,y0)的直线不一定都可以用方程y-y0=k(x-x0)表示;②经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;③与两条坐标轴都相交的直线不一定可以用方程+=1表示;④经过点Q(0,b)的直线都可以表示为y=kx+b.4.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不通过第________象限.5.已知直线l的方向向量与向量a=(1,2)垂直,且直线l过点A(1,1),则直线l的方程为______________.二、教学过程探究点一倾斜角与斜率例1 已知两点A(-1,-5)、B(3,-2),直线l的倾斜角是直线AB 倾斜角的一半,求l的斜率.变式迁移1直线xsinα-y+1=0的倾斜角的变化范围是______________.探究点二直线的方程例2 过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程.变式迁移2 求适合下列条件的直线方程:(1)经过点P(3,2)且在两坐标轴上的截距相等;(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.探究点三直线方程的应用例3 过点P(2,1)的直线l交x轴、y轴正半轴于A、B两点,求使:(1)△AOB面积最小时l的方程;(2)PA·PB最小时l的方程.变式迁移3 为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图),另外△EFA内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m,应如何设计才能使草坪面积最大?拓展延伸:例4 已知实数x,y满足y=x2-2x+2(-1≤x≤1).试求的最大值与最小值.三、回顾与反思:人教版高中必修二《直线与方程》教学案例这篇文章共9802字。
人教A版高中数学必修2第三章 直线与方程3.2 直线的方程教案
第九章解析几何初步【课题】第一节直线的倾斜角与斜率【教学目标】1.知识与技能:(1)了解直线方程的概念,正确理解直线倾斜角和斜率概念,(2)理解公式的推导过程,掌握过两点的直线的斜率公式.2.情感、态度、价值观:(1)培养学生观察、探索能力,运用数学语言表达能力。
(2)帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神3.过程与方法:通过启发引导、讨论等方法,理解直线的倾斜角与斜率的概念,掌握由直线上两点的坐标求直线的倾斜角和斜率的方法。
掌握直线的点斜式方程,会实现直线方程的各种形式之间的互化。
【教学重点难点】1.教学重点:直线的倾斜角和斜率的概念,过两点的直线的斜率公式2.教学难点:斜率概念的学习,过两点的直线的斜率公式【教法学法】启发式教学法、对话式教学法【教学准备】多媒体、实物模型【教学安排】2课时【教学过程】一、复习引入:直线和圆都是最常见的简单几何图形,在生产实践和实际生活中有广泛的应用。
初中几何对直线和圆的基本性质作了比较系统的研究,初中代数研究了一次函数图象及其性质,高一数学研究了三角函数、平面向量,直线和圆的方程的内容以上述知识为基础,直线和圆的方程是解析几何的基础知识,在解决实际问题中有广泛的应用。
本节要研究的是直线的两个基本概念,即直线的倾斜角和斜率。
⑴回顾一次函数的图象及性质形如y=kx+b(k≠0)叫做一次函数;它的图象是一条直线;当k>0时,在R上是增函数,当k<0时,在R上是减函数。
⑵画出下列一次函数的图象①y = 2x + 4 ② y = -2x + 2小结:作一次函数图象的方法-由于两点确定一条直线,故可在直线上任取两点,通常取点(0 , b)与(-b/k , 0)。
研究两点(-2,0)、(0,4)与函数式y = 2x + 4的关系是:这两点就是满足函数式的两对x、y的值。
由作图知满足函数式y = 2x + 4的每一对x、y的值都是函数y = 2x + 4上的点;这条直线上的点的坐标都满足函数式y = 2x + 4。
人教版数学必修二3.2.3《直线的一般方程》表格教案
【三】例题解析例1:已知直线经过点()4,6-A ,斜率为34-,求直线的点斜式和一般式方程。
变式训练:由下列条件,写出直线的方程,并把它化成一般式:(1)在y 轴上的截距为2,斜率是1-;(2)经过点()2,3-A 并与直线01243=--y x 垂直。
讲解例题,学生自行完成变式训练。
根据条件选择合适的直线方程形式表示直线,再写成一般式。
特别注意,变式训练(2)有两种方法,若有直接设出方程3x -4y +m =0的须号召大家鼓掌表扬!例2:把直线l 的一般方程x -2y +6=0化成斜截式,求出直线l 的斜率以及它在x 轴与y 轴上的截距,并画出图形.变式训练:求直线l :2x -5y -10=0与坐标轴围成的三角形的面积.设计意图:例1是从“数”的方面加深了对一般式的认识,例2则从“形”的方面来进一步认识一般式,于是数与形就有了和谐的结合。
这里还要注意提醒学生:画出一条直线的基本步骤是:画平面直角坐标系,找直线上不同的2点(方法任选,如赋值法等),连接这2点并延长。
【画、找、连】【四】探究与升华我们通过直线的点斜式可以看出直线上的一点和它的斜率,通过截距式可以看出直线在x ,y 轴上的截距,但是这些直线方程的特殊形式都不能表示平面直角坐标系内任意一条直线。
而可以表示平面直角坐标系内的任意一条直线的一般式的系数A ,B ,C 与直线的位置和特征有什么联系呢?探究1.在方程Ax +By +C =0(A ,B 不同时为0)中,(1)当A =0,B ≠0,C ≠0时,方程表示的直线与y 轴 ;(2)当A 、B 不同时为0,C =0时,方程表示的直线必过 。
探究2:在方程Ax +By +C =0(A ,B 不同时为0)中,A ,B ,C 为何值时,方程表示的直线:(1)平行于轴;(2)与两坐标轴都相交。
练习:1.已知直线l :Ax +By +C =0的图象如图所示,则( )A.若C >0,则A >0,B >0B.若C >0,则A <0,B >0C.若C <0,则A >0,B <0D.若C <0,则A >0,B >02.设点()00,y x P 在直线Ax +By +C =0。
高中数学 必修二(3.2.2 直线的两点式方程)示范教案 新人教A版必修2
3.2.2 直线的两点式方程教学过程导入新课思路1.上节课我们学习了直线方程的点斜式,请问点斜式方程是什么?点斜式方程是怎样推导的?利用点斜式解答如下问题:(1)已知直线l 经过两点P 1(1,2),P 2(3,5),求直线l 的方程.(2)已知两点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),求通过这两点的直线方程. 思路2.要学生求直线的方程,题目如下:①A(8,-1),B(-2,4);②A(6,-4),B(-1,2);③A(x 1,y 1),B(x 2,y 2)(x 1≠x 2).(分别找3个同学说上述题的求解过程和答案,并着重要求说求k 及求解过程)这个答案对我们有何启示?求解过程可不可以简化?我们可不可以把这种直线方程取一个什么名字呢?推进新课新知探究提出问题①已知两点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),求通过这两点的直线方程. ②若点P 1(x 1,y 1),P 2(x 2,y 2)中有x 1=x 2或y 1=y 2,此时这两点的直线方程是什么? ③两点式公式运用时应注意什么?④已知直线l 与x 轴的交点为A(a,0),与y 轴的交点为B(0,b),其中a ≠0,b≠0,求直线l 的方程.⑤a、b 表示截距是不是直线与坐标轴的两个交点到原点的距离?⑥截距式不能表示平面坐标系下哪些直线?活动:①教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程.师生共同归纳:已知直线上两个不同点,求直线的方程步骤:a.利用直线的斜率公式求出斜率k;b.利用点斜式写出直线的方程.∵x 1≠x 2,k=1212x x y y --, ∴直线的方程为y-y 1=1212x x y y --(x-x 1). ∴l 的方程为y-y 1=1212x x y y --(x-x 1).① 当y 1≠y 2时,方程①可以写成121121x x x x y y y y --=--.② 由于②这个方程是由直线上两点确定的,因此叫做直线方程的两点式.注意:②式是由①式导出的,它们表示的直线范围不同.①式中只需x 1≠x 2,它不能表示倾斜角为90°的直线的方程;②式中x 1≠x 2且y 1≠y 2,它不能表示倾斜角为0°或90°的直线的方程,但②式相对于①式更对称、形式更美观、更整齐,便于记忆.如果把两点式变成(y-y 1)(x 2-x 1)=(x-x 1)(y 2-y 1),那么就可以用它来求过平面上任意两已知点的直线方程. ②使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式.教师引导学生通过画图、观察和分析,发现当x 1=x 2时,直线与x 轴垂直,所以直线方程为x=x 1;当y 1=y 2时,直线与y 轴垂直,直线方程为y=y 1.③引导学生注意分式的分母需满足的条件.④使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形.教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线l 的方程?哪种方法更为简捷?然后求出直线方程.因为直线l 经过(a ,0)和(0,b)两点,将这两点的坐标代入两点式,得a a xb y --=--000.① 就是by a x +=1.② 注意:②这个方程形式对称、美观,其中a 是直线与x 轴交点的横坐标,称a 为直线在x 轴上的截距,简称横截距;b 是直线与y 轴交点的纵坐标,称b 为直线在y 轴上的截距,简称纵截距.因为方程②是由直线在x 轴和y 轴上的截距确定的,所以方程②式叫做直线方程的截距式. ⑤注意到截距的定义,易知a 、b 表示的截距分别是直线与坐标轴x 轴交点的横坐标,与y 轴交点的纵坐标,而不是距离.⑥考虑到分母的原因,截距式不能表示平面坐标系下在x 轴上或y 轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式.讨论结果:①若x 1≠x 2且y 1≠y 2,则直线l 方程为121121x x x x y y y y --=--. ②当x 1=x 2时,直线与x 轴垂直,直线方程为x=x 1;当y 1=y 2时,直线与y 轴垂直,直线方程为y=y 1.③倾斜角是0°或90°的直线不能用两点式公式表示(因为x 1≠x 2,y 1≠y 2). ④by a x +=1. ⑤a、b 表示的截距分别是直线与坐标轴x 轴交点的横坐标,与y 轴交点的纵坐标,而不是距离.⑥截距式不能表示平面坐标系下在x 轴上或y 轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式.应用示例思路1例1 求出下列直线的截距式方程:(1)横截距是3,纵截距是5;(2)横截距是10,纵截距是-7;(3)横截距是-4,纵截距是-8.答案:(1)5x+3y-15=0;(2)7x-10y-70=0;(3)3x+4y+12=0.变式训练已知Rt△ABC 的两直角边AC=3,BC=4,直角顶点C 在原点,直角边AC 在x 轴负方向上,BC 在y 轴正方向上,求斜边AB 所在的直线方程.答案:4x-3y+12=0.例2 如图1,已知三角形的顶点是A(-5,0)、B(3,-3)、C(0,2),求这个三角形三边所在直线的方程.图1活动:根据A 、B 、C 三点坐标的特征,求AB 所在的直线的方程应选用两点式;求BC 所在的直线的方程应选用斜截式;求AC 所在的直线的方程应选用截距式.解:AB 所在直线的方程,由两点式,得)5(3)5(030----=---x y ,即3x+8y+15=0. BC 所在直线的方程,由斜截式,得y=-35x+2,即5x+3y-6=0. AC 所在直线的方程,由截距式,得25y x +-=1,即2x-5y+10=0. 变式训练如图2,已知正方形的边长是4,它的中心在原点,对角线在坐标轴上,求正方形各边及对称轴所在直线的方程.图2活动:由于正方形的顶点在坐标轴上,所以可用截距式求正方形各边所在直线的方程.而正方形的对称轴PQ ,MN ,x 轴,y 轴则不能用截距式,其中PQ ,MN 应选用斜截式;x 轴,y 轴的方程可以直接写出.解:因为|AB|=4,所以|OA|=|OB|=2224=.因此A 、B 、C 、D 的坐标分别为(22,0)、(0,22)、(-22,0)、(0,-22). 所以AB 所在直线的方程是2222yx+=1,即x+y-22=0.BC 所在直线的方程是2222y x+-=1,即x-y+22=0. CD 所在直线的方程是22722-+-x=1,即x+y+22=0. DA 所在直线的方程是22722-+x=1,即x-y-22=0.对称轴方程分别为x±y=0,x=0,y=0.思路2例1 已知△ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点.(1)求AB 边所在的直线方程;(2)求中线AM 的长;(3)求AB 边的高所在直线方程.解:(1)由两点式写方程,得121515+-+=---x y ,即6x-y+11=0. (2)设M 的坐标为(x 0,y 0),则由中点坐标公式,得x 0=242+-=1,y 0=231+-=1, 故M (1,1),AM=22)51()11(-++=25.(3)因为直线AB 的斜率为k AB =2315+-+=-6,设AB 边上的高所在直线的斜率为k, 则有k×k AB =k×(-6)=-1,∴k=61. 所以AB 边高所在直线方程为y-3=61(x-4),即x-6y+14=0. 变式训练求与两坐标轴正向围成面积为2平方单位的三角形,并且两截距之差为3的直线的方程. 解:设直线方程为b y a x +=1,则由题意知,有21ab=3,∴ab=4. 解得a=4,b=1或a=1,b=4. 则直线方程是14y x +=1或41y x +=1,即x+4y-4=0或4x+y-4=0. 例2 经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程.解:当截距为0时,设y=kx ,又过点A(1,2),则得k=2,即y=2x.当截距不为0时,设a y a x +=1或ay a x -+=1,过点A(1,2), 则得a=3,或a=-1,即x+y-3=0或x-y+1=0.这样的直线有3条:2x-y=0,x+y-3=0或x-y+1=0.变式训练过点A(-5,-4)作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5. 答案:2x-5y-10=0,8x-5y+20=0.知能训练课本本节练习1、2、3.拓展提升问题:把函数y=f(x)在x=a 及x=b 之间的一段图象近似地看作直线,设a≤c≤b,证明f(c)的近似值是f(a)+a b ac --[f(b)-f(a)].证明:∵A、B 、C 三点共线,∴k AC =k AB , 即a b a f b f a c c f c f --=--)()()()(.∴f(c)-f(a)= a b ac --[f(b)-f(a)],即f(c)=f(a)+a b ac --[f(b)-f(a)].∴f(c)的近似值是f(a)+a b ac --[f(b)-f(a)].。
3.2《直线的方程》教案(新人教必修2)
直线的点斜式方程一、教课目的1、知识与技术(1)理解直线方程的点斜式、斜截式的形式特色和合用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)领会直线的斜截式方程与一次函数的关系.2、过程与方法在已知直角坐标系内确立一条直线的几何因素——直线上的一点和直线的倾斜角的基础上,经过师生商讨,得出直线的点斜式方程;学生经过对照理解“截距”与“距离”的差别。
3、神态与价值观经过让学生领会直线的斜截式方程与一次函数的关系,进一步培育学生数形联合的思想,浸透数学中广泛存在相互联系、相互转变等看法,使学生能用联系的看法看问题。
二、教课要点、难点:(1)要点:直线的点斜式方程和斜截式方程。
(2)难点:直线的点斜式方程和斜截式方程的应用。
三、教课假想问题1、在直线坐标系内确立一条直线,应知道哪些条件?设计企图使学生在已有知识和经验的基础上,研究新知。
师生活动学生回首,并回答。
而后教师指出,直线的方程,就是直线上随意一点的坐标 (x, y) 满足的关系2、直线l经过点P0(x0, y0),且斜率为 k 。
设点P( x, y)是直线 l 上的任意一点,请建立 x, y 与k, x0 , y0之间的关系。
yPP 0式。
培育学生自主学生依据斜率公式,能够获取,研究的能力,并体时, k yy0 ,即会直线的方程,就当x x0是直线上随意一x x0点的坐标 ( x, y)y y0k( x x0 )(1)知足的关系式,从教师对基础单薄的学生赐予关而掌握依据条件注、指引,使每个学生都能推导出求直线方程的方这个方程。
法。
O x3、( 1)过点P0(x0, y0),斜率使学生认识方学生考证,教师指引。
程为直线方程必是 k 的直线 l 上的点,其坐标都满须满两个条件。
足方程( 1)吗?问题(2)坐标知足方程(1)的点都在经过 P0 ( x0 , y0 ) ,斜率为k的直线l 上吗?4、直线的点斜式方程可否表示坐标平面上的全部直线呢?5、( 1)x轴所在直线的方程是什么? y 轴所在直线的方程是什么?( 2)经过点P0 ( x0 , y0 ) 且平行于x 轴(即垂直于y 轴)的直线方程是什么?( 3)经过点P0( x0, y0)且平行于y 轴(即垂直于 x 轴)的直线方程是什么?设计企图师生活动使学生认识方学生考证,教师指引。
高中数学人教版必修2 3.2.2直线的两点式方程 教案1
3.2.2《直线的两点式方程》教案【教学目标】1.直线的两点式方程的推导过程;2.直线的截距式方程的构成,了解直线方程截距式的形式特点及适用范围; 3 截距的含义。
掌握直线方程的两点的形式特点及适用范围。
【导入新课】 问题导入:利用点斜式解答如下问题:(1)已知直线l 经过两点)5,3(),2,1(21P P ,求直线l 的方程。
(2)已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠,求通过这两点的直线方程。
新授课阶段1.直线的两点式方程的推导过程已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程:(1))1(232-=-x y(2))(112121x x x x y y y y---=-指出:当21y y ≠时,方程可以写成),(2121121121y y x x x x x x y y y y ≠≠--=--由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式。
思考:若点),(),,(222211y x P x x P 中有21x x =,或21y y =,此时这两点的直线方程是什么?当21x x =时,直线与x 轴垂直,所以直线方程为:1x x =;当21y y =时,直线与y轴垂直,直线方程为:1y y=。
例1 已知直线l :120kx y k -++= (1) 证明直线l 经过定点;(2)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 的方程;(3) 若直线不经过第三象限,求k 的取值范围。
解:(1)(-2,1);(2)由直线l 的方程得A (-12kk+,0),B (0,1+2k),由题知:-12kk+<0,且1+2k >0,∴k >0 ∵S=12 |OA||OB|=11(44)2k k++≥4.当且仅当k >0,4k=1k ,即k=12时,面积取最小值4,此时直线的方程是:x -2y +4=0.(3)由(2)知直线l 在坐标轴上的截距,直线不经过第四象限则-12kk+≤0,且1+2k≥0,∴k >0。
人教版高一数学必修二第三章 直线与方程教案
教学课题 人教版必修二第三章直线与方程一、知识框架3.1 直线的倾斜角与斜率1. 倾斜角与斜率(1)倾斜角(2)斜率定义 当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.规定当直线l 与x 轴平行或重合时,规定直线的倾斜角为︒0 记法 α图示范围0°≤α<180° 作用(1)用倾斜角表示平面直角坐标系内一条直线的倾斜程度。
(2)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可。
定义α≠90°一条直线的倾斜角α的正切值叫做这条直线的斜率 α=90° 斜率不存在③当直线l 1∥直线l 2时,可能它们的斜率都存在且相等,也可能斜率都不存在.④对于不重合的直线l 1,l 2,其倾斜角分别为α,β,有l 1∥l 2⇔α=β.(2)垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;如果它们的斜率之积等于-1,那么它们互相垂直.有12121-=⋅⇔⊥k k l l①当直线l 1⊥直线l 2时,可能它们的斜率都存在且乘积为定值-1,也可能一条直线的斜率不存在,而另一条直线的斜率为0;②较大的倾斜角总是等于较小倾斜角与直角的和.3.2 直线的方程1. 直线的点斜式方程(1)直线的点斜式方程①定义:如下图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程)(00x x k y y -=-叫做直线l 的点斜式方程,简称点斜式.特别地,当倾斜角为︒0时,有0=k ,此时直线与x 轴平行或重合,方程为00=-y y 或者0y y =。
②说明:如下图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或0x x =(2)直线的斜截式方程 ①定义:如下图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程b kx y +=叫做直线l 的斜截式方程,简称斜截式.②说明:左端y 的系数恒为1,一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是︒90的直线没有斜截式方程.2. 直线的两点式方程(1)直线的两点式方程①定义:如图所示,直线l 经过点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),则方程y -y 1y 2-y 1=121x x x x --叫做直线l 的两点式方程,简称两点式.②说明:与坐标轴垂直的直线没有两点式方程,当x 1=x 2时,直线方程为x =x 1;当y 1=y 2时,直线方程为y =y 1.(2)直线的截距式方程①定义:如图所示,直线l 与两坐标轴的交点分别是P 1(a,0),P 2(0,b )(其中a ≠0,b ≠0),则方程为1=+by a x 叫做直线l 的截距式方程,简称截距式.2. 利用三种直线方程求直线方程时,要注意这三种直线方程都有适用范围,利用它们都不能求出垂直于x 轴的直线方程。
人教A版高中数学必修二 3.2.3 直线的一般式方程 教案
3.2.3 直线的一般式方程教学目标1.知识与技能:(1)通过推导,了解直线都可以表示成一般式方程; (2)理解直线一般式方程系数的意义; (3)会判断一般式方程的平行垂直问题.2.过程与方法:通过实例初步了解概念,通过探究深入理解概念的实质,关键是要培养学生分析问题、解决问题和转化问题的能力.3.情感态度价值观:(1)本节核心问题是让学生学会转化思想,灵活应用所学知识,加强与实际生活的联系,以科学的态度评价身边的一些现象;(2)用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
培养学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想 重点难点1.教学重点:了解直线都可以表示成一般式方程,会判断一般式方程的平行垂直问题2.教学难点:理解直线一般式方程系数的意义. 教学过程(一)复习引入:1、直线方程的点斜式、斜截式、两点式、截距式的互相转化: 练习1:由下列条件,写出直线的方程: (1)经过点A (8,– 2),斜率是21-;()8(212--=+x y ) (2)经过点B (4,2),平行于x 轴;(y – 2 = 0) (3)经过点P 1(3,– 2),P 2(5,– 4);(353)2(4)2(--=-----x y )(4)在x 轴,y 轴上的截距分别为23,– 3。
(1323=-+y x )2、直线方程的几种形式:思考:以上方程有什么共同的特点? (二)讲授新课:1、直线与二元一次方程的关系:问题1:平面直角坐标系中的每一条直线都可以用一个关于x 、y 吗?对直线的倾斜角α进行讨论: ① 当︒≠90α时,直线斜率为αtan =k ,其方程可写成:b kx y +=,可变形为:0=++C By Ax ,其中:A = k ,B = – 1,C = b ;A 、B 不同时为零。
(如图) ② 当︒=90α时,直线斜率不存在,其方程可写成1x x =的形式, 也可以变形为:0=++C By Ax ,其中:A = 1,B = 0,1x C =。
直线的一般式方程教案-数学必修2第三章直线方程3.2.2第一课时人教A版
第三章 直线方程 3.2.3 直线的一般式方程1 教学目标[1] 明确理解直线一般式方程的形式特征 [2] 理解直线方程几种形式之间的内在联系[3] 能在总体把握直线方程的基础上,掌握各种形式之间的相互转化[4] 通过直线方程一般式的学习,培养学生全面、系统、周密地分类讨论问题的能力 培养学生数学结合思想和严谨的科学态度2教学重点/难点教学重点:直线方程一般式的理解和掌握教学难点:直线方程的一般式与各种直线方程间的互化3专家建议直线方程的一般式是由前面所学习的四种直线方程的形式概括形成的,它克服以点斜式、斜截式、两点式、截距式四种方程“特殊式”的局限性,由于直线方程的一般式)(0不全为零、其中B A c By Ax =++是关于x 、 y 的二元一次方程,因此平面上的直线与二元一次方程)(0不全为零、其中B A c By Ax =++是一一对应的。
直线的各种方程各有各的特点,分别适用于不同条件下的直线,因此教学时要引导同学熟练掌握各自特性,灵活使用。
4 教学方法讲授式、启发式教学5 教学过程5.1 复习引入【师】到目前为止,我们都学习了直线方程的哪几种形式?它们各适用于具有什么条件的求直线方程问题?适用的X 围是什么? 【板演/PPT 】引导学生回答各种直线方程点斜式:已知直线上一点P 1(x 1,y 1)的坐标,和直线的斜率k ,则直线的方程是斜截式:已知直线的斜率k ,和直线在y 轴上的截距b 则直线方程是两点式:已知直线上两点P 1(x 1,y 1),P 2(x 2,y 2)则直线的方程是:截距式:已知直线在X 轴Y 轴上的截距为a ,b ,则直线的方程是【师】他们所适用的X 围是什么? 【生】点斜式:适用于有斜率的直线问题 斜截式:适合存在斜率且已知纵截距的直线问题 两点式:适合已知两点,且不垂直于x 轴或y 轴直线问题)(11x x k y y -=-bkx y +=121121x x x x y y y y --=--1=+by a x截距式:适合已知截距,且截距不为零的直线问题5.2 探索新知 [1] 直线的一般式方程【师】下面我们看一看屏幕上的问题: 【板书/PPT 】1.过点(2,1),斜率为2的直线的方程____________ 2.过点(2,1),斜率为0的直线方程是___________ 3.过点(2,1),斜率不存在的直线的方程_________【师】你能根据实际条件,写出直线方程吗?并思考:你所列出的直线方程能看作是二元一次方程吗?【生】讨论与计算 【板书/PPT 】(1)中方程可化为2x-y-3=0,故直线方程是二元一次方程。
必修2教案3.2.3 直线的一般式方程
x, y
By C 0 (A,
B 不同时为 0)都表示一条直线 吗?
x, y 的二元一
不
By C 0 (A,B
同时为 0)叫做直线的一般式方程,简 称一般式(general form). 2、 直线方程的一般式与其他几种 形式的直线方程相比,它有什么 优点? 使学生理解直 线方程的一般 式的与其他形 学生通过对比、讨论,发现直线方程 的一般式与其他形式的直线方程的一 个不同点是:
学生独立完成。然后教师检查、评价、 反馈。指出:对于直线方程的一般式, 一般作如下约定: 一般按含 x 项、 含y 项、 常数项顺序排列;x 项的系数为正;
x , y 的系数和常数项一般不出现分
数;无特加要时,求直线方程的结果写 成一般式。
5、例 6 的教学
使学生体会直 把 直 线 l 的 一 般 式 方 程 线方程的一般 x 2 y 6 0 化成斜截式, 式化为斜截式, 和已知直线方 求出直线 l 的斜率以及它在 x 轴 程 的 一 般 式 求 直线的斜率和 与 y 轴上的截距,并画出图形。 截距的方法。
的截距。 在直角坐标系中画直线时, 通常找 出直线下两个坐标轴的交点。 6、 二元一次方程的每一个解与坐 标平面中点的有什么关系?直线 与二元一次方程的解之间有什么 关系? 使学生进一步 理解二元一次 方程与直线的 关系, 体会直解 坐标系把直线 与方程联系起 来。 巩固所学知识 学生阅读教材第 105 页, 从中获得对 问题的理解。
问
题
设计意图 式的不同点。
师生活动 直线的一般式方程能够表示平面上的 所有直线,而点斜式、斜截式、两点式 方程,都不能表示与 x 轴垂直的直线。 教师引导学生回顾前面所学过的与 与 y 轴平行和重合的 x 轴平行和重合、 直线方程的形式。 然后由学生自主探索 得到问题 C 0
人教版高中数学必修二 学案:3.2直线的方程
3.2 直线的方程 3.2.1 直线的点斜式方程[新知初探]1.直线的点斜式方程(1)定义:如图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程y -y 0=k (x -x 0)叫做直线l 的点斜式方程,简称点斜式.(2)如图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或x =x 0.[点睛] 经过点P 0(x 0,y 0)的直线有无数条,可以分为两类: ①斜率存在的直线,方程为y -y 0=k (x -x 0); ②斜率不存在的直线,方程为x -x 0=0,或x =x 0. 2.直线的斜截式方程(1)定义:如图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程y =kx +b 叫做直线l 的斜截式方程,简称斜截式.(2)一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是直角的直线没有斜截式方程.[点睛](1)斜截式方程应用的前提是直线的斜率存在.(2)纵截距不是距离,它是直线与y 轴交点的纵坐标,所以可取一切实数,即可为正数、负数或零.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)直线y -3=m (x +1)恒过定点(-1,3)( ) (2)对于直线y =2x +3在y 轴上截距为3( ) (3)直线的点斜式方程也可写成y -y 0x -x 0=k ( )答案:(1)√ (2)√ (3)×2.直线l 经过点P (2,-3),且倾斜角α=45°,则直线的点斜式方程是( ) A .y +3=x -2 B .y -3=x +2 C .y +2=x -3D .y -2=x +3解析:选A ∵直线l 的斜率k =tan 45°=1, ∴直线l 的方程为y +3=x -2.3.在y 轴上的截距为2,且与直线y =-3x -4平行的直线的斜截式方程为________. 解析:∵直线y =-3x -4的斜率为-3, 所求直线与此直线平行,∴斜率为-3, 又截距为2,∴由斜截式方程可得y =-3x +2. 答案:y =-3x +2[典例] 已知点A (3,3)和直线l :y =34x -52.求:(1)过点A 且与直线l 平行的直线的点斜式方程; (2)过点A 且与直线l 垂直的直线的点斜式方程. [解] 因为直线l :y =34x -52,所以该直线的斜率k =34.(1)过点A (3,3)且与直线l 平行的直线方程为y -3=34(x -3).(2)过点A (3,3)且与直线l 垂直的直线方程为y -3=-43(x -3).[活学活用]1.直线y =x +1绕着其上一点P (3,4)逆时针旋转90°后得直线l ,求直线l 的点斜式方程. 解:直线y =x +1的斜率k =1,∴倾斜角为45°.由题意知,直线l 的倾斜角为135°,∴直线l 的斜率k ′=tan 135°=-1. 又点P (3,4)在直线l 上,由点斜式方程知,直线l 的方程为y -4=-(x -3). 2.已知两点A (-1,2),B (m,3),求直线AB 的点斜式方程. 解:因为A (-1,2),B (m,3),当m =-1时,直线AB 的方程为x =-1,没有点斜式方程; 当m ≠-1时,直线AB 的斜率k =1m +1,直线AB 的点斜式方程为y -2=1m +1(x +1).[典例] 根据条件写出下列直线的斜截式方程:(1)斜率为2,在y 轴上的截距是5; (2)倾斜角为150°,在y 轴上的截距是-2;(3)倾斜角为60°,与y 轴的交点到坐标原点的距离为3. [解] (1)由直线方程的斜截式可知,所求直线方程为y =2x +5. (2)由于倾斜角α=150°,所以斜率k =tan 150°=-33,由斜截式可得方程为y =-33x -2.(3)由于直线的倾斜角为60°,所以斜率k =tan 60°= 3.由于直线与y 轴的交点到坐标原点的距离为3,所以直线在y 轴上的截距b =3或b =-3,故所求直线方程为y =3x +3或y =3x -3.[活学活用]求倾斜角是直线y =-3x +1的倾斜角的14,且在y 轴上的截距是-5的直线方程.解:∵直线y =-3x +1的斜率k =-3,∴其倾斜角α=120°,由题意,得所求直线的倾斜角α1=14α=30°,故所求直线的斜率k 1=tan 30°=33.∵所求直线的斜率是33,在y 轴上的截距为-5, ∴所求直线的方程为y =33x -5.[典例] (1)当a 为何值时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行? (2)当a 为何值时,直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直? [解] (1)由题意可知,kl 1=-1,kl 2=a 2-2,∵l 1∥l 2,∴⎩⎪⎨⎪⎧a 2-2=-1,2a ≠2,解得a =-1.故当a =-1时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行. (2)由题意可知,kl 1=2a -1,kl 2=4,∵l 1⊥l 2,∴4(2a -1)=-1,解得a =38.故当a =38时,直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直.对于不能用斜截式方程表示的直线,判断它们的位置关系时,需注意: (1)若两条直线的斜率均不存在,则有l 1∥l 2或l 1与l 2重合. (2)若一条直线的斜率不存在,另一条直线的斜率为0,则有l 1⊥l 2.(3)若一条直线的斜率不存在,另一条直线的斜率存在但不为0,则两条直线既不平行也不垂直.[活学活用]1.已知直线y =ax -2和y =(a +2)x +1互相垂直,则a =________. 解析:由题意可知a ·(a +2)=-1,解得a =-1. 答案:-12.若直线l 1:y =-2a x -1a与直线l 2:y =3x -1互相平行,则a =________.解析:由题意可知⎩⎨⎧-2a=3,-1a ≠-1,解得a =-23.答案:-23层级一 学业水平达标1.已知直线的方程是y +2=-x -1,则( ) A .直线经过点(-1,2),斜率为-1 B .直线经过点(2,-1),斜率为-1 C .直线经过点(-1,-2),斜率为-1 D .直线经过点(-2,-1),斜率为1解析:选C 直线方程y +2=-x -1可化为y -(-2)=-[x -(-1)],故直线经过点(-1,-2),斜率为-1.2.已知直线的倾斜角为60°,在y 轴上的截距为-2,则此直线的方程为( )A .y =3x +2B .y =-3x +2C .y =-3x -2D .y =3x -2解析:选D 直线的倾斜角为60°,则其斜率为3,利用斜截式得y =3x -2. 3.直线y -b =2(x -a )在y 轴上的截距为( ) A .a +b B .2a -b C .b -2aD .|2a -b |解析:选C 由y -b =2(x -a ),得y =2x -2a +b ,故在y 轴上的截距为b -2a . 4.将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( ) A .y =-13x +13B .y =-13x +1C .y =3x -3D .y =13x +1解析:选A 将直线y =3x 绕原点逆时针旋转90°,得到直线y =-13x ,再向右平移1个单位,所得到的直线为y =-13(x -1),即y =-13x +13.5.若两条直线y =ax -2和y =(2-a )x +1互相平行,则a 等于( ) A .2 B .1 C .0D .-1解析:选B 由a =2-a ,得a =1.6.设a ∈R ,如果直线l 1:y =-a 2x +12与直线l 2:y =-1a +1x -4a +1平行,那么a =________.解析:由l 1∥l 2得-a 2=-1a +1且12≠-4a +1,解得a =-2或a =1.答案:-2或17.直线y =43x -4在y 轴上的截距是________.解析:由y =43x -4,令x =0,得y =-4.答案:-48.直线y =k (x -2)+3必过定点,该定点坐标是________. 解析:将直线方程化为点斜式得y -3=k (x -2),∴过定点(2,3). 答案:(2,3)9.求满足下列条件的m 的值.(1)直线l 1:y =-x +1与直线l 2:y =(m 2-2)x +2m 平行; (2)直线l 1:y =-2x +3与直线l 2:y =(2m -1)x -5垂直.解:(1)∵l 1∥l 2,∴两直线斜率相等.∴m 2-2=-1且2m ≠1,∴m =±1. (2)∵l 1⊥l 2,∴2m -1=12.∴m =34.10.直线l 过点(2,2),且与x 轴和直线y =x 围成的三角形的面积为2,求直线l 的方程. 解:当直线l 的斜率不存在时,l 的方程为x =2,经检验符合题目的要求. 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x -2),即y =kx -2k +2. 令y =0得,x =2k -2k.由三角形的面积为2,得12×⎪⎪⎪⎪2k -2k ×2=2.解得,k =12.可得直线l 的方程为y -2=12(x -2),综上可知,直线l 的方程为x =2或y -2=12(x -2).层级二 应试能力达标1.过点(-1,3)且平行于直线y =12(x +3)的直线方程为( )A .y +3=12(x +1)B .y +3=12(x -1)C .y -3=12(x +1)D .y -3=12(x -1)解析:选C 由直线y =12(x +3),得所求直线的斜率等于12,其方程为y -3=12(x +1),选C.2.直线l 1:y =ax +b 与直线l 2:y =bx +a (ab ≠0,a ≠b )在同一平面直角坐标系内的图象只可能是( )解析:选D 对于A 选项,由l 1得a >0,b <0,而由l 2得a >0,b >0,矛盾;对于B 选项,由l 1得a <0,b >0,而由l 2得a >0,b >0,矛盾;对于C 选项,由l 1得a >0,b <0,而由l 2得a <0,b >0,矛盾;对于D 选项,由l 1得a >0,b >0,而由l 2得a >0,b >0.故选D.3.若y =a |x |与y =x +a (a >0)有两个公共点,则a 的取值范围是( ) A .a >1B .0<a <1C .∅D .0<a <1或a >1解析:选A y =x +a (a >0)表示斜率为1,在y 轴上的截距为a (a >0)的直线,y =a |x |表示关于y 轴对称的两条射线.∴当0<a ≤1时,只有一个公共点;当a >1时,有两个公共点,故选A.4.若原点在直线l 上的射影是P (-2,1),则直线l 的方程为( ) A .x +2y =0 B .y -1=-2(x +2) C .y =2x +5D .y =2x +3解析:选C ∵直线OP 的斜率为-12,又OP ⊥l ,∴直线l 的斜率为2.∴直线的点斜式方程为y -1=2(x +2),化简,得y =2x +5,故选C.5.与直线2x +3y +5=0平行,且与x ,y 轴交点的横、纵坐标之和为56的直线l 方程为________________.解析:设l :2x +3y +c =0,令x =0,则y =-c 3,令y =0,则x =-c2,∴-c3+⎝⎛⎭⎫-c 2=56,∴c =-1. 答案:2x +3y -1=0 6.给出下列四个结论:①方程k =y -2x +1与方程y -2=k (x +1)可表示同一直线;②直线l 过点P (x 1,y 1),倾斜角为90°,则其方程是x =x 1; ③直线l 过点P (x 1,y 1),斜率为0,则其方程是y =y 1; ④所有的直线都有点斜式和斜截式方程. 其中正确结论的序号为________.解析:①不正确.方程k =y +2x +1不含点(-1,2);②正确;③正确;④只有k 存在时成立.答案:②③7.已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1的斜率相等且与l 2在y 轴上的截距相同,求直线l 的方程.解:由斜截式方程知直线l 1的斜率k 1=-2, ∴l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2, ∴l 在y 轴上的截距b =-2,由斜截式可得直线l 的方程为y =-2x -2.8.求斜率为16,且与两坐标轴围成的三角形面积为3的直线方程.解:设直线方程为y =16x +b ,令x =0得y =b .令y =0得x =-6b , ∴S =12|b |×|-6b |=3,∴b 2=1即b =±1,∴所求的直线方程为y =16x ±1.3.2.2&3.2.3 直线的两点式方程、直线的一般式方程[新知初探]1.直线的两点式与截距式方程[点睛] (1)截距式方程中间以“+”相连,右边是1. (2)a 叫做直线在x 轴上的截距,a ∈R ,不一定有a >0. 2.直线方程的一般式 (1)直线与二元一次方程的关系①在平面直角坐标系中,对于任何一条直线,都可以用一个关于x ,y 的二元一次方程表示.②每个关于x ,y 的二元一次方程都表示一条直线. (2)直线的一般式方程的定义我们把关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.[点睛] 解题时,若无特殊说明,应把求得的直线方程化为一般式.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)不经过原点的直线都可以用方程x a +yb=1表示( )(2)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示( )答案:(1)× (2)√2.直线3x -2y =4的截距式方程是( ) A.3x 4-y2=1 B.x 13-y 12=4 C.3x 4-y-2=1 D.x 43+y-2=1 解析:选D 求直线方程的截距式,必须把方程化为x a +yb =1的形式,即右边为1,左边是和的形式.3.直线l 过点(-1,2)和点(2,5),则直线l 的方程为________. 解析:由题意直线过两点,由直线的两点式方程可得:y -25-2=x --2--,整理得x -y+3=0.答案:x -y +3=0[典例] 线方程.[解] ∵A (2,-1),B (2,2),A ,B 两点横坐标相同,直线AB 与x 轴垂直,故其方程为x =2.∵A (2,-1),C (4,1),由直线方程的两点式可得AC 的方程为y -1-1-1=x -42-4,即x -y -3=0.同理可由直线方程的两点式得直线BC 的方程为 y -21-2=x -24-2,即x +2y -6=0. ∴三边AB ,AC ,BC 所在的直线方程分别为 x =2,x -y -3=0,x +2y -6=0.[活学活用]已知直线经过点A (1,0),B (m,1),求这条直线的方程.解:由直线经过点A (1,0),B (m,1),因此该直线斜率不可能为零,但有可能不存在. (1)当直线斜率不存在,即m =1时,直线方程为x =1;(2)当直线斜率存在,即m ≠1时,利用两点式,可得直线方程为y -01-0=x -1m -1,即x -(m -1)y -1=0.综上可得:当m =1时,直线方程为x =1;当m ≠1时,直线方程为x -(m -1)y -1=0.[典例] 求过点A (5,2),且在坐标轴上截距互为相反数的直线l 的方程.[解] 法一:(1)当直线l 在坐标轴上的截距均为0时,方程为y =25x ,即2x -5y =0;(2)当直线l 在坐标轴上的截距不为0时, 可设方程为x a +y-a =1,即x -y =a ,又∵l 过点A (5,2),∴5-2=a ,a =3, ∴l 的方程为x -y -3=0,综上所述,直线l 的方程是2x -5y =0,或x -y -3=0. 法二:由题意知直线的斜率一定存在. 设直线的点斜式方程为y -2=k (x -5), x =0时,y =2-5k ,y =0时,x =5-2k.根据题意得2-5k =-⎝⎛⎭⎫5-2k ,解方程得k =25或1. 当k =25时,直线方程为y -2=25(x -5),即2x -5y =0;当k =1时,直线方程为y -2=1×(x -5),即x -y -3=0. [一题多变]1.[变条件]若将本例中的条件“在坐标轴上的截距互为相反数”变为:“在x 轴上的截距是y 轴上截距的2倍”,其它条件不变,如何求解?解:(1)当直线l 在两坐标轴上的截距均为0时,方程为y =25x ,即2x -5y =0适合题意.(2)当直线l 在两坐标轴上的截距均不为0时,可设方程为x 2a +ya =1,又l 过点(5,2),∴52a +2a =1,解得a =92.∴l 的方程为x +2y -9=0.2.[变条件]若将本例中的条件“在两坐标轴上的截距互为相反数”变为“与两坐标轴围成的三角形的面积是92”,其它条件不变,如何求解?解:由题意,直线不过原点,且在两坐标轴上的截距都存在,设其方程为x a +yb=1.∴⎩⎨⎧5a +2b =1, ①12|a ||b |=92, ②②可化为ab =±9,解⎩⎪⎨⎪⎧5a +2b =1,ab =9,无解,解得⎩⎪⎨⎪⎧5a +2b =1,ab =-9,得⎩⎨⎧a =-152,b =65或⎩⎪⎨⎪⎧a =3,b =-3.∴l 的方程为4x -25y +30=0或x -y -3=0.[典例] 已知直线l 1:ax +2y -3=0,l 2:3x +(a +1)y -a =0,求满足下列条件的a 的值. (1)l 1∥l 2; (2)l 1⊥l 2.[解] 法一:直线l 1可化为y =-a 2x +32.(1)当a =-1时,l 2:x =-13与l 1不平行;当a ≠-1时,直线l 2:y =-3a +1x +a a +1, ∵l 1∥l 2,∴-a 2=-3a +1且32≠aa +1,解得a =2.(2)当a =-1时,l 2:x =-13与l 1不垂直;当a ≠-1时,l 2:y =-3a +1x +aa +1,∵l 1⊥l 2,∴-a 2·⎝⎛⎭⎫-3a +1=-1, 解得a =-25.法二:由题可知A 1=a ,B 1=2,C 1=-3, A 2=3,B 2=a +1,C 2=-a .(1)当l 1∥l 2时,⎩⎪⎨⎪⎧aa +-2×3=0,a-a --×3≠0,解得a =2.(2)当l 1⊥l 2时,A 1A 2+B 1B 2=0, 即3a +2(a +1)=0,解得a =-25.[活学活用]已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程: (1)过点(-1,3),且与l 平行; (2)过点(-1,3),且与l 垂直.解:法一:l 的方程可化为y =-34x +3,∴l 的斜率为-34.(1)∵l ′与l 平行,∴l ′的斜率为-34.又∵l ′过点(-1,3),由点斜式知方程为y -3=-34(x +1),即3x +4y -9=0.(2)∵l ′与l 垂直,∴l ′的斜率为43,又l ′过点(-1,3),由点斜式可得方程为y -3=43(x +1),即4x -3y +13=0.法二:(1)由l ′与l 平行,可设l ′的方程为3x +4y +m =0(m ≠-12). 将点(-1,3)代入上式得m =-9. ∴所求直线的方程为3x +4y -9=0.(2)由l ′与l 垂直,可设l ′的方程为4x -3y +n =0. 将(-1,3)代入上式得n =13.∴所求直线的方程为4x -3y +13=0.层级一 学业水平达标1.在x 轴和y 轴上的截距分别为-2,3的直线方程是( ) A.x 3+y-2=1 B.x 2+y-3=1 C.x -2+y3=1 D.x -3+y 2=1 解析:选C 由直线的截距式方程可得x -2+y3=1.2.直线x 3+y4=1,化成一般式方程为( )A .y =-43x +4B .y =-43(x -3)C .4x +3y -12=0D .4x +3y =12解析:选C 直线x 3+y4=1化成一般式方程为4x +3y -12=0.3.直线x a +yb =1过第一、三、四象限,则( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0解析:选B 因为直线过第一、三、四象限,所以它在x 轴上的截距为正,在y 轴上的截距为负,所以a >0,b <0.4.已知M ⎝⎛⎭⎫3,72,A (1,2),B (3,1),则过点M 和线段AB 的中点的直线的斜率为( ) A .-2 B .2 C.12 D .-12解析:选B AB 的中点坐标为⎝⎛⎭⎫1+32,2+12,即⎝⎛⎭⎫2,32,又点M ⎝⎛⎭⎫3,72,故所求直线的斜率k =72-323-2=2.5.已知过点A (-5,m -2)和B (-2m,3)的直线与直线x +3y +2=0平行,则m 的值为( ) A .4 B .-4 C .10D .-10解析:选A ∵k AB =m -2-3-5--2m ,直线x +3y +2=0的斜率为k =-13,∴m -5-5+2m=-13,解得m =4. 6.斜率为2,且经过点A (1,3)的直线的一般式方程为________________. 解析:由直线点斜式方程可得y -3=2(x -1),化成一般式为2x -y +1=0. 答案:2x -y +1=07.过点(-2,3)且在两坐标轴上截距互为相反数的直线方程为________________. 解析:(1)过原点时,设为y =kx ,则k =-32,∴y =-32x ;(2)不过原点时,设为x a +y-a =1,∴将点(-2,3)代入得a =-5,∴所求直线方程为3x +2y =0或x -y +5=0. 答案:3x +2y =0或x -y +5=08.在平面直角坐标系xOy 中,若直线l 1:x -2y -1=0和直线l 2:2x -ay -a =0平行,则常数a 的值为________.解析:由于l 1∥l 2,所以1×(-a )-(-2)×2=0且-2×(-a )-(-a )×(-1)≠0,得a =4. 答案:49.求与直线3x +4y +1=0平行,且在两坐标轴上的截距之和为73的直线l 的方程.解:由题意,设直线l 的方程为3x +4y +m =0(m ≠1),令x =0,得y =-m4;令y =0,得x =-m 3,所以-m3+⎝⎛⎭⎫-m 4=73,解得m =-4,所以直线l 的方程为3x +4y -4=0.10.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0. (1)若这两条直线垂直,求k 的值; (2)若这两条直线平行,求k 的值.解:(1)根据题意,得(k -3)×2(k -3)+(4-k )×(-2)=0,解得k =5±52.∴若这两条直线垂直,则k =5±52. (2)根据题意,得(k -3)×(-2)-2(k -3)×(4-k )=0, 解得k =3或k =5.经检验,均符合题意. ∴若这两条直线平行,则k =3或k =5.层级二 应试能力达标1.经过点A (1,2),且在两坐标轴上的截距的绝对值相等的直线共有( ) A .4条 B .3条 C .2条D .1条解析:选B 当直线过原点时1条,不过原点时有两条,故B 正确. 2.以A (1,3),B (-5,1)为端点的线段的垂直平分线的方程是( ) A .y =-3x -4 B .y =3x -4 C .y =3x +4D .y =-3x +4解析:选A 因为A (1,3),B (-5,1),所以线段AB 的中点坐标为(-2,2),直线AB 的斜率为3-11--=13,所以线段AB 的中垂线的斜率为-3,所以以A ,B 为端点的线段的垂直平分线的方程是y -2=-3(x +2),即y =-3x -4,选A.3.已知点M (1,-2),N (m,2),若线段MN 的垂直平分线的方程是x2+y =1,则实数m 的值是( )A .-2B .-7C .3D .1解析:选C 由中点坐标公式,得线段MN 的中点是⎝⎛⎭⎫1+m 2,0.又点⎝⎛⎭⎫1+m 2,0在线段MN的垂直平分线上,所以1+m4+0=1,所以m =3,选C.4.已知直线a 1x +b 1y +1=0和直线a 2x +b 2y +1=0都过点A (2,1),则过点P 1(a 1,b 1)和点P 2(a 2,b 2)的直线方程是( )A .2x +y +1=0B .2x -y +1=0C .2x +y -1=0D .x +2y +1=0解析:选A ∵点A (2,1)在直线a 1x +b 1y +1=0上,∴2a 1+b 1+1=0.由此可知点P 1(a 1,b 1)在直线2x +y +1=0上.∵点A (2,1)在直线a 2x +b 2y +1=0上,∴2a 2+b 2+1=0.由此可知点P 2(a 2,b 2)也在直线2x +y +1=0上.∴过点P 1(a 1,b 1)和点P 2(a 2,b 2)的直线方程是2x +y +1=0.5.若直线(2t -3)x +y +6=0不经过第一象限,则t 的取值范围为________. 解析:方程可化为y =(3-2t )x -6,∵直线不经过第一象限,∴3-2t ≤0,得t ≥32.答案:⎣⎡⎭⎫32,+∞ 6.已知点A (0,1),点B 在直线l :x +y =0上运动,则当线段AB 最短时,直线AB 的一般式方程为________.解析:当线段AB 最短时,AB ⊥l ,所以k AB =1.由直线的斜截式,得直线AB 的方程为y =x +1,故直线AB 的一般式方程为x -y +1=0.答案:x -y +1=07.已知△ABC 的三个顶点分别为A (0,4),B (-2,6),C (-8,0). (1)求边AC 和AB 所在直线的方程; (2)求AC 边上的中线BD 所在直线的方程; (3)求AC 边上的中垂线的方程.解:(1)由截距式,得边AC 所在直线的方程为x -8+y4=1,即x -2y +8=0.由两点式,得边AB 所在直线的方程为y -46-4=x -0-2-0,即x +y -4=0.(2)由题意,得点D 的坐标为(-4,2),由两点式,得BD 所在直线的方程为y -26-2=x ---2--,即2x -y +10=0.(3)由k AC =12,得AC 边上的中垂线的斜率为-2.又AC 的中点坐标为(-4,2),由点斜式,得AC 边上的中垂线的方程为y -2=-2(x +4),即2x +y +6=0.8.已知直线l 过点M (2,1),且与x 轴、y 轴的正方向分别交于A ,B 两点,当△AOB 的面积最小时,求直线l 的方程.解:根据题意,设直线l 的方程为x a +yb =1,由题意,知a >2,b >1,∵l 过点M (2,1),∴2a +1b =1,解得b =aa -2,∴△AOB 的面积S =12ab =12a ·aa -2,化简,得a 2-2aS +4S =0. ①∴Δ=4S 2-16S ≥0,解得S ≥4或S ≤0(舍去). ∴S 的最小值为4,将S =4代入①式,得a 2-8a +16=0,解得a =4,∴b=aa-2=2.∴直线l的方程为x+2y-4=0.。
高中数学人教版必修2 3.2.1直线的点斜式方程 教案(系列二)
3.2.1直线的点斜式方程●三维目标1.知识与技能(1)理解直线方程的点斜式、斜截式的形式特点和适用范围.(2)能正确利用直线的点斜式、斜截式公式求直线方程.(3)体会直线的斜截式方程与一次函数的关系.2.过程与方法(1)在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程.(2)学生通过对比,理解“截距”与“距离”的区别.3.情感、态度与价值观通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题.●重点难点重点:直线的点斜式方程和斜截式方程.难点:直线的点斜式方程和斜截式方程的应用.重难点突破:以“直角坐标系内确定一条直线的几何要素”为切入点,先由学生自主导出“过某一定点的直线方程”,再通过组内分析、交流,找出所求方程的差异,明其原因,最终达成共识,得出直线的点斜式的形式及适用前提,最后通过题组训练,采用师生互动、讲练结合的方式,引出斜截式方程,并通过多媒体演示“截距”与“距离”的异同,化解难点.●教学建议解析几何的实质是“用代数的知识来研究几何问题”,而直线方程恰恰体现了这种思想.由于直线的点斜式方程是推导其他直线方程的基础,在直线方程中占有重要地位.故本节课易采用“启发式”的教学方法,从学生原有的知识和能力出发,寻找过某一定点的直线方程的求解方法.鉴于学生在“数”和“形”之间转换的难度,教师可引导学生通过合作、交流等方式,对难点予以突破;可通过多媒体直观演示,让学生明确点斜式方程和斜截式方程的适用条件.对于斜截式方程,明确以下三点:(1)它是点斜式方程的特殊形式;(2)讲清“截距”的概念;(3)了解其与一次函数的关系,其他问题不必扩充太多.由于点斜式方程是学习其他方程的前提,故教师可适当的补充教学案例,让学生在训练中进一步感知解析法的思想.●教学流程创设问题情境,引出问题:过某一定点的直线方程,如何求解?⇒通过引导学生回忆直线的斜率公式,找出求“过某一定点的直线方程”的方法.⇒通过引导学生回答所提问题理解直线的点斜式方程及斜截式方程的适用条件.⇒通过例1及其变式训练,使学生掌握直线的点斜式方程的求法.⇒通过例2及其变式训练,使学生掌握直线的斜截式方程的求法.⇒1.已知直线l 经过点P 0(x 0,y 0),且斜率为k ,设点P (x ,y )是直线l 上不同于点P 0的任意一点,那么x ,y 应满足什么关系?【提示】 y -y 0=k (x -x 0).2.经过点P 0(x 0,y 0)且斜率不存在的直线l 如何表示? 【提示】 x =x 0.方程y -y 0=k (x -x 0)由直线上一定点P 0(x 0,y 0)及斜率k 确定,我们把这个方程称为直线的点斜式方程,简称点斜式,适用于斜率存在的直线.经过定点(0,b )且斜率为k 的直线l 的方程如何表示?【提示】 y =kx +b . 1.直线l 在y 轴上的截距直线与y 轴的交点(0,b )的纵坐标b 称为直线在y 轴上的截距. 2.直线的斜截式方程方程y =kx +b 由直线的斜率k 和它在y 轴上的截距b 确定,我们称这个方程为直线的斜截式方程,简称为斜截式.适用范围是斜率存在的直线.(1)经过点A (2,5),斜率是4; (2)经过点B (2,3),倾斜角是45°; (3)经过点C (-1,-1),与x 轴平行; (4)经过点D (1,1),与x 轴垂直.【思路探究】 注意斜率是否存在.若存在,方程为y -y 0=k (x -x 0);若不存在,方程为x =x 0.【自主解答】 (1)由点斜式方程可知, 所求直线的方程为y -5=4(x -2), 即4x -y -3=0.(2)∵直线的倾斜角为45°, ∴此直线的斜率k =tan 45°=1, ∴直线的点斜式方程为y -3=x -2, 即x -y +1=0.(3)∵直线与x 轴平行,∴倾斜角为0°,斜率k =0, ∴直线方程为y +1=0×(x +1),即y =-1.(4)∵直线与x 轴垂直,斜率不存在,故不能用点斜式表示这条直线的方程,由于直线所有点的横坐标都是1,故这条直线方程为x =1.求直线的点斜式方程,步骤如下:根据条件写出下列各题中的直线方程.(1)经过点A(1,2),斜率为2;(2)经过点B(-1,4),倾斜角为135°;(3)经过点C(4,2),倾斜角为90°;(4)经过坐标原点,倾斜角为60°.【解】(1)由直线方程的点斜式可得,所求直线的方程为y-2=2(x-1),即2x-y=0.(2)由题意可知,直线的斜率k=tan 135°=-1,所以直线的点斜式方程为y-4=-(x+1),即x+y-3=0.(3)由题意可知,直线的斜率不存在,且直线经过点C(4,2),所以直线的方程为x=4.(4)由题意可知,直线的斜率k=tan 60°=3,所以直线的点斜式方程为y=3x.(1)斜率为2,在y轴上的截距是5;(2)倾斜角为150°,在y轴上的截距是-2;(3)倾斜角为60°,与y轴的交点到坐标原点的距离为3.【思路探究】确定直线的斜率k―→确定直线在y轴上的截距b―→得方程y=kx+b【自主解答】(1)由直线方程的斜截式方程可知,所求直线方程为y=2x+5.(2)∵倾斜角α=150°,∴斜率k=tan 150°=-33.由斜截式可得方程为y=-33x-2.(3)∵直线的倾斜角为60°,∴其斜率k=tan 60°=3,∵直线与y轴的交点到原点的距离为3,∴直线在y轴上的截距b=3或b=-3.∴所求直线方程为y=3x+3或y=3x-3.1.本题(3)在求解过程中,常因混淆截距与距离的概念,而漏掉解“y=3x-3”.2.截距是直线与x轴(或y轴)交点的横(或纵)坐标,它是个数值,可正、可负、可为零.直线l与直线l1:y=2x+6在y轴上有相同的截距,且l的斜率与l1的斜率互为相反数,求直线l的方程.【解】由直线l1的方程可知它的斜率为2,它在y轴上的截距为6,所以直线l的斜率为-2,在y轴上的截距为6.由斜截式可得直线l的方程为y=-2x+6.12(1)平行?(2)垂直?【思路探究】已知两直线的方程,且方程中含有参数,可利用l1∥l2⇔k1=k2且b1≠b2,;l1⊥l2⇔k1·k2=-1求解.【自主解答】(1)要使l1∥l2,则需满足{a2-2=-1,a≠2,解得a=-1.故当a=-1时,直线l1与直线l2平行.(2)要使l1⊥l2,则需满足(a2-2)×(-1)=-1,∴a=±3.故当a=±3时,直线l1与直线l2垂直.已知直线l1:y=k1x+b1与直线l2:y=k2x+b2.(1)若l1∥l2,则k1=k2,此时两直线与y轴的交点不同,即b1≠b2;反之k1=k2且b1≠b2时,l1∥l2.所以有l1∥l2⇔k1=k2且b1≠b2.(2)若l1⊥l2,则k1·k2=-1;反之k1·k2=-1时,l1⊥l2.所以有l1⊥l2⇔k1·k2=-1.(1)已知直线y =ax -2和y =(a +2)x +1互相垂直,则a =________; (2)若直线l 1∶y =-2a x -1a 与直线l 2∶y =3x -1互相平行,则a =________.【解析】 (1)由题意可知a ·(a +2)=-1,解得a =-1. (2)由题意可知⎩⎨⎧-2a =3,-1a ≠-1,解得a =-23.【答案】(1)-1(2)-23误把“截距”当“距离”致误已知斜率为-43的直线l ,与两坐标轴围成的三角形面积为6,求l 的方程.【错解】 设l :y =-43x +b ,令x =0得y =b ;令y =0得x =34b ,由题意得12·b ·(34b )=6,∵b >0,∴b =4,∴直线l 的方程为y =-43x +4.【错因分析】 上述解法的错误主要在于“误把直线在两轴上的截距当作距离”. 【防范措施】 直线在两轴上的截距是直线与坐标轴交点的横、纵坐标,而不是距离,因此本题在先求得截距后,应对截距取绝对值再建立面积表达式.【正解】 设l :y =-43x +b ,令x =0得y =b ;令y =0得x =34b ,由题意得12·|b |·|34b |=6,∴b 2=16,∴b =±4.故直线l 的方程为y =-43x ±4.1.建立点斜式方程的依据是:直线上任一点与这条直线上一个定点的连线的斜率相同,故有y -y 1x -x 1=k ,此式是不含点P 1(x 1,y 1)的两条反向射线的方程,必须化为y -y 1=k (x -x 1)才是整条直线的方程.当直线的斜率不存在时,不能用点斜式表示,此时方程为x =x 1.2.斜截式方程可看作点斜式的特殊情况,表示过(0,b )点、斜率为k 的直线y -b =k (x -0),即y =kx +b ,其特征是方程等号的一端只是一个y ,其系数是1;等号的另一端是x 的一次式,而不一定是x 的一次函数.如y =c 是直线的斜截式方程,而2y =3x +4不是直线的斜截式方程.1.直线的点斜式方程y -y 0=k (x -x 0)可以表示( ) A .任何一条直线 B .不过原点的直线 C .不与坐标轴垂直的直线 D .不与x 轴垂直的直线【解析】 点斜式方程适用的前提条件是斜率存在,故其可表示不与x 轴垂直的直线. 【答案】 D2.直线l 过点A (-1,2),斜率为3,则直线l 的点斜式方程为( ) A .y +1=3(x -2) B .y -2=-3(x +1) C .y +2=3(x -1) D .y -2=3(x +1)【解析】 过点(x 0,y 0),斜率为k 的直线的点斜式方程为y -y 0=k (x -x 0). 【答案】 D3.已知直线l 的点斜式方程为y -1=x -1,那么直线l 的斜率为________,倾斜角为________,在y 轴上的截距为________.【解析】 直线y -1=x -1的斜率为1,由tan 45°=1可知,倾斜角为45°;令x =0得y =0,故在y 轴上的截距为0.【答案】 1 45° 04.(1)求经过点(1,1)且与直线y =2x +7平行的直线方程; (2)求经过点(-1,1)且与直线y =-2x +7垂直的直线方程. 【解】 (1)由y =2x +7得其斜率k 1=2, ∵所求直线与已知直线平行,设其斜率为k 2, ∴k 2=k 1=2,∴所求直线方程为y -1=2(x -1), 即2x -y -1=0.(2)由y =-2x +7得其斜率k 1=-2, ∵所求直线与已知直线垂直,设其斜率为k 2, ∴k 1·k 2=-1,∴k 2=12,∴所求直线为y -1=12(x +1),即x -2y +3=0.一、选择题1.已知直线的方程是y +2=-x -1,则( ) A .直线经过点(-1,2),斜率为-1 B .直线经过点(-1,2),斜率为1 C .直线经过点(-1,-2),斜率为-1 D .直线经过点(-1,-2),斜率为1【解析】 结合直线的点斜式方程y -y 0=k (x -x 0)得C 选项正确. 【答案】 C2.已知两条直线y =ax -2和y =(2-a )x +1互相平行,则a 等于( ) A .2 B .1 C .0 D .-1 【解析】 由a =2-a ,得a =1.【答案】 B3.下面四个直线方程中,可以看作是直线的斜截式方程是( ) A .x =3 B .y =-5 C .2y =x D .x =4y -1【解析】 直线方程的斜截式y =kx +b ,等号左边为y ,其系数为1,右边x 的系数为斜率k ,b 为直线在y 轴上的截距,当k =0,b =-5时,即为y =-5,即B 项的方程可看成直线的斜截式方程.【答案】 B4.(2013·临沂高一检测)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0【解析】 直线x -2y -2=0的斜率为12,又所求直线过点(1,0),故由点斜式方程可得,所求直线方程为y =12(x -1),即x -2y -1=0.【答案】 A5.与直线y =2x +1垂直,且在y 轴上的截距为4的直线的斜截式方程是( ) A .y =12x +4 B .y =2x +4C .y =-2x +4D .y =-12x +4【解析】 直线y =2x +1的斜率为2, ∴与其垂直的直线的斜率是-12,∴直线的斜截式方程为y =-12x +4,故选D.【答案】 D 二、填空题6.经过点(1,0)且与x 轴垂直的直线方程为________. 【解析】 如图,所求直线的方程为x =1.【答案】 x =17.斜率与直线y =32x 的斜率相等,且过点(-4,3)的直线的点斜式方程是________.【解析】 直线y =32x 的斜率为32,又所求直线过点(-4,3),故由点斜式得y -3=32(x+4).【答案】 y -3=32(x +4)8.(2013·浏阳高一检测)已知直线l 的倾斜角为120°,在y 轴上的截距为-2,则直线l 的斜截式方程为________.【解析】 由题意可知直线l 的斜率k =tan 120°=-3, 又l 在y 轴上的截距为-2, 故l 的斜截式方程为y =-3x -2. 【答案】 y =-3x -2 三、解答题9.求倾斜角是直线y =-3x +1的倾斜角的14,且分别满足下列条件的直线方程.(1)经过点(3,-1); (2)在y 轴上的截距是-5.【解】 ∵直线y =-3x +1的斜率k =-3, ∴其倾斜角α=120°,由题意,得所求直线的倾斜角α1=14α=30°,故所求直线的斜率k 1=tan 30°=33, (1)∵所求直线经过点(3,-1),斜率为33, ∴所求直线方程是y +1=33(x -3). (2)∵所求直线的斜率是33,在y 轴上的截距为-5, ∴所求直线的方程为y =33x -5. 10.当a 为何值时,直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3 (1)平行?(2)垂直?【解】 由题意可知,kl 1=2a -1,kl 2=4.(1)若l 1∥l 2,则kl 1=kl 2,即2a -1=4,解得a =52. 故当a =52时,直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3平行. (2)若l 1⊥l 2,则4(2a -1)=-1,解得a =38. 故当a =38时,直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直. 11.已知直线l 的斜率为-1,且它与两坐标轴围成的三角形的面积为12,求直线l 的方程.【解】 设直线l 的方程为y =-x +b ,O 为坐标原点,则它与两个坐标轴的交点为A (b,0)和B (0,b ),所以直角三角形OAB 的两个直角边长都为|b |,故其面积为12b 2,由12b 2=12,解得b =±1, ∴所求直线的方程为y =-x +1或y =-x -1.已知直线l 经过点P (-1,-2),在y 轴上的截距的取值范围为[2,6],求此直线斜率的取值范围.【思路探究】 解答本题可先写出点斜式方程,再化为斜截式方程,求出直线在y 轴上的截距,最后解不等式求斜率的取值范围.也可设出直线l 的斜截式方程,再将点P 坐标代入,找到斜率与在y 轴上截距的关系,从而求出斜率的范围.【自主解答】 法一:设直线l 的斜率为k ,由于这条直线过点P (-1,-2),∴它的点斜式方程是y -(-2)=k [x -(-1)],可化为斜截式方程是y =kx +k -2,∴直线l 在y 轴上的截距为k -2.由已知得2≤k -2≤6,∴4≤k ≤8.∴直线l 斜率的取值范围为[4,8].法二:设直线l 的斜截式方程为y =kx +b ,由于点P (-1,-2)在直线l 上,∴-2=k (-1)+b ,即k =b +2.又∵b ∈[2,6],所以k ∈[4,8].∴直线l 的斜率的取值范围为[4,8].1.点斜式方程y -y 0=k (x -x 0)可表示过点P (x 0,y 0)(x =x 0除外)的所有直线.2.斜截式方程y =kx +b 可表示斜率为k 的所有直线.3.待定系数法在求直线方程问题中应用很广.已知直线过定点设点斜式,已知斜率或在y 轴上的截距设斜截式是常见的方法.已知直线l 过点P (-2,0),直线l 与坐标轴围成的三角形的面积为10,求直线l 的方程.【解】 设直线l 在y 轴上的截距为b ,则由已知得12×|-2|×|b |=10,b =±10. ①当b =10时,直线过点(-2,0),(0,10),斜率k =10-00--=5.∴直线的斜截式方程为y =5x +10.②当b =-10时,直线过点(-2,0),(0,-10),斜率k =-10-00--=-5. ∴直线的斜截式方程为y =-5x -10.综合①②可知直线l 的方程为y =5x +10或y =-5x -10.。
人教版高中数学必修2第三章直线与方程-《3.2.3直线的一般式方程》教案
3.2.3 直线的一般式方程整体设计教学分析直线是最基本、最简单的几何图形,它是研究各种运动方向和位置关系的基本工具,它既能为进一步学习作好知识上的必要准备,又能为今后灵活地运用解析几何的基本思想和方法打好坚实的基础.直线方程是这一章的重点内容,在学习了直线方程的几种特殊形式的基础上,归纳总结出直线方程的一般形式.掌握直线方程的一般形式为用代数方法研究两条直线的位置关系和学习圆锥曲线方程打下基础.根据教材分析直线方程的一般式是本节课的重点,但由于学生刚接触直线和直线方程的概念,教学中要求不能太高,因此对直角坐标系中直线与关于x和y的一次方程的对应关系确定为“了解”层次.两点可以确定一条直线,给出一点和直线的方向也可以确定一条直线,由两个独立条件选用恰当形式求出直线方程后,均应统一到一般式.直线的一般式方程中系数A、B、C的几何意义不很鲜明,常常要化为斜截式和截距式,所以各种形式应会互化.引导学生观察直线方程的特殊形式,归纳出它们的方程的类型都是二元一次方程,推导直线方程的一般式时渗透分类讨论的数学思想,通过直线方程各种形式的互化,渗透化归的数学思想,进一步研究一般式系数A、B、C的几何意义时,渗透数形结合的数学思想.三维目标1.掌握直线方程的一般式,了解直角坐标系中直线与关于x和y的一次方程的对应关系,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.2.会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式,培养学生归纳、概括能力,渗透分类讨论、化归、数形结合等数学思想.3.通过教学,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练.重点难点教学重点:直线方程的一般式及各种形式的互化.教学难点:在直角坐标系中直线方程与关于x和y的一次方程的对应关系,关键是直线方程各种形式的互化.课时安排1课时教学过程导入新课思路1.前面所学的直线方程的几种形式,有必要寻求一种更好的形式,那么怎样的形式才能表示一切直线方程呢?这节课我们就来研究这个问题. 思路2.由下列各条件,写出直线的方程,并画出图形.(1)斜率是1,经过点A (1,8);(2)在x 轴和y 轴上的截距分别是-7,7;(3)经过两点P 1(-1,6)、P 2(2,9);(4)y 轴上的截距是7,倾斜角是45°.由两个独立条件请学生写出直线方程的特殊形式分别为y-8=x-1、77yx +-=1、121696++=--x y 、y=x+7,教师利用计算机动态显示,发现上述4条直线在同一坐标系中重合.原来它们的方程化简后均可统一写成:x-y+7=0.这样前几种直线方程有了统一的形式,这就是我们今天要讲的新课——直线方程的一般式. 推进新课 新知探究 提出问题①坐标平面内所有的直线方程是否均可以写成关于x,y 的二元一次方程?②关于x,y 的一次方程的一般形式Ax+By+C=0(其中A 、B 不同时为零)是否都表示一条直线?③我们学习了直线方程的一般式,它与另四种形式关系怎样,是否可互相转化? ④特殊形式如何化一般式?一般式如何化特殊形式?特殊形式之间如何互化?⑤我们学习了直线方程的一般式Ax+By+C=0,系数A 、B 、C 有什么几何意义?什么场合下需要化成其他形式?各种形式有何局限性?讨论结果:①分析:在直角坐标系中,每一条直线都有倾斜角α.1°当α≠90°时,它们都有斜率,且均与y 轴相交,方程可用斜截式表示:y=kx+b.2°当α=90°时,它的方程可以写成x=x 1的形式,由于在坐标平面上讨论问题,所以这个方程应认为是关于x 、y 的二元一次方程,其中y 的系数是零. 结论1°:直线的方程都可以写成关于x 、y 的一次方程.②分析:a 当B≠0时,方程可化为y=-B A x-B C ,这就是直线的斜截式方程,它表示斜率为-BA,在y 轴上的截距为-B C 的直线.b 当B=0时,由于A 、B 不同时为零必有A≠0,方程化为x=-AC,表示一条与y 轴平行或重合的直线.结论2°:关于x,y 的一次方程都表示一条直线.综上得:这样我们就建立了直线与关于x,y 的二元一次方程之间的对应关系.我们把Ax+By+C=0(其中A,B 不同时为0)叫做直线方程的一般式. 注意:一般地,需将所求的直线方程化为一般式.在这里采用学生最熟悉的直线方程的斜截式(初中时学过的一次函数)把新旧知识联系起来. ③引导学生自己找到答案,最后得出能进行互化.④待学生通过练习后师生小结:特殊形式必能化成一般式;一般式不一定可以化为其他形式(如特殊位置的直线),由于取点的任意性,一般式化成点斜式、两点式的形式各异,故一般式化斜截式和截距式较常见;特殊形式的互化常以一般式为桥梁,但点斜式、两点式、截距式均能直接化成一般式.各种形式互化的实质是方程的同解变形(如图1).图1⑤列表说明如下:应用示例例1 已知直线经过点A(6,-4),斜率为-34,求直线的点斜式和一般式方程.解:经过点A(6,-4)且斜率为-34的直线方程的点斜式方程为y+4=-34(x-6). 化成一般式,得4x+3y-12=0. 变式训练1.已知直线Ax+By+C=0,(1)系数为什么值时,方程表示通过原点的直线? (2)系数满足什么关系时,与坐标轴都相交? (3)系数满足什么条件时,只与x 轴相交? (4)系数满足什么条件时,是x 轴? (5)设P(x 0,y 0)为直线Ax+By+C=0上一点, 证明这条直线的方程可以写成A(x-x 0)+B(y-y 0)=0. 答案:(1)C=0; (2)A≠0且B≠0; (3)B=0且C≠0; (4)A=C=0且B≠0;(5)证明:∵P(x 0,y 0)在直线Ax+By+C=0上, ∴Ax 0+By 0+C+0,C=-Ax 0-By 0. ∴A(x-x 0)+B(y-y 0)=0.2.(2007上海高考,理2)若直线l 1:2x+my+1=0与l 2:y=3x-1平行,则m=____________. 答案:-32例2 把直线l 的方程x-2y+6=0化成斜截式,求出直线l 的斜率和它在x 轴与y 轴上的截距,并画出图形.解:由方程一般式x -2y +6=0, ① 移项,去系数得斜截式y=2x+3. ② 由②知l 在y 轴上的截距是3,又在方程①或②中,令y=0,可得x=-6. 即直线在x 轴上的截距是-6.因为两点确定一条直线,所以通常只要作出直线与两个坐标轴的交点(即在x 轴,y 轴上的截距点),过这两点作出直线l (图2).图2点评:要根据题目条件,掌握直线方程间的“互化”. 变式训练直线l 过点P(-6,3),且它在x 轴上的截距是它在y 轴上的截距的3倍,求直线l 的方程. 答案:x+3y-3=0或x+2y=0. 知能训练课本本节练习1、2、3. 拓展提升求证:不论m 取何实数,直线(2m -1)x -(m+3)y -(m -11)=0恒过一个定点,并求出此定点的坐标.解:将方程化为(x+3y-11)-m(2x-y-1)=0,它表示过两直线x+3y-11=0与2x-y-1=0的交点的直线系. 解方程组⎩⎨⎧=--=-+,012,0113y x y x ,得⎩⎨⎧==3,2y x .∴直线恒过(2,3)点. 课堂小结通过本节学习,要求大家:(1)掌握直线方程的一般式,了解直角坐标系中直线与关于x 和y 的一次方程的对应关系; (2)会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式; (3)通过学习,培养相互合作意识,培养学生思维的严谨性,注意语言表述能力的训练. 作业习题3.2 A 组11.。
高中数学必修二3.2.2直线的两点式方程教案新人教A版必修2
3.2.2 直线的两点式方程(一)导入新课 思路1.上节课我们学习了直线方程的点斜式,请问点斜式方程是什么?点斜式方程是怎样推导的?利用点斜式解答如下问题:怎样推导的?利用点斜式解答如下问题:(1)已知直线l 经过两点经过两点P P 1(1,2),P 2(3,5),(3,5),求直线求直线l 的方程的方程. .(2)已知两点P 1(x 1,y 1),P 2(x 2,y 2)()(其中其中x 1≠x 2,y 1≠y 2),求通过这两点的直线方程,求通过这两点的直线方程. . 思路2.要学生求直线的方程,题目如下:要学生求直线的方程,题目如下:①A(8,①A(8,-1)-1)-1),,B(-2B(-2,,4)4);;②A(6,②A(6,-4)-4)-4),,B(-1B(-1,,2)2);; ③A(x 1,y 1),B(x 2,y 2)(x 1≠x 2).(分别找3个同学说上述题的求解过程和答案,并着重要求说求k 及求解过程及求解过程) )这个答案对我们有何启示?求解过程可不可以简化?我们可不可以把这种直线方程取一个什么名字呢一个什么名字呢? ?(二)推进新课、新知探究、提出问题①已知两点P 1(x 1,y 1),P 2(x 2,y 2)()(其中其中x 1≠x 2,y 1≠y 2),求通过这两点的直线方程,求通过这两点的直线方程. . ②若点P 1(x 1,y 1),P 2(x 2,y 2)中有x 1=x 2或y 1=y 2,此时这两点的直线方程是什么?,此时这两点的直线方程是什么? ③两点式公式运用时应注意什么?③两点式公式运用时应注意什么?④已知直线l 与x 轴的交点为A(a,0)A(a,0),与,与y 轴的交点为B(0,b)B(0,b),其中,其中a≠0,b≠0,求直线l 的方程的方程. .⑤a、⑤a、b b 表示截距是不是直线与坐标轴的两个交点到原点的距离?表示截距是不是直线与坐标轴的两个交点到原点的距离?⑥截距式不能表示平面坐标系下哪些直线?⑥截距式不能表示平面坐标系下哪些直线?活动:①教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程率,然后求出直线的斜率,从而可求出直线方程..师生共同归纳:师生共同归纳:已知直线上两个不同点,求直线的方程步骤:已知直线上两个不同点,求直线的方程步骤:a.a.利用直线的斜率公式求出斜率利用直线的斜率公式求出斜率k;b.b.利利用点斜式写出直线的方程用点斜式写出直线的方程. .∵x 1≠x 2,k=1212x x y y --,∴直线的方程为y-y 1=1212x x y y --(x-x 1). ∴l 的方程为y-y 1=1212x x y y --(x-x 1).①).① 当y 1≠y 2时,方程①可以写成121121x x x x y y y y --=--.②.② 由于②这个方程是由直线上两点确定的,因此叫做直线方程的两点式由于②这个方程是由直线上两点确定的,因此叫做直线方程的两点式. .注意:②式是由①式导出的,它们表示的直线范围不同.①式中只需x 1≠x 2,它不能表示倾斜角为90°的直线的方程;②式中x 1≠x 2且y 1≠y 2,它不能表示倾斜角为0°或90°的直线的方程,但②式相对于①式更对称、形式更美观、更整齐,便于记忆直线的方程,但②式相对于①式更对称、形式更美观、更整齐,便于记忆..如果把两点式变成(y-y 1)(x 2-x 1)=(x-x 1)(y 2-y 1),那么就可以用它来求过平面上任意两已知点的直线方程,那么就可以用它来求过平面上任意两已知点的直线方程. .②使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式教师引导学生通过画图、观察和分析,发现当x 1=x 2时,直线与x 轴垂直,所以直线方程为x=x 1;当y 1=y 2时,直线与y 轴垂直,直线方程为y=y 1.③引导学生注意分式的分母需满足的条件③引导学生注意分式的分母需满足的条件. .④使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形④使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形..教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线l 的方程?哪种方法更为简捷?然后求出直线方程方法更为简捷?然后求出直线方程. .因为直线l 经过经过(a (a (a,,0)和(0(0,,b)b)两点,两点,将这两点的坐标代入两点式,得aa xb y --=--000.①.① 就是b y a x +=1.②=1.② 注意:②这个方程形式对称、美观②这个方程形式对称、美观,,其中a 是直线与x 轴交点的横坐标,称a 为直线在x 轴上的截距,简称横截距;轴上的截距,简称横截距;b b 是直线与y 轴交点的纵坐标,称b 为直线在y 轴上的截距,简称纵截距简称纵截距. .因为方程②是由直线在x 轴和y 轴上的截距确定的,所以方程②式叫做直线方程的截距式距式. .⑤注意到截距的定义,易知a 、b 表示的截距分别是直线与坐标轴x 轴交点的横坐标,与y 轴交点的纵坐标,而不是距离轴交点的纵坐标,而不是距离. .⑥考虑到分母的原因,截距式不能表示平面坐标系下在x 轴上或y 轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式的方程,即过原点或与坐标轴平行的直线不能用截距式. .讨论结果:①若x 1≠x 2且y 1≠y 2,则直线l 方程为121121x x x x y y y y --=--.②当x 1=x 2时,直线与x 轴垂直,直线方程为x=x 1;当y 1=y 2时,直线与y 轴垂直,直线方程为y=y 1.③倾斜角是0°或90°的直线不能用两点式公式表示90°的直线不能用两点式公式表示((因为x 1≠x 2,y 1≠y 2).④by a x +=1. ⑤a、⑤a、b b 表示的截距分别是直线与坐标轴x 轴交点的横坐标,与y 轴交点的纵坐标,而不是距离不是距离. .⑥截距式不能表示平面坐标系下在x 轴上或y 轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式与坐标轴平行的直线不能用截距式. .(三)应用示例思路1例1 1 求出下列直线的截距式方程:求出下列直线的截距式方程:求出下列直线的截距式方程:(1)1)横截距是横截距是3,纵截距是5;(2)2)横截距是横截距是1010,纵截距是,纵截距是,纵截距是-7-7-7;;(3)3)横截距是横截距是横截距是-4-4-4,纵截距是,纵截距是,纵截距是-8. -8.答案:(1)5x+3y-15=05x+3y-15=0;;(2)7x-10y-70=02)7x-10y-70=0;;(3)3x+4y+12=0. 变式训练已知已知Rt△ABC 的两直角边AC=3AC=3,,BC=4BC=4,,直角顶点C 在原点,直角边AC 在x 轴负方向上,BC 在y 轴正方向上,求斜边AB 所在的直线方程所在的直线方程. .答案:4x-3y+12=0.例2 2 如图如图1,1,已知三角形的顶点是已知三角形的顶点是A(A(--5,0)0)、、B(3B(3,-,-,-3)3)3)、、C(0C(0,,2)2),求这个三角形三边所,求这个三角形三边所在直线的方程在直线的方程. .图1活动:根据A 、B 、C 三点坐标的特征,求AB 所在的直线的方程应选用两点式;求BC 所在的直线的方程应选用斜截式;求AC 所在的直线的方程应选用截距式所在的直线的方程应选用截距式..解:AB 所在直线的方程,由两点式所在直线的方程,由两点式,,得)5(3)5(030----=---x y ,即3x+8y+15=0.BC 所在直线的方程,由斜截式所在直线的方程,由斜截式,,得y=-35x+2,x+2,即即5x+3y-6=0. AC 所在直线的方程,由截距式所在直线的方程,由截距式,,得25yx +-=1,=1,即即2x-5y+10=0. 变式训练如图如图2,2,已知正方形的边长是已知正方形的边长是4,它的中心在原点,对角线在坐标轴上,求正方形各边及对称轴所在直线的方程及对称轴所在直线的方程. .图2活动:由于正方形的顶点在坐标轴上,所以可用截距式求正方形各边所在直线的方程由于正方形的顶点在坐标轴上,所以可用截距式求正方形各边所在直线的方程..而正方形的对称轴PQ PQ,,MN MN,,x 轴,轴,y y 轴则不能用截距式,其中PQ PQ,,MN 应选用斜截式;应选用斜截式;x x 轴,y 轴的方程可以直接写出轴的方程可以直接写出. .解:因为因为|AB|=4|AB|=4|AB|=4,所以,所以,所以|OA|=|OB|=|OA|=|OB|=2224=.因此A 、B 、C 、D 的坐标分别为的坐标分别为(2(22,0),0)、、(0,22)、(-22,0),0)、、(0,-22).所以AB 所在直线的方程是2222y x+=1,=1,即即x+y-22=0.2222-22222--22222-2x-y+11=0. 42+-31+-22)51()11(-++5=-6,设y-3=61(x-4),(x-4),即设直线方程为b y a x +=1,=1,则由题意知有21ab=3,∴ab=4.ab=3,∴ab=4. 则直线方程是14+=1或41+=1,=1,即时,设a y a x +=1或a ya x -+=1,=1,过点(四)知能训练课本本节练习1、2、3.(五)拓展提升问题:把函数y=f(x)y=f(x)在在x=a 及x=b 之间的一段图象近似地看作直线,之间的一段图象近似地看作直线,设设a≤c≤b,证明f(c)f(c)的近似值是的近似值是f(a)+ab ac --[f(b)-f(a)f(b)-f(a)]]. 证明:∵A、∵A、B B 、C 三点共线,∴k AC =k AB ,即ab a f b f ac c f c f --=--)()()()(.∴f(c)∴f(c)-f(a)=-f(a)=a b a c --[f(b)-f(a)f(b)-f(a)]],即f(c)=f(a)+ab ac --[f(b)-f(a)f(b)-f(a)]]. ∴f(c)的近似值是f(a)+a b a c --[f(b)-f(a)f(b)-f(a)]].(六)课堂小结 通过本节学习,通过本节学习,要求大家:掌握直线方程两点式和截距式的发现和推导过程,掌握直线方程两点式和截距式的发现和推导过程,并能运用并能运用这两种形式求出直线的方程这两种形式求出直线的方程..理解数形结合的数学思想,为今后的学习打下良好的基础为今后的学习打下良好的基础..了解直线方程截距式的形式特点及适用范围,树立辩证统一的观点,形成严谨的科学态度和求简的数学精神的数学精神. .(七)作业课本习题3.2 A 组9、10.。
2014人教A版数学必修二3.2《直线的两点式方程》教案学案
山东省泰安市肥城市第三中学高一数学人教A 版必修2学案:3.2直线的两点式方程教案学习内容 即时感悟【情境导入】1、直线方程的点斜式、斜截式方程2、两点确定一直线,那么如何求过两点的直线方程?【精讲点拨】一、直线的两点式方程探究1、利用点斜式解答如下问题:(1)已知直线l 经过两点)5,3(),2,1(21P P ,求直线l 的方程. (2)已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠,求通过这两点的直线方程。
直线的两点式方程探究2、若点),(),,(222211y x P x x P 中有21x x =,或21y y =,此时这两点的直线方程是什么?例1、已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),求BC 边所在直线的方程,以及该边上中线所在直线的方程。
二、直线的截距式方程探究3、已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a ,求直线l 的方程。
直线的截距式方程对截距式方程要注意下面三点:(1)如果已知直线在两轴上的截距,可以直接代入截距式求直线的方程;(2)将直线的方程化为截距式后,可以观察出直线在x 轴和y 轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不能用截距式表示.例2、求过点P(2,3),并且在两坐标轴上的截距相等的直线方程。
探究4、直线的点斜式、斜截式、两点式、截距式方程的使用范围写出前面学过的直线方程的各种不同形式,并指出其局限性:直线方程 形式 限制条件点斜式斜截式两点式截距式问题:上述四种直线方程的表示形式都有其局限性,是否存在一种更为完美的代数形式可以表示平面中的所有直线?三、直线和二元一次方程的关系探究1、 直线的方程都可以写成关于,x y 的二元一次方程吗?反过来,二元一次方程0Ax By C ++=(A,B 不同时为0)都表示直线吗?①当0B ≠,0Ax By C ++=可化为 ,这是直线的 式.②当0B =,0A ≠时, 0Ax By C ++=可化为 .这也是直线方程.定义:关于,x y 的二元一次方程: 叫直线的一般式方程,简称一般式.探究2、直线方程0Ax By C ++=(A,B 不同时为0),A 、B 、C 满足什么条件时,方程表示的直线(1)平行于在x 轴;(2)平行于y 轴;(3)与x 轴重合;(4)与y 轴重合;(5)与x 轴y 轴都相交;(6)直线在两坐标轴上的截距相等;(7)直线过一、二、三象限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 直线的方程教案 A第1课时教学内容:3.2.1 直线的点斜式方程3.2.2 直线的两点式方程教学目标一、知识与技能1.理解直线方程的点斜式、斜截式的形式特点和适用范围;2.能正确利用直线的点斜式、斜截式公式求直线方程;3.掌握直线方程的两点的形式特点及适用范围;4.了解直线方程截距式的形式特点及适用范围.二、过程与方法经历点斜式方程的推导过程,通过对比理解“截距”与“距离”的区别.在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点.三、情感、态度与价值观通过体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,能用联系的观点看问题.教学重点、难点教学重点:直线的点斜式方程、斜截式方程与两点式方程.教学难点:直线的点斜式方程、斜截式方程与两点式方程的应用.教学关键:抓住各种方程的形式及各种形式方程的量,熟悉求出这些量的方法,并能应用直线方程的各种形式写出直线的方程.教学突破方法:首先创设情景,通过引导学生探究能够确定一条直线的条件,并利用这些条件写出直线的四种形式的方程,通过例题及适量的练习进行巩固和提高.教法与学法导航教学方法:问题教学法、讨论法.通过问题的引入,激起学生对直线方程写法探究的兴趣,总结其规律.学习方法:自主学习,自主探究讨论,合作交流,练习巩固.教学准备教师准备:多媒体课件(用于展示问题,引导讨论,出示答案).学生准备:直线与一次函数的关系、练习本.教学过程详见下页表格.教学环节教学内容师生互动设计意图创设情境导入新课1.在直角坐标系内确定一条直线,应知道哪些条件?学生回顾,并回答.然后教师指出,直线的方程,就是直线上任意一点的坐标(x,y)满足的关系式.使学生在已有知识和经验的基础上,探索新知.概念形成2.直线l经过点P0(x0,y0),且斜率为k.设点P(x,y)是直线l上的任意一点,请建立x,y与k,x0,y0之间的关系.学生根据斜率公式,可以得到,当x≠x0时,y ykx x-=-,即y–y0 = k(x–x0)(1)老师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程.培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标(x,y)满足的关系式,从而掌握根据条件求直线方程的方法.3.(1)过点P0(x0,y0),斜率是k的直线l上的点,其坐标都满足方程(1)吗?学生验证,教师引导.使学生了解方程为直线方程必须满足两个条件.(2)坐标满足方程(1)的点都在经过P0(x0,y0),斜率为k的直线l上吗?学生验证,教师引导.然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式.使学生了解方程为直线方程必须满足两个条件.概念深化4.直线的点斜式方程能否表示坐标平面上的所有直线呢?学生分组互相讨论,然后说明理由.使学生理解直线的点斜式方程适用范围.续上表5.(1)x轴所在直线的方程是什么?y轴所在直线的方程是什么?(2)经过点P0(x0,y0)且平行于x轴(即垂直于y轴)的直线方程是什么?(3)经过点P0(x0,y0)且平行于y轴(即垂直于x轴)的直线方程是什么?教师引导学生通过画图分析,求得问题的解决.进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式.应用举例6.例1 直线l经过点P0 (– 2,3),且倾斜角 = 45°.求直线l的点斜式方程,并画出直线l.教师引导学生分析要用点斜式求直线方程应已知哪些条件?题目哪些条件已经直接给予,哪些条件还有待去求.在坐标平面内,要画一条直线可以怎样去画.例1 【解析】直线l经过点P0 (–2,3),斜率k=tan45°=1代入点斜式方程得y– 3 = x + 2画图时,只需再找出直线l上的另一点P1(x1,y1),例如,取x1= –1,y1 = 4,得P1的坐标为(–1,4),过P0 ,P1的直线即为所求,如上图.学生会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的两个条件:(1)一个定点;(2)有斜率.同时掌握已知直线方程画直线的方法.xy6421–1–2 0P0P1续上表概念深化7.已知直线l的斜率为k,且与y轴的交点为(0,b),求直线l的方程.学生独立求出直线l的方程:y = kx + b(2)在此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵.引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是其中一种特殊的情形.8.观察方程y = kx + b,它的形式具有什么特点?学生讨论,教师及时给予评价.深入理解和掌握斜截式方程的特点.9.直线y = kx + b在x轴上的截距是什么?学生思考回答,教师评价.使学生理解“截距”与“距离”的区别.方法探究10.你如何从直线方程的角度认识一次函数y= kx+ b?一次函数中k和b的几何意义是什么?你能说出一次函数y = 2x– 1,y = 3x,y = –x + 3图象的特点吗?学生思考、讨论,教师评价.归纳概括.体会直线的斜截式方程与一次函数的关系.应用举例11.例2已知直线l1:y = k1 +b1,l2:y2 = k2x + b2 .试讨论:(1)l1∥l2的条件是什么?(2)l1⊥l2的条件是什么?教师引导学生分析:用斜率判断两条直线平行、垂直结论.思考(1)l1∥l2时,k1,k2;b1,b2有何关系?(2)l1⊥l2时,k1,k2;b1,b2有何关系?在此由学生得出结论;l1∥l2⇔k1 = k2,且b1≠b2;l1⊥l2⇔k1k2 = –1.例2【解析】(1)若l1∥l2,则k1= k2,此时l1、l2与y轴的交点不同,即b1 = b2;反之,k1 =k2,且b1 = b2时,l1∥l2 .于是我们得到,对于直线l1:y = k1x + b1,l2:y = kx + b2l1∥l2⇔k1 = k2,且b1≠b2;l1⊥l2⇔k1k2 = –1.掌握从直线方程的角度判断两条直线相互平行或相互垂直;进一步理解斜截式方程中k,b的几何意义.续上表续上表小结教师引导学生概括:直线方程四种形式(点斜式、斜截式、两点式、截距式)互相之间的联系的理解.学生归纳后老师补充.使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉.课堂作业1.求倾斜角是直线31y x=-+的倾斜角的14,且分别满足下列条件的直线方程是:(1)经过点(3,1)-;(2)在y轴上的截距是–5.【解析】∵直线31y x=-+的斜率3k=,∴其倾斜角α=120°,由题意,得所求直线的倾斜角1130 4αα==o,故所求直线的斜率13 tan303k==o.(1)∵所求直线经过点(3,1)-,斜率为33,∴所求直线方程是31(3)3y x+=-,即3360x y--=.(2)∵所求直线的斜率是33,在y轴上的截距为–5,∴所求直线的方程为35y x=-,即33150x y--=.2.直线l过点P(–2,3)且与x轴,y轴分别交于A、B两点,若P恰为线段AB 的中点,求直线l的方程.【解析】设直线l的斜率为k,∵直线l过点(–2,3),∴直线l的方程为y–3 = k[x–(–2)],令x = 0,得y = 2k + 3;令y = 0,得32 xk=--.∴A、B两点的坐标分别为A3(2,0)k--,B(0,2k + 3).∵AB的中点为(–2,3),∴32023.22 02332kkk⎧--+⎪=-⎪=⎨⎪++=⎪⎩,解之得,∴直线l 的方程为33(2)2y x -=+,即直线l 的方程为3x – 2y +12 = 0. 3. 已知∆ABC 三个顶点坐标A (-1,8)、B (6,4)、C (0,0),求与BC 边平行的∆ABC 的一条中位线所在直线的方程.【解析】 设AB 、AC 边的中点分别为E 、F ,则EF 即为所求直线.由中点坐标公式可得E (25,6)、F (21-,4), 由直线方程的两点式可得直线EF 的方程为252125646---=--x y , 即为2x -3y+13=0.第2课时教学内容:3.2.3 直线的一般式方程 教学目标一、知识与技能1. 明确直线方程一般式的形式特征;2. 会把直线方程的一般式化为斜截式,进而求斜率和截距;3. 会把直线方程的点斜式、两点式化为一般式. 二、过程与方法学会用分类讨论的思想方法解决问题. 三、情感、态度与价值观1. 认识事物之间的普遍联系与相互转化;2. 用联系的观点看问题. 教学重点、难点教学重点:直线方程的一般式.教学难点:对直线方程一般式的理解与应用.教学关键:通过直线一般式方程与其他形式方程的互化,理解在直线的一般式方程条件下,直线平行与垂直的条件.教学突破方法:首先创设问题情境,提出问题,引起学生思考,对学生进行分组讨论,在探究的基础上,得出结论,及时进行练习巩固. 教法与学法导航教学方法:问题教学法,练习法.教师围绕直线方程的一般式提出一系列有针对性的问题,要求学生思考并回答.通过一定的练习对本节知识达到巩固和提高的目的.学习方法:自主探究,合作交流.学生通过思考并回答教师所提出的问题,达到对直线方程一般式的理解应用.教学准备教师准备:多媒体幻灯片.学生准备:回顾初中所学的二元一次方程及其解的概念.1. 直线3x +y +1=0与x 轴的夹角为 ,与y 轴的夹角为 .【解析】其斜率为-3,倾斜角为120°,所以直线与x 的夹角为60°,与y 轴的夹角为30°.2. 已知两点A (2,2), B (-2,4),则线段AB 的垂直平分线方程为 .【解析】AB 中点为(0,3),AB 斜率为21-,则AB 的垂直平分线的斜率为2,其方程为y =2x +3.3. 已知直线2x -y +4=0, 则其斜率 ,与x 轴的交点坐标为 . 【解析】k=2, (-2,0).4. 直线方程0Ax By C ++=的系数A 、B 、C 分别满足什么关系时,这条直线分别有以下性质?(1)与两条坐标轴都相交;(2)只与x 轴相交;(3)只与y 轴相交;(4)是x 轴所在直线;(5)是y 轴所在直线.【解析】(1)当A ≠0,B ≠0时,直线与两条坐标轴都相交. (2)当A ≠0,B =0时,直线只与x 轴相交. (3)当A =0,B ≠0时,直线只与y 轴相交.(4)当A =0,B ≠0,C =0时,直线是x 轴所在直线. (5)当A ≠0,B =0,C =0时,直线是y 轴所在直线.教案 B第1课时教学内容:3.2.1 直线的点斜式方程教学目标一、知识与技能1.理解直线方程的点斜式、斜截式的形式特点和适用范围;2.能正确利用直线的点斜式、斜截式公式求直线方程;3.体会直线的斜截式方程与一次函数的关系.二、过程与方法经历在已知直角坐标系内确定一条直线的点斜式方程的过程;通过对比理解“截距”与“距离”的区别.三、情感、态度与价值观通过体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,能用联系的观点看问题.教学重点、难点教学重点:直线的点斜式方程.教学难点:推导直线点斜式方程的过程.教学过程一、情境引入1.情境1:过定点P(x0,y0)的直线有多少条?倾斜角为定值的直线有多少条?2.问题1:确定一条直线需要几个独立的条件?二、新课教学(一)点斜式方程1.学生思考、讨论问题1.学生可能的回答:(1)两个点P1(x1,y1),P2(x2,y2);(2)一个点和直线的斜率(可能有学生回答倾斜角);(3)斜率和直线在y轴上的截距(说明斜率存在);(4)直线在x轴和y轴上的截距(学生没有学过直线在x轴上的截距,可类比,同时强调截距均不能为0).2.建构数学问题2:给出两个独立的条件,例如:一个点P1(2,4)和斜率k=2就能决定一条直线l.(1)你能在直线l上再找一点,并写出它的坐标吗?你是如何找的?(2)这条直线上的任意一点P(x,y)的坐标x,y满足什么特征呢?直线上的任意一点P(x,y)(除P1点外)和P1(x1,y1)的连线的斜率是一个不变量,即为k ,即:11x x y y k --=, 即y -y 1=k (x -x 1) (1)学生在讨论的过程中:(1) 强调P (x ,y )的任意性.(2) 不直接提出直线方程的概念,而用一种通俗的,学生易于理解的语言先求出方程,可能学生更容易接受,也更愿意参与.问题3:(1)P 1(x 1,y 1)的坐标满足方程吗?(2)直线上任意一点的坐标与此方程有什么关系?教师指出,直线上任意一点的坐标都是这个方程的解;反过来,以这个方程的解为坐标的点都在此直线上.让学生感受直线的方程和方程的直线的意义. 如此,我们得到了关于x ,y 的一个二元一次方程.这个方程由直线上一点和直线的斜率确定,今后称其为直线的点斜式方程.3. 数学运用例1 一条直线经过点P 1(-2,3),斜率为2,求这条直线的方程. 【解析】由直线的点斜式方程得y -3=2(x +2),即2x -y +7=0. 变1:在例1中,若将“斜率为2”改为“倾斜角为45o ”,求这条直线的方程; 变2:在例1中,若将直线的倾斜角改为90o ,这条直线的方程是什么? 例2 已知直线l 的斜率为k ,与y 轴的交点是P (0,b ),求直线l 的方程. 【解析】根据直线的点斜式方程,得直线l 的方程为y -b =k (x -0),即y =kx +b . (二)斜截式方程如果直线l 的斜率为k ,且与y 轴的交点为(0,b ),代入直线的点斜式方程:y -b =k (x -0),即y =kx +b (2)几何意义:k 为直线的斜率,b 为直线在y 轴上的截距.我们把直线l 与y 轴的交点(0,b )的纵坐标b 叫直线l 在y 轴上的截距.方程(2)由直线的斜率k 与它在y 轴上的截距b 确定,所以方程(2)叫直线的斜截式方程,简称斜截式.例3 已知直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,试讨论:(1)l 1∥l 2的条件是什么?(2)l 1⊥l 2的条件是什么?【解析】(1)l 1∥l 2⇔ k 1=k 2,且b 1=b 2. (2)l 1⊥l 2⇔ k 1k 2=-1.思考:y =kx +b 是我们学过的一次函数的表达式,它的图象是一条直线,你如何从直线方程的角度去认识一次函数?k 和b 的几何意义是什么?说一说函数y =2x -1,y =3x ,y =-x +3的图象特点. 三、小结(1)本节课我们学过哪些知识点;(2)直线方程的点斜式、斜截式的形式特点和适用范围是什么? (3)求一条直线的方程,要知道多少个条件? 四 布置作业P95练习:1,2,3,4.P100习题3.2 A 组:1,5,6,10.第2课时教学内容:3.2.2 直线的两点式方程 教学目标一、知识与技能1. 掌握直线方程的两点的形式特点及适用范围;2. 了解直线方程截距式的形式特点及适用范围. 二、过程与方法在应用旧知识的探究过程中获得新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点.三、情感、态度与价值观认识事物之间的普遍联系与相互转化;学会用联系的观点看问题. 教学重点、难点:教学重点:直线方程两点式.教学难点:两点式推导过程的理解. 教学过程一、复习回顾师:上一节课,我们一起学习了直线方程的点斜式,并要求大家熟练掌握,这一节,我们将利用点斜式来推导直线方程的两点式.二、讲授新课1. 直线方程的两点式:1112122121(,)y y x x x x y y y y x x --=≠≠--,其中2211,,,y x y x 是直线两点),(),,(2211y x y x 的坐标.推导:因为直线l 经过点),(),,(222111y x P y x P ,并且21x x ≠,所以它的斜率1212x x y y k --=.代入点斜式,得 )(112121x x x x y y y y ---=-.当21y y ≠,时,方程可以写成112121y y x x y y x x --=--. 说明:①这个方程由直线上两点确定;②当直线没有斜率(21x x =)或斜率为)(021y y =时,不能用两点式求出它的方程.2. 直线方程的截距式:1=+bya x ,其中a ,b 分别为直线在x 轴和y 轴上的截距. 说明:①这一直线方程由直线在x 轴和y 轴上的截距确定,所以叫做直线方程的截距式;②截距式的推导由例1给出. 三、例题讲解例1 已知直线l 与x 轴的交点为(a ,0),与y 轴的交点为(0,b ),其中a ≠0,b ≠0,求直线l 的方程.【解析】因为直线l 经过A (a ,0)和B (0,b )两点,将这两点的坐标代入两点式,得:.1,000=+--=--bya x a a xb y 就是 说明:此题应用两点式推导出了直线方程的截距式.例2 三角形的顶点是A (-5,0)、B (3,-3)、C (0,2),求这个三角形三边所在直线的方程.【解析】直线AB 过A (-5,0)、B (3,-3)两点,由两点式得0(5)303(5)y x ---=----,整理得:01583=++y x ,即直线AB 的方程. 直线BC 过C (0,2),斜率是3530)3(2-=---=k ,由点斜式得:52(0)3y x -=--,整理得:0635=-+y x ,即直线BC 的方程.直线AC 过A (-5,0),C (0,2)两点,由两点式得:0(5)200(5)y x ---=---, 整理得:01052=+-y x ,即直线AC 的方程.说明:例2中用到了直线方程的点斜式与两点式,说明求解直线方程的灵活性,应让学生引起注意.四、课堂小结1. 请学生归纳直线方程常见的几种形式,并说明它们之间的关系.2. 师生讨论比较各种直线方程的形式特点和适用范围.3. 求直线方程应具有多少个条件?4. 学习本节用到了哪些数学思想方法? 五、布置作业P99、100练习:1,2.P101习题3.2B 组:1,2,5.第3课时教学内容:3.2.3 直线的一般式方程 教学目标一、知识与技能1. 明确直线方程一般式的形式特征;2. 会把直线方程的一般式化为斜截式,进而求斜率和截距;3. 会把直线方程的点斜式、两点式化为一般式. 二、过程与方法学会用分类讨论的思想方法解决问题. 三、情感、态度与价值观认识事物之间的普遍联系与相互转化;用联系的观点看问题. 教学重点、难点教学重点:直线方程的一般式.教学难点:对直线方程一般式的理解与应用. 教学过程:一、创设问题情境,导入新课 1.求过点(2,1),斜率为1的直线的方程,并观察方程属于哪一类?2.当直线的斜率不存在时,即直线的倾斜角α=90°时,直线的方程怎样表示? 二、探究新知,师生互动 1.一般式(1)直线的方程是都是关于,x y 的二元一次方程在平面直角坐标系中,每一条直线都有倾斜角,在90α≠o 和90α=o 两种情况下,直线方程可分别写成y kx b =+及1x x =这两种形式,它们又都可变形为0=++C By Ax 的形式,且,A B 不同时为0,即直线的方程都是关于,x y 的二元一次方程.(2)关于,x y 的二元一次方程的图形是直线因为关于,x y 的二元一次方程的一般形式为0=++C By Ax ,其中,A B 不同时为0.在0B ≠和0B =两种情况下,一次方程可分别化成BC x B A y --=和A Cx -=,它们分别是直线的斜截式方程和与y 轴平行或重合的直线方程,即每一个二元一次方程的图形都是直线.这样我们就建立了直线与关于,x y 二元一次方程之间的对应关系.我们把0=++C By Ax (其中,A B 不同时为0)叫做直线方程的一般式.一般地,需将所求的直线方程化为一般式. 三、拓展创新,应用提高例1 已知直线过点(6,4)A -,斜率为43-,求该直线的点斜式和一般式方程及截距式方程.【解析】经过点(6,4)A -且斜率43-的直线方程的点斜式44(6)3y x +=--,化成一般式,得: 43120x y +-=, 化成截距式,得:134x y+=. 练习:根据下列条件,写出直线的方程,并把它化成一般式:经过点A (8,-2),斜率是-12;经过点B (4,2),平行于x 轴; 经过点P (3,-2),Q (5,-4);在x 轴,y 轴上的截距分别是32,-3.例2 求直线:35150l x y +-=的斜率及x 轴,y 轴上的截距,并作图.【解析】直线:35150l x y +-=的方程可写成335y x =-+, ∴直线l 的斜率35k =-;y 轴上的截距为3; 当0y =时,5x =,∴ x 轴上的截距为5.例3 求斜率为34,且与两坐标轴围成的三角形的面积为6的直线方程. 【解析】设直线方程为34y x b =+,令0y =,得43x b =-,∴14|()|623bb ⋅-=,∴3b =±, 所以,所求直线方程为34120x y --=或34120x y -+=.例4 直线l 过点(6,3)P -,且它在x 轴上的截距是它在y 轴上的截距相等,求直线l 的方程.【分析】由题意可知,本题宜用截距式来解,但当截距等于零时,也符合题意,此时不能用截距式,应用点斜式来解.【解析】(1)当截距不为零时,由题意,设直线l 的方程为1x yb b+=, ∵直线l 过点(6,3)P -,∴631b b-+=,∴3b =-, ∴直线l 的方程为30x y ++=.(2)当截距为零时,则直线l 过原点,设其方程为y kx =, 将6,3x y =-=代入上式,得36k =-,所以21-=k , ∴直线l 的方程为12y x =-,即20x y +=, 综合(1)(2)得,所求直线l 的方程为30x y ++=或20x y +=.例5 已知直线1l :220x my m +--=,2l :10mx y m +--=,问m 为何值时: (1)12l l ⊥; (2)12//l l . 【解析】(1)12l l ⊥时,12120A A B B +=,则110m m ⨯+⨯=,解得m =0.(2)12//l l 时,12211m m m m--=≠--, 解得m =1.例6 (1)求经过点(3,2)A 且与直线420x y +-=平行的直线方程; (2)求经过点(3,0)B 且与直线250x y +-=垂直的直线方程. 【解析】(1)由题意得所求平行直线方程4(3)(2)0x y -+-=,化为一般式4140x y +-=.(2) 由题意得所求垂直直线方程(3)2(0)0x y ---=,化为一般式230x y --=. 例7 已知直线l 的方程为3x+4y -12=0,求与直线l 平行且过点(-1,3)的直线方程.【分析】由两直线平行,所以斜率相等且为34-,再由点斜式求出所求直线的方程.【解析】直线l :3x+4y -12=0的斜率为34-,∵ 所求直线与已知直线平行, ∴所求直线的斜率为34-,又由于所求直线过点(-1,3),所以,所求直线的方程为:33(1)4y x -=-+,即3490x y +-=.点评:根据两条直线平行或垂直的关系,得到斜率之间的关系,从而由已知直线的斜率及点斜式求出所求直线的方程. 此题也可根据直线方程的一种形式00()()0A x x B y y -+-=而直接写出方程,即3(1)4(3)0x y ++-=,再化简而得.例8 直线方程0Ax By C ++=的系数A 、B 、C 分别满足什么关系时,这条直线分别有以下性质?(1)与两条坐标轴都相交;(2)只与x 轴相交;(3)只与y 轴相交;(4)是x 轴所在直线;(5)是y 轴所在直线.【分析】由直线性质,考察相应图形,从斜率、截距等角度,分析系数的特征. 【解析】(1)当A ≠0,B ≠0时,直线与两条坐标轴都相交. (2)当A ≠0,B=0时,直线只与x 轴相交. (3)当A =0,B ≠0时,直线只与y 轴相交. (4)当A =0,B ≠0,C =0时,直线是x 轴所在直线. (5)当A ≠0,B =0,C =0时,直线是y 轴所在直线.点评:结合图形的几何性质,转化为方程形式所满足的代数形式. 对于直线的一般式方程,需要特别注意以上几种特殊位置时的方程形式. 四、课外作业1. 教材99页练习.2. 教材100、101页习题3.2A 组第9、10、11题.。