鄞州中学2012学年第二学期高一年级期中考试

合集下载

2020年浙江省宁波市鄞州中学第二学期测试试题含答案

2020年浙江省宁波市鄞州中学第二学期测试试题含答案

A. {1,2}
B.{0,1,2}
C.{2,1,3}
D.{2,1,0,3}
2.
已知双曲线 x2 a2
y2 b2
1 (a
0,b
0) 的一条渐近线为
y
1 2
x ,则离心率为
A. 5 2
B. 5
C. 5 或 5 2
D. 3
x y 2 0 3. 已知实数 x, y 满足 x y 0 ,则 z x 2 y 的最小值为
x k ,k Z 28
f
(x)
1 2
的解集是x
x
k 2
8
,
k
Z
(Ⅱ) f ( A ) 2 6 , sin A 3 A
28
4
2
3
a b c 2 sin A sin B sin C
1
a b c 3 2sin B 2sin C 3 2sin B 2sin( 2 B) 3
球与10 m 个白球, B 盒中有10 m 个红球与 m 个白球( 0 m 10 ),若从 A, B 盒中各取
一个球, ξ 表示所取的 2 个球中红球的个数,则当 Dξ 取到最大值时, m 的值为
A. 3
B. 5
C. 7
D. 9
8. 在 棱 长 为 2 的 正 方 体 ABCD - A1B1C1D1 中 , 点 P 是 正 方 体 棱 上 的 一 点 , 若 满 足
一项是符合题目要求的.
题号
1
2
3
4
5
6
7
8
9
10
答案
C
A
A
B
C
C
B
D
A
B
二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分.

浙江省宁波2023-2024学年高一上学期期中考试数学试卷含答案

浙江省宁波2023-2024学年高一上学期期中考试数学试卷含答案

浙江省宁波2023-2024学年高一上学期期中考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每个题给出的四个选项中,只有一项是符合题目要求的.(答案在最后)1.已知集合{||11},{14}A x x B x x =-<=≤≤∣∣,则A B = ()A.{12}x x <<∣B.{12}xx ≤<∣C .{04}xx <<∣ D.{04}xx <≤∣【答案】B 【解析】【分析】先求集合A ,再根据交集运算求解即可.【详解】由题意,因为集合{|02},{|14}A x x B x x =<<=≤≤所以{|12}A B x x =≤< .故选:B.2.已知命题2000:1,0p x x x ∃≥-<,则命题p 的否定为()A.200010x ,x x ∃≥-≥ B.200010x ,x x ∃<-≥C.210x ,x x ∀<-≥ D.210x ,x x ∀≥-≥【答案】D 【解析】【分析】根据存在量词命题的否定方法对命题p 否定即可.【详解】由命题否定的定义可知,命题2000:1,0p x x x ∃≥-<的否定是:210x ,x x ∀≥-≥.故选:D.3.对于实数a ,b ,c ,下列结论中正确的是()A.若a b >,则22>ac bcB.若>>0a b ,则11>a bC.若<<0a b ,则<a b b aD.若a b >,11>a b,则<0ab 【答案】D 【解析】【分析】由不等式的性质逐一判断.【详解】解:对于A :0c =时,不成立,A 错误;对于B :若>>0a b ,则11<a b,B 错误;对于C :令2,a =-1b =-,代入不成立,C 错误;对于D :若a b >,11>a b,则0a >,0b <,则<0ab ,D 正确;故选:D .4.已知0x 是函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭的一个零点,则0x ∈()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【答案】C 【解析】【分析】根据题意,由条件可得函数单调递减,再由零点存在定理即可得到结果.【详解】根据题意知函数1()3xf x ⎛⎫= ⎪⎝⎭在区间1,+∞上单调递减,函数()3f x x =-+在区间()1,∞+单调递减,故函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭在区间1,+∞上单调递减,又因1>2>3>0,4<0,又因()133xf x x ⎛⎫=-+ ⎪⎝⎭在()1,∞+上是连续不中断的,所以根据零点存在定理即可得知存在()03,4x ∈使得()00f x =.故选:C5.“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】根据复合函数的单调性求函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增的等价条件,在结合充分条件、必要条件的定义判断即可.【详解】二次函数21y x ax =-+图象的对称轴为2a x =,若函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增,根据复合函数的单调性可得2≤24−2+1>0,即52a <,若2a ≤,则52a <,但是52a <,2a ≤不一定成立,故“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的充分不必要条件.故选:A 6.函数22()1xf x x =+的图象大致是()A. B.C. D.【答案】D 【解析】【分析】首先判断函数的奇偶性,即可判断A 、B ,再根据0x >时函数值的特征排除C.【详解】函数22()1x f x x =+的定义域为R ,且()()2222()11x x f x f x x x --==-=-+-+,所以22()1xf x x =+为奇函数,函数图象关于原点对称,故排除A 、B ;又当0x >时()0f x >,故排除C.故选:D7.已知42log 3x =,9log 16y =,5log 4z =,则x ,y ,z 的大小关系为()A.y x z >>B.z x y >>C.x y z >>D.y z x>>【答案】C 【解析】【分析】利用对数运算法则以及对数函数单调性可限定出x ,y ,z 的取自范围,即可得出结论.【详解】根据题意可得2222log 3log 3x ==,2233log 4log 4y ==,5log 4z =利用对数函数单调性可知32223log 3log log log 22x ===,即32x >;又323333331log 3log 4log log log 32y ====<,可得312y <<;而55log 4log 51z ==<,即1z <;综上可得x y z >>.故选:C8.已知函数323log ,03()1024,3x x f x x x x ⎧<≤=⎨-+>⎩,若方程()f x m =有四个不同的实根()12341234,,,x x x x x x x x <<<,则()()3412344x x x x x --的取值范围是()A.(0,1)B.(1,0)- C.(4,2)- D.(2,0]-【答案】B 【解析】【分析】根据图象分析可得121x x =,()()343410,3,4,6,7x x x x +=∈∈,整理得3431233(4)(4)2410x x x x x x x ⎛⎫--=-++ ⎪⎝⎭,结合对勾函数运算求解.【详解】因为op =3log 3,0<≤32−10+24,>3,当3x >时()22()102451f x x x x =-+=--,可知其对称轴为5x =,令210240x x -+=,解得4x =或6x =;令210243x x -+=,解得3x =或7x =;当03x <≤时3()3log f x x =,令33log 3x =,解得13x =或3x=,作出函数=的图象,如图所示,若方程()f x m =有四个不同的实根12341234,,,()x x x x x x x x <<<,即()y f x =与y m =有四个不同的交点,交点横坐标依次为12341234,,,()x x x x x x x x <<<,则12341134673x x x x <<<<<<<<<,对于12,x x ,则3132log log x x =,可得3132312log log log 0x x x x +==,所以121x x =;对于34,x x ,则()()343410,3,4,6,7x x x x +=∈∈,可得4310x x =-;所以()()3434333431233334161024(4)(4)2410x x x x x x x x x x x x x x x -++--⎛⎫--===-++ ⎪⎝⎭,由对勾函数可知332410y x x ⎛⎫=-++ ⎪⎝⎭在()3,4上单调递增,得()3324101,0x x ⎛⎫-++∈- ⎪⎝⎭,所以34123(4)(4)x x x x x --的取值范围是()1,0-.故选:B.【点睛】关键点点睛:本题解答的关键是画出函数图象,结合函数图象分析出121x x =,()()343410,3,4,6,7x x x x +=∈∈,从而转化为关于3x 的函数;二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.函数1()21x f x -=+恒过定点(1,1)B.函数3x y =与3log y x =的图象关于直线y x =对称C.0x ∃∈R ,当0x x >时,恒有32x x >D.若幂函数()f x x α=在(0,)+∞单调递减,则0α<【答案】BCD 【解析】【分析】由指数函数的性质可判断A ;由反函数的性质可判断B ;由指数函数的增长速度远远快于幂函数,可判断C ;由幂函数的性质可判断D .【详解】对于A ,函数1()21x f x -=+恒过定点(1,2),故A 错误;对于B ,函数3x y =与3log y x =的图象关于直线y x =对称,故B 正确;对于C ,因为指数函数的增长速度远远快于幂函数,所以0x x >时,恒有32x x >,故C 正确;对于D ,当0α<时,幂函数()f x x α=在(0,)+∞单调递减,故D 正确;故选:BCD .10.已知函数e 1()e 1x x f x +=-,则下列结论正确的是()A.函数()f x 的定义域为RB.函数()f x 的值域为(,1)(1,)-∞-+∞C.()()0f x f x +-=D.函数()f x 为减函数【答案】BC 【解析】【分析】根据分母不为0求出函数的定义域,即可判断A ;再将函数解析式变形为2()1e 1xf x =+-,即可求出函数的值域,从而判断B ;根据指数幂的运算判断C ,根据函数值的特征判断D.【详解】对于函数e 1()e 1x x f x +=-,则e 10x -≠,解得0x ≠,所以函数的定义域为{}|0x x ≠,故A 错误;因为e 1e 122()1e 1e 1e 1x x x x xf x +-+===+---,又e 0x >,当e 10x ->时20e 1x >-,则()1f x >,当1e 10x -<-<时22e 1x<--,则()1f x <-,所以函数()f x 的值域为(,1)(1,)-∞-+∞ ,故B 正确;又11e 1e 1e 1e 1e 1e ()()01e 1e 1e 11e e 11e xxxx x x x x x xx xf x f x --++++++-+=+=+=+------,故C 正确;当0x >时()0f x >,当0x <时()0f x <,所以()f x 不是减函数,故D 错误.11.已知0,0a b >>,且1a b +=,则()A.22log log 2a b +≥- B.22a b +≥C.149a b +≥ D.33114a b ≤+<【答案】BCD 【解析】【分析】利用基本不等式求出ab 的范围,即可判断A ;利用基本不等式及指数的运算法则判断B ;利用乘“1”法及基本不等式判断C ;利用立方和公式及ab 的范围判断D.【详解】因为0,0a b >>,且1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号,所以()22221log log log log 24a b ab +=≤=-,当且仅当12a b ==时取等号,故A 错误;22a b +≥=22a b =,即12a b ==时取等号,故B 正确;()14144559b a a b a b a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当4b a a b =,即13a =,23b =时取等号,故C 正确;()()()2332222313a b a b a ab b a ab b a b ab ab +=+-+=-+=+-=-,因为104ab <≤,所以3034ab <≤,所以11314ab ≤-<,即33114a b ≤+<,故D 正确.故选:BCD12.对于定义在[]0,1上的函数()f x 如果同时满足以下三个条件:①()11f =;②对任意[]()0,1,0x f x ∈≥成立;③当12120,0,1x x x x ≥≥+≤时,总有()()()1212f x f x f x x +≤+成立,则称()f x 为“天一函数”.若()f x 为“天一函数”,则下列选项正确的是()A.()00f =B.()0.50.5f ≤C.()f x 为增函数 D.对任意[0,1]x ∈,都有()2f x x ≤成立【答案】ABD【分析】对于A ,令120x x ==,结合题中条件即可求解;对于B ,令120.5x x ==,结合题中条件即可求解;对于C ,令2121101X x x x X +>≥=≥=,结合性质②③可得()()21f X f X ≥,因此有()f x 在[]0,1x ∈上有递增趋势的函数(不一定严格递增),即可判断;对于D ,应用反证法:若存在[]00,1x ∈,使0>20成立,讨论1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭,结合递归思想判断0x 的存在性.【详解】对于A ,令120x x ==,则()()()000f f f +≤,即()00f ≤,又对任意[]()0,1,0x f x ∈≥成立,因此可得()00f =,故A 正确;对于B ,令120.5x x ==,则()()()0.50.51f f f +≤,又()11f =,则()0.50.5f ≤,故B 正确;对于C ,令2121101X x x x X +>≥=≥=,则221(0,1]x X X -∈=,所以()()()()()()12122121f X f X X f X f X f X f X X +-≤⇒-≥-,又对任意[]()0,1,0x f x ∈≥成立,则()221()0f x f X X =-≥,即()()210f X f X -≥,所以()()21f X f X ≥,即对任意1201x x ≤<≤,都有()()12f x f x ≤,所以()f x 在[]0,1x ∈上非递减,有递增趋势的函数(不一定严格递增),故C 错误;对于D ,由对任意1201x x ≤<≤,都有()()12f x f x ≤,又()00f =,()11f =,故()[]0,1f x ∈,反证法:若存在[]00,1x ∈,使0>20成立,对于1,12x ⎡⎤∈⎢⎥⎣⎦,()1f x ≤,而21x ≥,此时不存在01,12x ⎡⎤∈⎢⎥⎣⎦使0>20成立;对于10,2x ⎡⎫∈⎪⎢⎣⎭,若存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,则()()()002f f x f x ≥,而[)020,1x ∈,则()()()()000022f x f x f x f x ≥+=,即0≥20>40,由()[)00,1f x ∈,依次类推,必有[)0,1∈t ,0()2nf t x >且*n ∈N 趋向于无穷大,此时()[0,1)f t ∈,而02nx 必然会出现大于1的情况,与>20矛盾,所以在10,2x ⎡⎫∈⎪⎢⎣⎭上也不存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,综上,对任意[]0,1x ∈,都有()2f x x ≤成立,故D 正确;故选:ABD.【点睛】关键点点睛:对于D ,应用反证及递归思想推出1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭情况下与假设矛盾的结论.三、填空题:本大题共4小题,每小题5分,共20分.13.若23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,则(0)(8)f f +=______.【答案】4【解析】【分析】根据分段函数解析式计算可得.【详解】因为23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,所以()0031f ==,()32228log 8log 23log 23f ====,所以(0)(8)4f f +=.故答案为:414.已知()f x 是定义在R 上的奇函数,当0x >时,()22xf x x =-,则()()10f f -+=__________.【答案】1-【解析】【分析】根据()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,只需将1x =代入表达式,即可求出(1)f 的值,进而求出(1)(0)f f -+的值.【详解】因为()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,又当0x >时,()22xf x x =-,所以12(1)211f =-=,所以(1)(0)101f f -+=-+=-.故答案为:1-【点睛】本题主要考查利用奇函数的性质转化求函数值,关键是定义的灵活运用,属于基础题.15.定义在R 上的偶函数()f x 满足:在[)0,+∞上单调递减,则满足()()211f x f ->的解集________.【答案】()0,1【解析】【分析】利用偶函数,单调性解抽象不等式【详解】因为()f x 为定义在R 上的偶函数,且在[)0,+∞上单调递减,所以()()()()211211f x f fx f ->⇔->,所以2111211x x -<⇔-<-<,即01x <<,故答案为:()0,116.设函数31()221x f x =-+,正实数,a b 满足()(1)2f a f b +-=,则2212b aa b +++的最小值为______.【答案】14##0.25【解析】【分析】首先推导出()()2f x f x +-=,再说明()f x 的单调性,即可得到1a b +=,再由乘“1”法及基本不等式计算可得.【详解】因为31()221x f x =-+,所以3132()221221xx xf x --=-=-++,所以331()()22221221x x x f x f x +-=-+-=++,又21x y =+在定义域R 上单调递增,且值域为()1,+∞,1y x =-在()1,+∞上单调递增,所以31()221x f x =-+在定义域R 上单调递增,因为正实数,a b 满足()(1)2f a f b +-=,所以10a b +-=,即1a b +=,所以()()222211212412b a b a a b a b a b ⎛⎫⎡⎤+=++++ ⎪⎣⎦++++⎝⎭()()2222211412b b a a b a a b ⎡⎤++=+++⎢⎥++⎣⎦()()22222111124444b a b a ab a b ⎡⎢≥++=++=+=⎢⎣,当且仅当()()222112b b a a a b ++=++,即35a =,25b =时取等号,所以2212b a a b +++的最小值为14.故答案为:14四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.计算下列各式的值.(1)20.5233727228)9643-⎛⎫⎛⎫⎛⎫+-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(2)2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+【答案】(1)229(2)5【解析】【分析】(1)根据指数幂的运算法则计算可得;(2)根据对数的运算性质及换底公式计算可得.【小问1详解】20.5233727229643-⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2223333212139245-⎡⎤⎛⎫⎛⎫⎛⎫=+-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦2323332521334⎛⎫⨯- ⎪⨯⎝⎭⎛⎫=+-+ ⎪⎝⎭5162221399=+-+=.【小问2详解】2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+()210lg 3lg 2(lg 5)lg lg 10535lg 2lg 3⎛⎫=+⨯⨯+⋅+ ⎪⎝⎭()()2(lg5)1lg51lg513=+-⨯+++()()22lg 51lg 5135=+-++=.18.设全集为R ,已知集合{}2|280A x R x x =∈--≤,(){}2|550B x R x m x m =∈-++≤.(1)若3m =,求A B ,R A ð;(2)若R B A ⊆ð,求实数m 的取值范围.【答案】(1){}25A B x R x ⋃=∈-≤≤;{2R A x x =<-ð或}4x >;(2)4m >.【解析】【分析】(1)先解不等式求出集合A ,B ,根据补集的概念,以及并集的概念,即可得出结果;(2)由(1)得出R A ð,再对m 分类讨论,即可得出结果.【详解】(1)因为{}{}228024A x R x x x R x =∈--≤=∈-≤≤,则{2R A x x =<-ð或}4x >;若3m =,则{}{}2815035B x R x x x R x =∈-+≤=∈≤≤,所以{}25A B x R x ⋃=∈-≤≤.(2)由(1){2R A x x =<-ð或}4x >,()(){}|50B x R x x m =∈--≤,当5m =时,则{5}B =,满足R B A ⊆ð;当5m >时,则[5,]B m =,满足R B A ⊆ð;当5m <时,则[,5]B m =,为使R B A ⊆ð,只需4m >,所以45m <<.综上,4m >.19.为了节能减排,某农场决定安装一个可使用10年旳太阳能供电设备.使用这种供电设备后,该农场每年消耗的电费C (单位:万元)与太阳能电池面积x (单位:平方米)之间的函数关系为4,0105(),10m xx C x m x x-⎧≤≤⎪⎪=⎨⎪>⎪⎩,(m 为常数),已知太阳能电池面积为5平方米时,每年消耗的电费为12万元.安装这种供电设备的工本费为0.5x (单位:1万元),记()F x 为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和(1)写出()F x 的解析式;(2)当x 为多少平方米时,()F x 取得最小值?最小值是多少万元?【答案】(1)1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩;(2)40平方米,最小值40万元.【解析】【分析】(1)根据给定的条件,求出m 值及()C x 的解析式,进而求出()F x 的解析式作答.(2)结合均值不等式,分段求出()F x 的最小值,再比较大小作答.【小问1详解】依题意,当5x =时,()12C x =,即有45125m -⨯=,解得80m =,则804,0105()80,10xx C x x x -⎧≤≤⎪⎪=⎨⎪>⎪⎩,于是得1607.5,010()10()0.58000.5,10x x F x C x x x x x -≤≤⎧⎪=+=⎨+>⎪⎩,所以()F x 的解析式是1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩.【小问2详解】由(1)知,当010x ≤≤时,()1607.5F x x =-在[0,10]上递减,min ()(10)85F x F ==,当10x >时,800()402x F x x =+≥=,当且仅当8002x x =,即40x =时取等号,显然4085<,所以当x 为40平方米时,()F x 取得最小值40万元.【点睛】方法点睛:在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.20.已知函数1()2(R)2xx m f x m -=-∈是定义在R 上的奇函数.(1)求m 的值;(2)根据函数单调性的定义证明()f x 在R 上单调递增;(3)设关于x 的函数()()()9143xxg x f m f =++-⋅有零点,求实数m 的取值范围.【答案】(1)2m =(2)证明见解析(3)(],3-∞【解析】【分析】(1)由奇函数性质(0)0f =求得参数值,再验证符合题意即可;(2)根据单调性的定义证明;(3)令()0g x =,结合()f x 的单调性得到9431x x m +=⋅-,参变分离可得1943x x m =-+-⨯,依题意可得关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,利用换元法求出()h x 的值域,即可得解.【小问1详解】因为1()2(R)2xxm f x m -=-∈是定义在R 上的奇函数,所以(0)1(1)0f m =--=,解得2m =,当2m =时,1()2222xx xx f x -=-=-,满足()()f x f x -=-,()f x 是奇函数,所以2m =;【小问2详解】由(1)可得1()22x x f x =-,设任意两个实数12,R x x ∈满足12x x <,则1212121212111()()22(22)(1)2222xx x x x x x x f x f x -=--+=-+⋅,∵12x x <,∴12022x x <<,1211022x x +>⋅,∴12())0(f x f x -<,即12()()f x f x <,所以()f x 在R 上为单调递增;【小问3详解】令()0g x =,则()()9143xxf m f +=--⋅,又()f x 是定义在R 上的奇函数且单调递增,所以()()1943xxf m f +=⋅-,则9431x x m +=⋅-,则1943x x m =-+-⨯,因为关于x 的函数()()()9143xxg x f m f =++-⋅有零点,所以关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,令3x t =,则()0,t ∈+∞,令()214H t t t +--=,()0,t ∈+∞,则()()222314H t t t t +-==---+,所以()H t 在()0,2上单调递增,在()2,+∞上单调递减,所以()(],3H t ∈-∞,所以()(],3h x ∈-∞,则(],3m ∈-∞,即实数m 的取值范围为(],3-∞.21.设R a ∈,已知函数()y f x =的表达式为21()log f x a x ⎛⎫=+ ⎪⎝⎭.(1)当3a =时,求不等式()1f x >的解集;(2)设0a >,若存在1,12t ⎡⎤∈⎢⎥⎣⎦,使得函数()y f x =在区间[],2t t +上的最大值与最小值的差不超过1,求实数a 的取值范围.【答案】(1)(,1)(0,)-∞-⋃+∞(2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)根据函数的单调性转化为自变量的不等式,解得即可;(2)根据函数的单调性求出最值,根据不等式有解分离参数求取值范围.【小问1详解】当3a =时,21()log 3f x x ⎛⎫=+⎪⎝⎭,不等式()1f x >,即21log 31x ⎛⎫+>⎪⎝⎭,所以132x +>,即10x x +>,等价于()10x x +>,解得1x <-或0x >;所以不等式()1f x >的解集为(,1)(0,)-∞-⋃+∞;【小问2详解】因为0a >,1[,1]2t ∈,所以当[,2]x t t ∈+时,函数1y a x=+为减函数,所以函数()21log f x a x ⎛⎫=+⎪⎝⎭在区间[],2t t +上单调递减,又函数()y f x =在区间[],2t t +上最大值和最小值的差不超过1,所以()()21f t f t -+≤,即2211log ()log ()12a a t t +-+≤+,即222111log ()1log ()log 2()22a a a t t t +≤++=+++所以112()2a a t t +≤++,即存在1[,1]2t ∈使122a t t ≥-+成立,只需min122a t t ⎛⎫≥- ⎪+⎝⎭即可,考虑函数121,[,1]22y t t t =-∈+,221,[,1]22t y t t t -=∈+,令321,2r t ⎡⎤=-∈⎢⎥⎣⎦,213,1,86826r y r r r r r⎡⎤==∈⎢⎥-+⎣⎦+-,设()8g r r r =+,其中31,2r ⎡⎤∈⎢⎥⎣⎦,任取123,1,2r r ⎡⎤∈⎢⎥⎣⎦,且12r r <,则()()()212121212121888r r g r g r r r r r r r r r ⎛⎫--=+--=- ⎪⎝⎭,因为12r r <,所以210r r ->,因为123,1,2r r ⎡⎤∈⎢⎥⎣⎦,所以2180r r -<,所以()()21g r g r <,所以函数()g r 在31,2⎡⎤⎢⎥⎣⎦上单调递减,所以86y r r =+-在31,2r ⎡⎤∈⎢⎥⎣⎦单调递减,所以856,36r r ⎡⎤+-∈⎢⎥⎣⎦,116,8356r r⎡⎤∈⎢⎥⎣⎦+-,所以13a ≥,所以a 的取值范围为1,3⎡⎫+∞⎪⎢⎣⎭.22.已知函数43()21x x f x +=+,函数2()||1g x x a x =-+-.(1)若[0,)x ∈+∞,求函数()f x 的最小值;(2)若对1[1,1]x ∀∈-,都存在2[0,)x ∈+∞,使得()()21f x g x =,求a 的取值范围.【答案】(1)2(2)1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)首先利用指数运算,化简函数()()421221xx f x =++-+,再利用换元,结合对勾函数的单调性,即可求解函数的最值;(2)首先将函数()f x 和()g x 在定义域的值域设为,A B ,由题意可知B A ⊆,()02g ≥,确定a 的取值范围,再讨论去绝对值,求集合B ,根据子集关系,比较端点值,即可求解.【小问1详解】若[)0,x ∈+∞,()()()()221221442122121x x x x xf x +-++==++-++,因为[)0,x ∈+∞,令212x t =+≥,则()42,2y t t t=+-≥,又因为42y t t=+-在[)2,+∞上单调递增,当2t =,即0x =时,函数取得最小值2;【小问2详解】设()f x 在[)0,+∞上的值域为A ,()g x 在[]1,1-上的值域为B ,由题意可知,B A ⊆,由(1)知[)2,A =+∞,因为()012g a =-≥,解得:3a ≥或3a ≤-,当3a ≥时,且[]11,1x ∈-,则10x a -<,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=-+-=-+- ⎪⎝⎭,可得()1g x 的最大值为()11g a -=+,最小值为1524g a ⎛⎫=-⎪⎝⎭,即5,14B a a ⎡⎤=-+⎢⎥⎣⎦,可得524a -≥,解得:134a ≥,当3a ≤-时,且[]11,1x ∈-,10x a ->,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=+--=+-- ⎪⎝⎭,可知,()1g x 的最大值为()11g a =-,最小值为1524g a ⎛⎫-=-- ⎪⎝⎭,即5,14B a a ⎡⎤=---⎢⎥⎣⎦,可得524a --≥,解得:134a ≤-,综上可知,a 的取值范围是1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭.【点睛】关键点点睛:本题第二问的关键是求函数()g x 的值域,根据()02g ≥,缩小a 的取值范围,再讨论去绝对值.。

浙江省宁波市鄞州中学2023-2024学年高一下学期期中考试物理试卷(学考)

浙江省宁波市鄞州中学2023-2024学年高一下学期期中考试物理试卷(学考)

浙江省宁波市鄞州中学2023-2024学年高一下学期期中考试物理试卷(学考)一、单选题1.下列属于国际单位制基本单位符号的是( ) A .sB .WC .FD .P2.牛顿于1687年正式提出万有引力定律,下列表达式正确的是( ) A .()2G M m F r += B .GMmF r =C .2GMmF r =D .2MmF Gr=3.下列物理量为标量的是( ) A .周期B .角速度C .线速度D .向心加速度4.万有引力定律的成就之一是发现未知天体,下列被称作笔尖下发现的行星是( ) A .天王星 B .海王星 C .冥王星D .雅利洛-VI5.下列说法正确的是( )A .原子是由带负电的质子、不带电的中子以及带正电的电子组成的B .一个高能光子在一定条件下可以产生一个正电子和一个负电子,不满足电荷守恒定律C .元电荷e 的数值,最早是由美国物理学家吉布斯测得D .绝缘体中几乎不存在能自由移动的电荷6.一辆汽车匀速通过圆弧形拱桥的过程中,汽车( )A .向心加速度不变B .速度不断变化C .受到的支持力和重力沿半径方向的分力始终等大反向D .通过最高点时对地压力小于支持力7.如图所示,一只狗洗完澡后在甩掉身上的水,关于该过程下列说法正确的是( )A .水在狗身上的水滴受到了离心力作用B .狗甩的越快,水滴脱离身体飞出时速度大小越小C .该现象的产生与水滴的惯性有关D .水滴脱离身体飞出后做匀速直线运动8.如图为仙舟某景点里的一个青蛙喷水照片,P 点为最高点,O 、Q 同一水平线上,则下列说法正确的结论是( )A .O 点的速度等于Q 点的速度B .P 点的加速度等于重力加速度gC .竖直分运动的加速度O 点大于Q 点D .整个运动过程中水滴的竖直分运动的加速度最大值出现在Q 点9.如图所示为鹤运物流的无人机在运送货物。

某时刻,其速度大小为v ,货物和无人机的总质量为m ,则此时刻无人机与货物的动能为( )A .mvB .12mvC .2mvD .212mv10.如图所示为鹤运物流的无人机在运送货物。

2023-2024学年浙江省台州市高一下学期期中英语检测试卷(含答案)

2023-2024学年浙江省台州市高一下学期期中英语检测试卷(含答案)

2023-2024学年浙江省台州市高一下学期期中英语检测试卷一、阅读理解1、 AFrom: Bridget PecoliniTo: Anson WongRe: Questions about online math contestDate: February 18, 2024 Dear Mr. Wong, Thank you for your email. We're so glad to know your child has signed up to participate in our math contest. I hope it will be a rewarding and enriching experience for him. You can access the training session and practice tests by logging into our website at . Once you log in, you will see several tabs on the left-hand side. One of them will say "Enrolled". If you click on the drop-down menu there, you'll find the name of the child you registered. If you click on the name, you'll be given the option of joining a training session or doing practice tests. Of course, you can choose neither. I hope that answers your question! Please let me know if you need any further help. Sincerely, Bridget Pecolini(1) What's Bridget's purpose of contacting Anson Wong?A. To check in on him.B. To remind him to pay the fee.C. To reply to his email.D. To invite him to join a course.(2) Which of the following statements is true?A. The math contest has been run online continuously for 38 years.B. Doing enough practice tests ensures a contestant can get a reward.C. Contestants will have the in-person contest at a specific spot this year.D. Contestants can choose whether to participate in the training sessions.(3) When will the official contest be held?A. On May 7.B. On May 14.C. On May 12.D. On May 18.2、 B At a clinic in Waterloo, Ontario, an elderly woman sat on the edge of a waiting room chair belting out the Celine Dion's tune My Heart Will Go On. With little effort, she was able to send her sweet, high-pitched voice to every comer of the elinic. I had fun watching how people reacted. There was some shifting in seats, but mainly they turned away their eyes in embarrassment and tried to pretend there was nothing unusual. I was there with my father, who was getting a routine blood test when the woman arrived. She tooka seat directly across from my dad. I was concerned about how my dad would react to the possible interaction on his ce. He was 77 and had been living with Alzheimer's for several years. He was a brilliant man of few words in public. When he was healthy, he considered it bad manners to bring more attention to oneself. Her singing began gently, like a quiet hum. I glanced over at Dad. His smile was gone, and he was staring right at her. It seemed to be something like confusion. This wasn't an unusual state for him, and I wondered whether he was actually seeing her at all or if he was lost somewhere deep in his mind, not really aware of her singing at that point. Her singing slowly got louder. By the time she got to the chorus-"near, far, wherever you are…", Dad looked a little surprised. Still, I watched for any sign of an angry outburst. Instead, his face softened, and the tension eased in his brow. He no longer looked confused. People say that Alzheimer's is a thief, and that it steals your loved ones slowly, day by day. There is so much heartbreaking truth in that statement. But certain experiences with my dad have allowed me to see a side of him that I never knew existed. That's what happened for me that day in the clinic. When her song ended, the woman opened her eyes. My dad was still looking directly at her. "That was beautiful, " he said. And she smiled and said, "Thank you."(1) How did people react to the elderly woman's singing at the clinic?A. They mainly looked away and ignored her.B. They politely signaled to her to stop singing.C. They all enjoyed her singing and sang with her.D. They felt quite annoyed and changed their seats.(2) Why was the author worried about his father's reaction to the singing?A. His father disliked Celine Dion's songs.B. His father was suffering from Alzheimer's.C. His father was easily angered by strangers.D. His father preferred silence in public places.(3) As the woman's singing got louder, the author's father's expression ___.A. remained the sameB. became more angryC. softened and relaxedD. showed more confusion(4) What can we learn from the last paragraph?A. I got to know that my father liked music.B. Alzheimer's steals many things from old people.C. This song helped me understand more about my father.D. Everyone with Alzheimer's has experienced some bad moments.3、 C Parenting styles have shifted over the years with the rapid changes in the world. Nowadays parents generally spend more time in finding out how best to raise their child whether it's through technology or tried-and-tested parenting practices. With easy access to countless websites and social media groups interested in parenting, modern parents are capable of finding answers to their questions, from managing a baby's cries to communicating with a moody teenager. This increased availability (可利用性) of resources has made parents more involved in their children's academic, emotional, and social development. They are also more eager to find out effective parenting methods to help them raise well-behaved and confident children. A modern parenting style that has appeared is helicopter parenting, where parents are too much focused on their children. They help children with tasks that children can do on their own, like selecting activities and friends for them, or calling their teachers about homework matters. Such a parenting style can stifle the development of the children's ability to handle responsibilities independently. Children might be ill-equipped with life skills such as making the bed, clearing their plates or doing their schoolwork. Always protecting children from failures may also stop them from developing adaptability and gaining skills like problem-solving On the other hand, parents in the past tended to monitor less. Children were given more freedom to advice from their parents and neighbours, rather than by social media influences or parenting websites. manage their schoolwork and choose the friends they want to play with. In some families, children of the past were often expected to shoulder the responsibilities of caring for younger brothers and sisters and managing housework. Living in the pre-Internet era, parents were less informed about different parenting methods, and their parenting styles were guided more by their personalities, common sense and friendly There is no one right way to raise a child. Each child is unique and should be raised differently by parents who are present, but not wandering, who are supportive but not controlling, and who protect but not care too much.(1) How does the increased availability of resources influence parenting style?A. It saves parents' much time spent on children.B. It makes parents more relaxed in raising children.C. It encourages parents to be less strict with their children.D. It enables parents to be more active in their children's development.(2) What does the underlined word TAL#NBSPstiflein Para 3 mean?A. Bring about.B. Hold backC. Take down.D. Set up.(3) What do we know about parents in the past?A. They educated kids in a strict way.B. They over-judged their kids' independence.C. They afforded kids more ce for self-growth.D. They tended to stay away from social activities.(4) What does the text mainly tell us?A. How parents raise all-round children.B. How people improve parent-child relationship.C. How parenting modes have changed over the years.D. How information technology affects people's lifestyles.4、 D Back in the early 2000s, lots of people couldn't imagine life without alarm clocks, CD players, calendars, cameras, or lots of other devices. But along came the iPhone and other smartphones, and they took over the functions of many things that we used to think were completely necessary. The success of smartphones can be a model for dealing with climate change because they represent a different approach to design, which is to focus on function rather than form. This approach requires concentrating on understanding the problems, and then engineering a wide range of potential solutions. By adopting this mindset, we can completely change our thinking about energy efficiency (效率). Traditionally, improvements in energy efficiency have mostly been centered on individual devices, which can be quite fruitful. But focusing on individual devices is like if Apple had spent effort inventing a better alarm clock, a better CD player, a better calendar, and a better camera. Now with an iPhone, we don't need the standalone (独立运行的) devices at all, because it can function as all of them. So when it comes to energy efficiency, instead of only installing more efficient heaters, we should focus on the desired function: warmth. Through creative designs like coating(给……涂层) our house, we can get rid of the need for heaters, significantly saving nearly 99% energy. Similarly, rather than merely tocusing on making cars more efficient, we should consider the desiredl function—transportation. By developing an efficient transportation system that reduces the need for private cars, we can achieve greater energy savings. The most energy-efficient car or heater is no car, or no heater, while still being able to get around and stay warm. In other words, it's not thinking efficiently, but thinking differently.(1) What makes the iPhone a good example of environmental protection?A. Choosing a simplest design.B. Combining possible functions.C. Perfecting individual instruments.D. Reducing the energy consumption.(2) According to the passage, what is the most important part of improving energy efficiency?A. Improving technologies.B. Using recyclable materials.C. Figuring out various solutions.D. Concentrating on the necessary needs.(3) What does the author think of traditional practices in energy improvements?A. Inefficient.B. ClassicalC. Useless.D. Perfect.(4) Which can be the best title of the passage?A. Think out of the box.B. Differences make it unique.C. Be economical with energyD. Step out of the comfort zone.二、七选五5、 阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。

浙江省宁波市鄞州区十二校2023-2024学年八年级上学期11月期中联考语文试题(含答案)

浙江省宁波市鄞州区十二校2023-2024学年八年级上学期11月期中联考语文试题(含答案)

2023-2024学年度第一学期八年级语文期中考试卷考生须知:1.全卷分试题卷和答题卷。

试题卷共8页,有四个大题,19个小题。

满分为100分,考试时间为120分钟。

2.答题必须使用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷各题目规定区域内作答,做在试卷上或超出答题区域书写的答案无效。

3.请将姓名、班级号等分别填写在试题卷和答题卷的规定位置上。

一、书写(3分)本题根据卷面书写情况评分。

请同学们在答题时努力做到书写正确、工整。

二、积累与运用(17分)1. 阅读下面一段文字,按要求完成后面的问题。

(7分)国无德不兴,人无信不立。

千百年来,诚信做人的思想始终存在中华儿女。

曾子烹彘,不欺孩童,言出必行的教诲是诚信最初的模样;商鞅立木,取信于民,上行下效的公正是诚信力量的象征;子胥辅吴,不改初zhōng,殚精竭虑的谋划是诚信治国的范本。

范蠡经商,童叟无欺,从最初( )到后来的富甲一方是诚信理财的榜样。

重诺守信,人必近之;狡诈欺蒙,人必远之。

我们青少年应以诚信zhāng显中国好少年的力量。

(1)给加点字注音,并根据拼音写出正确的汉字。

(4分)①教诲▲②初zhōng▲③殚▲精竭虑④zhāng显▲(2)画线句有一处语病,应修改为:▲。

(1分)(3)语段中括号处应填的成语是( )(2分)A.为富不仁B.鹤立鸡群C.白手起家D.和颜悦色2. 古诗文名句默写与运用。

(10分)道者,文之根本,志之所之也。

吴均在《与朱元思书》中“鸢飞戾天者,望峰息心;▲, ▲”,借景抒情,淡泊名利;刘祯在《赠从弟》中“▲,松柏有本性”,赞叹了傲雪凌霜的松柏;苏轼在《记承天诗夜游》中“何夜无月?何处无竹柏?▲”,传达出内心的丝丝忧愁和些许旷达。

诗者,融情于景,吟咏性情也。

白居易《钱塘湖春行》一诗中“▲, ▲”,春花绽放,春草吐绿;李白《渡荆门送别》一诗中“▲,▲ ”,雄伟壮观,想象瑰丽;崔颢《黄鹤楼》一诗中“▲,▲”,远眺汉阳,绿草如茵。

浙江省宁波市鄞州中学2023-2024学年高二上学期期中考试数学试题

浙江省宁波市鄞州中学2023-2024学年高二上学期期中考试数学试题

浙江省宁波市鄞州中学2023-2024学年高二上学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若方程221259x y m m +=−+表示椭圆,则实数m 的取值范围是( )A .()9,25−B .()()9,88,25−C .()8,25D .()8,+∞2.“1m =”是“直线1l :()410m x my −++=与直线2l :()220mx m y ++−=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.在长方体1111ABCD A B C D −中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为A .15B C D .24.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y −+=上,则ABP 面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣5.已知抛物线2:4C y x =的焦点为F ,直线l 过焦点F 与C 交于A ,B 两点,以AB 为直径的圆与y 轴交于D ,E 两点,且4||||5DE AB =,则直线l 的方程为( )A .10x −=B .10x y ±−=C .220x y ±−=D .210x y ±−=6.双曲线22221,(0,0)x y a b a b−=>>右焦点为F ,离心率为e ,,(1)PO k FO k =>,以P 为圆心,||PF 长为半径的圆与双曲线有公共点,则8k e −最小值为( ) A .9−B .7−C .5−D .3−7.如图,平面OAB ⊥平面α,OA α⊂,OA AB =,120OAB ∠=︒.平面α内一点P 满足PA PB ⊥,记直线OP 与平面OAB 所成角为θ,则tan θ的最大值是( )A B .15C D .138.已知椭圆()222210x y a b a b +=>>的左、右焦点分别为1F 、2F ,经过1F 的直线交椭圆于A ,B ,2ABF △的内切圆的圆心为I ,若23450++=IB IA IF ,则该椭圆的离心率是( )A B .23C D .12二、多选题9.已知抛物线2:4E y x =上的两个不同的点()()1122,,,A x y B x y 关于直线4x ky =+对称,直线AB 与x 轴交于点()0,0C x ,下列说法正确的是( ) A .E 的焦点坐标为()1,0 B .12x x +是定值 C .12x x 是定值D .()02,2x ∈−10.在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC −的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 11.设M 为双曲线C :2213x y −=上一动点,1F ,2F 为上、下焦点,O 为原点,则下列结论正确的是( )A .若点()0,8N ,则MN 最小值为7B .若过点O 的直线交C 于,A B 两点(,A B 与M 均不重合),则13MA MB k k =C .若点()8,1Q ,M 在双曲线C 的上支,则2MF MQ +最小值为2+D .过1F 的直线l 交C 于G 、H 不同两点,若7GH =,则l 有4条12.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD −中,侧棱PD ⊥底面ABCD ,且2PD CD AD ===,,,M N G 分别为,,PA PC PB 的中点,则( )A .四面体N BCD −是鳖臑B .CG 与MNC .点G 到平面PACD .过点,,M N B 的平面截四棱锥P ABCD −的截面面积为3三、填空题13.已知点P 是圆C :22(2)64x y −+=上动点,(2,0)A −.若线段PA 的中垂线交CP 于点N ,则点N 的轨迹方程为 .14.如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD ADC =90°.沿直线AC 将△ACD 翻折成△ACD ',直线AC 与BD '所成角的余弦的最大值是 .15.已知直线l 过抛物线C :24y x =的焦点F ,与抛物线交于A 、B 两点,线段AB 的中点为M ,过M 作MN 垂直于抛物线的准线,垂足为N ,则2324NF AB +的最小值是 .16.已知点P 在y x ⎡=∈−⎣上运动,点Q 在圆223:()(0)4C x y a a +−=>上运动,且PQ a 的值为 .四、解答题17.已知点()1,0A −和点B 关于直线l :10x y +−=对称.(1)若直线1l 过点B ,且使得点A 到直线1l 的距离最大,求直线1l 的方程; (2)若直线2l 过点A 且与直线l 交于点C ,ABC 的面积为2,求直线2l 的方程. 18.已知圆22:(1)(2)25C x y −+−=,直线:(21)(1)740()l m x m y m m R +++−−=∈. (1)证明:不论m 取什么实数,直线 l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时 l 的方程.19.如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B −−的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.20.已知双曲线2222:1x y C a b −=经过点()2,3−,两条渐近线的夹角为60,直线l 交双曲线于,A B 两点. (1)求双曲线C 的方程.(2)若动直线l 经过双曲线的右焦点2F ,是否存在x 轴上的定点(),0M m ,使得以线段AB 为直径的圆恒过M 点?若存在,求实数m 的值;若不存在,请说明理由.21.如图①所示,长方形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM −.(1)求四棱锥P ABCM −的体积的最大值; (2)若棱PB 的中点为N ,求CN 的长;(3)设P AM D −−的大小为θ,若π0,2θ⎛⎤∈ ⎥⎝⎦,求平面PAM 和平面PBC 夹角余弦值的最小值.22.设双曲线2222:1x y C a b −=的右焦点为()3,0F ,F 到其中一条渐近线的距离为2.(1)求双曲线C 的方程;(2)过F 的直线交曲线C 于A ,B 两点(其中A 在第一象限),交直线53x =于点M ,(i )求||||||||AF BM AM BF ⋅⋅的值;(ii )过M 平行于OA 的直线分别交直线OB 、x 轴于P ,Q ,证明:MP PQ =.。

浙江省宁波市2023-2024学年高一上学期语文期中考试试卷(含答案)

浙江省宁波市2023-2024学年高一上学期语文期中考试试卷(含答案)

浙江省宁波市2023-2024学年高一上学期语文期中联合考试试卷姓名:__________ 班级:__________考号:__________阅读下面的文字,完成下面小题。

材料一:“五四”作家的宗教就是青春与欢乐、光明三位一体的“青春教”,他们将欢乐、光明融合在青春之中,开辟出一条以欢乐、光明、青春心态为宗旨的审美战线来反对封建文学的自虐、黑暗、老年心态。

一句话,“五四”文学的审美是一种青春心态的审美。

“五四”新文化运动的倡导者们是以青年为突破口来建设“五四”青春型文化的。

1915年陈独秀创办《新青年》杂志,在发刊词《敬告青年》中力赞青年,将“改造青年之思想,辅导青年之修养”作为杂志的天职;1916年李大钊在《新青年》上发表《青春》一文,认为中国以前之历史为白首之历史,而中国以后之历史应为“青春之历史,青年之历史”。

“五四”新文化运动从本质上讲是一场青年文化运动,它标志着中国传统的长老型文化的终结和中国现代青春型文化的诞生。

“五四”文学运动是与整个“五四”文化运动的青春型转向相应和的。

“五四”新文学作家主体是青年,从这一角度将“五四”文学说成是青年的文学是完全不过分的。

以1918年时“五四”作家的年龄为例,除陈独秀、鲁迅两人较大,其余李大钊29岁,钱玄同31岁,刘半农27岁,沈尹默35岁,胡适27岁,都很年轻;至于郭沫若、郁达夫、陶晶孙、冯沅君、庐隐等冲上“五四”文坛时大多只20出头。

他们给现代文坛带来一股青春风,一扫中国文坛的暮年气。

中国古代文学以士大夫为主体,他们写作常常从载道或消闲的角度出发。

“五四”文学则是情感的自燃,青春的激情和幻想,青春的骚动和焦虑,青春的忧郁和苦闷,青春的直露和率真……不得不说,“五四”文学是青春性的文学。

“五四”文学的青春型审美心理特征不是空穴来风。

梁启超的“新文体”可算是它的精神先兆,梁氏文章“雷鸣怒吼,恣肆淋漓,叱咤风云,震骇心魄”,一扫四平八稳、老态龙钟之气。

浙江省宁波市鄞州中学2020届高三下学期期初考试物理试题(PDF版)

浙江省宁波市鄞州中学2020届高三下学期期初考试物理试题(PDF版)

鄞州中学2019-2020学年第二学期期初考试高三物理试卷写在开考前的话:特殊时期、特殊考试形式,每一个家就是一个考场。

同学们:老师希望你能够独立自主考试,真实反映居家学习的进步。

一、单项选择题(每小题3分,共39分)1、下列物理量为矢量,且与之对应的单位正确的是()A.功,w B.磁通量,wb C.电场强度,E D.磁感应强度,T2、护鸟小卫士在学校的绿化带上发现一个鸟窝静止搁在三根树叉之间。

若鸟窝的质量为m,与三根树叉均接触。

重力加速度为g。

则()A.鸟窝与树叉之间一定只有弹力的作用B.鸟窝所受重力与鸟窝对树叉的力是一对平衡力C.三根树叉对鸟窝的合力大小等于mgD.树叉对鸟窝的弹力指向鸟窝的重心3、高空坠物已经成为城市中仅次于交通肇事的伤人行为。

某市曾出现一把明晃晃的菜刀从高空坠落,“砰”的一声砸中了停在路边的一辆摩托车的前轮挡泥板。

假设该菜刀可以看作质点,且从15层楼的窗口无初速度坠落,则从菜刀坠落到砸中摩托车挡泥板的时间最接近()A.1s B.3s C.5s D.7s4、如图所示为查德威克发现中子的实验示意图,利用钋(21084Po)衰变放出的α粒子轰击铍(94Be),产生的粒子P能将石蜡中的质子打出来,下列说法正确的是()A.α粒子是氦原子B.粒子Q的穿透能力比粒子P的强C.钋的α衰变方程为21084Po→20882Pb+42HeD.α粒子轰击铍的核反应方程为42He+94Be→126C+10n5、公园里,经常可以看到大人和小孩都喜欢玩的一种游戏——“套圈”,如图所示是“套圈”游戏的场景。

假设某小孩和大人站立在界外,在同一条竖直线上的不同高度分别水平抛出圆环,大人抛出圆环时的高度大于小孩抛出时的高度,结果恰好都套中前方同一物体。

如果不计空气阻力,圆环的运动可以视为平抛运动,则下列说法正确的是()A.大人和小孩抛出的圆环速度变化率相等B.大人和小孩抛出的圆环发生的位移相等C.大人和小孩抛出的圆环抛出时的速度相等D.大人和小孩抛出的圆环在空中飞行的时间相等6、2019年3月19日,复旦大学科研团队宣称已成功制备出具有较高电导率的砷化铌纳米带材料,据介绍该材料的电导率是石墨烯的1000倍。

山东省部分市2023-2024学年高一上学期期中英语汇编:读后续写(含解析)

山东省部分市2023-2024学年高一上学期期中英语汇编:读后续写(含解析)

山东省部分市2023-2024学年高一上学期期中考试英语试题分类汇编读后续写山东省济宁市曲阜市2023-2024学年高一上学期期中教学质量检测英语试题第二节(满分25分)阅读下面材料, 根据其内容和所给段落开头语续写两段, 使之构成一篇完整的短文。

My aunt Evie had a dollhouse. It had many toys there. Every Friday afternoon, I went to her home with my parents. The adults would sit around a table in the dining room, eating pie and talking, while I played in the dollhouse for hours.Sometimes I would pick up these lovely toys and place them in different positions. It was really fun. One time I asked Aunt Evie where she got the toys so that I could buy some, too. To my disappointment, Aunt Evie said that most of them were specially handmade gifts from her friends and couldn't be bought anywhere. One such toy was a little bear, which was my favorite.It was so beautiful that I wanted to own it badly. "If I take it, Aunt Evie may not notice it. "I said to myself.On a Friday afternoon, I attempted to take the little bear away from Aunt Evie's dollhouse. I had to wait until nobody was watching me, and it took me hours to get the courage to put the little bear in my pocket. Once I got the little bear, I couldn't wait to go home. I had to hide it somewhere at home, so that no one would know I took it. That night after I went home with my parents, I couldn't go to sleep. “What a bad person I am!I stole something from my loved Aunt Evie. ”I thought. When I woke up the next morning, I felt terrible, but I couldn't tell my parents, let alone return the little bear to Aunt Evie. I was embarrassed about what I had done. At some point, I started to hate the little bear and myself. And I knew if I didn't do something, I wouldn't get away from those bad feelings.注意:1. 续写词数应为100个左右;2. 请按如下格式在答题卡的相应位置作答。

浙江省宁波市鄞州中学2023-2024学年高二下学期期中考试数学试题

浙江省宁波市鄞州中学2023-2024学年高二下学期期中考试数学试题

浙江省宁波市鄞州中学2023-2024学年高二下学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{|1A x x =<-或}3x ≥,{}|10B x ax =+≤,若B A ⊆,则实数a 的取值范围为( )A .1|13a a ⎧⎫-≤<⎨⎬⎩⎭B .1|13a a ⎧⎫-≤≤⎨⎬⎩⎭C .{|1a a <-或}0a ≥D .1|03a a ⎧-≤<⎨⎩或}01a <<2.已知0.20.3a =,0.30.2b =,0.3log 0.2c =,则a ,b ,c 的大小关系为( ) A .a b c <<B .b a c <<C .c b a <<D .c<a<b3.下列四个命题中,是假命题的是( ) A .x ∀∈R ,且10,2x x x≠+≥ B .x ∃∈R ,使得212x x +≤C .若x >0,y >02xyx y+ D .若52x ≥,则24524x x x -+-的最小值为14.已知()sin()f x x ωφ=+(0)>ω满足()14f π=,503f π⎛⎫= ⎪⎝⎭且()f x 在5,46ππ⎛⎫⎪⎝⎭上单调,则ω的最大值为( ) A .127B .1817C .617D .30175.“杨辉三角”是中国古代数学杰出的研究成果之一.如图所示,由杨辉三角的左腰上的各数出发,引一组平行线,从上往下每条线上各数之和依次为1,1,2,3,5,8,13,L ,则下列选项不正确的是( )A .在第9条斜线上,各数之和为55B .在第()5n n ≥条斜线上,各数自左往右先增大后减小C .在第n 条斜线上,共有()2114nn +--个数D .在第11条斜线上,最大的数是37C6.已知函数(()(1)ln f x a x x =+⋅,则在同一个坐标系下函数()f x a -与()f x 的图像不可能是( )A .B .C .D .7.若定义在R 上的函数()f x 满足()()4()2f x x f f ++=,()21f x +是奇函数,11()22f =则( )A .17111()22k f k =-=-∑B .1711()02k f k =-=∑C .171117()22k kf k =-=-∑D .171117()22k kf k =-=∑ 8.设实数x ,y 满足32x >,3y >,不等式()()33222338123k x y x y x y --+--≤恒成立,则实数k 的最大值为( ) A .12B .24C.D.二、多选题9.甲、乙两人进行围棋比赛,共比赛()*2n n N∈局,且每局甲获胜的概率和乙获胜的概率均为12.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为()P n ,则( )A .1(2)8P =B .11(3)32P =C .221()122n nn C P n ⎛⎫=- ⎪⎝⎭D .()P n 的最大值为1410.函数2()cos 2cos 1f x x x x ωωω=+-(01ω<<)的图象如图所示,则( )A .()f x 的最小正周期为2πB .)3π(2y f x =+是奇函数C .π()cos 6y f x x =+的图象关于直线π12x =对称D .若()y f tx =(0t >)在[]0,π上有且仅有两个零点,则1117[,)66t ∈11.对于[]0,1x ∈,()f x 满足()()()11,23x f x f x f x f ⎛⎫+-== ⎪⎝⎭,且对于1201x x ≤≤≤,恒有()()12f x f x ≤.则( )A .10011011002i i f =⎛⎫=⎪⎝⎭∑ B .112624f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ C .118080f ⎛⎫= ⎪⎝⎭D .1113216016f ⎛⎫≤≤ ⎪⎝⎭三、填空题12.函数()()π2cos sin2R 4f x x x x ⎛⎫=-+∈ ⎪⎝⎭的值域为.13.已知函数()32f x x x ax b =-++有2个零点1,0-,()()2f x g x x=,若关于x 的不等式()x x g e ke ≥在[]1,0-上有解,则k 的取值范围是.14.已知正实数,,a b c 满足1b c +=,则28181ab a bc a +++的最小值为.四、解答题15.已知ABC V 中,内角,,A B C 所对的边分别为,,a b c ,且满足sin sin sin A c bB C b-=+.(1)若π3C =,求B ; (2)求a cb+的取值范围. 16.已知函数π()sin()4f x x ω=-在区间3π[0,]2上恰有3个零点,其中ω为正整数.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向左平移π4个单位得到函数()g x 的图象,求函数()()()g x F x f x =的单调区间.17.浙江省是第一批新高考改革省份,取消文理分科,变成必考科目和选考科目.其中必考科目是语文、数学、外语,选考科目由考生在思想政治、历史、地理、物理、化学、生物、技术7个科目中自主选择其中3个科目参加等级性考试.为了调查学生对物理、化学、生物的选考情况,从镇海中学高三在物理、化学、生物三个科目中至少选考一科的学生中随机抽取100名学生进行调查,他们选考物理、化学、生物的科目数及人数统计如表:(1)从这100名学生中任选2名,求他们选考物理、化学、生物科目数相等的概率; (2)从这100名学生中任选2名,记X 表示这2名学生选考物理、化学、生物的科目数之差的绝对值,求随机变量X 的数学期望;(3)学校还调查了这100位学生的性别情况,研究男女生中纯理科生大概的比例,得到的数据如下表:(定文同时选考物理、化学、生物三科的学生为纯理科生)请补齐表格,并说明依据小概率值0.05α=的独立性检验,能否认为同时选考物理、化学、生物三科与学生性别有关. 参考公式:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.附表:18.已知函数()()e 1e 1x x a f x a +=∈-R 为奇函数.(1)求a 的值;(2)设函数()ln sin g x x x =+,i .证明:()y g x =有且只有一个零点;ii .记函数()y g x =的零点为0x ,证明:()0e 1sin e 1f x +>-. 19.若存在常数k ,b 使得函数()F x 与()G x 对于给定区间上的任意实数x ,均有()()F x kx b G x ≥+≥,则称y kx b =+是()y F x =与()y G x =的隔离直线.已知函数()21f x x x =-+,()1112g x x x ⎛⎫=-+ ⎪⎝⎭.(1)在实数范围内解不等式:()()f x g x ≥;(2)当0x >时,写出一条()y f x =与()y g x =的隔离直线的方程并证明.。

浙江省余姚2023-2024学年高一下学期期中考试数学试题含答案

浙江省余姚2023-2024学年高一下学期期中考试数学试题含答案

余姚2023学年第二学期期中检测高一数学试卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知1i22i z -=+,则z z -=()A .i- B.iC.0D.1【答案】A 【解析】【分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出.【详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.故选:A .2.如图,一个水平放置的平面图形的斜二测直观图是直角梯形O A B C '''',且//O A B C '''',242O A B C A B '''''='==,,则该平面图形的高为()A. B.2C.D.【答案】C 【解析】【分析】由题意计算可得O C '',还原图形后可得原图形中各边长,即可得其高.【详解】在直角梯形O A B C ''''中,//O A B C '''',24,2O A B C A B ''''='==',则O C ==''直角梯形O A B C ''''对应的原平面图形为如图中直角梯形OABC ,则有//,,24,242BC OA OC OA OA BC OC O C ''⊥====,所以该平面图形的高为42.故选:C.3.在平行四边形ABCD 中,,AC BD 相交于点O ,点E 在线段BD 上,且3BE ED = ,则AE =()A.1142AD AC + B.1124AD AC +C.3144AD AC +D.1344AD AC +【答案】B 【解析】【分析】利用平面向量基本定理即可得到答案.【详解】因为O 是AC 的中点,12AO AC ∴= ,又由3BE ED =可得E 是DO 的中点,11112224AE AD AO AD AC ∴=+=+ .故选:B.4.某小组有2名男生和3名女生,从中任选2名学生去参加唱歌比赛,在下列各组事件中,是互斥事件的是()A.恰有1名女生和恰有2名女生B.至少有1名男生和至少有1名女生C.至少有1名女生和全是女生D.至少有1名女生和至多有1名男生【答案】A 【解析】【分析】根据互斥事件的定义判断即可.【详解】依题意可能出现2名男生、1名男生1名女生、2名女生;对于A :恰有1名女生即选出的两名学生中有一名男生一名女生和恰有2名女生,他们不可能同时发生,故是互斥事件,故A 正确;对于B :当选出的两名学生中有一名男生一名女生,则至少有1名男生和至少有1名女生都发生了,故不是互斥事件,故B 错误;对于C :至少有1名女生包含有一名男生一名女生与全是女生,所以当全是女生时,至少有1名女生和全是女生都发生了,故不是互斥事件,故C 错误;对于D :至少有1名女生包含有一名男生一名女生与全是女生,至多有1名男生包含有一名男生一名女生与全是女生,故至少有1名女生和至多有1名男生是相等事件,故D 错误.故选:A5.已知点()1,1A ,()0,2B ,()1,1C --.则AB 在BC上的投影向量为()A.10310,55⎛ ⎝⎭B.10310,55⎛⎫-- ⎪ ⎪⎝⎭C.13,55⎛⎫⎪⎝⎭ D.13,55⎛⎫-- ⎪⎝⎭【答案】C 【解析】【分析】根据向量的坐标公式,结合投影向量的定义进行求解即可.【详解】因为()1,1A ,()0,2B ,()1,1C --.所以()1,1AB =-uu u r,()1,3BC =--,5cos ,5AB BC AB BC AB BC⋅〈〉==-⋅,所以向量AB 与BC的夹角为钝角,因此量AB 在BC上的投影向量与BC 方向相反,而cos ,55AB AB BC ⋅〈〉==,155BC == ,所以AB 在BC 上的投影向量为()11131,3,5555BC ⎛⎫-⋅=-⋅--= ⎪⎝⎭,故选:C6.秦九韶是我国南宋时期的著名数学家,他在著作《数书九章》中提出,已知三角形三边长计算三角形面积的一种方法“三斜求积术”,即在ABC 中,,,a b c 分别为内角,,A B C 所对应的边,其公式为:ABCS ==若22sin sin C c A =,3cos 5B =,a b c >>,则利用“三斜求积术”求ABC 的面积为()A.54B.34 C.35D.45【答案】D 【解析】【分析】由正弦定理可得2ac =,由余弦定理可得222625a cb +-=,在结合已知“三斜求积术”即可求ABC 的面积.【详解】解:因为22sin sin C c A =,由正弦定理sin sin a c A C=得:22c c a =,则2ac =又由余弦定理2223cos 25a cb B ac +-==得:22236255a c b ac +-==则由“三斜求积术”得45ABC S == .故选:D.7.已知某样本的容量为50,平均数为36,方差为48,现发现在收集这些数据时,其中的两个数据记录有误,一个错将24记录为34,另一个错将48记录为38.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则()A.236,48s x =<B.236,48s x =>C.236,48s x ><D.236,48s x <>【答案】B 【解析】【分析】根据数据总和不变,则平均数不变,根据方差的定义得()()()2221248148363636850x x x ⎡⎤=-+-++-+⎣⎦ ,而()()()4221222813628843668035s x x x +⎡-⎤=-+>⎣⎦-+ .【详解】设收集的48个准确数据为1248,,x x x ,所以124834383650x x x +++++= ,所以12481728x x x +++= ,所以124824483650x x x x +++++== ,又()()()222221248148363636(3436)(3836)50x x x ⎡⎤=-+-++-+-+-⎣⎦ ()()()22212481363636850x x x ⎡⎤=-+-++-+⎣⎦ ,()()()42222222183636(2436)(48136536)0s x x x ⎡⎤=-+⎣⎦-++-+-+- ()()()222281413628848365360x x x ⎡⎤=+-+-+->⎣⎦ ,故选:B.8.在ABC 中,π6A =,π2B =,1BC =,D 为AC 中点,若将BCD △沿着直线BD 翻折至BC D '△,使得四面体C ABD '-的外接球半径为1,则直线BC '与平面ABD 所成角的正弦值是()A.3B.23C.3D.3【答案】D 【解析】【分析】由直角三角形性质和翻折关系可确定BC D '△为等边三角形,利用正弦定理可确定ABD △外接圆半径,由此可知ABD △外接圆圆心O 即为四面体C ABD '-外接球球心,由球的性质可知OG ⊥平面BC D ',利用C OBD O C BD V V ''--=可求得点C '到平面ABD 的距离,由此可求得线面角的正弦值.【详解】π6A =,π2B =,1BC =,2AC ∴=,又D 为AC 中点,1AD CD BD ∴===,则1BC C D BD ''===,即BC D '△为等边三角形,设BC D '△的外接圆圆心为G ,ABD △的外接圆圆心为O ,取BD 中点H ,连接,,,,,C H OH OG OB OC OD '',π6A =,1BD =,112sin BDOB A∴=⋅=,即ABD △外接圆半径为1,又四面体C ABD '-的外接球半径为1,O ∴为四面体C ABD '-外接球的球心,由球的性质可知:OG ⊥平面BC D ',又C H '⊂平面BC D ',OG C H '∴⊥,22333C G CH '===,1OC '=,3OG ∴=;设点C '到平面ABD 的距离为d ,由C OBD O C BD V V ''--=得:1133OBD C BD S d S OG '⋅=⋅ ,又OBD 与C BD ' 均为边长为1的等边三角形,3d OG ∴==,直线BC '与平面ABD 所成角的正弦值为3d BC ='.故选:D.【点睛】关键点点睛;本题考查几何体的外接球、线面角问题的求解;本题求解线面角的关键是能够确定外接球球心的位置,结合球的性质,利用体积桥的方式构造方程求得点到面的距离,进而得到线面角的正弦值.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.数据1,2,3,3,4,5的平均数和中位数相同B.数据6,5,4,3,3,3,2,2,1的众数为3C.有甲、乙、丙三种个体按3:1:2的比例分层抽样调查,如果抽取的甲个体数为9,则样本容量为30D.甲组数据的方差为4,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是乙组【答案】AB 【解析】【分析】根据已知条件,结合平均数、方差公式,众数、中位数的定义,以及分层抽样的定义,即可求解.【详解】对于A ,平均数为12334536+++++=,将数据从小到大排列为1,2,3,3,4,5,所以中位数为3332+=,A 正确;对于B ,数据6,5,4,3,3,3,2,2,1的众数为3,B 正确;对于C ,根据样本的抽样比等于各层的抽样比知,样本容量为3918312÷=++,C 错误;对于D ,乙数据的平均数为56910575++++=,乙数据的方差为()()()()()22222157679710757 4.445⎡⎤-+-+-+-+-=>⎣⎦,所以这两组数据中较稳定的是甲组,D 错误.故选:AB.10.在ABC 中,内角A 、B 、C 所对的边分别a 、b 、c ,22sin a bc A =,下列说法正确的是()A.若1a =,则14ABC S =△B.ABC 外接圆的半径为bc aC.c b b c+取得最小值时,π3A =D.π4A =时,c b b c+值为【答案】ABD 【解析】【分析】对A ,由正弦定理化简2sin a b C =可得1sin 2C b=,再根据三角形面积公式判断即可;对B ,根据2sin a b C =结合正弦定理判断即可;对C ,根据正弦定理与余弦定理化简sin 2sin sin A B C =可得π4b c A c b ⎛⎫+=+ ⎪⎝⎭,再根据基本不等式与三角函数性质判断即可;对D ,根据三角函数值域求解即可.【详解】对A ,因为22sin a bc A =,由正弦定理可得sin 2sin sin a A b A C =,因为()0,πA ∈,则sin 0A >,则2sin a b C =,又因为1a =,故1sin 2C b =,故三角形面积为1111sin 12224ABC S ab C b b ==⨯⨯⨯=△,故A 正确;对B ,2sin a b C =,则sin 2aC b=,设ABC 外接圆的半径为R ,则2sin cR C=,故22c bc R a a b==⨯,故B 正确;对C ,因为22sin a bc A =,由余弦定理222sin 2cos b c c A b bc A =+-,即()222sin cos bc A A b c +=+,化简可得π4b c A c b⎛⎫+=+ ⎪⎝⎭,由基本不等式得2b c c b +≥=,当且仅当b c =时取等号,此时πsin 42A ⎛⎫+= ⎪⎝⎭,故当π2A =,π4B C ==时,b c c b +取得最小值2,故C 错误;对D ,由C,π4b c A c b ⎛⎫+=+ ⎪⎝⎭,当π4A =时,b c c b+的值为,故D 正确;故选:ABD.11.如图,在棱长为4的正方体1111ABCD A B C D -中,E ,F ,G 分别为棱,,AD AB BC 的中点,点P 为线段1D F 上的动点(包含端点),则()A.存在点P ,使得1//C G 平面BEPB.对任意点P ,平面1FCC ⊥平面BEPC.两条异面直线1D C 和1BC 所成的角为45︒D.点1B 到直线1D F 的距离为4【答案】ABD 【解析】【分析】A 选项当P 与1D 重合时,用线面平行可得出11//C G D E ,进而可得;B 选项证明BE ⊥平面1FCC 即可得出;选项C 由正方体的性质和画图直接得出;选项D 由余弦定理确定1145B D F ∠=︒,之后求距离即可.【详解】A :当P 与1D 重合时,由题可知,11111111//,,//,,//,EG DC EG DC D C DC D C DC EG D C EG D C ==∴=,四边形11EGC D 为平行四边形,故11//C G D E ,又1C G ⊄平面BEP ,1D E ⊂平面BEP ,则1//C G 平面BEP ,故A 正确;B :连接CF ,1CC ⊥ 平面ABCD ,BE ⊂平面ABCD ,1CC BE ∴⊥,又,,,AE BF AB BC A CBF BAF CBF ==∠=∠∴ ≌,故90,AEB BFC EBA BFC CF BE ∠=∠⇒∠+∠=︒∴⊥,又11,,CF CC C CF CC =⊂ 平面1FCC ,BE ∴⊥平面1FCC ,又BE ⊂平面BEP ,故对任意点P ,平面1FCC ⊥平面BEP ,故B 正确;C:由正方体的结构特征可知11//BC AD ,异面直线1D C 和1BC 所成的角即为1AD 和1D C 所成的角,由图可知为60︒,故C 错误;D :由正方体的特征可得1111B D FD B F =====,222222111111111116cos ,4522B D FD B FB D F B D F B D FD +-+-∴∠===∴∠=︒⋅,所以点1B 到直线1D F 的距离1111sin 42d B D B D F =∠==,故D 正确;故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.为培养学生“爱读书、读好书、普读书”的良好习惯,某校创建了人文社科类、文学类、自然科学类三个读书社团.甲、乙、丙三位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,则三人恰好参加同一个社团的概率为______.【答案】19【解析】【分析】根据题意,得到基本事件的总数为27n =,以及所求事件中包含的基本事件个数为3m =,结合古典摡型的概率计算公式,即可求解.【详解】由人文社科类、文学类、自然科学类三个读书社团,甲、乙、丙三位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,基本事件的总数为3327n ==,三人恰好参加同一个社团包含的基本事件个数为3m =,则三人恰好参加同一个社团的概率为31279m P n ===.故答案为:19.13.如图,在ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足()12AP mAC AB m =+∈R ,若2AC =,4AB =,则AP CD ⋅的值为______.【答案】3【解析】【分析】利用//CP CD ,结合已知条件可把m 求出,由平面向量基本定理把AP 、CD 用已知向量AB 、AC表示,再利用数量积的运算法则可求数量积.【详解】 2AD DB =,∴23AD AB = ,//CP CD,∴存在实数k ,使得CP kCD = ,即()AP AC k AD AC -=- ,又 12AP mAC AB =+ ,则()12123m AC AB k AB AC ⎛⎫-+=- ⎪⎝⎭,∴11223m kk -=-⎧⎪⎨=⎪⎩,34k ∴=,14m =,则()112423AP CD AP AD AC AC AB AB AC ⎛⎫⎛⎫⋅=⋅-=+⋅- ⎪⎪⎝⎭⎝⎭2221111611π242cos 33433433AB AC AB AC =--⋅=--⨯⨯ ,故答案为:3.14.已知正方体1111ABCD A B C D -的棱长为3,动点P 在1AB C V 内,满足1D P =,则点P 的轨迹长度为______.【解析】【分析】确定正方体1111ABCD A B C D -对角线1BD 与1AB C V 的交点E ,求出EP 确定轨迹形状,再求出轨迹长度作答.【详解】在正方体1111ABCD A B C D -中,如图,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,则1DD AC ⊥,而BD AC ⊥,1DD BD D =I ,1DD ,BD ⊂平面1BDD ,于是AC ⊥平面1BDD ,又1BD ⊂平面1BDD ,则1AC BD ⊥,同理11⊥AB BD ,而1AC AB A ⋂=,AC ,1AB ⊂平面1AB C ,因此1BD ⊥平面1AB C ,令1BD 交平面1AB C 于点E ,由11B AB C B ABC V V --=,得111133AB C ABC S BE S BB ⋅=⋅ ,即)23142BE AB ⋅⋅=,解得BE AB ==而1BD ==1D E =,因为点P 在1AB C V 内,满足1D P =,则EP ==因此点P 的轨迹是以点E 为半径的圆在1AB C V 内的圆弧,而1AB C V 为正三角形,则三棱锥1B AB C -必为正三棱锥,E 为正1AB C V 的中心,于是正1AB C V 的内切圆半径111323232EH AB =⨯⨯=⨯=,则cos 2HEF ∠=,即π6HEF ∠=,π3FEG ∠=,所以圆在1AB C V 内的圆弧为圆周长的12,即点P 的轨迹长度为12π2⋅=【点睛】方法点睛:涉及立体图形中的轨迹问题,若动点在某个平面内,利用给定条件,借助线面、面面平行、垂直等性质,确定动点与所在平面内的定点或定直线关系,结合有关平面轨迹定义判断求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知z 为复数,2i z +为实数,且(12i)z -为纯虚数,其中i 是虚数单位.(1)求||z ;(2)若复数2(i)z m +在复平面上对应的点在第一象限,求实数m 的取值范围.【答案】(1)(2)()2,2-【解析】【分析】(1)设=+i ,R z a b a b ∈,,根据复数代数形式的乘法法则化简2i z +与(12i)z -,根据复数为实数和纯虚数的条件,即可求出a b ,,利用复数模长公式,即可求得到复数的模长;(2)由(1)知,求出复数的共轭复数,再根据复数代数形式的除法与乘方运算化简复数,再根据复数的几何意义得到不等式组,解得即可.【小问1详解】设=+i ,R z a b a b ∈,,()2i=2i z a b +++,因为2i z +为实数,所以20b +=,即2b =-所以(12i)(2i)(12i)42(1)i z a a a -=--=--+,又因为(12i)z -为纯虚数,所以40a -=即4a =,所以42z i =-,所以z ==.【小问2详解】由(1)知,42iz =+所以222(i)(42i i)16(2)8(2)i m m z m m +=++=-+++,又因为2(i)z m +在复平面上所对应的点在第一象限,所以216(2)08(2)0m m ⎧-+>⎨+>⎩,解得:22m -<<所以,实数m 的取值范围为()2,2-.16.某校为了提高学生对数学学习的兴趣,举办了一场数学趣味知识答题比赛活动,共有1000名学生参加了此次答题活动.为了解本次比赛的成绩,从中抽取100名学生的得分(得分均为整数,满分为100分)进行统计.所有学生的得分都不低于60分,将这100名学生的得分进行分组,第一组[)60,70,第二组[)70,80,第三组[)80,90,第四组[]90,100(单位:分),得到如下的频率分布直方图.(1)求图中m 的值,并估计此次答题活动学生得分的中位数;(2)根据频率分布直方图,估计此次答题活动得分的平均值.若对得分不低于平均值的同学进行奖励,请估计参赛的学生中有多少名学生获奖.(以每组中点作为该组数据的代表)【答案】(1)0.01m =,中位数为82.5.(2)82x =,有520名学生获奖.【解析】【分析】(1)利用频率分布直方图中所有频率之和等于1和中位数左边和右边的直方图的面积应该相等即可求解;(2)利用频率分布直方图中平均数等于每个小矩形底边的中点的横坐标与小矩形的面积的乘积之和及不低于平均值的学生人数为总数500乘以不低于平均值的频率即可.【小问1详解】由频率分布直方图知:()0.030.040.02101m ++++⨯=,解得0.01m =,设此次竞赛活动学生得分的中位数为0x ,因数据落在[)60,80内的频率为0.4,落在[)60,90内的频率为0.8,从而可得08090x <<,由()0800.040.1x -⨯=,得082.5x =,所以估计此次竞赛活动学生得分的中位数为82.5.【小问2详解】由频率分布直方图及(1)知:数据落在[)60,70,[)70,80,[)80,90,[]90,100的频率分别为0.1,0.3,0.4,0.2,650.1750.3850.4950.282x =⨯+⨯+⨯+⨯=,此次竞赛活动学生得分不低于82的频率为90820.20.40.5210-+⨯=,则10000.52520⨯=,所以估计此次竞赛活动得分的平均值为82,在参赛的1000名学生中估计有520名学生获奖17.在①()(sin sin )(sin sin )a c A C b A B +-=-;②2cos 0cos b a A c C--=;③向量()m c = 与(cos ,sin )n C B = 平行,这三个条件中任选一个,补充在下面题干中,然后解答问题.已知ABC 内角,,A B C 的对边分别为,,a b c ,且满足______.(1)求角C ;(2)若ABC 为锐角三角形,且2c =,求ABC 周长的取值范围;(3)在(2)条件下,若AB 边中点为D ,求中线CD 的取值范围.(注:如果选择多个条件分别解答,按第一个解答计分)【答案】(1)条件选择见解析,3π(2)2,6]+(3)3CD <≤【解析】【分析】(1)选①根据正弦定理化简,然后转化成余弦值即可;选②根据正弦定理化简即可求到余弦值,然后求出角度;选③先根据向量条件得到等式,然后根据正弦定理即可求到正切值,最后求出角度.(2)根据(1)中结果和2c =,把ABC 周长转化成π4sin 26A ⎛⎫++ ⎪⎝⎭,然后再求解范围.(3)根据中线公式和正弦定理,把CD 转化成三角函数求解即可.【小问1详解】选①:因为()(sin sin )(sin sin )a c A C b A B +-=-,()()()a c a c b a b ∴+-=-,即222c a b ab =+-,1cos 2C ∴=,()0,πC ∈ ,π3C ∴=.选②:2cos 0cos b a A c C--=,2sin sin cos sin cos B A A C C-∴=,2sin cos sin cos sin cos B C A C C A ∴-=,1cos 2C ∴=,()0,πC ∈ ,π3C ∴=.选③:向量()m c = 与(cos ,sin )n C B =平行,sin cos c B C ∴=,sin sin cos C B B C ∴=,tan C ∴=()0,πC ∈ ,π3C ∴=.【小问2详解】π,23C c == ,sin sin sin a b c A B C==,23sin )2sin())2sin )232a b c A B A A A A π∴++=++=+-+=+4sin(26A π=++. ABC 为锐角三角形,π022ππ032A B A ⎧<<⎪⎪∴⎨⎪<=-<⎪⎩,ππ62A ∴<<,πsin ,162A ⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦.ABC ∴周长的取值范围为2,6]+.【小问3详解】224a b ab =+- ,又由中线公式可得222(2)42()2(4)CD a b ab +=+=+,21624442·sin sin 33CD B A A π⎛⎫∴=+=+- ⎪⎝⎭2161161142·sin cos sin 42·sin 23223426A A A A π⎛⎫⎡⎤⎛⎫=++=++- ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭.即254πsin 2336CD A ⎛⎫=+- ⎪⎝⎭, ABC 为锐角三角形,π022ππ032A B A ⎧<<⎪⎪∴⎨⎪<=-<⎪⎩,ππ62A ∴<<,ππ5π2666A ∴<-<.3CD <≤.18.三棱台111ABC A B C -中,若1A A ⊥面ABC ,ABAC ⊥,12AB AC AA ===,111A C =,M ,N 分别是BC ,BA 中点.(1)求1A N 与1CC 所成角的余弦值;(2)求平面1C MA 与平面11ACC A 所成成角的余弦值;(3)求1CC 与平面1C MA 所成角的正弦值.【答案】(1)45(2)23(3)15【解析】【分析】(1)根据题意,证得11//MN A C 和11//A N MC ,得到1CC M ∠为1A N 与1CC 所成角,在1CC M △中,利用余弦定理,即可求解;(2)过M 作ME AC ⊥,过E 作1EF AC ⊥,连接1,MF C E ,证得ME ⊥平面11ACC A ,进而证得1AC ⊥平面MEF ,得到平面1C MA 与11ACC A 所成角即MFE ∠,在直角MEF 中,即可求解;(3)过1C 作1C P AC ⊥,作1C Q AM ⊥,连接,PQ PM ,由1C P ⊥平面AMC ,得到1C P AM ⊥和1C Q AM ⊥,得到AM ⊥平面1C PQ 和PR ⊥平面1C MA ,在直角1C PQ 中,求得23PR =,求得C 到平面1C MA 的距离是43,进而求得1CC 与平面1C MA 所成角.【小问1详解】解:连接1,MN C A .由,M N 分别是,BC BA 的中点,根据中位线性质,得//MN AC ,且12AC MN ==,在三棱台111ABC A B C -中,可得11//A C AC ,所以11//MN A C ,由111MN A C ==,可得四边形11MNAC 是平行四边形,则11//A N MC ,所以1CC M ∠为1A N 与1CC 所成角,在1CC M △中,由111CC A N C M CM ====,可得14cos5CC M ∠=.【小问2详解】解:过M 作ME AC ⊥,垂足为E ,过E 作1EF AC ⊥,垂足为F ,连接1,MF C E .由ME ⊂面ABC ,1A A ⊥面ABC ,故1AA ME ⊥,又因为ME AC ⊥,1AC AA A =∩,1,AC AA ⊂平面11ACC A ,则ME ⊥平面11ACC A .由1AC ⊂平面11ACC A ,故1ME AC ⊥,因为1EF AC ⊥,ME EF E ⋂=,且,ME EF ⊂平面MEF ,于是1AC ⊥平面MEF ,由MF ⊂平面MEF ,可得1AC MF ⊥,所以平面1C MA 与平面11ACC A 所成角即MFE ∠,又因为12AB ME ==,1cos CAC ∠=,则1sin CAC ∠=所以11sin EF CAC =⨯∠=,在直角MEF 中,90MEF ∠=,则MF ==2cos 3EF MFE MF ∠==.【小问3详解】解:过1C 作1C P AC ⊥,垂足为P ,作1C Q AM ⊥,垂足为Q ,连接,PQ PM ,过P 作1PR C Q ⊥,垂足为R ,由11C A C C ==,1C M ==12C Q ==,由1C P ⊥平面AMC ,AM ⊂平面AMC ,则1C P AM ⊥,因为1C Q AM ⊥,111C Q C P C = ,11,C Q C P ⊂平面1C PQ ,于是AM ⊥平面1C PQ ,又因为PR ⊂平面1C PQ ,则PR AM ⊥,因为1PR C Q ⊥,1C Q AM Q = ,1,C Q AM ⊂平面1C MA ,所以PR ⊥平面1C MA ,在直角1C PQ 中,1122223322PC PQ PR QC ⋅⋅==,因为2CA PA =,故点C 到平面1C MA 的距离是P 到平面1C MA 的距离的两倍,即点C 到平面1C MA 的距离是43,设所求角为θ,则43sin 15θ==.19.如图①,在矩形ABCD 中,2AB AD ==E 为CD 的中点,如图②,将AED △沿AE 折起,点M 在线段CD 上.(1)若2DM MC =,求证AD ∥平面MEB ;(2)若平面AED ⊥平面BCEA ,是否存在点M ,使得平面DEB 与平面MEB 垂直?若存在,求此时三棱锥B DEM -的体积,若不存在,说明理由.【答案】(1)证明见解析(2)存在,169【解析】【分析】(1)根据已知条件及平行线分线段成比例定理,结合线面平行的判定定理即可求解;(2)根据(1)的结论及矩形的性质,利用面面垂直的性质定理及线面垂直的性质定理,结合线面垂直的判定定理及面面垂直的判定定理,再利用等体积法及棱锥的体积公式即可求解.【小问1详解】如图,连AC ,交EB 于G ,在矩形ABCD 中,E 为DC 中点,AB EC ∴∥,且2AB EC =,2AG GC ∴=,又2DM MC =,AD MG ∴∥,又MG ⊂平面MEB ,AD ⊄平面MEB ,AD ∴∥平面MEB .【小问2详解】存在点M ,使得平面DEB 与平面MEB 垂直.在矩形ABCD 中,12DE DA AB ==,45DEA BEC ∴∠=∠=︒,90AEB ∴∠=︒,即AE EB ⊥,已知平面AED ⊥平面BCEA ,又平面AED 平面BCEA AE =,BE ∴⊥平面AED ,DE ⊂平面AED ,BE DE ∴⊥.①取AE 中点O ,则DO AE ⊥,平面AED ⊥平面BCEA ,平面AED 平面BCEA AE =,DO ∴⊥平面BCEA ,由(1)知当2DM MC =时,AD MG ∥,AD DE ⊥ ,MG DE ∴⊥.②而BE MG G ⋂=,,⊂BE MG 平面MEB ,DE ∴⊥平面MEB ,又DE ⊂平面DEB ,∴平面DEB ⊥平面MEB .即当2DM MC =时,平面DEB 与平面MEB 垂直.依题意有DE AD ==4AE =,2DO =,(2222121116233333329B DEM B DEC D BEC BEC V V V DO S ---∴===⨯⨯⨯=⨯⨯⨯⨯=△.。

2023-2024学年浙江省宁波市三锋教研联盟高一(上)期中数学试卷【答案版】

2023-2024学年浙江省宁波市三锋教研联盟高一(上)期中数学试卷【答案版】

2023-2024学年浙江省宁波市三锋教研联盟高一(上)期中数学试卷一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.“1<x<5”是“2<x<4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.学校开运动会,设A={x|x是参加100米跑的同学},B={x|x是参加200米跑的同学},C={x|x是参加400米跑的同学}.学校规定,每个参加上述比赛的同学最多只能参加两项比赛.请你用集合的运算说明这项规定()A.(A∩B)∪C=∅B.(A∪B)∩C=∅C.(A∪B)∪C=∅D.(A∩B)∩C=∅3.命题“∃x>0,2x2﹣x﹣1≥0”的否定是()A.∀x≤0,2x2﹣x﹣1<0B.∀x>0,2x2﹣x﹣1<0C.∀x≤0,2x2﹣x﹣1≥0D.∃x≥0,2x2﹣x﹣1<04.下面给出4个幂函数的图象,则图象与函数大致对应的是()A.①y=x2,②y=x 13,③y=x12,④y=x﹣1B.①y=x3,②y=x2,③y=x 12,④y=x﹣1C.①y=x2,②y=x3,③y=x 12,④y=x﹣1D.①y=x 13,②y=x12,③y=x2,④y=x﹣15.若x,y满足﹣1<x<y<1,则x﹣y的取值范围是()A.(﹣2,0)B.(﹣2,2)C.(﹣1,0)D.(﹣1,1)6.下列大小关系错误的是()A.30.1>π0B.(12)−0.3>(12)−0.2C.0.30.9>0.90.3D.(√3)12>(√2)127.已知函数f(x)={x 2+2ax +16,x ≤2−a x−1,x >2在定义域上单调递减,则实数a 的取值范围是( )A .[﹣4,﹣2]B .(﹣∞,﹣2]C .(﹣∞,0)D .(﹣4,﹣2]8.已知函数f(x)=e x −e −x2x +2−x −8,且f (a )=10,那么f (﹣a )等于( )A .﹣18B .﹣26C .﹣10D .10二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分) 9.下列命题中,是真命题的有( ) A .f(x)=x +x 03,g(x)=x +13是同一函数B .∀x ∈R ,|x |+x 2≥0C .某些平行四边形是菱形D .√a √a 3=a 1310.设b >a >0,则下列不等关系正确的是( ) A .1b<1aB .b a<abC .0<a b<1D .a 2b <ab 211.在下列函数中,最小值是2的函数有( ) A .f (x )=x 2+x +2 B .f (x )=2|x |+1C .f(x)=|x +1x |D .f(x)={x +3,−1<x <02x+1,x ≥012.已知函数f (x )满足对任意的x ∈R 都有f (x +2)=﹣f (x ),f (1)=3,若函数y =f (x ﹣1)的图象关于点(1,0)对称,且对任意的x 1,x 2∈(0,1),x 1≠x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则下列结论正确的是( ) A .f (x )的图象关于直线x =1对称 B .f (x )是偶函数 C .f (5)﹣f (2)=3D .f(−52)>f(54)三、填空题(本大题共4小题,每题5分,共20分,16题第一空2分,第二空3分) 13.y =f (x )是定义在[1﹣2a ,a +4]上的奇函数,则实数a = . 14.已知函数y =√−x 2+2x +3的单调递增区间为 . 15.不等式2x−1x+1≥−1的解集为 .16.已知实数x ,y ,且x +y +2xy =7.当x ,y 均为正数时,则x +y 的最小值为 ;当x ,y 均为整数时,x +y 的最小值为 .四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤。

浙江省宁波市鄞州区第二实验学校2023-2024学年九年级下学期期中数学试题(原卷版)

浙江省宁波市鄞州区第二实验学校2023-2024学年九年级下学期期中数学试题(原卷版)

鄞州第二实验中学2023学年第二学期初三期中加试考试卷理综试题 卷Ⅰ 数学考试总分:100分一、单项选择题(本大题共4小题,每小题5分,共20分.每小题列出的四个选项中只有一个选项是符合题目要求的,不选、多选、错选均不得分.1. 下列函数中,和函数的图象关于y 轴对称的是( )A. B. C. D. 2. 如图,在以O 为圆心的两个同心圆中,A 为大圆上任意一点,过A 作小圆的割线,若,则图中圆环的面积为( )A. B. C. D. 3. 如图,在菱形中,E 为边上一点,交对角线于F ,交延长线于G ,若,,则长为( )A. B. 6 C. D. 84. 关于x 的方程,当()时,方程的解分别为,若,则的值的情况为( )A. 是定值,为9 B. 是定值,为4的11y x =-11y x =+11y x =-+11y x =-11y x =-AXY 2AX AY ⋅=π2π4π8πABCD CD AE BD BC 4EF =5EG =AF 254()()13x x k --=12,k k k =21k k >1234,,,x x x x 1223340x x x x x x -=-=->2111k k ++C. 不是定值,随的增大而增大D. 不是定值,随的增大而减小二、不定项选择题(本大题共2小题,每小题5分,共10分.每小题列出的四个选项中至少有一个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,不选、有错选的不得分.)5. 若使函数的自变量的取值范围是一切实数,则下面的关系中一定满足要求的是( )A. B. C. D. 6. 如图,已知为半圆O 直径,点C 为半圆O 上一点,延长至点D ,使得,连结,过点C 作半圆O 的切线,交于点E ,连结交圆O 于点F ,连结并延长交于点G ,若,则( )A. B. C. D. G 为中点三、填空题(本大题共5小题,每小题5分,共25分.请把答案写在答卷相应位置上.)7. 设是方程两个实数根,则_______.8. 如图,点B 、C 、E 三点在同一条直线上,矩形矩形,点M ,N 分别是中点,连接,若,则的长为_______.9. 互相垂直且有公共原点的两条数轴构成平面直角坐标系,但如果平面坐标系中两条坐标轴不垂直,则这样的坐标系称为“斜坐标系”.如图,在斜坐标系中,过点P 作两坐标轴的平行线,其在x 轴和y 轴上的截距a ,b 分别作为点P 的横坐标和纵坐标,记,若斜坐标系中坐标原点为O ,x 轴正方向和y轴正方向的夹角为,点,,则的面积为_______.的的的1x 1x 2212y x bx c =-+0b c <<0c b <<0b c <<0c b <<AB BC BC CD =AD CE AD BE AF CE BE AG =AD AB =CE AD ⊥4AE DE =CE 12,x x 210x x --=31221x x ++=ABCD ≌FGCE BD GE 、MN 13AB BC ==,MN ()P a b ,0θ=6︒()21M ,()12N ,OMN10. 设方程组的正实数解为,则______.11. 设点P 在半径为1的圆的内接正八边形的边上,记,则S 的取值范围是_______.四、解答题(本大题共3小题,每小题15分,共45分.解答应写出必要的文字说明、证明过程或演算步骤)12. 已知正实数x 满足.(1)求的值;(2)求与值.13. 如图,已知抛物线,,点,为抛物线上第一象限内的两点,且满足,以为边向右作矩形,若P 点纵坐标为5.(1)求的值;(2)求的值;(3)求矩形的面积.14. 如图1,四边形内接于圆O ,对角线与交于点E ,连结并延长交于点F ,平分,连接,与交于点G ,E 为中点.的3335221x xyz y xyz z xyz ⎧-=-⎪-=⎨⎪-=⎩(),,x y z x y z ++=128A A A 12A A 222128S PA PA PA =+++ 2217x x +=1x x +331x x +771x x +21:4C y x =()01F ,()11,A x y ()22,B x y FA FB ⊥FA FB 、FAPB 12y y +12x x FAPB ABCD AC BD BO AC BD CBF ∠DF OD AC CG(1)求证:.(2)若,求.(3)如图2,在(2)的条件下,作,垂足为M,求的值.BCE DGE ≌ 2BC AD CD+=BFD ∠FM BD ⊥EM AF。

2024年浙江省宁波市鄞州中学强基招生数学试卷(含答案)

2024年浙江省宁波市鄞州中学强基招生数学试卷(含答案)

2024年浙江省宁波市鄞州中学强基招生数学试卷一、填空题:本题共10小题,每小题3分,共30分。

1.若xy ≠−1,且{4x 2+9x +3=03y 2−9y +4=0,则x y = ______.2.11+2+11+2+3+11+2+3+4+⋯+11+2+3+⋯+2024= ______.3.已知正实数a ,b ,c 满足a +b +c =6,则 a 2+18+ b 2+32+ c 2+50的最小值为______.4.已知函数y =|x 2+2x−a +3|,当−2≤x ≤1时,y 有最大值5,则a 的值为______.5.已知△ABC 中,BC 上的一点D ,2BD =CD ,∠DAC =30°,则∠ABD 的最大值为______.6.若点T 为线段BC 中点,AT ⊥DT ,且AT =2,DT =1,AB//CD ,BC = 13,则AB CD = ____.7.如图,在△ABC 中,G ,E 分别在AB ,AC 上,连结BE 交AF 于O ,若BO OE =92,AE EC =12,G ,O ,C 共线,△GEF 的面积为11,则△OBC 的面积为______.8.已知整数x ,y ,z 满足xy +yz +zx =118,则x 2+y 2+z 2的最小值为______.9.已知x ,y ,z 是大于1的正整数,且(x +1y )(y +1z )(z +1x )为整数,则x +y +z = ___.10.已知EA 、EC 为圆O 的两条切线,连结DE 交圆于点B ,若BC =6,AB =3,∠ABD =30°,则BD = ______.二、解答题:本题共2小题,共16分。

解答应写出文字说明,证明过程或演算步骤。

11.(本小题8分)已知P(3,4),矩形OAPB 的A ,B 顶点分别在x 轴,y 轴上,反比例函数y =kx (x >0,k >0)与矩形的BP ,AP 分别交于D ,C ,△COD 的面积为4.5.(1)判断并证明直线CD 与AB 的关系.(2)求k 的值.(3)若E ,F 分别为直线AB 和反比例函数上的动点,M 为EF 中点,求OM 的最小值.12.(本小题8分)如图,在△ABC中,∠BAC=60°,D是垂心,O是外心,延长AD交BC于E,OH⊥BC于H.(1)求证:2OH=AD.(2)证明:B,O,D,C四点共圆.(3)若BE=2CE=2,求DE.参考答案1.−342.202320253.184.1或75.90°6.37.308.1189.1210.4 311.解:(1)如图1,CD//AB ,理由如下:由题意得,C(3,k 3),D(k 4,4),∴BD =k 4,AC =k 3,∴PD =PB−BD =3−k 4=12−k 4,PC =PA−AC =4−k 3=12−k 3,∴PD PC =34,∴PD PC =PB PA ,∵∠P =∠P ,∴△PCD ∽△PAB ,∴∠PDC =∠PBA ,∴CD//AB ;(2)如图2,作DG ⊥OA 于G ,∵S △AOC =S △DOG =12k ,∴S △COD =S 四边形AOCD −S △AOC =(S △DOG +S 梯形ACDG )−S △AO C =S 梯形ACDG ,∴12(AC +DG)⋅PD =4.5,∴(4+k 3)⋅(3−k 4)=9,∴k 1=6,k 2=−6(舍去),∴k =6;(3)如图2,取点A′(−3,0),B′(0,−4),则直线A′B′与直线AB 关于O 对称,连接EO ,并延长交A′B′于H ,连接FH ,则OE =OH ,∵M 是EF 的中点,∴OM =12FH ,∴当FH 最小时,OM 最小,作直线QH//AB ,交y 轴与Q ,且使QR 与双曲线y =6x 在第一象限的图象相切,切点为F′,作B′R ⊥QR 于R ,作F′T ,则FH 的最小值是F′T 的长,∵直线AB 的解析式为:y =−43x +4,∴设直线QR 的解析式为:y =−43x +m ,由−43x +m =6x 整理得,4x 2−3mx +18=0,∴Δ=(−3m )2−4×4×18=0,∴m 1=4 2,m 2=−4 2(舍去),∴OQ =4 2,∴QB′=4 2+4,∵∠AOB =90°,OA =3,OB =4,∴AB =5,∴sin ∠RQB′=sin ∠ABO =OB AB =45,∴F′H =B′R =BQ ⋅sin ∠RQB′=162+165,∴OM 最小=12F′H =8 2+85. 12.解:(1)根据题意,以O 为圆心,OB 为半径作圆O ,延长BO 交圆于点F ,延长BD 交AC 于点M ,连接OC ,CD ,AF ,FC ,∵BF是直径,∴FA⊥AB,FC⊥BC,∵D为垂心,∴BD⊥AC,CD⊥AB,AD⊥BC,∴FA//CD,FC//AD,∴AFCD是平行四边形,∴AF=CD,∵∠BAC=60°,OB=OC,∴∠OBC=∠OCB=30°,∴OH=1OB,2r,设半径为r,BM=32∴BC=3r,CF,又∵OH=12∴AD=2OH;(2)∵D为垂心,∴BD⊥AC,CD⊥AB,AD⊥BC,∴∠ACD=30°,∴∠CDM=60°,∴∠BDC=120°,∵∠BOC=120°,∠OBC=∠OCB=30°,∴B、C、D、O四点共圆;(3)设DE=x,∵BE=2CE=2,∴CE=1,∵在直角△BFC中,∠OBC=30°,BC=3,BF2=FC2+BC2,∴CF=3,BF=23,∴AD=3,在直角△ABE中,AB2=AE2+BE2,即:AB2=(x+3)2+22,在直角△CDE 中,CD 2=DE 2+CE 2,即:CD 2=x 2+12,∵CD =AF ,∴AF 2=x 2+1,在△ABF 中,BF 2=AF 2+AB 2,即:(2 3)2=(x 2+1)+[(x + 3)2+22]),∴x 2+ 3x−2=0,∴x = 11− 32或x =− 11− 32(舍去),∴DE = 11− 32.。

2024-2025学年浙江省宁波市鄞州中学强基招生数学试卷和答案

2024-2025学年浙江省宁波市鄞州中学强基招生数学试卷和答案

2024年浙江省宁波市鄞州中学强基招生数学试卷一、填空题:本题共10小题,每小题3分,共30分。

1.若,且,则______.2.______.3.已知正实数a,b,c满足,则的最小值为______.4.已知函数,当时,y有最大值5,则a的值为______.5.已知中,BC上的一点D,,,则的最大值为______.6.若点T为线段BC中点,,且,,,,则______.7.如图,在中,G,E分别在AB,AC上,连结BE交AF于O,若,,G,O,C共线,的面积为11,则的面积为______.8.已知整数x,y,z满足,则的最小值为______.9.已知x,y,z是大于1的正整数,且为整数,则______.10.已知EA、EC为圆O的两条切线,连结DE交圆于点B,若,,,则______.二、解答题:本题共2小题,共16分。

解答应写出文字说明,证明过程或演算步骤。

11.本小题8分已知,矩形OAPB的A,B顶点分别在x轴,y轴上,反比例函数与矩形的BP,AP分别交于D,C,的面积为判断并证明直线CD与AB的关系.求k的值.若E,F分别为直线AB和反比例函数上的动点,M为EF中点,求OM的最小值.12.本小题8分如图,在中,,D是垂心,O是外心,延长AD交BC于E,于求证:证明:B,O,D,C四点共圆.若,求答案和解析1.【答案】【解析】解:,,,,,是方程的两个根,,故答案为根据观察方程组的系数特点,可把方程组转化成的形式,其中x,是其两个不等的实数根,利用根与系数的关系,得到结果.本题考查了解方程组,一元二次方程根与系数关系的应用.关键是观察方程组的系数特点,得到x,是方程的两个根,得到结果.2.【答案】【解析】解:原式故答案为:将改写为,改写为,…,再利用裂项相消法即可解决问题.本题主要考查了数字变化的规律,能将改写为,改写为,…,及熟知裂项相消法是解题的关键.3.【答案】18【解析】解:构造图示的三个直角三角形,即,,,满足,,,,,,则由勾股定理可知,即同理可得,,所以可知当A,C,E,G四点共线时,最小,即为AG长,当当A,C,E,G四点共线时,在中故答案为本题利用几何法求解,通过构造图示的三个直角三角形,即,,,则由勾股定理可知,即同理可得,,所以可知当A,C,E,G四点共线时,最小,即为AG长,本题主要考查二次根式最值问题,用几何法构造直角三角形,结合最短路径问题是解决问题的关键.4.【答案】1或7【解析】解:由题意,的对称轴是直线,当时,又当时,,当时,,①当最大值为,或不合题意;②当最大值为,或,均不合题意;③当最大值为,不合题意或综上,或故答案为:1或依据题意,由的对称轴是直线,结合当时,,又当时,,当时,,进而分类讨论即可判断得解.本题主要考查了二次函数的性质、非负数的性质:绝对值、二次函数的最值,解题时要熟练掌握并能灵活运用二次函数的性质是关键.5.【答案】【解析】解:如图,以CD为边作等边三角形CDO,连接AO,过点O作于E,,设,则,,,点A在以O为半径,OC为半径的圆上运动,当AB与圆O相切时,有最大值,此时:,是等边三角形,,,,,又,,,四边形AOEB是平行四边形,又,四边形AOEB是矩形,,故答案为:由题意可得点A在以O为半径,OC为半径的圆上运动,则当AB与圆O相切时,有最大值,由“HL”可证,可得,可证四边形AOEB是矩形,可得,即可求解.本题考查了四点共圆,圆的有关知识,全等三角形的判定和性质,矩形的判定和性质等知识,确定点A的运动轨迹是解题的关键.6.【答案】3【解析】解:如图,过T作延长DT交AB于,,为线段BC中点,,在和中,,≌,,,面积,,,,,,,故答案为:先画出图形,过T作延长DT交AB于由,得,再证明≌,得,,由面积,得,,,,,,最后再计算即可.本题考查了平行线的性质,利用中线倍长是解题关键.7.【答案】30【解析】解:梅涅劳斯定理:如图,,证明:过A作交BC延长线于点M,则,,;塞瓦定理:如图,,证明:根据上述梅涅劳斯定理,可得出,在中,COG是梅涅线,①在中,BOE是梅涅线,②根据梅涅劳斯定理,在中,COG是梅涅线,,,,,,,,根据塞瓦定理可得,,,而,,故答案为:根据梅涅劳斯定理和塞瓦定理可得出和,从而得出,再利用即可得解.本题主要考查了相似三角形的判定和性质、三角形面积问题等内容,在初中竞赛、自招、强基等题目中,梅涅劳斯定理和塞瓦定理是必须掌握的基础内容.8.【答案】118【解析】解:,,,,,,即,故答案为:根据,得出,从而得出结论.本题考查了因式分解的应用,关键是掌握完全全平方公式和非负数的性质.9.【答案】12【解析】解:、y、z是大于1的正整数,是分数,为假分数,为整数,且分子分母能互相约分,,①当,时,分子中定有7,分母中有7才能进行约分,当时,,故符合题意,,②,时,分子中定有13,分母中有13才能进行约分,当时,不是整数,故不符合题意,③,时,分子中定有21,分母中有21才能进行约分,当时,不是整数,故不符合题意,…………其余情况依次讨论均不符合题意故答案为:根据x、y、z的条件和三个分数的乘积为整数,得出x、y、z的值,进而求和.本题考查了分式的混合运算,关键是根据已知条件分类讨论得到x、y、z的值.10.【答案】【解析】解:连接OA,OD,OC,作,设,同弧所对的圆心角等于圆周角的2倍,,,,是等边三角形,,,,CE是的切线,,,,,,,,,∽,,同理可证:∽,得出:,,,,,是直径,,,,,,,,,,,,连接OA,OD,OC,作,设,证是等边三角形,得出,证∽,∽,得出,得出CD是直径,再解直角三角形,求出m,即可.关键.11.【答案】解:如图1,,理由如下:由题意得,,,,,,,,,,∽,,;如图2,作于G,,,,,,舍去,;如图2,取点,,则直线与直线AB关于O对称,连接EO,并延长交于H,连接FH,则,是EF的中点,,当FH最小时,OM最小,作直线,交y轴与Q,且使QR与双曲线在第一象限的图象相切,切点为,作于R,作,则FH的最小值是的长,直线AB的解析式为:,设直线QR的解析式为:,由整理得,,,,舍去,,,,,,,,,【解析】可表示出,,从而得出,,进而表示出PD和PC,进而得出,进而证得∽,从而,从而得出;作于G,可推出,进一步得出结果;取点,,则直线与直线AB关于O对称,连接EO,并延长交于H,连接FH ,则,可得出当FH最小时,OM最小,作直线,交y轴与Q,且使QR与双曲线在第一象限的图象相切,切点为,作于R,作,则FH的最小值是的长,可设直线QR的解析式为:,由整理得,,从而得出求得m的值,进一步得出结果.组之间的关系,三角形中位线的性质,解直角三角形等知识,解决问题的关键是作辅助线,构造三角形的中位线.12.【答案】解:根据题意,以O为圆心,OB为半径作圆O,延长BO交圆于点F,延长BD交AC于点M,连接OC,CD,AF,FC,是直径,,,为垂心,,,,,,是平行四边形,,,,,,设半径为r,,,又,;为垂心,,,,,,,,,、C、D、O四点共圆;设,,,在直角中,,,,,,,在直角中,,即:,在直角中,,即:,,,在中,,即:,,或舍去,【解析】由垂心,得到垂直关系,结合圆周角度数为,得到圆心角的度数,得到AFCD是平行四边形,从而得到结果;先求出,再结合,,得到四点共圆;设,用x表示出的各边,利用勾股定理,得到一元二次方程,利用求根公式求方程的根,得到结果.本题考查了圆的综合应用,涉及到直角三角形勾股定理的应用,圆周角、圆心角、平行四边形的性质的应用,关键是四点共圆的判断,因为共底边的两个三角形的底角相等,且在底边的同侧,则四个顶点共圆.。

浙江省宁波市鄞州区12校联考2023-2024学年九年级上学期期中考试语文试题

浙江省宁波市鄞州区12校联考2023-2024学年九年级上学期期中考试语文试题

浙江省宁波市鄞州区12校联考2023-2024学年九年级上学期期中考试语文试题学校:___________姓名:___________班级:___________考号:___________一、填空题1.做读书摘记是一个好习惯。

小文在摘记本上摘下了几段喜爱的文字,请你根据拼音补全相应的汉字,并给加点字选择正确的读音。

那轻,那娉婷,你是,鲜妍/百花的冠(A.guān B.guàn)冕你戴着,你是/天真,庄严,你是夜夜的月圆。

——《你是人间的四月天》无论一生遭受多少困è 欺诈,请依然相信人类的光明大于暗影。

——《精神的三间小屋》使生如夏花之xuàn 烂,死如秋叶之静美。

刀鞘保护刀的锋利,他自己则满足于自己的迟dùn 。

——《飞鸟集》二、情景默写2.积累古诗词名句也可以成为一件好玩的事。

小文与同学一起设计了几款限定范围的三、名著阅读3.有人说:看小说的意义是“让灵魂附在另一个骨架里,去感受另一个人生。

”以下是⑴《水浒传》(白话小说)⑴《世说新语》(志人小说)⑴《聊斋志异》(志怪小说)四、填空题4.小文要用积累的中国古典诗词来解读自强不息的精神内涵,请你帮助小文选择正确的理解项。

甲:路漫漫其修远兮,吾将上下而求索。

( )乙:长风破浪会有时,直挂云帆济沧海。

( )丙:千磨万击还坚劲,任尔东西南北风。

( )A.君子当坚韧顽强B.君子当积极求进C.君子当自信执著五、现代文阅读班级开展文学作品赏析活动,请你完成任务。

雪夜[日本]星新一⑴雪花像无数白色的小精灵,悠悠然从夜空中飞落到地球的脊背上。

整个大地很快铺上了一条银色的地毯。

在远离热闹街道的一幢旧房子里,冬夜的静谧和淡淡的温馨笼罩着这一片小小的空间。

火盆中燃烧的木炭偶尔发出的响动,更增浓了这种气氛。

⑴“啊!外面下雪了。

”坐在火盆边烤火的房间主人自言自语地嘟哝了一句。

⑴“是啊,难怪这么静呢!”老伴儿靠他身边坐着,将一双干枯的手伸到火盆上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鄞州中学2012学年第二学期高一年级期中考试数学试卷注意事项:1.答卷前,考生务必将本人的班级、姓名、学号、准考证号填在答题卡的的相应位置。

2.将答案填在答题卷相应的位置上。

超出答题方框范围的无效,在试卷上答题无效。

3.本次考试期间不得使用计算器。

4.考试时间:100分钟,总分:100分。

一、选择题:本大题共10个小题,每小题4分,共40分.1.等差数列{}n a 中,10120S =,那么56a a +的值是 ( ) A. 12 B. 24 C.36 D. 482.若一个矩形的对角线长为常数a ,则其面积的最大值为 ( ) A.2a B.212a C.a D. 12a 3.已知数列{}n a 满足14a =,()1442n n a n a -=-≥,则6a = ( )A.49 B. 37C. 920D. 7164.下面结论正确的是 ( )A 、若b a >,则有ba 11<, B 、若b a >,则有||||c b c a >, C 、若b a >,则有b a >||, D 、若b a >,则有1>ba。

5.已知一直线的倾斜角为α,且满足015045≤≤α,则直线的斜率的取值范围为( )A. ⎥⎦⎤⎢⎣⎡-1,33 B. ),1[]33,(+∞⋃--∞ C. ),1[]3,(+∞⋃--∞ D. []1,3- 6.在ABC ∆中,C B A ab c b a c b a sin sin cos 2,3))((==-+++,则ABC ∆的形状是( )A .等边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形7.设直线AB 的方程为,02)3(=-++-a y x a 若直线AB 不经过第二象限,则a 的取值范围为 ( )A.1≤aB. 3≤aC. 2≤aD. 3<a 8.如果两直线033=-+y x 与016=++my x 互相平行,那么它们之间的距离为 ( )A .13132 B. 13265 C. 10207 D. 4 9.在ABC ∆中,已知030,15,5===A b a ,则在ABC ∆中,c 等于 ( )A.52B. 5C. 552或D. 以上都不对 10.有限数列},,,{21n a a a A =,n S 为其前n 项和,定义nS S S n++21为A 的“凯森和”如有500项的数列50021,,,a a a 的“凯森和”为2004,则有501项的数列50021,,,,2a a a的“凯森和”为 ( ) A.2002 B.2004 C.2026 D.2008 二、填空题:本大题共7个小题,每小题3分,共21分.11.已知ABC ∆中,BC 边长为36,三角形的外接圆的半径为6,则=+)sin(C B _________12.已知0,0>>b a ,且3=+b a ,则ba 21+的最小值为___________________ 13.若两个等差数列{}{}n n b a ,的前n 项和分别为n n T S ,,且满足5423-+=n n T S n n ,则=77b a ___14.以)1,2(A 为一个顶点,试在x 轴上找一点B ,在直线1:+=x y l 上找一点C 构成ABC ∆,使其周长最小。

则ABC ∆的最小周长为_____________15.关于x 的不等式042≥--m x x 对任意[]1,1-∈x 恒成立,则m 的取值范围_____________16.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,并且a 2、b 2、c 2成等差数列,则角B 的取值范围是______________17.如图,在面积为1的正111A B C ∆内作正222A B C ∆,使12212A A A B =,12212B B B C = ,12212C C C A = ,依此类推, 在正222A B C ∆内再作正333C B A ∆,……。

记正i i i C B A ∆的面积为(1,2,,)i a i n = , 则a 1+a 2+……+a n =三、解答题:本大题共4个小题,共39分.18.过点)21,21(的直线l 被平行直线0952:1=+-y x l 与0652:2=--y x l 所截线段AB 的中点恰好在直线03=+-y x 上,求直线l 的方程。

19. 在ABC ∆中,c b a ,,分别为角C B A ,,的对边,且满足bc a c b =-+222 (1)求角A 的值。

(2)若3=a ,设角B 的大小为x ,ABC ∆的周长为y ,求)(x f y =的最大值。

20.设集合{}0452>+-=x x x A ,{}0222=++-=a ax x x B ,若φ≠⋂B A ,求a 的取值范围?21.数列}{n a 的前n 项和)(21*2N k kn n S n ∈+-=,且n S 的最大值为8。

(1)确定常数k ,求n a ;(2)求)(*321N n a a a a S n n ∈++++= (3)求数列⎭⎬⎫⎩⎨⎧-nn a 229的前n 项和n T 。

参考答案BBBCB, ACCCA211第17题23, 3322+, 4741, 52, 3-≤m , 30π≤<B , ])31(1[23n -18、解析:令11(,)22P ,AB 的中点为00(,)Q x y则过点Q 且与直线12,l l 都平行的直线为32502x y -+= 2分 所以,由00003250230x y x y ⎧-+=⎪⎨⎪-+=⎩ 得93(,)22Q -- 2+1分 于是直线l 的斜率为3122291522l k --==--所以直线l 的方程为121()252y x -=- 2分即23510y x =+故直线方程不存在. 2分19、解析:(1) 由222222cos 2b c a bcb c a A bc ⎧+-=⎪⎨+-=⎪⎩得1cos 22bc A bc == 所以,3A π=(2)由sin sin sin 3a b c A B C a A π⎧==⎪⎪⎪=⎨⎪⎪=⎪⎩得2sin b B =, 2sin c C =所以2sin 2sin y a b c B C =++=+2sin 2sin()B A C ++2sin 2sin()3x x π++)6x π+于是,当3x π=时,max y =20、解析:令()222f x x ax a =-++由A B =∅ 得,()f x 与x 轴无交点或两交点在区间 []14, 之间.()()2=2420a a ∴∆-+<或()()()()2=2420214211220416820a a a f a a f a a ⎧∆-+≥⎪-⎪≤-≤⎪⎨⎪=-++≥⎪⎪=-++≥⎩即 12a -<< 或 1827a ≤≤1817a ∴-<≤故当A B ≠∅ 时,](181+7a ⎛⎫∈-∞-∞⎪ ⎭⎝ ,,.法二、由题意,得()()-14+A =∞∞ ,,,方程2220x ax a -++=的两根为1x a =2x a =-()12x x ≥.由A B =∅ ,得()()2=2420a a ∆-+<或()()2=242014a a a a ⎧∆-+≥⎪⎪≥⎨⎪+≤⎪⎩即 12a -<< 或 1827a ≤≤1817a ∴-<≤故当A B ≠∅ 时,](181+7a ⎛⎫∈-∞-∞⎪ ⎭⎝ ,,.21、解析: (1)因为222111()222n S n kn n k k =-+=--+ 所以,当n k =时,n S 取得最大值 所以,2182k =,解得4k =,此时2142n S n n =-+ 由2211421(1)4(1)2n n S n n S n n -⎧=-+⎪⎪⎨⎪=--+-⎪⎩得()922n a n n =-+≥. 当1n =时,1117422a S ==-+= 92n a n ∴=-+. (2)由题意,得9429 5.2n n n a n n ⎧-≤≤⎪⎪=⎨⎪-≥⎪⎩,1;,当14n ≤≤时,27122422n n n n S n n ⎛⎫+- ⎪⎝⎭==-当5n ≥时,()()()2219492241+2+3+4+2241810214162n n n S n n n ⎛⎫-+-⎪⎝⎭=⨯--=-+=-+.2214,1421416,52n n n n S n n n ⎧-≤≤⎪⎪∴=⎨⎪-+≥⎪⎩(3)∵=∴=两式向减可得,==∴。

相关文档
最新文档