相遇追击问题综合题目分析-精选文档
相遇追及问题综合习题
相遇追及问题综合习题相遇追及问题是数学中的一个经典问题,通常涉及到两个移动的物体在一定时间内是否会相遇,以及相遇时间和位置的计算。
这类问题涉及到物理、几何和代数等多个数学领域,需要灵活运用各种数学方法和思维方式来解决。
在解决相遇追及问题时,首先需要明确问题中所涉及到的物体的速度、起始位置和运动方向。
然后,结合方程和图形等工具,可以通过分析两个物体的运动轨迹,确定它们是否会相遇,以及相遇的时间和位置。
下面将通过一些综合习题来探讨相遇追及问题的解决方法:1. 两辆车相向而行问题:假设两辆车相向而行,车A的速度为v1,车B的速度为v2。
已知车A与车B的起始位置之差为d,问题是在多长时间内两辆车会相遇?解决这个问题可以根据两辆车相对运动的速度来计算相遇时间。
由于两辆车是相向而行,所以它们的相对速度为v1 + v2,相对速度与起始位置之差d的比值为t,即有t = d / (v1 + v2)。
2. 两辆车同向追及问题:假设两辆车同向行驶,车A的速度为v1,车B的速度为v2,车A领先车B的距离为d。
问题是在多长时间内车B会追及车A?这个问题可以通过分析车A与车B的相对速度来解决。
由于车B追及车A,所以它们的相对速度为v1 - v2,相对速度与领先距离d的比值为t,即有t = d / (v1 - v2)。
3. 船与河流相对运动问题:假设一艘船在静水中的速度为v1,河流流速为v2,船从河岸出发,沿着水流的方向航行。
问题是船在多长时间内能够到达河对岸?这个问题可以通过分析船与河流的相对速度来解决。
由于船与河流的相对速度为v1 - v2,船与河流垂直方向的移动距离为d,相对速度与移动距离的比值为t,即有t = d / (v1 - v2)。
相遇追及问题详解
必背知识点:速度×时间=路程路程÷速度和=相遇时间追及路程÷速度差=追及时间一、相遇问题例1. 甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米,甲到少年宫后立即返回学校,在距离少年宫300米处遇到乙,此时他们离开学校已30分钟。
甲每分钟走多少米?乙每分钟走多少米?例2. 甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需4小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?例3. 东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。
乙车每小时行多少千米?例4. 两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行。
甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?例5. AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A 城多少千米?例6. 甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?随堂小试1. 甲、乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141千米:出发后5小时,两车相遇.A、B两地相距多少千米.2. 快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,经过3小时快车已过中点12千米与慢车相遇,慢车每小时行多少千米?3. 兄妹二人同时从家里出发到学校去,家与学校相距1400米。
哥哥骑自行车每分钟行200米,妹妹每分钟走80米。
(完整版)追击相遇问题专题总结,推荐文档
4
“
”
“
”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!
追及与相遇问题专题及参考答案
追及与相遇问题追及问题是运动学中较为综合且有实践意义的一类习题,它经常涉及两个以上物体的运动过程,每个物体的运动规律又不尽相同 . 对此类问题的求解,除了要透彻理解基本物理看法,熟练运用运动学公式外,还应仔细审题,挖掘题文中隐含着的重要条件,并尽可能地画出草图以帮助解析,确认两个物体运动的位移关系、时间关系和速度关系,在脑筋中建立起一幅物体运动关系的图景. 借助于v- t 图象来解析和求解经常可使解题过程简捷了然.知识要点:一、相遇是指两物体分别从相距S 的两地相向运动到同一地址,它的特点是:两物体运动的距离之和等于 S,解析时要注意:(1)、两物体可否同时开始运动,两物体运动至相遇时运动时间可建立某种关系;(2)、两物体各做什么形式的运动;(3)、由两者的时间关系,依照两者的运动形式建立 S=S1+S2方程;二、追及问题(1)、追及问题中两者速度大小与两者距离变化的关系。
若甲物体追赶前面的乙物体,若甲的速度大于乙的速度,则两者之间的距离。
若甲的速度小于乙的速度,则两者之间的距离。
若一段时间内两者速度相等,则两者之间的距离。
2、追及问题的特点及办理方法:“追及”主要条件是:两个物体在追赶过程中处在同一地址,常有的状况有三种:⑴速度小者匀加速追速度大者, 必然能追上,追上前有最大距离的条件:两物体速度,即v甲 v乙。
⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个可否追上的问题。
判断方法是:假设速度相等,从地址关系判断。
①若甲乙速度相等时,甲的地址在乙的后方,则追不上,此时两者之间的距离最小。
②若甲乙速度相等时,甲的地址在乙的前面,则追上。
③若甲乙速度相等时,甲乙处于同一地址,则恰好追上,为临界状态。
解决问题时要注意两者可否同时出发,可否从同一地址出发。
⑶ 速度大者匀减速运动的物体追赶同向的匀速运动的物体时,状况跟⑵近似。
三、解析追及问题的注意点:⑴ 追及物与被追及物的速度恰好相等时临界条件,经常是解决问题的重要条件⑵若被追赶的物体做匀减速运动,必然要注意追上前该物体可否已经停止运动。
追及和相遇问题典型例题分析
追及和相遇问题典型例题分析追及和相遇问题注意“两个关系”和“一个条件”,“两个关系”即时间关系和位移关系;“一个条件”即两者速度相等,它往往是物体间能否追上或两物体距离最大、最小的临界条件,也是分析判断问题的切入点.一、匀速追匀加速:1. 如图(甲)所示,A车原来临时停在一水平路面上,B车在后面匀速向A车靠近,A车司机发现后启动A车,以A车司机发现B车为计时起点(t=0),A、B两车的v-t图象如图(乙)所示.已知B车在第1s内与A车的距离缩短了x1=12m。
(1)求B车运动的速度v B和A车的加速度a的大小.(2)若A、B两车不会相撞,则A车司机发现B车时(t=0)两车的距离s0应满足什么条件?2.一个步行者以6m/s的最大速率跑步去追赶被红灯阻停的公共汽车,当他距离公共汽车25m时,绿灯亮了,汽车以1m/s2的加速度匀加速启动前进,问:人能否追上汽车?若能追上,则追车过程中人共跑了多少距离?若不能追上,人和车最近距离为多少?二、匀速追匀减速:(刹车要计算静止,比较一下静止时是否追上,用静止的时间算)1.当汽车B在汽车A前方7m时,A正以v a=4m/s的速度向前做匀速直线运动,而汽车B此时速度v=10m/s,b并关闭油门向前做匀减速直线运动,加速度大小为2m/s2。
此时开始计时,则A追上B需要的时间是多少?2.甲、乙两车在同一条平直公路上运动,甲车以10 m/s 的速度匀速行驶,经过车站A时关闭油门以4m/s2的加速度匀减速前进,2s后乙车与甲车同方向以1m/s2的加速度从同一车站A出发,由静止开始做匀加速运动,问乙车出发后多少时间追上甲车?三、匀加速追匀速:1. 一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少?(2)小汽车什么时候追上自行车,此时小汽车的速度是多少?2. 一辆值勤的警车停在公路边,当警员发现从他旁边以8m/s的速度匀速行驶的货车有违章行为时,决定前去追赶,经2.5s,警车发动起来,以加速度2m/s2做匀加速运动。
相遇追及问题练习题及解析讲课教案
相遇追及问题练习题及解析1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米5、小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要130÷2=65(分钟).从乙地到甲地需要的时间是130+65=195(分钟)=3小时15分.答:小李从乙地到甲地需要3小时15分.6、快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面"取单位"准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7 小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14÷(2+3)=2.8(小时).慢车从C到A返回行驶至与快车相遇共用了7.5+0.5+2.8=10.8(小时).答:从第一相遇到再相遇共需10小时48分.7、甲、乙两车分别从A,B两地出发,相向而行,出发时,甲、乙的速度比是 5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B时,乙离A地还有10千米。
高中物理相遇和追及问题(完整版)
相遇追及问题一、考点、热点回忆一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①假设Δx=x0,则恰能追及,两物体只能相遇一次,这也是防止相撞的临界条件匀速追匀加速②假设Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③假设Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.〔1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为此题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按〔解法一〕中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,假设△>0,即有两个解,说明可以相遇两次;假设△=0,说明刚好追上或相碰;假设△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 〔 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】〔2011·新课标全国卷〕甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
相遇追击问题总结
行程问题
基本公式:路程=速度×时间
(1)相遇问题
①、设:题目的问题既是所要设的未知量;
②、分析:根据题意画出相应的横线图
相遇点
甲所行驶路程乙所行驶的里程
③、等量关系:由②得
甲所行驶的路程+乙所行驶的路程=总路程
④、根据③中的等量关系列方程;
⑤、解、验、答。
(2)追击问题
①、设:题目的问题既是所要设的未知量;
②、分析:根据题意画出相应的横线图
甲乙相距距离追击过程中乙的路程及时间
甲乙
追击过程中甲的路程及时间
③、等量关系:一般的,追击者所走的路程=被追击者所走的路程+两者原来的距离
追击者所用时间=被追击者所用时间
④、根据③中的等量关系列方程;
⑤、解、验、答。
第1页共1 页。
高中物理相遇和追及问题分析
高中物理相遇和追及问题分析1.相遇和追及问题的实质:研究的两物体能否在相同的时刻到达相同的空间位置的问题。
2.画出物体运动的情景图,理清三大关系(1)时间关系:0t t t B A ±=(2)位移关系:0s s s B A ±=(3)速度关系:两者速度相等。
它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
3.两种典型追及问题(1)速度大者(匀减速)追速度小者(匀速)①当v 1=v 2时,A 末追上B ,则A 、B 永不相遇,此时两者间有最小距离;②当v 1=v 2时,A 恰好追上B ,则A 、B 相遇一次,也是避免相撞刚好追上的临界条件;③当v 1>v 2时,A 已追上B ,则A 、B 相遇两次,且之后当两者速度相等时,两者间有最大距离。
(2)同地出发,速度小者(初速度为零的匀加速)追速度大者(匀速)①当 v 1=v 2 时,A 、B 距离最大;②当两者位移相等时,有 v 1=2v 2且A 追上B 。
A 追上B 所用的时间等于它们之间达到最大距离时间的两倍。
4.相遇和追及问题的常用解题方法:画出两个物体运动示意图,分析两个物体的运动性质,找出临界状态,确定它们位移、时间、速度三大关系。
1)基本公式法—根据运动学公式,把时间关系渗透到位移关系和速度关系中列式求解2)图像法—正确画出运动的v-t 图像,根据图像的斜率、截距、面积的物理意义结合三大关系求解3)相对运动法—巧妙选择参考系,简化运动过程、临界状态,根据运动学公式列式求解4)数学方法—根据运动学公式列出数学关系式(要有实际物理意义)利用二次函数的求根公式中Δ判别式求解。
5.追及和相遇问题的求解步骤两个物体在同一直线上运动,往往涉及追及,相遇或避免碰撞等问题,解答此类问题的关键条件是:两物体能否同时达到空间某位置。
基本思路是:①分别对两物体进行研究;②画出运动过程示意图;③列出位移方程④找出时间关系,速度关系 ⑤解出结果,必要时进行讨论。
追及与相遇问题知识详解及典型例题
追及与相遇问题知识详解及典型例题(精品)知识要点追及和相遇问题主要涉及在同一直线上运动的两个物体的运动关系,所应用的规律是匀变速直线运动的相关规律。
追及、相遇问题常常涉及到临界问题,分析临界状态,找出临界条件是解决这类问题的关键。
速度相等是物体恰能追上或恰不相碰、或间距最大或最小的临界条件。
在两物体沿同一直线上的追及、相遇或避免碰撞问题中关键的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系解出。
解答追及、相遇问题时要特别注意明确两物体的位移关系、时间关系、速度关系,这些关系是我们根据相关运动学公式列方程的依据。
1. 追及追和被追的两者的速度相等常是能追上、追不上、二者距离有极值的临界条件。
如匀减速运动的物体追从不同地点出发同向的匀速运动的物体时,若二者速度相等了,还没有追上,则永远追不上,此时二者间有最小距离。
若二者相遇时(追上了),追者速度等于被追者的速度,则恰能追上,也是二者避免碰撞的临界条件;若二者相遇时追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,其间速度相等时二者的距离有一个较大值。
再如初速度为零的匀加速运动的物体追从同一地点出发同向匀速运动的物体时,当二者速度相等时二者有最大距离,位移相等即追上。
“追上”的主要条件是两个物体在追赶过程中处在同一位置,常见的情形有三种:一是初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙时,一定能追上,在追上之前两者有最大距离的条件是两物体速度相等,即v甲=v乙;二是匀速运动的物体甲追赶同方向做匀加速运动的物体乙时,存在一个恰好追上或恰好追不上的临界条件:两物体速度相等,即v甲>v乙,此临界条件给出了一个判断此种追赶情形能否追上的方法,即可通过比较两物体处在同一位置时的速度大小来分析,具体方法是:假定在追赶过程中两者能处在同一位置,比较此时的速度大小,若v甲>v乙,则能追上去,若v甲<v乙,则追不上,如果始终追不上,当两物体速度相等时,两物体的间距最小;三是匀减速运动的物体追赶同方向的匀速运动的物体时,情形跟第二种相类似。
相遇追及问题练习题及解析
1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米5、小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要130÷2=65(分钟).从乙地到甲地需要的时间是130+65=195(分钟)=3小时15分.答:小李从乙地到甲地需要3小时15分.6、快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面"取单位"准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7 小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14÷(2+3)=2.8(小时).慢车从C到A返回行驶至与快车相遇共用了7.5+0.5+2.8=10.8(小时).答:从第一相遇到再相遇共需10小时48分.7、甲、乙两车分别从A,B两地出发,相向而行,出发时,甲、乙的速度比是 5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B时,乙离A地还有10千米。
追及问题分析
课堂“ 课堂“笑”练 1.一辆汽车以 一辆汽车以3m/s 的加速度开始启动的瞬间, 1.一辆汽车以3m/s2的加速度开始启动的瞬间, 一辆以6m/s 6m/s的速度做匀速直线运动的自行车 一辆以6m/s的速度做匀速直线运动的自行车 恰好从汽车的旁边通过。 恰好从汽车的旁边通过。求: (1)汽车在追上自行车前多长时间与自行 车相距最远?此时距离是多少? 车相距最远?此时距离是多少? 汽车经过多长时间追上自行车? (2)汽车经过多长时间追上自行车?追上 自行车时汽车的瞬时速度是多大? 自行车时汽车的瞬时速度是多大? 作出此过程汽车和自行车的速度(3)作出此过程汽车和自行车的速度-时间 图象? 图象? 2.若汽车恰好不碰上自行车 若汽车恰好不碰上自行车, 2.若汽车恰好不碰上自行车,汽车应在距自 行车多远处刹车?( ?(汽车刹车时加速度为 行车多远处刹车?(汽车刹车时加速度为 -3m/s2)
课堂” 课堂”笑”练 、(2006广东) 2006广东 2、(2006广东)a、b两物体从同一位置沿同 一直线运动,它们的速度图象如图所示, 一直线运动,它们的速度图象如图所示,下 列说法正确的是( 列说法正确的是( C ) 加速时,物体a A.a、b加速时,物体a的加 速度大于物体b 速度大于物体b的加速度 20秒时 秒时, B.20秒时,a、b两物体相 距最远 60秒时 物体a在物体b 秒时, C.60秒时,物体a在物体b 的前方 40秒时 秒时, D.40秒时,a、b两物体速 度相等,相距200 度相等,相距200 m
问题三: 问题三:匀加速直线运动追匀减速直线运动
例3: 甲、乙两车在同一条平直 公路上运动,甲车以20m/s 公路上运动,甲车以20m/s 的速 度匀速行驶,经过车站A 度匀速行驶,经过车站A时关闭油 门以5m/s 的加速度匀减速前进, 门以5m/s2的加速度匀减速前进, 2s后乙车与甲车同方向以 后乙车与甲车同方向以4m/s 2s后乙车与甲车同方向以4m/s2的 加速度从同一车站A出发, 加速度从同一车站A出发,由静止 开始做匀加速运动, 开始做匀加速运动,问乙车出发 后多少时间追上甲车? 后多少时间追上甲车?
小学数学常考相遇问题、追及问题(附例题、解题思路)
相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392÷(28+21)=8(小时)答:经过8小时两船相遇。
例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈。
因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。
例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解“两人在距中点3千米处相遇”是正确理解本题题意的关键。
从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。
追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
这类应用题就叫做追及问题。
【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
追及和相遇问题、受力分析
高一 追击及相遇问题和受力分析考点二 追击和相遇问题一、问题的实质及关键讨论追及、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同空间位置的问题1.一个条件:即两者速度相等,它往往是物体间能否追上、追不上或(两者)距离最大、最小的临界条件,也是分析判断的切入点.2.两个关系:即时间关系和位移关系,这两个关系可通过画草图得到.二、解题思路【例3】 一列货车以28.8 km /h 的速度在平直铁路上行驶,由于调度事故,在后方700 m 处有一列快车以72 km/h 的速度同向行驶,快车司机发觉后立即合上制动器,但快车要滑行2 000 m 才能停下,试通过计算判断两车是否会相撞.会【反思总结】解追及、相遇问题的技巧(1)紧抓“一图二式”,即:过程示意图,速度关系式和位移关系式.(2)审题应抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,它们往往对应一个临界状态,满足相应的临界条件.(3)解追及、相遇问题除了用公式法,还有极值法,图象法,相对运动法等.突破训练 1如图1-3-7所示,直线MN 表示一条平直公路,甲、乙两辆汽车原来停在A 、B 两处,A 、B 间的距离为85 m ,现甲车先开始向右做匀加速直线运动,加速度a 1=2.5 m /s 2,甲车运动6.0 s 时,乙车开始向右做匀加速直线运动,加速度a 2=5.0 m/s 2,求两辆汽车相遇处距A 处的距离.125 m 或245 m图1-3-72.物体A 、B 的x -t 图象如图1-3-13所示,由图可知( )A .从第3 s 起,两物体运动方向相同. 且v A >v BB .两物体由同一位置开始运动,但物体A 比B 迟3 s 才开始运动C .在5 s 内物体的位移相同,5 s 末A 、B 相遇D. 5 s 内A 、B 的平均速度相等3.(多选)a 、b 两车在平直公路上沿同一方向行驶,两车运动的v -t 图象如图1-3-19所示,在t =0时刻,b 车在a 车前方s 0处,在0~t 1时间内,a 车的位移为s ,则( )A .若a 、b 在t 1时刻相遇. 则s 0=23sB .若a 、b 在t 12时刻相遇,则下次相遇时刻为2t 1 C .若a 、b 在t 12时刻相遇. 则s 0=12s D .若a 、b 在t 1时刻相遇,则下次相遇时刻为2t 1 匀变速运动规律【例1】 如图1所示,公路上有一辆公共汽车以10 m /s 的速度匀速行驶,为了平稳停靠在站台,在距离站台P 左侧位置50 m 处开始刹车做匀减速直线运动.同时一个人为了搭车,从距站台P 右侧位置30 m 处从静止开始正对着站台跑去,假设人先做匀加速直线运动,速度达到4 m/s 后匀速运动一段时间,接着做匀减速直线运动,最终人和车到达P 位置同时停下,人加速和减速时的加速度大小相等.求:(1)汽车刹车的时间; 10 s(2)人的加速度大小.1.6 m/s 2专题二 竖直上抛运动1.竖直上抛运动分段分析法(1)上升过程取向上为正方向较方便v =v 0-gt ,h =v 0t -12gt 2. (2)下落过程取向下为正方向较方便,为自由落体运动v t =gt ,h =12gt 2. 2.竖直上抛运动整过程分析法将全过程看成是加速度为-g 的匀变速直线运动v t =v 0-gt ;h =v 0t -12gt 2;v 2t -v 20=-2gh . 【例2】一个物体以足够大的初速度做竖直上抛运动,在上升过程的最后1 s 初的瞬时速度的大小和最后1 s 内的位移大小分别是(g 取10 m/s 2)( )A .10 m/s,10 mB .10 m/s.5 mC .5 m/s,5 mD .由于不知初速度的大小,故无法计算专题三 运动学图象问题运动学图象是历年高考必考内容之一,从近年高考运动学图象的命题趋势看,试题不再局限于教材中给定的图象以及线性图象,如2014年课标全国卷Ⅱ第14题,福建卷第15题等,考查了变速运动的v -t 图象和x -t 图象,且这种变化日趋增多.考查方式以选择题为主,多结合其它知识综合考查.破解图象问题要做到“五看”:看坐标、看斜率、看截距、看特殊点、看面积.图象问题易错点小结:1.混淆x -t 图象和v -t 图象的意义,错误地认为运动图象就是质点的运动轨迹;2.错将图线的交点都当作相遇的时刻;3.错误理解图线斜率的意义,比如错误地认为v -t 图象斜率为正则质点一定做加速运动,斜率为负则质点一定做减速运动.【例3】 如图2,滑块以初速度v 0沿表面粗糙且足够长的固定斜面从顶端下滑,直至速度为零.对于该运动过程,若用h 、s 、v 、a 分别表示滑块的下降高度、位移、速度和加速度的大小,t 表示时间,则下列图象最能正确描述这一运动规律的是( )实验一 研究匀变速直线运动一、实验目的1.练习使用打点计时器,会用打点纸带研究物体的运动情况.2.会利用纸带求匀变速直线运动的速度、加速度.3.利用打点纸带探究小车速度随时间变化的规律,并能画出小车运动的v -t 图象,根据图象求加速度.二、实验原理1.判断物体运动情况(1)如果x 1=x 2=x 3=…则物体做匀速直线运动.(2)如果x 2-x 1=x 3-x 2=x 4-x 3=k (常数),则物体做匀变速直线运动.2.“平均速度法”求速度图实-1-1 即v n =x n +x n +12T,如图实-1-1所示. 3.求加速度(1)“逐差法”求加速度,即a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2,然后取平均值,即a =a 1+a 2+a 33,这样使所给数据全部得到利用,以提高准确性.(2)“图象法”求加速度,即由“平均速度法”求出多个点的速度,画出v -t 图象,直线的斜率即为加速度.三、主要器材说明1.打点计时器的作用计时仪器,每隔0.02 s 打一次点.2.打点计时器的工作条件(1)电磁打点计时器:6 V 以下交流电源.(2)电火花计时器:220 V 交流电源.3.纸带上点的意义(1)表示和纸带相连的物体在不同时刻的位置.(2)通过研究纸带上各点之间的间隔,可以判断物体的运动情况.四、实验过程五、注意事项1.两个平行:纸带和细绳都要和木板平行.2.两先两后:实验中应先接通电源,后让小车运动;实验完毕应先断开电源后取纸带.3.防止碰撞:在到达长木板末端前应让小车停止运动,要防止钩码落地和小车与滑轮碰撞.4.减小误差:小车的加速度要适当大些,可以减小长度的测量误差,加速度大小以能在约50 cm 的纸带上清楚地取出6~7个计数点为宜.5.纸带选取:选择一条点迹清晰的纸带,舍弃点密集部分,适当选取计数点.6.准确作图在坐标纸上,纵、横轴选取合适的单位,(避免所描点过密或过疏,而导致误差过大)仔细描点连线,不能连成折线,应作一条直线,让各点尽量落到这条直线上,落不到直线上的各点应均匀分布在直线的两侧.考点一 实验原理与操作【例1】 研究小车匀变速直线运动的实验装置如图实-1-2甲所示,其中斜面倾角θ可调.打点计时器的工作频率为50 Hz.纸带上计数点的间距如图实-1-2乙所示,其中每相邻两点之间还有4个记录点未画出.甲乙图实-1-2(1)部分实验步骤如下:A .测量完毕,关闭电源,取出纸带.B .接通电源,待打点计时器工作稳定后放开小车.C .将小车停靠在打点计时器附近,小车尾部与纸带相连.D .把打点计时器固定在平板上,让纸带穿过限位孔.上述实验步骤的正确顺序是:________(用字母填写)(2)图乙中标出的相邻两计数点的时间间隔T =______ s.(3)计数点5对应的瞬时速度大小计算式为v 5=______.(4)为了充分利用记录数据,减小误差,小车加速度大小的计算式应为a =________.(1)DCBA (2)0.1 (3)s 4+s 52T (4)(s 4+s 5+s 6)-(s 1+s 2+s 3)9T 2考点一 弹力的分析与计算1.弹力有无的判断(1)“条件法”:根据弹力产生的两个条件——接触和形变直接判断.(2)“假设法”或“撤离法”:在一些微小形变难以直接判断的情况下,可以先假设有弹力存在,然后判断是否与研究对象所处状态的实际情况相符合.还可以设想将与研究对象接触的物体“撤离”,看研究对象能否保持原来的状态.图2-1-3中绳“1”对小球必无弹力,否则小球不能静止在此位置.2.弹力方向的判断(1)弹力方向除几种典型情况(压力、支持力、绳力等)外,一般应由其运动状态结合动力学规律确定.(2)几种典型弹力的方向(3)弹力大小的计算弹力大小除弹簧类弹力由胡克定律计算外,一般也要结合运动状态,根据平衡条件或牛顿第二定律求解.【例2】 [考向:弹力大小的计算]如图2-1-4所示,两个弹簧的质量不计,劲度系数分别为k 1、k 2,它们一端固定在质量为m 的物体上,另一端分别固定在Q 、P 上,当物体平衡时上面的弹簧处于原长,若把固定的物体换为质量为2m 的物体(弹簧的长度不变,且弹簧均在弹性限度内),当物体再次平衡时,物体比第一次平衡时的位置下降了x ,则x 为( )A..mg k 1+k 2B.k 1k 2mg (k 1+k 2)C.2mg k 1+k 2D.k 1k 22mg (k 1+k 2)【反思总结】弹簧类弹力的计算要点是弹簧形变量的确定.思维程序为:(1)恢复弹簧的原长确定弹簧处于原长时端点的位置;(2)判断弹簧的形变形式和形变量:从弹簧端点的实际位置与弹簧处于原长时端点的位置对比判断弹簧的形变形式和形变量x ,并由形变形式判断弹力的方向;(3)由胡克定律计算弹力的大小.考点二 静摩擦力方向的判断1.假设法2.状态法根据平衡条件、牛顿第二定律,可以判断静摩擦力的方向.3.相互作用法利用牛顿第三定律(即作用力与反作用力的关系)来判断.此法关键是抓住“力是成对出现的”,先确定受力较少的物体受到的静摩擦力的方向,再根据“相互作用”确定另一物体受到的静摩擦力的方向.【例3】(多选)如图2-1-5所示,倾角为θ的斜面C置于水平地面上,小物块B置于斜面上,通过细绳跨过光滑的定滑轮与物体A相连接,连接B的一段细绳与斜面平行,已知A、B、C都处于静止状态,则()图2-1-5A.B受到C的摩擦力一定不为零B.C受到地面的摩擦力一定为零C.C有沿地面向右滑动的趋势. 一定受到地面向左的摩擦力D.将细绳剪断. 若B依然静止在斜面上,此时地面对C的摩擦力为0考点三摩擦力大小的计算1.滑动摩擦力的计算滑动摩擦力用公式F f=μF N或力的平衡条件进行分析计算,切记,F N表示正压力,不一定等于重力G.2.静摩擦力的计算(1)静摩擦力大小不能用F f=μF N计算,只有当静摩擦力达到最大值时,其最大值一般可认为等于滑动摩擦力,即Ff m=μF N.(2)静摩擦力的大小要根据物体的受力情况和运动情况共同确定,其可能的取值范围是:0<F f≤Ff m.【例4】如图2-1-7所示,质量为m B=24kg的木板B放在水平地面上,质量为m A=22 kg的木箱A放在木板B上,另一端拴在天花板上,轻绳与水平方向的夹角为θ=37°.已知木箱A与木板B之间的动摩擦因数μ1=0.5.现用水平向右、大小为200 N的力F将木板B从木箱A下面匀速抽出(sin 37°≈0.6,cos37°≈0.8,重力加速度g取10 m/s2),则木板B与地面之间的动摩擦因数μ2的大小为()A..0.3 B.0.4C.0.5 D.0.6考点一共点力的合成1.共点力合成的常用方法(1)作图法:从力的作用点起,按同一标度作出两个分力F1和F2的图示,再以F1和F2的图示为邻边作平行四边形,画出过作用点的对角线,量出对角线的长度,计算出合力的大小,量出对角线与某一力的夹角确定合力的方向(如图2-2-3所示).(2)计算法:几种特殊情况的共点力的合成合力的计算120°(3)第二个力的箭头的有向线段为合力.如图2-2-4甲、乙所示.甲 乙2.合力范围的确定(1)两个共点力的合力范围:|F 1-F 2|≤F ≤F 1+F 2. (2)三个共点力的合成范围①最大值:三个力同向时,其合力最大,为F max =F 1+F 2+F 3.②最小值:以这三个力的大小为边,如果能组成封闭的三角形,则其合力的最小值为零,即F min =0;如果不能,则合力的最小值为F min =F 1-|F 2+F 3|(F 1为三个力中最大的力).突破训练 1一物体受到三个共面共点力F 1、F 2、F 3的作用,三力的矢量关系如图2-2-6所示(小方格边长相等),则下列说法正确的是( )A .三力的合力有最大值为F 1+F 2+F 3,方向不确定B .三力的合力有唯一值3F 3. 方向与F 3同向C .三力的合力有唯一值2F 3,方向与F 3同向D .由题给条件无法求出合力大小【例3】 [考向:力的正交分解法]如图2-2-8所示,一物体置于水平地面上,当用与水平方向成60°角的力F 1拉物块时,物块做匀速直线运动;当改用与水平方向成30°角的力F 2推物块时,物块仍做匀速直线运动.若F 1和F 2的大小相等,则物块与地面之间的动摩擦因数为( )A.3-1B..2- 3C.32-12 D .1-32。
追及相遇问题专题总结含答案
追及相遇问题专题总结一、 解相遇和追及问题的关键 (1)时间关系 :0t t t B A ±=(2)位移关系:0A B x x x =±(3)速度关系:两者速度相等。
它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
二、追及问题中常用的临界条件:1、速度小者追速度大者,追上前两个物体速度相等时,有最大距离;2、速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上:(1)当两者速度相等时,若追者仍没有追上被追者,则永远追不上,此时两者之间有最小距离。
(2)若两者速度相等时恰能追上,这是两者避免碰撞的临界条件。
(3)若追者追上被追者时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,即会相遇两次。
二.几种典型的追击、相遇问题在讨论A 、B 两个物体的追击问题时,先定义几个物理量,0x 表示开始追击时两物体之间的距离,x ∆表示开始追及以后,后面的物体因速度大而比前面物体多运动的位移;1v 表示运动方向上前面物体的速度,2v 表示后面物体的速度。
下面分为几种情况:1. 特殊情况:同一地点出发,速度小者(初速度为零,匀加速运动)追击速度大者(匀速运动)。
(1)当12v v =,A 、B 距离最大。
(2)当两者位移相等时,有 122v v =且A 追上B 。
(3)A 追上B 所用的时间等于它们之间达到最大距离时间的两倍,122t t =。
(4)两者运动的速度时间图像2. 速度小者(2v )追击速度大者(1v )的一般情况3. 速度大者(2v )追速度小者(1v )的一般情况追击与相遇问题专项典型例题分析类型图象 说明匀加速追匀速①t =t 0以前,后面物体与前面物体间距离增大②t =t 0时,两物体相距最远为x 0+Δx③t =t 0以后,后面物体与前面物体间距离减小④当两者的位移相同时,能追及且只能相遇一次。
高中物理必修一追及和相遇问题专题练习及答案解析
追击和相遇问题一、追击问题的分析方法:A. 根据追逐的两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;⎭⎬⎫;.;.的数量关系找出两个物体在位移上间上的关系找出两个物体在运动时C B 相关量的确定D.联立议程求解.说明:追击问题中常用的临界条件:⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.1.一车处于静止状态,车后距车S0=25处有一个人,当车以1的加速度开始起动时,人以6的速度匀速追车,能否追上?若追不上,人车之间最小距离是多少?答案.S 人-S 车=S 0 ∴ v 人t-at 2/2=S0即t 2-12t+50=0Δ=b 2-4ac=122-4×50=-56<0方程无解.人追不上车 当v 人=v 车at 时,人车距离最小 t=6/1=6s ΔS min =S 0+S 车-S 人=25+1×62/2-6×6=7m2.质点乙由B 点向东以10的速度做匀速运动,同时质点甲从距乙12远处西侧A 点以4的加速度做初速度为零的匀加速直线运动.求: ⑴当甲、乙速度相等时,甲离乙多远?⑵甲追上乙需要多长时间?此时甲通过的位移是多大? 答案.⑴v 甲=v 乙=at 时, t=2.5sΔS=S 乙-S 甲+S AB=10×2.5-4×2.52/2+12=24.5m⑵S 甲=S 乙+S ABat 2/2=v 2t+S AB t 2-5t-6=0t=6sS 甲=at 2/2=4×62/2=72m3.在平直公路上,一辆摩托车从静止出发,追赶在正前方100m 处正以v 0=10m/s 的速度匀速前进的卡车.若摩托车的最大速度为v m =20m/s,现要求摩托车在120s 内追上卡车,求摩托车的加速度应满足什么 答案.摩托车 S 1=at 12/2+v m t 2v m =at 1=20卡车 S 2=v o t=10t S 1=S 2+100 T=t 1+t 2t ≤120s a ≥0.18m/s 24.汽车正以10m/s 的速度在平直公路上前进,发现正前方有一辆自行车以4m/s 的速度同方向做匀速直线运动,汽车应在距离自行车多远时关闭油门,做加速度为6m/s 2的匀减速运动,汽车才不至于撞上自行车? 答案.S 汽车≤S 自行车+d当v 汽车=v 自行车时,有最小距离 v 汽车=v 汽车0-at t=1sd 0=S 汽车-S 自行车=v 汽车0t-at 2/2-v 自行车=3m 故d ≥3m 解二: ΔS=S 自行车+d-S 汽车=(v 自行车t+d)-(v 汽车 0t-at 2/2)=d-6t+3t2=d-3+3(t-1)2当t=1s时, ΔS有极小值ΔS1=d-3 ΔS1≥0d≥3m二、相遇问题的分析方法:A.根据两物体的运动性质,列出两物体的运动位移方程;B.找出两个物体的运动时间之间的关系;C.利用两个物体相遇时必须处于同一位置,找出两个物体位移之间的关系;D.联立方程求解.5.高为h的电梯正以加速度a匀加速上升,忽然天花板上一螺钉脱落,求螺钉落到底板上的时间.答案.S梯-S钉=h∴ h=vt+at2/2-(vt-gt2/2)=(a+g)t2/26.小球1从高H处自由落下,同时球2从其正下方以速度v0竖直上抛,两球可在空中相遇.试就下列两种情况讨论的取值范围.⑴在小球2上升过程两球在空中相遇;⑵在小球2下降过程两球在空中相遇.答案.h1+h2=Hh1=gt2/2 h2=v0t-gt2/2∴ t=h/v0⑴上升相遇 t<v0/g∴ H/v0>v0/g v02>gH⑵下降相遇 t>v0/g t′<2v0/g∴ H/v0>v0/g v02<gHH/v0<2v0/g v02>gH/2即Hg>v02>Hg/27.从同一抛点以30m/s初速度先后竖直上抛两物体,抛出时刻相差2s,不计空气阻力,取g=10m/s2,两个物体何时何处相遇?答案.S1=v0(t+2)-g(t+2)2/2S2=v0t-gt2/2当S1=S2时相遇t=2s (第二个物体抛出2s)S1=S2=40m8.在地面上以2v0竖直上抛一物体后,又以初速度v0在同一地点竖直上抛另一物体,若要使两物体在空中相遇,则两物体抛出的时间间隔必须满足什么条件?(不计空气阻力)答案.第二个物体抛出时及第一个物体相遇Δt1=2×2v0/g第二个物体落地时及第一个物体相遇Δt2=2×2v0/g-2v0/g=2v0/g∴ 2v0/g≤Δt≤4v0/g追及相遇专题练习1.如图所示是A、B两物体从同一地点出发,沿相同的方向做直线运动的v-t图象,由图象可知 ( )图5A.A比B早出发5 s B.第15 s末A、B速度相等C.前15 s内A的位移比B的位移大50 m D.第20 s末A、B位移之差为25 m2.a、b两物体从同一位置沿同一直线运动,它们的速度图像如图所示,下列说法正确的是 ( )A.a、b加速时,物体a的加速度大于物体b的加速度B .20秒时,a 、b 两物体相距最远C .60秒时,物体a 在物体b 的前方D .40秒时,a 、b 两物体速度相等,相距200 m3.公共汽车从车站开出以4 m/s 的速度沿平直公路行驶,2 s 后一辆摩托车从同一车站开出匀加速追赶,加速度为2 m/s 2,试问:(1)摩托车出发后,经多少时间追上汽车? (2)摩托车追上汽车时,离出发处多远? (3)摩托车追上汽车前,两者最大距离是多少?4.汽车A 在红绿灯前停住,绿灯亮起时起动,以0.4 m/s 2的加速度做匀加速运动,经过30 s 后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B 以8 m/s 的速度从A 车旁边驶过,且一直以相同的速度做匀速直线运动,运动方向及A 车相同,则从绿灯亮时开始 ( )A.A 车在加速过程中及B 车相遇B.A 、B 相遇时速度相同C.相遇时A 车做匀速运动D.两车不可能再次相遇5.同一直线上的A 、B 两质点,相距s ,它们向同一方向沿直线运动(相遇时互不影响各自的运动),A 做速度为v 的匀速直线运动,B 从此时刻起做加速度为a 、初速度为零的匀加速直线运动.若A 在B 前,两者可相遇几次?若B 在A 前,两者最多可相遇几次?6.一列货车以28.8 km/h 的速度在平直铁路上运行,由于调度失误,在后面600 m 处有一列快车以72 km/h 的速度向它靠近.快车司机发觉后立即合上制动器,但快车要滑行2000 m 才停止.试判断两车是否会相碰7.一列火车以v 1的速度直线行驶,司机忽然发现在正前方同一轨道上距车为s 处有另一辆火车正沿着同一方向以较小速度v 2做匀速运动,于是他立即刹车,为使两车不致相撞,则a 应满足什么8.A 、B 两车沿同一直线向同一方向运动,A 车的速度v A =4 m/s,B 车的速度v B =10 m/s.当B 车运动至A 车前方7 m 处时,B 车以a =2 m/s 2的加速度开始做匀减速运动,从该时刻开始计时,则A 车追上B 车需要多长时间?在A 车追上B 车之前,二者之间的最大距离是多少?9.从同一地点以30 m/s 的速度先后竖直上抛两个物体,抛出时间相差2 s,不计空气阻力,两物体将在何处何时相遇? 10.汽车正以10 m/s 的速度在平直公路上匀速直线运动,突然发现正前方有一辆自行车以4 m/s 的速度同方向做匀速直线运动,汽车立即关闭油门,做加速度为6 m/s 2的匀减速运动,求汽车开始减速时,他们间距离为多大时恰好不相撞?参考答案1. 【答案】D【解析】首先应理解速度-时间图象中横轴和纵轴的物理含义,其次知道图线的斜率表示加速度的大小,图线及时间轴围成的面积表示该时间内通过的位移的大小.两图线的交点则表示某时刻两物体运动的速度相等.由图象可知,B 物体比A 物体早出发5 s ,故A 选项错;10 s 末A 、B 速度相等,故B 选项错;由于位移的数值等于图线及时间轴所围“面积”,所以前15 s 内B 的位移为150 m ,A 的位移为100 m ,故C 选项错;将图线延伸可得,前20 s 内A 的位移为225 m ,B 的位移为200 m ,故D 选项正确. 2.【答案】C【解析】υ—t 图像中,图像的斜率表示加速度,图线和时间轴所夹的面积表示位移.当两物体的速度相等时,距离最大.据此得出正确的答案为C 。
高中物理相遇及追及问题[(完整版)]
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
相遇追击问题综合题目分析_题型归纳
相遇追击问题综合题目分析_题型归纳一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。
每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?A 10B 8C 6D 4----------------------------------------------------------我们知道这个题目出现了2个情况,就是(1)汽车与骑自行车的人的追击问题,(2)汽车与行人的追击问题追击问题中的一个显著的公式就是路程差=速度差×时间我们知道这里的2个追击情况的路程差都是汽车的间隔发车距离。
是相等的。
因为我们要求的是关于时间所以可以将汽车的间隔距离看作单位1.那么根据追击公式(1) (V汽车-V步行)=1/10(2) (V汽车-3V步行)=1/20(1)×3-(2)=2V汽车=3/10-1/20 很快速的就能解得V汽车=1/8 答案显而易见是8再看一个例题:小明在商场的一楼要乘扶梯到二楼。
扶梯方向向上,小芳则从二楼到一楼。
已知小明的速度是小芳的2倍。
小明用了2分钟到达二楼,小芳用了8分钟到达一楼。
如果我们把一个箱子放在一楼的第一个阶梯上问多长时间可以到达二楼?跟上面一题一样。
这个题目也是2个行程问题的比较(1)小明跟扶梯之间是方向相同(1) (V小明+V扶梯)=1/2(2) 小芳跟扶梯的方向相反(2) (V小芳-V扶梯)=1/8(1)-2×(2)=3V扶梯=1/4 可见扶梯速度是1/12 答案就显而易见了。
总结:在多个行程问题模型存在的时候。
我们利用其速度差,速度和的关系将未知的变量抵消。
可以很轻松的一步求得结果!习题:1、电扶梯由下往上匀速行驶.男孩以每秒2个梯级的速度沿电扶梯往上走,40秒种可达电扶梯顶部.一女孩以每2秒3个梯级的速度往上走,50秒可以达到顶部.则静止时电扶梯的梯级数为A 80B 75C 100D 1202、2、某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面而来.2个起点站的发车间隔相同,那么这个间隔是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相遇追击问题综合题目分析
一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。
每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?
A 10
B 8
C 6
D 4
我们知道这个题目出现了2个情况,就是
(1)汽车与骑自行车的人的追击问题,
(2)汽车与行人的追击问题
追击问题中的一个显著的公式就是路程差=速度差×时间我们知道这里的2个追击情况的路程差都是汽车的间隔发车距离。
是相等的。
因为我们要求的是关于时间所以可以将汽车的间隔距离看作单位1.
那么根据追击公式
(1) (V汽车-V步行)=1/10
(2) (V汽车-3V步行)=1/20
(1)×3-(2)=2V汽车=3/10-1/20 很快速的就能解得 V汽车=1/8 答案显而易见是8
再看一个例题:小明在商场的一楼要乘扶梯到二楼。
扶梯方向向上,小芳则从二楼到一楼。
已知小明的速度是小芳的2倍。
小明用了2分钟到达二楼,小芳用了8分钟到达一楼。
如果我们把一个箱子放在一楼的第一个阶梯上问多长时间可以到达二楼?
跟上面一题一样。
这个题目也是2个行程问题的比较(1)小明跟扶梯之间是方向相同
(1) (V小明+V扶梯)=1/2
(2) 小芳跟扶梯的方向相反
(2) (V小芳-V扶梯)=1/8
(1)-2×(2)=3V扶梯=1/4 可见扶梯速度是 1/12 答案就显而易见了。
总结:在多个行程问题模型存在的时候。
我们利用其速度差,速度和的关系将未知的变量抵消。
可以很轻松的一步求得结果!
习题:
1、电扶梯由下往上匀速行驶.男孩以每秒2个梯级的速度沿电扶梯往上走,40秒种可达电扶梯顶部.一女孩以每2秒3个梯级的速度往上走,50秒可以达到顶部.则静止时电扶梯的梯级数为
A 80
B 75
C 100
D 1202、
2、某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面而来.2个起点站的发车间隔相同,
那么这个间隔是多少?。