2012高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析
(完整word)高考电磁感应中“单、双棒”问题归类经典例析
电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导Bv 0L adb轨所在平面垂直,导轨的电阻很小,可忽略不计。
电磁感应中单双棒问题
v0
v共
O
t
4.两个规律
(1)动量规律 两棒受到安培力大小相等方向相反, 1 系统合外力为零,系统动量守恒.
m 2 v 0 (m 1 m 2)v 共
v0 2
(2)能量转化规律
系统机械能的减小量等于内能的增加量. (类似于完全非弹性碰撞)
两2 1棒m 产2v生02 焦2 1 耳(热m 之1比m :2)v共 2Q+ 1 Q R 1 Q2 R2
O
t
5.最终特征: 匀速直线运动(a=0)
6.两个极值
FB R
(1) 最大加速度:
当v=0时:
am
F
mg
m
f
(2) 最大速度:
r
F
当a=0时:aFFBmgF B2l2v g0
m
m m(Rr)
vm(Fm B2gl)2(Rr)
7.几种变化 (1) 电路变化
F
(2)磁场方向变化
B
F
(3) 导轨面变化(竖直或倾斜) (4)拉力变化
v(m/s)
20
F
16
12
8
4
F(N)
0 2 4 6 8 10 12
解:(1)加速度减小的加速运动。 (2)由图线可知金属杆受拉力、安培力和阻力作用,
匀速时合力为零。
FF 安 f
感应电动势 E BL 1 v
F
感应电流 I=E/R (2)
安培力 F 安 B B 2 I L 2 v L / 3 R v(m/s)
匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻
可忽略。让ab杆沿导轨由静止开始下滑,导轨和金属杆接触 良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;
电磁感应中“单杆、双杆、线圈”问题归类例析
电磁感应中“单杆、双杆、线圈”问题归类例析余姚八中陈新生导体杆在磁场中运动切割磁感线产生电磁感应现象,是历年高考的一个热点问题。
因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。
通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,最后要探讨的问题不外乎以下几种:1、运动状态分析:稳定运动状态的性质(可能为静止、匀速运动、匀加速运动)、求出稳定状态下的速度或加速度、感应电流或安培力。
2、运动过程分析:分析运动过程中发生的位移或相对位移,运动时间、某状态的速度等3、能量转化分析:分析运动过程中各力做功和能量转化的问题:如产生的电热、摩擦力做功等4、求通过回路的电量解题的方法、思路通常是首先进行受力分析和运动过程分析。
然后运用动量守恒或动量定理以及能量守恒建立方程。
按照不同的情景模型,现举例分析。
一、“单杆”切割磁感线型1、杆与电阻连接组成回路例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置(1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。
(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。
例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m,上、下两端各有一个电阻R0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B=2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r=0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R0产生的热量Q0=0.375J(已知sin37°=0.6,cos37°=0.8;g取10m/s2)求:(1)杆ab的最大速度;(2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量.2、杆与电容器连接组成回路例3、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?例4、光滑U型金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初a速v0,使棒始终垂直框架并沿框架运动,如图所示。
最新高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析word版本
高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cdBv 0L adb的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
电磁感应中“单、双棒”问题归类例析
电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动棒落地时的速度为多大3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 lm ,处在同一水平面中,磁感应强度B =的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =Ω,导轨电阻不计.导轨间通过开关S 将电动势E =、内电阻r =Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大随后ab 的加速度、速度如何变化(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
最新高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析资料讲解
高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置(1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。
(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动. 现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ、MN光滑,相距l m,处在同一水平面中,磁感应强度5.0B=0.8T的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab的质量m=0.1kg、电阻R=0.8Ω,导轨电阻不计.导轨间通过开关S将电动势E =1.5V、内电阻r =0.2Ω的电池接在M、P两端,试计算分析:(1)在开关S刚闭合的初始时刻,导线ab的加速度多大?随后ab的加速度、速度如何变化?(2)在闭合开关S后,怎样才能使ab以恒定的速度υ =7.5m/s沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
最新高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析
高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd Bv 0L adb的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
高考物理二轮专题复习 电磁感应中“单 双棒”问题归类例析
高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置(1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。
(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab发生的位移x。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为的金属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动棒落地时的速度为多大3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ、MN光滑,相距5.0l m,处在同一水平面中,磁感应强度B=的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab的质量m =、电阻R=Ω,导轨电阻不计.导轨间通过开关S将电动势E =、内电阻r =Ω的电池接在M、P两端,试计算分析:(1)在开关S刚闭合的初始时刻,导线ab的加速度多大随后ab的加速度、速度如何变化(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =s 沿导轨向右运动试描述这时电路中的能量转化情况(通过具体的数据计算说明). 二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
高三复习电磁感应中的导轨类问题导体棒归类梳理
电磁感应中的导轨类问题
一、单棒问题。
1.无外力、无摩擦单棒,外阻R,内阻r (阻尼单棒)
(1)安培力的特点
安培力为阻力,并随速度减小而减小。
22
B B l v
F BIl R r ==
+
(2)加速度随速度减小而减小
22()B F B l v a m m R r ==
+
(3)运动特点:a 减小
的减速运动,最后停止 (4)能量关系:
2
0102
mv Q -=内外阻热量之比
R
r
Q R
Q r =。
2.有外力、有摩擦单棒
安培力为阻力,并随速度增大而增大
最终运动:匀速运动 v=0时,有最大加速度 a=0时,有最大速度 能量关系
2
12E m
Fs Q mgS mv μ=++
二、双棒问题
1.无外力等距双棒(无摩擦)
安培力大小
222112
B B l (v v
)
F BIl
R R
-==
+
2.无外力不等距双棒
最终特征:回路中电流为零
1122
Bl v Bl v
两棒安培力不相等,动量不守恒。
对两棒分别用动量定理
能量转化情况:
3.有外力等距双棒
稳定时都做匀加速直线运动,产生恒定电流
4.有外力不等距双棒。
电磁感应单、双棒问题
2012高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析王佃彬一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
$2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动棒落地时的速度为多大3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =Ω,导轨电阻不计.导轨间通过开关S 将电动势E =、内电阻r =Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大随后ab 的加速度、速度如何变化(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动试描述这时电路中的能量转化情况(通过具体的数据计算说明).!二、双杆问题:…1、双杆所在轨道宽度相同——常用动量守恒求稳定速度Bv 0L adb例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
电磁感应中“单、双棒”问题归类例析
电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
;2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动棒落地时的速度为多大3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =Ω,导轨电阻不计.导轨间通过开关S 将电动势E =、内电阻r =Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大随后ab 的加速度、速度如何变化(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动试描述这时电路中的能量转化情况(通过具体的数据计算说明).;二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度|例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距Bv 0L adb离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
高考的物理二轮专题复习:电磁感应中“单、双棒”问题归类例析
高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cdBv 0L adb的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
高考电磁感应中“单双棒”问题归类经典例析
高考电磁感应中“单双棒”问题归类经典例析(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置(1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。
(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动棒落地时的速度为多大3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ、MN光滑,相距5.0l m,处在同一水平面中,磁感应强度B=的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab的质量m =、电阻R=Ω,导轨电阻不计.导轨间通过开关S将电动势E =、内电阻r =Ω的电池接在M、P两端,试计算分析:(1)在开关S刚闭合的初始时刻,导线ab的加速度多大?随后ab的加速度、速度如何变化?(2)在闭合开关S后,怎样才能使ab以恒定的速度υ =s沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。
导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示.两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,棒ab有指向棒cd的初速度v0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
2012高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析.
电磁感应中“单、双棒”问题归类例析 2015-3-15一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置(1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。
(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ、MN光滑,相距l 0.5m,处在同一水平面中,磁感应强度B=0.8T的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S将电动势E =1.5V、内电阻r =0.2Ω的电池接在M、P两端,试计算分析:(1)在开关S刚闭合的初始时刻,导线ab的加速度多大?随后ab的加速度、速度如何变化?(2)在闭合开关S后,怎样才能使ab以恒定的速度υ =7.5m/s沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题: 1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。
导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示.两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,棒ab有指向棒cd的初速度v0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
电磁感应中“单、双棒”问题归类例析
电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =Ω,导轨电阻不计.导轨间通过开关S 将电动势E =、内电阻r =Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:Bv 0L adb(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
电磁感应中的单杆和双杆问题
电磁感应中“滑轨”问题归类例析一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
例2、如右图所示,一平面框架与水平面成37°角,宽L= m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =为金属杆,其长度为L = m ,质量m = kg ,电阻r =Ω,棒与框架的动摩擦因数μ=.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=(已知sin37°=,cos37°=;g 取10m /s2)求: (1)杆ab 的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.关键:在于能量观,通过做功求位移。
2、杆与电容器连接组成回路例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 从高h 处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间? 问金属棒的做什么运动?棒落地时的速度为多大?例4、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。
求导体棒的最终速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置(1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。
(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
导轨间的距离l=0.20m。
两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。
在t=0时刻,两杆都处于静止状态。
现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。
经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?2、双杆所在轨道宽度不同——常用动量定理找速度关系例6、如图所示,abcd 和a /b /c /d /为水平放置的光滑平行导轨,区域内充满方向竖直向上的匀强磁场。
ab 、a /b /间的宽度是cd 、c /d /间宽度的2倍。
设导轨足够长,导体棒ef 的质量是棒gh 的质量的2倍。
现给导体棒ef 一个初速度v 0,沿导轨向左运动,当两棒的速度稳定时,两棒的速度分别是多少?3、如图所示,两根间距为l 的光滑金属导轨(不计电阻),由一段圆弧部分与一段无限长的水平段部分组成.其水平段加有竖直向下方向的匀强磁场,其磁感应强度为B,导轨水平段上静止放置一金属棒cd,质量为2m,电阻为2r.另一质量为m,电阻为r 的金属棒ab,从圆弧段M 处由静止释放下滑至N 处进入水平段,圆弧段MN 半径为R,所对圆心角为60°,求:(1)ab 棒在N 处进入磁场区速度多大?此时棒中电流是多少?(2) cd 棒能达到的最大速度是多大? (3)ab 棒由静止到达最大速度过程中, 系统所能释放的热量是多少?电磁感应中“单棒、双棒”问题归类例析答案一、单棒问题:1.单棒与电阻连接构成回路: 例1.解析:(1)ab 运动切割磁感线产生感应电动势E ,所以ab相a/当于电源,与外电阻R 构成回路。
∴U ab =BLV BLV RR R 322=+(2)若无外力作用则ab 在安培力作用下做减速运动,最终静止。
动能全部转化为电热。
221mv Q =。
由动量定理得:mv Ft =即mv BILt =,It q =∴BL mv q =。
BL mv R BLx R It q ==∆==2323ϕ,∴2223L B mvR x =。
2、杆与电容器连接组成回路例2 .解析:ab 在mg 作用下加速运动,经时间 t ,速度增为v ,a =v / t 产生感应电动势 E=Bl v电容器带电量 Q=CE=CBl v ,感应电流I=Q/t=CBL v/ t=CBl a 产生安培力F=BIl =CB2 l 2a ,由牛顿运动定律 mg-F=ma ma= mg - CB 2 l 2a ,a= mg / (m+C B 2 l 2)∴ab 做初速为零的匀加直线运动, 加速度 a= mg / (m+C B 2 l 2) 落地速度为 3、杆与电源连接组成回路例3.解析(1)在S 刚闭合的瞬间,导线ab 速度为零,没有电磁感应现象,由a 到b的电流A rR EI 5.10=+=,ab 受安培力水平向右,此时瞬时加速度2000/6s m mL BI m F a ===ab 运动起来且将发生电磁感应现象.ab 向右运动的速度为υ时,感应电动势Blv E =',根据右手定则,ab 上的感应电动势(a 端电势比b 端高)在闭合电路中与电池电动势相反.电路中的电流(顺时针方向,rR E E I +-=')将减小(小于I 0=1.5A ),ab 所受的向右的安培力随之减小,加速度也减小.尽管加速度减小,速度还是在增大,感应电动势E 随速度的增大而增大,电路中电流进一步减小,安培力、加速度也随之进一步减小,当感应电动势'E 与电池电动势E 相等时,电路中电流为零,ab 所受安培力、加速度也为零,这时ab 的速度达到最大值,随后则以最大速度继续向右做匀速运动.设最终达到的最大速度为υm ,根据上述分析可知:0m E Bl υ-=所以 1.50.80.5m E Bl υ==⨯m/s=3.75m/s . (2)如果ab 以恒定速度7.5υ=m/s 向右沿导轨运动,则ab 中感应电动势5.75.08.0'⨯⨯==Blv E V=3V2222l CB m mghah v +==由于'E >E ,这时闭合电路中电流方向为逆时针方向,大小为:2.08.05.13''+-=+-=r R E E I A=1.5A直导线ab 中的电流由b 到a ,根据左手定则,磁场对ab 有水平向左的安培力作用,大小为5.15.08.0''⨯⨯==BlI F N=0.6N所以要使ab 以恒定速度5.7=v m/s 向右运动,必须有水平向右的恒力6.0=F N 作用于ab .上述物理过程的能量转化情况,可以概括为下列三点: ①作用于ab 的恒力(F )的功率:5.76.0⨯==Fv P W=4.5W②电阻(R +r )产生焦耳热的功率:)2.08.0(5.1)(22'+⨯=+=r R I P W=2.25W③逆时针方向的电流'I ,从电池的正极流入,负极流出,电池处于“充电”状态,吸收能量,以化学能的形式储存起来.电池吸收能量的功率:'' 1.5 1.5P I E ==⨯W=2.25W由上看出,'''P P P +=,符合能量转化和守恒定律(沿水平面匀速运动机械能不变). 二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4.解析:ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用作减速运动,cd 棒则在安培力作用下作加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 作匀速运动.(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv mv 20= 根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-=(2)设ab 棒的速度变为初速度的3/4时,cd 棒的速度为v 1,则由动量守恒可知:10043mv v m mv +=。
此时回路中的感应电动势和感应电流分别为:BL v v E )43(10-=,REI 2=。
此时cd 棒所受的安培力:IBL F =,所以cd 棒的加速度为 mFa = 由以上各式,可得m Rv L B a 4022= 。
例5.解析:设任一时刻t 两金属杆甲、乙之间的距离为x ,速度分别为v 1和v 2,经过很短的时间△t ,杆甲移动距离v 1△t ,杆乙移动距离v 2△t ,回路面积改变t l v v lx t t v t v x S ∆-=-+∆+∆-=∆)(])[(2112由法拉第电磁感应定律,回路中的感应电动势tS B E ∆∆= 回路中的电流 REi 2=,杆甲的运动方程ma Bli F =- 由于作用于杆甲和杆乙的安培力总是大小相等,方向相反,所以两杆的动量0(=t 时为0)等于外力F 的冲量21mv mv Ft +=。
联立以上各式解得)](2[21211ma F FB Rm F v -+=)](2[212212ma F IB Rm F v --=,代入数据得s m v sm v /85.1/15.821==2、双杆所在轨道宽度不同——常用动量定理找速度关系例6.解析:当两棒的速度稳定时,回路中的感应电流为零,设导体棒ef 的速度减小到v 1, 导体棒gh 的速度增大到v 2,则有2BLv 1-BLv 2=0,即v 2=2v 1。
对导体棒ef 由动量定理得:01222mv mv t I BL -=∆--对导体棒gh 由动量定理得:02-=∆-m v t I BL 。
由以上各式可得:020132,31v v v v ==。
3、磁场方向与导轨平面不垂直例7.解析(1)1棒匀速:BIL F =2棒匀速:θtan mg BIL = 解得:θtan mg F =(2)两棒同时达匀速状态,设经历时间为t ,过程中平均感应电流为I ,据动量定理,对1棒:01-=-mv Lt I B Ft ;对2棒:0cos sin 2-=⋅-⋅mv t L I B t mg θθ 联立解得:θcos 12v v =匀速运动后,有:θcos 21BLv BLv E +=,RE I 2= 解得:)cos 1(tan 22221θθ+=L B mgR v 三、轨道滑模型例8.解析:(1)当导轨的加速度为零时,导轨速度最大为υm 。
导轨在水平方向上受到外力F 、水平向左的安培力F 1和滑动摩a /擦力F 2,则021=--F F F ,m BLv E R EI BIL F ===,,1,即Rv L B F m 221=以PQ 棒为研究对象,PQ 静止,在竖直方向上受重力mg 、竖直向上的支持力N 和安培力F 3,则N F F F mg F N μ===+2133,,,得)(222R v L B mg F m-=μ,将F 1和F 2代入解得 ))(1(022mRv L B g m --=μ,得22L B mgRv m =(2)设导轨从开始运动到达到最大速度的过程中,移动的距离为S ,在这段过程中,经过的时间为t,PQ 棒中的平均电流强度为I 1,QPbC 回路中的平均感应电动势为E 1,则t I q RE I SLB t E 1111,,,===∆∆=ϕϕ,得BL qR S =。