大地测量学基础 PPT课件
合集下载
大地测量学基础-第2章坐标系统与时间系统
的影响,地球的旋转轴在空间围绕黄极缓慢旋转,类似于一个旋 转陀螺,形成一个倒圆锥体(见左下图),其锥角等于黄赤交角 ε=23.5 °。 • 旋转周期为25786年,这种运动称为岁差,是地轴方向在宇宙空 间中的长周期运动(以黄极为中心)。
章动(周期18.6年)
岁差(周期25786年)
23.5 °
黄道 赤道
PS
πS
πN
πS
6、春分点与秋分点
• 黄道与赤道的两个交点称为春 分点和秋分点。
• 从地球上看,太阳沿黄道逆时 针运动。
• 黄道和赤道在天球上存在相距 180°的两个交点,其中太阳沿 黄道从天赤道以南向北通过天 赤道的那一点,称为春分点(3 月21日前后),与春分点相隔 180°的另一点,称为秋分点(9 月23日前后) 。
• GAMT 表示格林尼治平太阳时角。
• 未经任何改正的世界时表示为UT0;
• 经过极移改正的世界时表示为UT1:
UT1=UT0+Δλ
§2-1 地球的运转 §2-2 时间系统 §2-3 坐标系统
§2-1 地球的运转
• 众所周知,我们生存的地球一直处于运动之中。 • 从不同的角度来看,地球的运转可分为四类: (1)与银河系一起在宇宙中运动 (2)与太阳系一起在银河系内运动 (3)与其它行星一起绕太阳旋转(公转) (4)绕其自身旋转轴(瞬时)旋转(自转,或叫周日视运动) • 大地测量学主要研究后两类运动。
• 考虑岁差和章动的共同影响时,相应的旋转轴、天极、天球赤道 等术语前加上“真”,即真旋转轴、真天极、真天球赤道。
• 若只考虑岁差,则分别称作平旋转轴、平天极、平天球赤道。
章动(周期18.6年)
岁差(周期25786年)
23.5 °
章动(周期18.6年)
岁差(周期25786年)
23.5 °
黄道 赤道
PS
πS
πN
πS
6、春分点与秋分点
• 黄道与赤道的两个交点称为春 分点和秋分点。
• 从地球上看,太阳沿黄道逆时 针运动。
• 黄道和赤道在天球上存在相距 180°的两个交点,其中太阳沿 黄道从天赤道以南向北通过天 赤道的那一点,称为春分点(3 月21日前后),与春分点相隔 180°的另一点,称为秋分点(9 月23日前后) 。
• GAMT 表示格林尼治平太阳时角。
• 未经任何改正的世界时表示为UT0;
• 经过极移改正的世界时表示为UT1:
UT1=UT0+Δλ
§2-1 地球的运转 §2-2 时间系统 §2-3 坐标系统
§2-1 地球的运转
• 众所周知,我们生存的地球一直处于运动之中。 • 从不同的角度来看,地球的运转可分为四类: (1)与银河系一起在宇宙中运动 (2)与太阳系一起在银河系内运动 (3)与其它行星一起绕太阳旋转(公转) (4)绕其自身旋转轴(瞬时)旋转(自转,或叫周日视运动) • 大地测量学主要研究后两类运动。
• 考虑岁差和章动的共同影响时,相应的旋转轴、天极、天球赤道 等术语前加上“真”,即真旋转轴、真天极、真天球赤道。
• 若只考虑岁差,则分别称作平旋转轴、平天极、平天球赤道。
章动(周期18.6年)
岁差(周期25786年)
23.5 °
《大地测量学》课件
激光雷达地形测量
利用激光雷达技术获取高 精度地形数据,常用于数 字高程模型(DEM)的建 立。
激光雷达遥感
通过激光雷达技术获取地 表信息,用于地质、环境 监测等领域。
其他大地测量技术与方法
重力测量
利用重力加速度的差异来测定地球重力场参数,常用于地球 物理研究。
惯性导航
利用惯性传感器来测定运动物体的姿态、位置和速度,常用 于海洋和航空导航。
大地测量学的应用领域
• 总结词:大地测量学的应用领域非常广泛,包括地理信息系统、资源调 查、城市规划、灾害监测等。
• 详细描述:大地测量学在地理信息系统中的应用主要是提供高精度、高分辨率的地理信息数据,用于地图制作、土地规 划、环境监测等领域。在资源调查方面,大地测量学可以通过对地球的重力场和磁场进行测量,探测地下矿产资源,并 对海洋资源进行调查和监测。此外,大地测量学在城市规划中也有广泛应用,例如通过卫星遥感技术对城市环境进行监 测和评估,以及利用GPS技术对城市交通进行管理和优化。最后,大地测量学在灾害监测方面也发挥了重要作用,例如 通过大地测量技术对地震、火山、滑坡等自然灾害进行监测和预警。
大地测量在地理信息系统中的应用领域
基础地理信息获取
大地测量提供高精度的地 理坐标和地形数据,是GIS 获取基础地理信息的重要 手段。
地图制作与更新
大地测量数据可用于制作 高精度地图,并定期更新 以确保地图的准确性和现 势性。
空间分析与应用
大地测量数据与其他空间 数据结合,可进行空间分 析、规划、决策等应用。
大地测量在地理信
05
息系统中的应用
地理信息系统概述
地理信息系统定义
地理信息系统(GIS)是一种用于采集、存储、处理、分析和显示 地理数据的计算机系统。
大地测量学基础
3.定义一个空间直角坐标系必须明确: ①原点位置;②坐标轴方向;③长度单位。
2020年10月28日星期三12时57分11秒
(一)天球坐标系
1.天球的基本概念: 天球、天极、天球赤道、天球子午圈、 时圈、黄道、黄赤交角、春分点、黄极、 岁差与章动 2.天球坐标系的建立 1)天球空间直角坐标系 2)天球球面坐标系
第二章 大地测量基础知识
§2-1 大地测量的基准面和基准线 一、水准面与大地水准面
1、水准面 我们把重力位相等的面称为重力等位面,也就 是我们通常所说的水准面。水准面有无数个。 1)水准面具有复杂的形状。 2)水准面相互既不能相交也不能相切。
2020年10月28日星期三12时57分11秒
3)每个水准面都对应着唯一的位能W=C=常 数,在这个面上移动单位质量不做功,亦即所做 的功等于0,即dW=-gsds,可见水准面是均衡面。
2020年10月28日星期三12时57分11秒
天球基本概念(1)
天球:我们 把以地球M 为中心,以 无穷远的距 离为半径所 形成的球称 作天球。
天极:地球自
转的中心轴线 简称地轴,将 其延伸就是天 轴,天轴与天 球的交点称为 天极,Pn在北 称作北天极, PS,在南称作
南天极。
天球赤道:
通过地球质心 M与地轴垂直 的平面称为天 球赤道面,天 球赤道面与天 球相交的大圆 就称为天球赤 道。
N2d min
2020年10月28日星期三12时57分11秒
4、但对于天文大地测量及大地点坐标的推算, 对于国家测图及区域绘图来说,往往采用其大小 及定位定向最接近于本国或本地区的地球椭球。 这种最接近,表现在两个面最接近即同点的法线 和垂线最接近。所有地面测量都依法线投影在这 个椭球面上,我们把这样的椭球叫参考椭球。
2020年10月28日星期三12时57分11秒
(一)天球坐标系
1.天球的基本概念: 天球、天极、天球赤道、天球子午圈、 时圈、黄道、黄赤交角、春分点、黄极、 岁差与章动 2.天球坐标系的建立 1)天球空间直角坐标系 2)天球球面坐标系
第二章 大地测量基础知识
§2-1 大地测量的基准面和基准线 一、水准面与大地水准面
1、水准面 我们把重力位相等的面称为重力等位面,也就 是我们通常所说的水准面。水准面有无数个。 1)水准面具有复杂的形状。 2)水准面相互既不能相交也不能相切。
2020年10月28日星期三12时57分11秒
3)每个水准面都对应着唯一的位能W=C=常 数,在这个面上移动单位质量不做功,亦即所做 的功等于0,即dW=-gsds,可见水准面是均衡面。
2020年10月28日星期三12时57分11秒
天球基本概念(1)
天球:我们 把以地球M 为中心,以 无穷远的距 离为半径所 形成的球称 作天球。
天极:地球自
转的中心轴线 简称地轴,将 其延伸就是天 轴,天轴与天 球的交点称为 天极,Pn在北 称作北天极, PS,在南称作
南天极。
天球赤道:
通过地球质心 M与地轴垂直 的平面称为天 球赤道面,天 球赤道面与天 球相交的大圆 就称为天球赤 道。
N2d min
2020年10月28日星期三12时57分11秒
4、但对于天文大地测量及大地点坐标的推算, 对于国家测图及区域绘图来说,往往采用其大小 及定位定向最接近于本国或本地区的地球椭球。 这种最接近,表现在两个面最接近即同点的法线 和垂线最接近。所有地面测量都依法线投影在这 个椭球面上,我们把这样的椭球叫参考椭球。
大地测量PPT课件幻灯片资料
1e2 W
sinB 1 V
sin B
taun 1e2taB n W taB n V
dBV2 1e2
2020/8/2
du
2、贝塞尔大地投影
(1) 基本原理(Basic Principles) 建立以椭球中心为中心,以任意长(或单位长)为半径的辅助
球,按以下三个步骤计算。 第一, 按一定条件将椭球面元素投影到辅助球面上。 第二, 在球面上解算大地问题。 第三, 将求得的球面元素按投影关系换算到相应的椭球元素。
L2,B2,A2
2020/8/2
大地问题反解 已知P1点和P2点的大地 坐标(L1,B1),(L2, B2),计算两点间的大地 线长S及正反大地方位角A1 ,A2。即: L1,B1,L2, B2
S, A1, A2
大地问题解算的基本方法
1)、以大地线的三个微分方程为理论基础的。
dL
sin A sec N
lfl(0 ) d d 0 s ls d d2 2 ls 0s 2 2 d d3 3 l s0s 6 3 bfb(0 ) d d B 0 ss d d 2 B 2s 0s 2 2 d d 3 B 3s 0s 6 3 af(0 ) d d A 0 ss d d 2A 2s 0s 2 2 d d 3A 3s 0s 6 3
1、归化纬度
大地纬度与归化纬度之间的关系
x a co us
x2 a2
y2 b2
1
x a cosu y b sin u
2020/8/2
1、归化纬度
x a cosu y b sin u
xWa cosB
y
a(1e2) W
sinB
b
1e2 W
sinB
《大地测量学基础》课件
1
地球自转是指地球围绕自己的轴线旋转的运动, 其周期为24小时,即一天。
2
地球参考系是大地测量的基准,包括国际地球参 考系(ITRS)和世界时(UTC)等。
3
地球自转对大地测量具有重要的意义,因为地球 自转会导致天文经度变化,从而影响大地测量结 果。
大地水准面和地球椭球
大地水准面是指与平均海水面重合且与地球表面大致相吻合的虚拟静止水准面。
合成孔径雷达干涉测量技术
01
合成孔径雷达干涉测量技术是一种利用雷达信号干涉原理获取 地球表面形变的测量技术。
02
该技术在地壳形变监测、地震预报、冰川运动监测等领域具有
广泛的应用前景。
合成孔径雷达干涉测量技术具有全天候、全天时、高精度等优
03
点,但也存在数据处理复杂、对信号源要求高等挑战。
人工智能和大数据在大地测量中的应用
为地球第一偏心率。
地球重力场
地球重力场是由地球质量分布不均匀 引起的引力场,其特点是随地理位置 和时间变化。
地球重力场的研究方法包括大地测量 、卫星轨道测量和地球物理等方法。
地球重力场对大地测量具有重要的意 义,因为大地水准面是大地测量中重 要的参考面,而大地水准面的变化与 地球重力场密切相关。
地球自转和地球参考系
三角测量和导线测量
三角测量
利用三角形原理进行距离和角度的测 量,主要用于建立大地控制网和精密 测量。
导线测量
通过布设导线,逐段测量导线的长度 、角度等参数,以确定点的平面位置 。
GPS定位技术
GPS定位原理
利用卫星信号接收机接收多颗卫星信号,通过测距交会原理确定接收机所在位置。
GPS在大地测量中的应用
海洋大地测量的方法
大地测量学基础ppt课件
处处与重力方向相切的曲线称为力线。力线与所有水准 面都正交,彼此不平行是空间曲线。
3
二、大地水准面
与平均海水面相重合,不受潮汐、风浪及大气压变化影响, 并延伸到大陆下面处处与铅垂线相垂直的水准面称为大地水 准面,由它包围的形体称为大地体,可近似地把它看成是地 球的形状。
我国曾规定采用青岛验潮站求得的1956年黄海平均海水面 作为我国统一高程基准面,1988年改用“1985国家高程基准” 作为高程起算的统一基准。
Z轴:与地球平均自转轴相 重合,亦即指向某一时刻的平 均北极点。
X轴:指向平均自转轴与平 均格林尼治天文台所决定的子 午面与赤道面的交点。
16
五、天文坐标系
1)天文坐标系是以铅垂线为依 据建立起来的。
2)一点的坐标用天文经度 及
天文纬度 表示。
3)所谓天文纬度是P点的铅垂线 与地球赤道面形成的锐角,
A、B两点平均高度(可用近似值代替)
(g
m o
)m
H AB
是AB路线上的正常重力
42
3.3 高程系统概论
3.3.4 国家高程基准 一、高程基准面
1956年黄海高程系统:1957年确定青岛验潮站为我国 基本验潮站,该站1950年至1956年7年间的潮汐资料推求 的平均海水面作为我国的高程基准面。
正常重力并不顾及地球内部质量和密度分布的不规 则,而仅仅与纬度有关,其计算公式为:r=r0- 0.3086H
(r0:平均椭球面上的重力值)
6
四、 正常椭球和水准椭球 总地球椭球和参考椭球
正常椭球的定位和定向:
其中心和地球质心重合 其短轴与地轴重合 起始子午面与起始天文子午面重合
39
3
二、大地水准面
与平均海水面相重合,不受潮汐、风浪及大气压变化影响, 并延伸到大陆下面处处与铅垂线相垂直的水准面称为大地水 准面,由它包围的形体称为大地体,可近似地把它看成是地 球的形状。
我国曾规定采用青岛验潮站求得的1956年黄海平均海水面 作为我国统一高程基准面,1988年改用“1985国家高程基准” 作为高程起算的统一基准。
Z轴:与地球平均自转轴相 重合,亦即指向某一时刻的平 均北极点。
X轴:指向平均自转轴与平 均格林尼治天文台所决定的子 午面与赤道面的交点。
16
五、天文坐标系
1)天文坐标系是以铅垂线为依 据建立起来的。
2)一点的坐标用天文经度 及
天文纬度 表示。
3)所谓天文纬度是P点的铅垂线 与地球赤道面形成的锐角,
A、B两点平均高度(可用近似值代替)
(g
m o
)m
H AB
是AB路线上的正常重力
42
3.3 高程系统概论
3.3.4 国家高程基准 一、高程基准面
1956年黄海高程系统:1957年确定青岛验潮站为我国 基本验潮站,该站1950年至1956年7年间的潮汐资料推求 的平均海水面作为我国的高程基准面。
正常重力并不顾及地球内部质量和密度分布的不规 则,而仅仅与纬度有关,其计算公式为:r=r0- 0.3086H
(r0:平均椭球面上的重力值)
6
四、 正常椭球和水准椭球 总地球椭球和参考椭球
正常椭球的定位和定向:
其中心和地球质心重合 其短轴与地轴重合 起始子午面与起始天文子午面重合
39
《大地测量学基础》课件1
5
§2大地测量学基本体系和内容 大地测量学基本体系和内容 2.1大地测量学的基本体系 大地测量学的基本体系
应用大地测量、椭球大地测量、天文大地测量、大地重力测量、 应用大地测量、椭球大地测量、天文大地测量、大地重力测量、 测量平差等;新分支: 海样大地测量、行星大地测量、卫星大地测量、 测量平差等;新分支: 海样大地测量、行星大地测量、卫星大地测量、 地球动力学、惯性大地测量。 地球动力学、惯性大地测量。 几何大地测量学(即天文大地测量学) 几何大地测量学(即天文大地测量学) 基本任务:是确定地球的形状和大小及确定地面点的几何位置。 基本任务:是确定地球的形状和大小及确定地面点的几何位置。 主要内容:国家大地测量控制网 包括平面控制网和高程控制网 包括平面控制网和高程控制网)建 主要内容:国家大地测量控制网(包括平面控制网和高程控制网 建 立的基本原理和方法,精密角度测量,距离测量,水准测量; 立的基本原理和方法,精密角度测量,距离测量,水准测量;地球椭 球数学性质,椭球面上测量计算, 球数学性质,椭球面上测量计算,椭球数学投影变换以及地球椭球几 何参数的数学模型等。 何参数的数学模型等。
γ ϕ = γ e (1 + β ⋅ sin 2 ϕ )
5 β = q − α 2
ω 2a q提出:为了确定重力与地球形状的关系, 2) 重力位函数的提出:为了确定重力与地球形状的关系, 法国的勒让德提出了位函数的概念。所谓位函数, 法国的勒让德提出了位函数的概念。所谓位函数,即 是有这种性质的函数:在一个参考坐标系中, 是有这种性质的函数:在一个参考坐标系中,引力位 对被吸引点三个坐标方向的一阶导数等于引力在该方 向上的分力。研究地球形状可借助于研究等位面。 向上的分力。研究地球形状可借助于研究等位面。因 位函数把地球形状和重力场紧密地联系在一起。 此,位函数把地球形状和重力场紧密地联系在一起。 地壳均衡学说的提出:英国的普拉特(J.H.Pratt)和艾 3) 地壳均衡学说的提出:英国的普拉特(J.H.Pratt)和艾 G.B.Airy)几乎同时提出地壳均衡学说 几乎同时提出地壳均衡学说, 黎(G.B.Airy)几乎同时提出地壳均衡学说,根据地壳 均衡学说可导出均衡重力异常以用于重力归算。 重力测量有了进展。 4) 重力测量有了进展。设计和生产了用于绝对重力测量 以及用于相对重力测量的便携式摆仪。 以及用于相对重力测量的便携式摆仪。极大地推动了 重力测量的发展 的发展。 重力测量的发展。
《大地测量学基础》PPT课件
2)按投影面的形状分类
• (1)方位投影:以平面作为投影面,使平面与球面相切或相 割,将球面上的经纬线投影到平面上而成。
• (2)圆柱投影:以圆柱面作为投影面,使圆柱面与球面相切 或相割,将球面上的经纬线投影到圆柱面上,然后将圆柱面 展为平面而成。
• (3)圆锥投影:以圆锥面作为投影面,使圆锥面与球面相切 或相割,将球面上的经纬线投影到圆锥面上,然后将圆锥面 展为平面而成。
4)、投影带的划分
我国规定按经差6º和3º 进行投影分带。
6º带自首子午线开始, 按6º的经差自西向东分成60 个带。
3º带自1.5 º开始,按3 º的经差自西向东分成12 0个带。
高斯投影带划分
6º带与3º带中央子午线之间的关系如图:
3º带的中央子午线与6º带中央子午线及分带子午线重 合,减少了换带计算。
在椭球面上,因为子午线同平行圈 正交,又由于投影具有正形性质,因 此它们的描写线 及 pQ也必p正N交, 由图可见,平面子午线收敛角也就是 等于 在 点上pQ的 切线p 同平面
• 3、中国各种地图投影:
1)中国全国地图投影:斜轴等面积方位投影、斜轴等角方 位投影、伪方位投影、正轴等面积割圆锥投影、正轴等角割 圆锥投影。
• 2)中国分省(区)地图的投影:正轴等角割圆锥投影、正 轴等面积割圆锥投影、正轴等角圆柱投影、高斯-克吕格投 影(宽带)。
• 3)中国大比例尺地图的投影:多面体投影(北洋军阀时期 )、等角割圆锥投影(兰勃特投影)(解放前)、高斯-克 吕格投影(解放以后)。
注:X轴向北为正, y轴向东为正。
x
高斯 自然 P (X,坐Y标)
赤道
O
y
中央子午线
由于我国的位于 北半球,东西横跨12 个6º带,各带又独自 构成直角坐标系。
大地测量学基础课件
大地测量学的应用领域
总结词
大地测量学的应用领域广泛,包括卫星导航定位、地 球科学、空间科学、气象预报和地震监测等。
详细描述
大地测量学在卫星导航定位领域中发挥着重要作用,通 过大地测量数据可以确定卫星轨道、提高导航定位精度 等。此外,大地测量学还应用于地球科学和空间科学领 域,研究地球各部分之间的相对位置关系、地球重力场 等,为地质勘探、资源开发等领域提供支持。同时,大 地测量学在气象预报和地震监测等领域也有广泛应用, 例如通过大地测量数据可以监测地震活动、预测地震灾 害等。
02
大地测量基本原理
大地水准面与地球椭球
总结词
大地水准面和地球椭球是大地测量的基本概念,它们决定了地球表面的几何形态 和测量基准。
详细描述
大地水准面是假想一个与平均海平面重合并随海面调整变化的闭合曲面,它与地 球质心相连,形成地球椭球的旋转轴。地球椭球是一个对地球的数学模型,用于 描述地球的几何形态,包括地球的赤道、极点和经纬度系统等。
大地测量数据误差分析
Байду номын сангаас
01
02
03
误差来源辨认
分析大地测量数据误差的 来源,如测量设备误差、 数据处理误差等。
误差传播规律研究
研究误差在大地测量数据 处理过程中的传播规律, 为误差控制和修正提供根 据。
误差修正与估计
采用适当的误差修正和估 计方法,减小误差对大地 测量结果的影响,提高数 据的准确性和可靠性。
数据特殊值处理
辨认并处理特殊值,以避免对数据分析结果产生不良影响。
大地测量数据解析与建模
数据特征提取
从大地测量数据中提取关键特征,为后续的建模和分析提供根据。
数学建模
根据提取的特征,建立相应的数学模型,用于描述和预测大地测量数据的变化规律。
大地测量基础知识74页PPT
大地测量基础知识
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国统一的国家大地控制网的布设开始于20世 纪50年代初,60年代末基本完成,先后共布设一 等三角锁401条,一等三角点6 182个,构成121个 一等锁环,锁系长达7.3万km。一等导线点312个, 构成10个导线环,总长约1万km。1982年完成了 全国天文大地网的整体平差工作。网中包括一等三 角锁系,二等三角网,部分三等网,总共约有5万 个大地控制点,30万个观测量的天文大地网。平差 结果表明:网中离大地点最远点的点位中误差为 ±0.9m,一等观测方向中误差为±0.46″。
11:06:20
(4)优缺点 三角测量的优点是:图形简单,结构强,几何
条件多,便于检核,网的精度较高。 三角测量的缺点是:在平原地区或隐蔽地区易
受障碍物的影响,布设困难,增加了建标费用; 推算而得的边长精度不均匀,距起始边越远边 长精度越低。
(5)适用:山区
11:06:20
2. 导线测量法
11:06:20
5. 中国地壳运动观测网络
中国地壳运动观测网络是中国地震局、总参测绘 局、中国科学院和国家测绘局联合建立的,主要是 服务于中长期地震预报,兼顾大地测量的目的。该 网络是以GPS为主,辅以SLR和VLBI以及重力测量 的观测网络,它由三个层次的网络组成,即25站连 续运行的基准网、56站定期复测的基本网和1 000 站复测频率低的区域网。
5)GPS定位精度应因地制宜
注重点位的适用性和站址的科学性
11:06:20
四、国家水平控制网的布设方案
(一)、常规大地测量方法布设国家三角网 1. 国家一等三角锁的布网方案
一等锁是国家大地控制网的骨干,沿经纬线方向纵
横交叉布满全国。 一等锁在纵横交叉处设置起算边,起算边两端点应
精确测定天文经纬度和天文方位角。 一等锁两起算边之间的锁段长度一般为200km左右,
优点:布设灵活,在隐蔽地区容易克服地形障碍;导
线测量只要求相邻两点通视,故可降低觇标高度,造 标费用少,且便于组织观测;网内边长直接测量,边 长精度均匀。
缺点:导线结构简单,没有三角网那样多的检核条件,
有时不易发现观测中的粗差,可靠性不高;单线推进, 控制面积不如三角网大。 适用:地势平缓的地区
11:06:20
4. 全国GPS一、二级网
全国GPS一、二级网是军测部门建立的,一 级网由40余点组成,相邻点间距平均为683km。 外业观测自1991年5月至1992年4月进行,使用 10台MINIMAC 2816接收机作业。网平差后点位 中误差,绝大多数点在2cm以内。二级网由500 多个点组成,二级网是一级网的加密。
1)分级布网,逐级控制 一、二、三、四等三角网 A、B、C、D、E级GPS网
2)应有足够的精度
11:06:20
3) 应有一定的密度
11:06:20
4) 应有统一的技术规格和要求
《大地测量法式》 《一、二、三、四等三角测量细则》 《一、二等基线测量细则》 《国家三角测量和精密导线测量规范》 《全球定位系统(GPS)测量规范》
11:06:20
3. 三边测量及边角同测法
优点:边角全测网的精度高
缺点:相应工作量也较大。
适用:在建立高精度的专用控制网(如精密的形 变监测网)或不能选择良好布设图形的地区可采 用此法而获得较高的精度。
11:06:20
(二)天文测量法
在地面点上架设仪器,通过观测天体(主要是恒星) 并记录观测瞬间的时刻,来确定地面点的地理位置, 即天文经度、天文纬度和该点至另一点的天文方位角。 优点:各点彼此独立观测,也勿需点间通视,测量误 差不会积累。 缺点:精度不高,受天气影响大。 用途:在每隔一定距离的三角点上观测天文来推求大 地方位角,控制水平角观测误差积累对推算方位角的 影响。
11:06:20
五、国家水平控制网的布设程序
1.技术设计 2.实地选点
3.建造觇标
4.标石埋设
11:06:20
1. 技术设计 1)收集资料 2)实地踏勘 3)图上设计 4)编写技术设计书
2. 实地选点 1) 选点图 2) 点之记 3) 选点工作技术总结
11:06:20
3. 建造觇标
寻常标
双锥标
用GPS可以越级布设城市控制网,边长可适当增大,且 长短边的变化幅度可较大 。
11:06:20
(一)布设原则
2. 要有足够的精度;对于专用控制网,一般对某些方向、 某些点之间的相对误差的要求比较高,可以根据实际要求来 设计。
3. 要有足够密度;常规城市控制网密度均匀; GPS控制网密度可根据需要来定,布设和此后的扩展要比较 灵活。
11:06:20
(三)现代定位新技术 1)全球定位系统
• GPS-----美国国防部 • GLONASS----苏联 • Galileo------欧共体 • 北斗导航------中国
2)激光测卫(SLR)系统 3)甚长基线干涉测量系统(VLBI) 4) 惯性测量系统(INS)
11:06:20
三、国家水平控制网的布设原则
6.2 区域平面控制网的技术设计 6.3 区域平面控制网的观测工作 6.4 大地测量数据处理
11:06:20
§6.2 区域平面控制网设计
一、工程水平控制网的布设原则和方案
测图控制网:在各项工程建设的规划设计阶 段,为测绘大比例尺地形图和房地产管理测量 而建立的控制网。
专用控制网:为工程建筑物的施工放样或变 形观测等专门用途而建立的控制网我们称其为。
平均边长山区一般约为25km,平原一般为20km,锁段内 的三角形个数一般为16到20个,按一等锁段三角形闭合 差计算所得的测角中误差应小于0.7秒。
11:06:20
11:06:20
沿经纬线方向 纵横交叉一等三角锁
2. 国家二等三角锁网的布网方案
二等三角网是在一等锁控制下布设的,它是国 家三角网的全面基础,同时地形测图的基本控制。 因此,必须兼顾精度和密度两个方面的要求。
11:06:20
3. 国家高精度GPS B级网
全网由818个点组成,分布全国各地(除台湾省 外)。东部点位较密,平均站间50~70km,中部 地区平均站间100km,西部地区平均站间距 150km。外业自1991年至1995年结束,主要使用 Ashtech MD 12和Trimble 4000 SSE仪器观测。 经数据精处理后,点位中误差相对于已知点在水 平方向优于0.07m,高程方向优于0.16m,平均 点位中误差水平方向为0.02m,垂直方向为 0.04m,基线相对精度达到10-7。
a i vi w a 0 1
11:06:20
n
bivi wb 0
1
n
rivi wr 0
1
第二组条件式
n
i vi w 0
1
n
ivi w 0
二等三角网又分为二等基本锁、二等补充网 (又称为旧二网)和二等连续三角网(新二网)。 旧二网的精度较低,测角中误差为2.5秒,新二网 精度较高,测角中误差为1.0秒。
二等网的边长在10-18km范围内变通,平均 边长为13km。
11:06:20
经纬线交叉二等基本锁
11:06:20
二等全面网
11:06:20
二、 三角锁推算元素的精度估算 (一)精度估算的目的
精度估算的目的是推求推算元素(控制网中边长、 方位角或点位坐标等)中误差,为控制网布设与实施 作指导。
(二)精度估算的方法
1 . 公式估算法 2. 程序估算法
11:06:20
1. 公式估算法 设控制网满足下列两组条件方程式
第一组条件式: n
3. 三、四等三角网布设方案
三、四等三角网是在一、二等三角锁网控制下 布设的,是为了加密控制点,以满足测图和工程 建设的需要。
三等网的平均边长为8km,四等网的边长一 般在2-6km范围内变通,三等网的测角中误差为 1.8秒,最弱边相对中误差为1:80000,四等网 的测角中误差为2.5秒,最弱边相对中误差为1: 40000。
1.国家大地控制网 在一个国家范围内的广大地面上,按一定要求
选定一系列的点,并使其依一定的几何图形构成 网状,在网中测量角度、边长和高差,然后在一 个统一坐标系统中算出这些点的精确位置,这个 网状的统一整体,称之为国家大地控制网。
11:06:20
2.国家大地控制网的作用 (1)为地形测图提供精密控制 (2)为研究地球形状、大小和其他科学
问题提供资料 (3)为国防建设和空间技术提供资料
11:06:20
二、建立国家平面大地控制网的方法
(一)常规大地测量法 1. (1)网形
11:06:20
1. 三角测量法
(2)坐标计算原理: 正弦定理 (3)三角网的元素
① 起算元素:已知的坐标、边长和已知的方位角,
② 观测元素:三角网中观测的所有方向(或角度)。 ③ 推算元素:由起算元素和观测元素的平差值推算 的三角网中其他边长、坐标方位角和各点的坐标。
大地测量学基础
第六章 平面控制测量
11:06:20
第六章 平面控制测量
6.1 国家平面大地控制网建立概述
6.2 区域平面控制网的技术设计 6.3 区域平面控制网的观测工作 6.4 大地测量数据处理
本章重点:国家水平控制网布设方法、观测技术 本章难点:平面控制网技术设计
11:06:20
一、国家大地控制网及其作用
11:06:20
2. 96 GPS A级网
96 GPS A级网共包括33个主站,23个副 站,与92 GPS A级网点重合21个。96 GPS A 级网观测时共使用了53台双频GPS接收机, 其中14台Astech MD12,17台Trimble 4000 SSE,8台Leica 200,6台Rogue 8000,8台 Astech Z12。经数据精处理后基线分量重复 性水平方向优于4mm+3ppm,垂直方向优于 8mm+4ppm,地心坐标分量重复性优于2cm。 全网整体平差后,在ITRF93参考框架中的地 心坐标精度优于10cm