2017新人教版初中数学总复习提纲
新人教版八年级数学全册复习提纲
的方法。
1. 一次函数与一元一次方程:从 “数”的角度看 x 为何值时函数 y= ax+b 的值为 0. 2. 求 ax+b=0(a, b 是常数, a≠ 0)的解,从 “形”的角度看,求直线 y= ax+b 与 x 轴交点的横坐标 3. 一次函数与一元一次不等式: 解不等式 ax+b> 0(a, b 是常数, a≠0) .从 “数”的角度看 ,x 为何值时函数 y= ax+b 的值大于 0. 4. 解不等式 ax+b>0(a,b 是常数, a≠ 0) . 从 “形 ”的角度看, 求直线 y= ax+b 在 x 轴上方的部分 (射线)所对应的的横坐标的取值范围.
二、线段的垂直平分线 1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.线段垂直平分线上的点与这条线段的两个端点的距离相等 3.与一条线段两个端点距离相等的点,在线段的垂直平分线上 三、用坐标表示轴对称小结: 在平面直角坐标系中, 关于 x 轴对称的点横坐标相等 ,纵坐标互为相反数 .关于 y 轴对称的点横坐标互为 相反数 ,纵坐标相等 .
注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应 的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来) 。
六、函数有三种表示形式:
(1)列表法 (2)图像法 (3)解析式法
七、正比例函数与一次函数的概念:
点来确定;求正比例函数 y=kx( k≠ 0)时,只需一个点即
初中数学总复习提纲
初中数学总复习提纲一、数的性质和运算1.自然数、整数、有理数、实数和虚数的含义及其性质2.整数的运算规则:加法、减法、乘法、除法、绝对值运算3.有理数的运算规则:加法、减法、乘法、除法、混合运算4.指数与指数运算5.逻辑与集合二、代数式与方程式1.代数式的定义及其性质2.平方、完全平方、立方和完全立方的求解3.一元一次方程的解法4.一元一次方程组的解法5.一元二次方程的解法及其应用6.用方程表示实际问题并解决实际问题7.勾股定理及其应用三、数与图形1.二维图形的边、角、面及其性质2.三角形、四边形和多边形的性质及其关系3.三角形的线段、角、面积公式及应用4.三角形的相似性质及其应用5.圆的定义、性质及公式6.圆的面积和周长的计算7.空间几何体的计算四、函数与应用1.函数的概念和性质2.函数图像的平移、伸缩和反射3.一次函数、二次函数、三次函数及其图像4.绝对值函数、分段函数及其图像5.函数的复合、反函数和逆函数6.数据的收集、整理、统计和分析7.概率与统计五、单位换算与计算检验1.长度、面积、体积和质量的单位换算2.时间、速度、密度、温度、角度的单位换算3.百分数和比例的计算4.计算结果的检验5.合理估算的方法与应用六、解题方法与思维培养1.数学解题的基本方法2.算术平均数、几何平均数和均值不等式的应用3.推理与证明4.逻辑思维与数学思维的培养5.综合应用题的解决方法以上是初中数学总复习的提纲,根据这个提纲进行复习,可以全面复习初中数学知识,有助于提高数学应试能力。
每个模块都要结合习题进行巩固,多做一些实际应用题,提高解决问题的能力。
同时,要注重思维培养和解题方法的掌握,通过多思考、多讨论、多练习,培养学生的数学思维能力。
初中数学总复习提纲(全初中)
初中数学总复习提纲第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a>1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
实数无理数(无限不循环小数)0 (有限或无限循环性数) 整数分数 正无理数 负无理数 0 实数 负数整数 分数 无理数 有理数正数整数 分数 无理数有理数│a │2a a (a ≥0)(a 为一切实数)5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算a) 运算法则(加、减、乘、除、乘方、开方)b) 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)c) 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51³5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略) 附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │ =b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
新人教版八年级数学全册复习提纲
新人教版八年级数学全册复习提纲TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-初二数学全册总复习提纲第十一章全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。
一个三角形经过平移、翻折、旋转可以得到它的全等形。
2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:二、角的平分线:1、(性质)角的平分线上的点到角的两边的距离相等.2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
初中数学总复习提纲人教版
6.乘法公式:(正、逆用) (a b) 2 a 2 2ab b2
( a+b)(a-b )=a 2 b2
(a
±b) (a2 ab b 2 ) = a3 b3
7.除法法则:⑴单÷单 ; ⑵多÷单。 8.因式分解: ⑴定义 ; ⑵方法: A. 提公因式法 ;B. 公式法 ;C. 十字
相乘法 ;D. 分组分解法 ;E. 求根公式法。 9.算术根的性质: a 2 = a ; ( a )2 a( a 0) ; ab
6.互为余角、互为补角及表示方法
学习必备
欢迎下载
7.角的平分线及其表示
8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角
边”)
9.对顶角及性质
10.平行线及判定与性质(互逆) (二者的区别与联系)
11.常用定理:①同平行于一条直线的两条直线平行 (传递性);
②同垂直于一条直线的两条直线平行。
⑴一般三角形全等的判定( SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②专用方法
6.三角形的面积
⑴一般计算公式⑵性质:等底等高的三角形面积相等。
7.重要辅助线
⑴中点配中点构成中位线 ; ⑵加倍中线 ; ⑶添加辅助平行线
8.证明方法
⑴直接证法:综合法、分析法
⑵间接证法—反证法:①反设②归谬③结论
学习必备
欢迎下载
化为最简二次根式以后, 被开方数相同的二次根式叫做同类二次
根式。
满足条件:①被开方数的因数是整数,因式是整式 ; ②被开方数
中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
9.
a· a… a= a n
⑴
n个
指数 ( a n —幂,乘方运算 )
初中数学总复习提纲
初中数学总复习提纲第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义:如果两个数的乘积为1.那么这两个数互为倒数.②性质:A.a ≠1/a (a ≠±1)中,a ≠<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义:如果两个数的和为0.那么这两个数互为相反数.②求相反数的公式: a 的相反数为-a.③性质:≠0时,a ≠与-a 在数轴上的位置关于原点对称;C.两个相反数的和为0,商为-1。
5.数轴: ①定义(“三要素”):具有原点、正方向、单位长度的直线叫数轴.②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.所有的有理数可以在数轴上表示出都可以在数轴上表示出来,故数轴上的点有的表示有理数,有的表示无理数,数轴上的点与实数是一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)整│7.绝对值:①代数定义:正数的绝对值是它的本身,0的绝对值是它的本身,负数的绝对值是它的相反数。
几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
11.科学记数法:N=n a 10⨯(1≤a <10,n 是整数)。
(1)当N 是大于1的数时,n =N 的整数位数减去1。
如:33241.56 3.2415610=⨯.(2) 当N 是小于1的数时,n =N 的第一个有效数字前0的个数.如:50.0000324156 3.2415610-=⨯12 有效数字:从左边第一个不是0的数字起到右边的所有数字止,所有的数字叫这个数的有效数字。
初中数学 总复习提纲 人教新课标版
初中数学总复习提纲第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:实数 无理数(无限不循环小数)有理数正分数 负分数 正整数 0 负整数 (有限或无限循环性数) 整数分数 正无理数负无理数0 实数 负数 整数 分数无理数有理数 正数 整数 分数无理数有理数 │a │ 2a a (a ≥0)(a 为一切实数)性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1)中,a ≠<a <1时1/a >1;a >1时,1/a<1;D.积为1。
4.相反数: ①定义及表示法②性质:≠0时,a ≠与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)a(a≥0)-a(a<0)│a │=2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3. ;B.(同级运算)从“左” 到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │=b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
初中数学总复习提纲
初中数学总复习提纲第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念 数系表:说明:“分类〞的原那么:1〕相称〔不重、不漏〕2〕有标准2.非负数:正实数与零的统称。
〔表为:x≥0〕常见的非负数有:性质:假设干个非负数的和为0,那么每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a 〔a ≠±1〕;B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义〔“三要素〞〕②作用:A.直观地比较实数的大小;B.明确表达绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数〔正整数—自然数〕定义及表示:奇数:2n-1偶数:2n 〔n 为自然数〕7.绝对值:①定义〔两种〕:代数定义: 几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
实数无理数(无限不循环小数)正分数 负分数 正整数 0 负整数 (有限或无限循环性数) 整数分数正无理数负无理数0 实数负数整数分数 无理数有理数正数整数分数无理数有理数 │a │ 2a a (a ≥0) (a 为一切实数) a(a≥0)-a(a<0)│a │=②│a │≥0,符号“││〞是“非负数〞的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││〞出现,其关键一步是去掉“││〞符号。
二、实数的运算1. 运算法那么〔加、减、乘、除、乘方、开方〕2. 运算定律〔五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律〕3. 运算顺序:A.高级运算到低级运算;B.〔同级运算〕从“左〞 到“右〞〔如5÷51×5〕;C.(有括号时)由“小〞到“中〞到“大〞。
人教版初数学总复习提纲资料
人教版初数学总复习提纲资料人教版初一数学总复习提纲资料一第四章图形认识初步目标了解常见图形的分类,会通过立体图形描绘出其展开图,掌握直线、线段的有关性质,角的相关定义及性质。
重点通过立体图形选择其展开图,直线、线段、角的相关性质。
3/13页难点看立体图形选择展开图,直线、线段、角的性质。
章节第一节:多姿多彩的图形内容几何图形:从实物中抽象出的各种图形统称为几何图形。
立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。
展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体。
面:包围着体的是面。
面有平面和曲面两种。
点是线与线相交的地方,线是面与面相交的地方。
点动成线,线动成面,面动成体。
主视图--------从正面看, 几何体的三视图左视图--------从左边看 ,, 俯视图--------从上面看第二节:直线、射线、线段经过两点有一条直线,并且只有一条直线。
两点确定一条直线。
当两条不同的直线有一个公共点时,我们就称这两条直线相交。
这个公共点叫做它们的交点。
射线和线段都是直线的一部分。
点把线段分成相等的两条线段,该点叫做线段的中点;线段存在三等分点、四等分点等。
两点的所有连线中,线段最短。
简言之:两点之间,线段最短。
距离:连接两点间的线段的长度叫做这两点的距离。
第三节:角角是一种基本的几何图形,有公共端点的两条射线组成的图形叫做角。
这个公共的端点是角的顶点,这两条射线是角的两条边。
角的符号以?表示。
常用的量角器量角,度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是1度的角,记作1o;把1度的角60等分,每一份叫做1分的角,记作1';把1分的角60等分,每一份叫做1秒的角,记作1''。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 整式单项式:由数字和字母乘积组成的式子。
系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.单项式的系数:是指单项式中的数字因数;单项数的次数:是指单项式中所有字母的指数的和.多项式:几个单项式的和。
判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。
多项式的次数是指多项式里次数最高项的次数,a b是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括这里33它前面的性质符号.它们都是用字母表示数或列式表示数量关系。
注意单项式和多项式的每一项都包括它前面的符号。
单项式和多项式统称为整式。
2.2整式的加减同类项:所含字母相同,并且相同字母的指数也相同的项。
与字母前面的系数(≠0)无关。
同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关合并同类项:把多项式中的同类项合并成一项。
可以运用交换律,结合律和分配律。
合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。
如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。
整式加减的一般步骤:1、如果遇到括号按去括号法则先去括号.2、结合同类项.3、合并同类项2.3整式的乘法法则 :单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。
多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
2.4整式的除法法则单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
单项式:单项式的次数、系数分类多项式:多项式的项数、系数、次数→升降幂排列列式子→整式去添括号整式的加减合并同类项第三章一元一次方程3.1 一元一次方程方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equationwith one unknown)。
注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;3)经整理后方程中未知数的次数是1.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等).2)等式两边同时乘以或除以同一个不为零的数,等式不变.注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.3.2 解一元一次方程(一)----合并同类项与移项一般步骤:移项→合并同类项→系数化1;(可以省略部分)了解无限循环小数化分数的方法,从而证明它是分数,也就是有理数。
3.3 解一元一次方程(二)----去括号与去分母一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;①去分母,在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;②去括号遵从先去小括号,再去中括号,最后去大括号 不要漏乘括号的项;不要弄错符号;③移项 把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号) 移项要变号; ④不要丢项合并同类项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑤把方程化成ax =b (a ≠0)的形式 字母及其指数不变系数化成1 在方程两边都除以未知数的系数a ,得到方程的解不要分子、分母搞颠倒3.4 实际问题与一元一次方程一.概念梳理⑴列一元一次方程解决实际问题的一般步骤是:①审题,特别注意关键的字和词的意义,弄清相关数量关系,②设出未知数(注意单位),③根据相等关系列出方程,④解这个方程,⑤检验并写出答案(包括单位名称).⑵一些固定模型中的等量关系:①数字问题:abc 表示一个三位数,则有10010abc a b c =++②行程问题:甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程甲走的时间=乙走的时间;甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间的距离③工程问题:各部分工作量之和 = 总工作量;④储蓄问题:本息和=本金+利息⑤商品销售问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价或商品售价=商品成本价×(1+利润率)⑥产油量=油菜籽亩产量X 含油率X 种植面积二.思想方法(本单元常用到的数学思想方法小结)⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.⑵方程思想:用方程解决实际问题的思想就是方程思想.⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a 的形式. 体现了化“未知”为“已知”的化归思想.⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.1度=60分 1分=60秒 1周角=360度 1平角=180度角的比较与运算角的平分线:如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
实际运用:航海的坐标角度:“上北下南左西右东”.4.4 设计制作长方形形状的包装纸盒第五章相交线与平行线5.1 相交线对顶角(vertical angles)相等。
过一点有且只有一条直线与已知直线垂直(perpendicular)。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
5.2 平行线经过直线外一点,有且只有一条直线与这条直线平行(parallel)。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
直线平行的条件:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
5.3 平行线的性质两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
判断一件事情的语句,叫做命题(proposition)。
第六章平面直角坐标系6.1 平面直角坐标系含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b 组成的数对,叫做有序数对(ordered pair)。
第七章三角形7.1 与三角形有关的线段三角形(triangle)具有稳定性。
7.2 与三角形有关的角三角形的内角和等于180度。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角7.3 多边形及其内角和n边形内角和等于:(n-2)•180度多边形(polygon)的外角和等于360度。
第八章二元一次方程组8.1 二元一次方程组方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。
把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
8.2 消元将未知数的个数由多化少、逐一解决的想法,叫做消元思想。
第九章不等式与不等式组9.1 不等式用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向改变。
三角形中任意两边之差小于第三边。
三角形中任意两边之和大于第三边。
9.3 一元一次不等式组把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown)。
第十章实数10.1 平方根如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。
a的算术平方根读作“根号a”,a叫做被开方数(radicand)。
0的算术平方根是0。
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。
求一个数a的平方根的运算,叫做开平方(extraction of square root)。
10.2 立方根如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。
求一个数的立方根的运算,叫做开立方(extraction of cube root)。
10.3 实数无限不循环小数又叫做无理数(irrational number)。
有理数和无理数统称实数(real number)。
八年级数学期末复习提纲十一章全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。