2015秋八年级上册期中考试数学试卷(附答案)
2015初二上学期期中考试数学试卷(有答案)
2015初二上学期期中考试数学试卷(有答案)2014-2015学年山东省济南市章丘市党家中学八年级(上)期中数学试卷一、选择题:(每题3分,共45分) 1.的相反数是()A. B. C.�D.� 2.9的算术平方根是() A.±3 B. 3 C. D. 3.在(�2)0、、0、�、、、0.101001…(相邻两个1之间0的个数逐次加1)中,无理数的个数是()A. 2 B. 3 C. 4 D. 5 4.下列计算正确的是() A. B.÷ = C. =6 D. 5.估计58的立方根的大小在() A. 2与3之间 B. 3与4之间 C. 4与5之间 D. 5与6之间 6.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是() A. B. 1.4C. D. 7.三角形各边长度如下,其中不是直角三角形的是()A. 3,4,5 B. 6,8,10 C. 5,11,12 D. 8,15,17 8.一个长方形在平面直角坐标系中三个顶点的坐标为(�1,�1),(�1,2),(3,�1),则第四个顶点的坐标为() A.(2,2) B.(3,2) C.(3,3) D.(2,3) 9.若一次函数y=kx�4的图象经过点(�2,4),则k等于() A.�4 B. 4 C.�2 D. 2 10.直角三角形两边长分别是3、4,第三边是() A. 5 B. C. 5或 D.无法确定 11.下列各点中,在函数y=�2x+5的图象上的是() A.(0,�5) B.(2,9) C.(�2,�9) D.(4,�3) 12.一次函数y=kx+6,y随x的增大而减小,则这个一次函数的图象不经过() A.第一象限 B.第二象限 C.第三象限 D.第四象限 13.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为() A. 14 B. 4 C. 14或4 D.以上都不对 14.直线y=kx+b经过一、三、四象限,则直线y=bx�k的图象只能是图中的() A. B. C. D. 15.如图,已知点A(�1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有() A. 2个 B. 4个 C. 6个 D. 7个二.填空题(每小题3分,共18分) 16.在△ABC中,∠C=90°,AB=5,则AB2+AC2+BC2= . 17. = . 18.若点P(x,y)的坐标满足xy>0,则点P(x,y)在第象限. 19.已知y=(m�3) +m+1是一次函数,则m= . 20.若点P(�2,y)与Q(x,3)关于y轴对称,则x= ,y= . 21.函数y=(m�2)x中,已知x1>x2时,y1<y2,则m的范围是.三、解答题(共7个小题,共57分) 22.计算题:(1)(�)× ;(2)�4. 23.在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=6,b=8.(1)求c的长.(2)求斜边上的高. 24.已知一次函数y=(m�4)x+3�m,当m为何值时,(1)y随x值增大而减小;(2)直线过原点;(3)直线与直线y=�2x平行;(4)直线与x轴交于点(2,0)(5)直线与y轴交于点(0,�1) 25.如图,四边形AOCB是直角梯形,AB∥OC,OA=10,AB=9,∠OCB=45°,求点A,B,C的坐标及直角梯形AOCB的面积. 26.作出函数y= x�4的图象,并回答下面的问题:(1)求它的图象与x轴、y轴的交点.(2)求图象与坐标轴围成的三角形的面积. 27.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗? 28.直线y=kx+2与两坐标轴所围成的三角形面积为4,求直线解析式.若k>0时直线与x轴交点为A与y轴交点为B解答下列问题:(1)在x轴上是否存在一点P,使S△PAB=3?若存在,请求出P点坐标,若不存在,请说明理由.(2)求直线AB上是否存在一点E,使点E到x轴的距离等于1.5,若存在求出点E的坐标,若不存在,请说明理由.(3)在x轴上是否存在一点G,使S△BOG= S△AOB?若存在,请求出G点坐标,若不存在,请说明理由.2014-2015学年山东省济南市章丘市党家中学八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每题3分,共45分)1.的相反数是() A. B. C.� D.�考点:实数的性质.分析:由于互为相反数的两个数和为0,由此即可求解.解答:解:的相反数为:�.故选:C.点评:此题主要考查了求无理数的相反数,无理数的相反数和有理数的相反数的意义相同,无理数的相反数是各地中考的重点. 2.9的算术平方根是() A.±3 B. 3 C. D.考点:算术平方根.分析:根据开方运算,可得算术平方根.解答:解:9的算术平方根是3,故选:B.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根. 3.在(�2)0、、0、�、、、0.101001…(相邻两个1之间0的个数逐次加1)中,无理数的个数是() A. 2 B. 3 C. 4 D. 5考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,,0.101001…(相邻两个1之间0的个数逐次加1)共3个.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 4.下列计算正确的是() A. B.÷ = C. =6 D.考点:实数的运算.专题:计算题.分析:根据同类二次根式的定义对A进行判断;根据二次根式的除法对B进行判断;根据积的乘方对C进行判断;计算根号内的平方和即可对D进行判断.解答:解:A、和不是同类二次根式,不能合并,所以A选项错误; B、÷ = = ,所以B选项正确; C、(2 )2=4×3=12,所以C选项错误; D、= ,所以D选项错误.故选B.点评:本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行加减运算. 5.估计58的立方根的大小在() A. 2与3之间B. 3与4之间 C. 4与5之间 D. 5与6之间考点:估算无理数的大小.分析:应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.解答:解:∵33=27,43=64,∴3<<4.故选B.点评:此题主要考查了估算无理数的能力,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法. 6.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是() A. B. 1.4 C. D.考点:实数与数轴;勾股定理.分析:先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式即可求出A点的坐标.解答:解:数轴上正方形的对角线长为: = ,由图中可知0 和A之间的距离为.∴点A表示的数是.故选D.点评:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的符号后,点A所表示的数是距离原点的距离. 7.三角形各边长度如下,其中不是直角三角形的是() A. 3,4,5 B. 6,8,10 C. 5,11,12 D. 8,15,17考点:勾股定理的逆定理.专题:应用题.分析:分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.解答:解:A、∵32+42=52,∴5,4,3能构成直角三角形; B、∵62+82=102,∴6,8,10能构成直角三角形; C、∵52+112≠122,∴5,11,12不能构成直角三角形; D、∵82+52=172,∴8,15,17能构成直角三角形.故选C.点评:主要考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 8.一个长方形在平面直角坐标系中三个顶点的坐标为(�1,�1),(�1,2),(3,�1),则第四个顶点的坐标为() A.(2,2) B.(3,2) C.(3,3) D.(2,3)考点:坐标与图形性质;矩形的性质.分析:本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.解答:解:如图可知第四个顶点为:即:(3,2).故选:B.点评:本题考查学生的动手能力,画出图后可很快得到答案. 9.若一次函数y=kx�4的图象经过点(�2,4),则k等于() A.�4 B. 4 C.�2 D. 2考点:待定系数法求一次函数解析式.专题:计算题.分析:将点(�2,4)代入函数解析式可得出关于k的方程,解出即可得出k 的值.解答:解:将点(�2,4)代入得:4=�2k�4,解得:k=�4.故选A.点评:本题考查待定系数求函数的解析式,属于基础性,注意在代入点的坐标时要细心求解. 10.直角三角形两边长分别是3、4,第三边是() A. 5 B. C. 5或 D.无法确定考点:勾股定理.分析:此题要考虑两种情况:当第三边是斜边时;当第三边是直角边时.解答:解:当第三边是斜边时,则第三边= =5;当第三边是直角边时,则第三边= = .故选C.点评:熟练运用勾股定理,注意此题的两种情况. 11.下列各点中,在函数y=�2x+5的图象上的是() A.(0,�5) B.(2,9)C.(�2,�9) D.(4,�3)考点:一次函数图象上点的坐标特征.分析:把选项中的各点代入解析式,通过等式左右两边是否相等来判断点是否在函数图象上.解答:解:∵一次函数y=�2x+5图象上的点都在函数图象上,∴函数图象上的点都满足函数的解析式y=�2x+5; A、当x=0时,y=5≠�5,即点(0,�5)不在该函数图象上;故本选项错误; B、当x=2时,y=1≠9,即点(2,9)不在该函数图象上;故本选项错误;C、当x=�2时,y=9≠�9,即点(�2,�9)不在该函数图象上;故本选项错误;D、当x=4时,y=�3,即点(4,�3)在该函数图象上;故本选项正确;故选D.点评:本题考查了一次函数图象上点的坐标特征.用到的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式. 12.一次函数y=kx+6,y随x的增大而减小,则这个一次函数的图象不经过() A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:一次函数图象与系数的关系.分析:先根据一次函数的性质判断出k的取值范围,再根据一次函数的图象与系数的关系即可得出结论.解答:解:∵一次函数y=kx+6,y随x的增大而减小,∴k <0,∵b=6>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C.点评:本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,k<0,b>0时函数的图象在一、二、四象限是解答此题的关键. 13.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为() A. 14 B. 4 C. 14或4 D.以上都不对考点:勾股定理.专题:分类讨论.分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD�BD.解答:解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2�AD2=132�122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得 CD2=AC2�AD2=152�122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2�AD2=132�122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得 CD2=AC2�AD2=152�122=81,则CD=9,故BC的长为DC�BD=9�5=4.故选:C.点评:本题考查了勾股定理,把三角形边的问题转化到直角三角形中用勾股定理解答. 14.直线y=kx+b经过一、三、四象限,则直线y=bx�k的图象只能是图中的() A. B. C. D.考点:一次函数的图象.分析:根据直线y=kx+b经过第一、三、四象限可以确定k、b的符号,则易求�b的符号,由�b,k的符号来求直线y=bx�k所经过的象限.解答:解:∵直线y=kx+b经过第一、三、四象限,∴k>0,b<0,∴�k<0,∴直线y=bx�k 经过第二、三、四象限.故选C.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交. 15.如图,已知点A(�1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有() A. 2个 B. 4个 C. 6个 D. 7个考点:直角三角形的性质;坐标与图形性质.专题:压轴题.分析:当∠PBA=90°时,即点P的位置有2个;当∠BPA=90°时,点P的位置有3个;当∠BAP=90°时,在y轴上共有1个交点.解答:解:①以A为直角顶点,可过A作直线垂直于AB,与坐标轴交于一点,这一点符合点P的要求;②以B为直角顶点,可过B作直线垂直于AB,与坐标轴交于两点,这两点也符合P点的要求;③以P为直角顶点,可以AB为直径画圆,与坐标轴共有3个交点.所以满足条件的点P共有6个.故选C.点评:主要考查了坐标与图形的性质和直角三角形的判定.要把所有的情况都考虑进去,不要漏掉某种情况.二.填空题(每小题3分,共18分) 16.在△ABC中,∠C=90°,AB=5,则AB2+AC 2+BC2= 50 .考点:勾股定理.分析:根据勾股定理可得AB2=AC2+BC2,然后代入数据计算即可得解.解答:解:∵∠C=90°,∴AB2=AC2+BC2,∴AB2+AC2+BC2=2AB2=2×52=2×25=50.故答案为:50.点评:本题考查了勾股定理,是基础题,熟记定理是解题的关键. 17. = 4 .考点:算术平方根.分析:根据二次根式的性质,可得答案.解答:解:原式= =4,故答案为:4.点评:本题好查了算术平方根, =a (a≥0)是解题关键. 18.若点P(x,y)的坐标满足xy>0,则点P(x,y)在第一、三象限.考点:点的坐标.专题:计算题.分析:根据xy>0,可判断xy的符号,即可确定点P所在的象限.解答:解:∵xy>0,∴xy 为同号即为同正或同负,∴点P(x,y)在第一或第三象限.故答案为:一、三.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(�,+);第三象限(�,�);第四象限(+,�). 19.已知y=(m�3) +m+1是一次函数,则m= �3 .考点:一次函数的定义.分析:根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.解答:解;由y=(m�3) +m+1是一次函数,得,解得m=�3,m=3(不符合题意的要舍去).故答案为:�3.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1. 20.若点P(�2,y)与Q(x,3)关于y轴对称,则x= 2 ,y= 3 .考点:关于x轴、y轴对称的点的坐标.分析:让纵坐标相等,横坐标互为相反数列式求值即可.解答:解:∵P(�2,y)与Q(x,3)关于y轴对称,∴�2+x=0,y=3,解得x=2,y=3.点评:用到的知识点为:两点关于y轴对称,纵坐标相等,横坐标互为相反数. 21.函数y=(m�2)x中,已知x1>x2时,y1<y2,则m 的范围是m<2 .考点:一次函数图象上点的坐标特征.专题:计算题.分析:根据一次函数的性质得到m�2<0,然后解不等式即可.解答:解:∵x1>x2时,y1<y2,∴m�2<0,∴m<2.故答案为m<2.点评:本题考查了一次函数图象上点的坐标特征:一次函数图象上的点满足其解析式.也考查了一次函数的性质.三、解答题(共7个小题,共57分) 22.计算题:(1)(�)× ;(2)�4.考点:二次根式的混合运算.分析:(1)利用二次根式的乘法法则即可求解;(2)首先把二次根式化简,然后计算二次根式的除法,求解即可.解答:解:(1)原式= �=9�12 =�3;(2)原式= �4 = �4 = .点评:本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算. 23.在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=6,b=8.(1)求c的长.(2)求斜边上的高.考点:勾股定理.分析:(1)直接根据勾股定理即可得出结论;(2)设斜边上的高为h,再根据三角形的面积公式即可得出结论.解答:解:(1)∵在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=6,b=8,∴c= =2 ;(2)设斜边上的高为h,则8h=6×2 ,解得h= .点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键. 24.已知一次函数y=(m�4)x+3�m,当m为何值时,(1)y随x值增大而减小;(2)直线过原点;(3)直线与直线y=�2x平行;(4)直线与x 轴交于点(2,0)(5)直线与y轴交于点(0,�1)考点:一次函数图象与系数的关系;两条直线相交或平行问题.分析:(1)根据一次函数的性质得出m�4<0,解不等式即可;(2)把原点的坐标(0,0)代入y=(m�4)x+3�m,得到关于m的方程,解方程即可;(3)根据两条直线平行的条件得出m�4=�2,3�m≠0,求出即可;(4)把点(2,0)代入y=(m�4)x+3�m,得到关于m 的方程,解方程即可;(5)把点(0,�1)代入y=(m�4)x+3�m,得到关于m的方程,解方程即可.解答:解:(1)由题意,得m�4<0,解得m<4;(2)把原点的坐标(0,0)代入y=(m�4)x+3�m,得3�m=0,解得m=3;(3)由题意,得m�4=�2,3�m≠0,解得m=2;(4)把点(2,0)代入y=(m�4)x+3�m,得2(m�4)+3�m=0,解得m=5;(5)把点(0,�1)代入y=(m�4)x+3�m,得3�m=�1,解得m=4.点评:本题考查了一次函数的性质,一次函数图象上点的坐标特征,两条直线平行的条件,是基础知识,需熟练掌握. 25.如图,四边形AOCB是直角梯形,AB∥OC,OA=10,AB=9,∠OCB=45°,求点A,B,C的坐标及直角梯形AOCB的面积.考点:直角梯形.分析:根据题意首先求出CO的长,进而得出A,B,C的坐标,进而求出梯形面积.解答:解:过点B作BD⊥CO于点D,∵∠OCB=45°,AB∥OC,OA=10,AB=9,∴BD=CD=10,OD=9,∴CO=OD+DC=9+10=19,故A点坐标为:(0,10), B点坐标为:(9,10), C点坐标为:(19,0),直角梯形AOCB的面积为:(AB+OC)×OA= ×(9+19)×10=140.点评:此题主要考查了直角梯形的性质以及等腰直角三角形的性质,得出CO的长是解题关键. 26.作出函数y= x�4的图象,并回答下面的问题:(1)求它的图象与x 轴、y轴的交点.(2)求图象与坐标轴围成的三角形的面积.考点:一次函数的图象;一次函数图象上点的坐标特征.分析:(1)分别把x=0和y=0代入函数的解析式,即可求出答案;(2)求出OA和OB,根据三角形的面积公式求出即可.解答:解:(1)如图所示:把x=0代入y= x�4得:y=�4,把y=0代入y= x�4得:0= x�4,解得:x=3,所以与x轴的交点为(3,0),与y轴的交点为(0,�4);( 2)∵OA=3,OB=4,∴S△AOB= ×OA×OB= ×3×4=6,即图象与坐标轴围成的三角形的面积是6.点评:本题考查了一次函数的图象和性质的应用,解此题的关键是求出函数的图象和两坐标轴的交点坐标. 27.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗?考点:翻折变换(折叠问题).分析:连接BE,设CE=x,由折叠可知,AE=BE=10�x,把问题转化到Rt△BCE中,使用勾股定理.解答:解:连接BE,设CE=x ∵将直角三角形的纸片折叠,A与B重合,折痕为DE ∴DE是AB的垂直平分线∴AE=BE=10�x 在Rt△BCE 中 BE2=CE2+BC2 即(10�x)2=x2+62 解之得x= ,即CE= cm.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应线段相等. 28.直线y=kx+2与两坐标轴所围成的三角形面积为4,求直线解析式.若k>0时直线与x轴交点为A与y轴交点为B解答下列问题:(1)在x轴上是否存在一点P,使S△PAB=3?若存在,请求出P点坐标,若不存在,请说明理由.(2)求直线AB上是否存在一点E,使点E到x轴的距离等于1.5,若存在求出点E的坐标,若不存在,请说明理由.(3)在x轴上是否存在一点G,使S△BOG= S△AO B?若存在,请求出G点坐标,若不存在,请说明理由.考点:一次函数综合题.专题:综合题.分析:当k>0时,设直线与x轴交点为A,与y轴交点为B,如图1,则有OB=2,然后由S△AOB=4可得OA,从而可得点A的坐标,代入y=kx+2就可求出该直线的解析式;当k<0时,设直线与x轴交点为C,与y轴交点为B,如图2,则有OB=2,然后由S△COB=4可得OC,从而可得点C的坐标,代入y=kx+2就可求出该直线的解析式.(1)由条件可求出AP的长,就可得到点P的坐标;(2)由条件可得到点E的纵坐标,代入y=kx+2,就可得到点E的横坐标,从而解决问题;(3)由条件可求出OG的长,从而可得到点G的坐标.解答:解:当k>0时,设直线与x 轴交点为A,与y轴交点为B,如图1,则点B的坐标为(0,2),OB=2,S△AOB= OA•OB=4,解得:OA=4,∴点A的坐标为(�4,0),∴�4k+2=0,解得:k= ,∴直线的解析式为y= x+2.当k<0时,设直线与x轴交点为C,与y轴交点为B,如图2,则点B的坐标为实用精品文献资料分享(0,2),OB=2,S△COB= OC•OB=4,解得:OC=4,∴点C的坐标为(4,0),∴4k+2=0,解得:k=�,∴直线的解析式为y=�x+2.综上所述:所求直线解析式为y= x+2或y=� x+2.(1)若在x轴上存在一点P,使S△PAB=3,则S△PAB= AP•OB= AP×2=AP=3,∵点A的坐标为(�4,0),∴点P的坐标为(�1,0)或(�7,0).(2)若直线AB上存在一点E,使点E到x轴的距离等于1.5,则|yE|=1.5,∴yE=±1.5.当yE=1.5时, xE+2=1.5,解得:xE=�1,此时点E的坐标为(�1,1.5).当yE=�1.5时, xE+2=�1.5,解得:xE=�7,此时点E的坐标为(�7,�1.5).综上所述:点E 的坐标为(�1,1.5)或(�7,�1.5).(3)若在x轴上存在一点G,使S△BOG= S△AOB,则有OG×2= ×4,解得:OG=2,∴点G的坐标为(�2,0)或(2,0).点评:本题主要考查了直线上点的坐标特征、用待定系数法求直线的解析式、线段长度与坐标之间的关系、三角形的面积等知识,需要注意的是:线段的长度确定,所对应的点的坐标可能并不唯一,要考虑全面.。
2015秋期八年级上册数学期中试卷(有答案)
2015秋期八年级上册数学期中试卷(有答案)2014-2015学年山东省济南市章丘市枣园中学八年级(上)期中数学试卷一、选择(3*15=45分) 1.已知油箱中有油25升,每小时耗油5升,则剩油量P(升)与耗油时间t(小时)之间的函数关系式为() A. P=25+5t B. P=25�5t C. P= D. P=5t�25 2.下列运算正确的是() A. B. C. D. 3.已知 =�x ,则() A.x≤0 B.x≤�3 C.x≥�3 D.�3≤x≤0 4.如图,矩形ABCD中,AB=3,AD=1,AB 在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A.(2,0) B.() C.() D.() 5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A. B. C. D. 6.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为() A. 7 B. 6 C. 5 D. 4 7.化简的结果为() A. B.�C.�D. 8.若函数y=2x+3与y=3x�2b的图象交x轴于同一点,则b的值为() A.�3 B.�C. 9 D.� 9.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为() A. y=x+1 B. y=x�1 C. y=x D. y=x�2 10.两直线l1:y=2x�1,l2:y=x+1的交点坐标为() A.(�2,3) B.(2,�3) C.(�2,�3) D.(2,3) 11.实数a在数轴上的位置如图所示,则化简后为() A. 7 B.�7 C. 2a�15 D.无法确定 12.如图所示,函数y1=|x |和的图象相交于(�1,1),(2,2)两点.当y1>y2时,x的取值范围是() A. x<�1 B.�1<x<2 C. x>2 D. x<�1或x>2 13.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是() A. 8.6分钟 B. 9分钟 C. 12分钟 D. 16分钟14.如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB 于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为() A. 2 B. 2 C. D. 3 15.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为9的正方形内的整点个数为() A. 64 B. 49 C. 36 D. 81 二、填空(3*6=18分) 16.点A(3,�4)到y轴的距离为,到x轴的距离为,到原点距离为. 17.与点A(3,4)关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的点的坐标为. 18.计算2 �6 += . 19.直角三角形两条直角边的长分别为8,15,则斜边上的高为. 20.如图,在平面直角坐标系中,等边三角形OAB的边长为4,把△OAB沿AB所在的直线翻折.点O落在点C处,则点C的坐标为. 21.一次函数y=�x+2的图象上有两点A、B,A点的横坐标为2,B点的横坐标为a(0<a<4且a≠2),过点A、B分别作x的垂线,垂足为C、D,△AOC、△BOD 的面积分别为S1、S2,则S1、S2的大小关系是.三、解答 22.(计算时不能使用计算器)计算:. 23.. 24.直线y= 2x�8与x轴、y轴分别交于A、B,坐标原点为O,求△OAB的面积. 25.已知一次函数的图象经过(3,5)和(�4,�9)两点.(1)求这个一次函数的解析式;(2)若点(a,2)在这个函数图象上,求a的值. 26.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(�4,5),(�1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标. 27.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积. 28.如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯的底部距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑多少? 29.某蒜薹生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:销售方式批发零售储藏后销售售价(元/吨) 3000 4500 5500 成本(元/吨) 700 1000 1200 若经过一段时间,蒜薹按计划全部售出获得的总利润为y(元),蒜薹零售x(吨),且零售量是批发量的.(1)求y与x之间的函数关系式;(2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润.2014-2015学年山东省济南市章丘市枣园中学八年级(上)期中数学试卷参考答案与试题解析一、选择(3*15=45分) 1.已知油箱中有油25升,每小时耗油5升,则剩油量P(升)与耗油时间t (小时)之间的函数关系式为() A. P=25+5t B. P=25�5t C. P= D. P=5t�25考点:根据实际问题列一次函数关系式.分析:根据油箱内余油量=原有的油量�t小时消耗的油量,可列出函数关系式.解答:解:依题意得,油箱内余油量P(升)与行驶时间t(小时)的关系式为:P=25�5t.故选:B.点评:本题考查了根据实际问题列一次函数关系式.关键是明确油箱内余油量,原有的油量,t小时消耗的油量,三者之间的数量关系. 2.下列运算正确的是()A. B. C. D.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式运算的法则,分别计算得出各答案的值,即可得出正确答案.解答:解:A.∵ =5,故此选项错误; B.∵4 � =4 �3 = ,故此选项错误;C. ÷ = =3,故此选项错误; D.∵ • = =6,故此选项正确.故选:D.点评:此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待. 3.已知 =�x ,则()A.x≤0 B.x≤�3 C.x≥�3 D.�3≤x≤0考点:二次根式的性质与化简.专题:计算题.分析:根据二次根式的非负性进行求解.解答:解:∵ =�x ≥0,∴x≤0,x+3≥0,∴�3≤x≤0,故选D.点评:本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义. 4.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M 的坐标为() A.(2,0) B.() C.() D.()考点:勾股定理;实数与数轴;矩形的性质.专题:数形结合.分析:在RT△ABC中利用勾股定理求出AC,继而得出AM的长,结合数轴的知识可得出点M的坐标.解答:解:由题意得,AC= = = ,故可得AM= ,BM=AM�AB= �3,又∵点B的坐标为(2,0),∴点M的坐标为(�1,0).故选C.点评:此题考查了勾股定理及坐标轴的知识,属于基础题,利用勾股定理求出AC的长度是解答本题的关键,难度一般. 5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的() A. B. C. D.考点:一次函数的应用;一次函数的图象.专题:压轴题.分析:根据实际情况即可解答.解答:解:蜡烛剩下的长度随时间增长而缩短,根据实际意义不可能是D,更不可能是A、C.故选B.点评:解答一次函数的应用题时,必须考虑自变量的取值范围要使实际问题有意义. 6.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为() A. 7 B. 6 C. 5 D. 4考点:勾股定理;等腰三角形的性质.专题:压轴题.分析:根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.解答:解:∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD= BC=3,AD同时是BC上的高线,∴AB= =5,故选C.点评:本题考查勾股定理及等腰三角形的性质.解题关键是得出中线AD是BC上的高线,难度适中. 7.化简的结果为() A. B.� C.� D.考点:二次根式的性质与化简.分析:根据二次根式乘法,可化简二次根式.解答:解:原式= =�,故选:C.点评:本题考查了二次根式的性质与化简,利用了二次根式的乘法. 8.若函数y=2x+3与y=3x�2b的图象交x轴于同一点,则b的值为()A.�3 B.� C. 9 D.�考点:两条直线相交或平行问题.专题:计算题.分析:本题可先求函数y=2x+3与x轴的交点,再把交点坐标代入函数y=3x�2b,即可求得b的值.解答:解:在函数y=2x+3中,当y=0时,x=�,即交点(�,0),把交点(�,0)代入函数y=3x�2b,求得:b=�.故选D.点评:注意先求函数y=2x+3与x轴的交点是解决本题的关键. 9.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为() A. y=x+1 B. y=x�1 C. y=x D. y=x�2考点:一次函数图象与几何变换.专题:压轴题;探究型.分析:根据“左加右减”的原则进行解答即可.解答:解:由“左加右减”的原则可知,在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为y=x+1.故选A.点评:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 10.两直线l1:y=2x�1,l2:y=x+1的交点坐标为()A.(�2,3) B.(2,�3) C.(�2,�3) D.(2,3)考点:两条直线相交或平行问题.专题:计算题.分析:根据题意知,两直线有交点,所以列出方程组,解方程组即可.解答:解:根据题意得:,解得:,∴两直线l1:y=2x�1,l2:y=x+1的交点坐标为(2,3),故选:D.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式. 11.实数a在数轴上的位置如图所示,则化简后为() A. 7 B.�7 C. 2a�15 D.无法确定考点:二次根式的性质与化简;实数与数轴.分析:先从实数a 在数轴上的位置,得出a的取值范围,然后求出(a�4)和(a�11)的取值范围,再开方化简.解答:解:从实数a在数轴上的位置可得, 5<a<10,所以a�4>0, a�11<0,则, =a�4+11�a,=7.故选A.点评:本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念. 12.如图所示,函数y1=|x|和的图象相交于(�1,1),(2,2)两点.当y1>y2时,x的取值范围是() A. x<�1 B.�1<x<2 C. x>2 D. x<�1或x>2考点:两条直线相交或平行问题.专题:函数思想.分析:首先由已知得出y1=x或y1=�x又相交于(�1,1),(2,2)两点,根据y1>y2列出不等式求出x的取值范围.解答:解:当x≥0时,y1=x,又,∵两直线的交点为(2,2),∴当x<0时,y1=�x,又,∵两直线的交点为(�1,1),由图象可知:当y1>y2时x 的取值范围为:x<�1或x>2.故选D.点评:此题考查的是两条直线相交问题,关键要由已知列出不等式,注意象限和符号. 13.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是() A. 8.6分钟 B. 9分钟 C. 12分钟 D. 16分钟考点:函数的图象.专题:压轴题.分析:根据图象可知:小明从家骑车上学,上坡的路程是1千米,用5分钟,则上坡速度是0.2千米/分钟;下坡路长是2千米,用4分钟,因而速度是0.5千米/分钟,由此即可求出答案.解答:解:他从学校回到家需要的时间是 =12分钟.故选C.点评:读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小. 14.如图,△ABC 是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A. 2 B. 2 C. D. 3考点:等边三角形的性质;线段垂直平分线的性质;含30度角的直角三角形;勾股定理.专题:压轴题;探究型.分析:先根据△ABC 是等边三角形P是∠ABC的平分线可知∠EBP=∠QBF=30°,再根据BF=2,FQ⊥BP可得出BQ的长,再由BP=2BQ可求出BP的长,在Rt△BEF 中,根据∠EBP=30°即可求出PE的长.解答:解:∵△ABC是等边三角形P是∠ABC的平分线,∴∠EBP=∠QBF=30°,∵BF=2,QF 为线段BP的垂直平分线,∴∠FQB=90°,∴BQ=BF•cos30°=2× = ,∴BP=2BQ=2 ,在Rt△BEP中,∵∠EBP=30°,∴PE= BP= .故选:C.点评:本题考查的是等边三角形的性质、角平分线的性质及直角三角形的性质,熟知等边三角形的三个内角都是60°是解答此题的关键. 15.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为9的正方形内的整点个数为()A. 64 B. 49 C. 36 D. 81考点:规律型:点的坐标.分析:求出边长为1、2、3、4、5、6、7、的正方形的整点的个数,得到边长为1和2的正方形内部有1个整点,边长为3和4的正方形内部有9个整点,边长为5和6的正方形内部有25个整点,边长为7和8的正方形内部有49个整点,推出边长为9的正方形内部有81个整点,即可得出答案.解答:解:设边长为9的正方形内部的整点的坐标为(x,y),x,y都为整数.则�5<x<5,�5<y<5,故x只可取�4,�3,�2,�1,0,1,2,3,4共9个,y只可取�4,�3,�2,�1,0,1,2,3,4共9个,它们共可组成点(x,y)的数目为9×9=81(个)故答案为D.点评:本题主要考查对正方形的性质,坐标与图形的性质等知识点的理解和掌握,根据已知总结出规律是解此题的关键.二、填空(3*6=18分) 16.点A(3,�4)到y轴的距离为 3 ,到x轴的距离为 4 ,到原点距离为 5 .考点:点的坐标.分析:根据点的坐标的几何意义解答即可.解答:解:根据点的坐标的几何意义可知:点A(3,�4)到y轴的距离为3,到x轴的距离为4,到原点距离为 =5.故填3、4、5.点评:本题主要考查了点的坐标的几何意义,横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离. 17.与点A(3,4)关于x轴对称的点的坐标为(3,�4),关于y轴对称的点的坐标为(�3,4),关于原点对称的点的坐标为(�3,�4).考点:关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.分析:根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点解答.解答:解:根据平面直角坐标系中对称点的规律可知,与点A(3,4)关于x轴对称的点的坐标为(3,�4),关于y轴对称的点的坐标为(�3,4),关于原点对称的点的坐标为(�3,�4).点评:主要考查了平面直角坐标系中对称点的规律,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数. 18.计算2 �6 + = 3 �2 .考点:二次根式的加减法.分析:根据二次根式的加减运算的方法:先化为最简二次根式,再将被开方数相同的二次根式进行合并即可求得答案.解答:解:2 �6 + = �2 +2 =3 �2 .故答案为:3 �2 .点评:此题考查了二次根式的加减运算.此题比较简单,注意解题的关键是首先将各二次根式化为最简二次根式,然后再合并. 19.直角三角形两条直角边的长分别为8,15,则斜边上的高为.考点:勾股定理.分析:设斜边上的高为h,先根据勾股定理求出斜边的长,再由三角形的面积公式即可得出结论.解答:解:设斜边上的高为h,∵直角三角形两条直角边的长分别为8,15,∴斜边的长= =17,∴8×15=17h,解得h= .故答案为:.点评:本题考查了利用勾股定理及利用面积法求直角三角形的高,是解此类题目常用的方法. 20.如图,在平面直角坐标系中,等边三角形OAB的边长为4,把△OAB沿AB所在的直线翻折.点O落在点C处,则点C的坐标为(6,2 ).考点:翻折变换(折叠问题);坐标与图形性质;等边三角形的性质.专题:压轴题.分析:由折叠的性质知OA=BC,可先求出B 点坐标,然后将B点坐标向右平移4个单位即可得到C点的坐标.解答:解:过B作BD⊥x轴于D;在Rt△OBD中,OB=4,∠BOD=60°,则: OD=2,BD=2 ;∴B(2,2 );由折叠的性质知:BC=OB=4,∴C (6,2 ).故答案为:(6,2 ).点评:此题主要考查了等边三角形的性质、解直角三角形以及图象的翻折变换,能够根据折叠的性质得到BC的长是解答此题的关键. 21.一次函数y=�x+2的图象上有两点A、B,A点的横坐标为2,B点的横坐标为a(0<a<4且a≠2),过点A、B分别作x的垂线,垂足为C、D,△AOC、△BOD的面积分别为S1、S2,则S1、S2的大小关系是S1>S2 .考点:一次函数图象上点的坐标特征.分析:△AOC的面积S1已知,△BOD的面积S2可由关于a的函数表示,求出S2的取值范围,跟S1比较即可.解答:解:把x=2代入y=�x+2,得y=�×2+2=1,即A(2,1),则S1= ×2×1=1,S2= a×(� a+2)=�(a�2)2+1,又0<a<4且a≠2,所以S2<1=S1,即S1>S2,故答案为S1>S2.点评:本题考查的是一次函数图象上点的坐标特征,由一次函数确定坐标,根据坐标表示出面积并比较大小,另外还考查了二次函数的性质.三、解答 22.(计算时不能使用计算器)计算:.考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:根据零指数幂和负整数指数幂得原式= �3+1�3 +2�,然后合并同类二次根式.解答:解:原式= �3+1�3 +2�=�3 .点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂. 23..考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则进行计算.解答:解:原式= �� + = �1� +1 = �.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式. 24.直线y=2x�8与x轴、y轴分别交于A、B,坐标原点为O,求△OAB的面积.考点:一次函数图象上点的坐标特征.分析:先令x=0求出y的值,再令y=0求出x的值,根据三角形的面积公式即可得出结论.解答:解:∵令x=0,则y=�8,令y=0,则x=4,∴A(4,0),B(0,�8),∴S△AOB= ×4×8=16.点评:本题考查的是一次函数图象上点的坐标特点,熟知两坐标轴上点的坐标特点是解答此题的关键. 25.已知一次函数的图象经过(3,5)和(�4,�9)两点.(1)求这个一次函数的解析式;(2)若点(a,2)在这个函数图象上,求a的值.考点:待定系数法求一次函数解析式;一次函数图象上点的坐标特征.专题:待定系数法.分析:(1)设函数解析式为y=kx+b,将两点代入可求出k和b的值,进而可得出答案.(2)将点(a,2)代入可得关于a的方程,解出即可.解答:解:(1)设一次函数的解析式y=ax+b,∵图象过点(3,5)和(�4,�9),将这两点代入得:,解得:k=2,b=�1,∴函数解析式为:y=2x�1;(2)将点(a,2)代入得:2a�1=2,解得:a= .点评:本题考查待定系数法求一次函数解析式,属于比较基础的题,注意待定系数法的掌握,待定系数法是中学数学一种很重要的解题方法. 26.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(�4,5),(�1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.考点:作图-轴对称变换;坐标与图形变化-对称.专题:作图题.分析:(1)易得y轴在C的右边一个单位,x轴在C的下方3个单位;(2)作出A,B,C三点关于y轴对称的三点,顺次连接即可;(3)根据所在象限及距离坐标轴的距离可得相应坐标.解答:解:(1)(2)如图;(3)点B′的坐标为(2,1).点评:本题考查轴对称作图问题.用到的知识点:图象的变换,看关键点的变换即可. 27.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.考点:勾股定理的应用.分析:连接AC,根据勾股定理,求得AC,再根据勾股定理的逆定理,判断三角形ACD是直角三角形.这块草坪的面积等于两个直角三角形的面积之和.解答:解:连接AC,如图,∵AB⊥BC,∴∠ABC=90°,∵AB=3米,BC=4米,∴AC=5米,∵CD=12米,DA=13米,∴△ACD为直角三角形,∴草坪的面积等于=S△ABC+S△ACD=3×4÷2+5×12÷2=6+30=36米2.点评:本题考查了勾股定理和勾股定理的逆定理. 28.如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯的底部距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑多少?考点:勾股定理的应用.分析:先利用勾股定理计算出墙高,当梯子的顶端沿墙下滑4分米后,也形成一直角三角形,解此三角形可实用精品文献资料分享计算梯的底部距墙底端的距离,则可计算梯子的底部平滑的距离.解答:解:墙高为: =24分米当梯子的顶端沿墙下滑4分米时:则梯子的顶部距离墙底端:24�4=20分米梯子的底部距离墙底端: =15分米,则梯的底部将平滑:15�7=8分米.故梯的底部将平滑8分米.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键. 29.某蒜薹生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:销售方式批发零售储藏后销售售价(元/吨) 3000 4500 5500 成本(元/吨) 700 1000 1200 若经过一段时间,蒜薹按计划全部售出获得的总利润为y(元),蒜薹零售x(吨),且零售量是批发量的.(1)求y与x之间的函数关系式;(2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润.考点:一次函数的应用.专题:经济问题.分析:(1)利润=批发数量×(批发售价�批发成本)+零售数量×(零售售价�零售成本)+储藏数量×(储藏售价�储藏成本);(2)由库储藏的蒜薹最多80吨,则得200�4x≤80.再由y与x之间的函数关系式可求得y的最大值.解答:解:(1)由题意,批发蒜薹3x吨,储藏后销售(200�4x)吨,则y=3x(3000�700)+x(4500�1000)+(200�4x)(5500�1200), =�6800x+860000(0<x≤50).(2)由题意得200�4x≤80解之得x≥30,∵y=�6800x+860000且�6800x<0,∴y的值随x的值增大而减小,当x=30时,y最大值=�6800×30+860000=656000(元);答:该生产基地按计划全部售完蒜薹获得的最大利润为656000元.点评:本题主要考查了一次函数在实际问题中的应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.。
2015年秋学期期中学业质量测试八年级数学试卷附答案
2015年秋学期期中学业质量测试八年级数学试卷注意:1.本试卷共6页,满分为150分,考试时间为120分钟. 2.答题前,考生务必将本人的学校、班级、姓名、学号填写在答题纸相应的位置上. 3.考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共6小题,每小题3分) 1.下列交通标志是轴对称图形的是( ▲ )A .B .C .D .2.在下列实数中,无理数是 ( ▲ )A .227BC .2π+ D3. 下列各组数是勾股数的是( ▲ )A . 5,12,13B . 4,5,6C . 7,12,13D . 9,12,134. 在三角形面积公式S=12ah 中,a=2,下列说法正确的是( ▲ ) A . S 、a 是变量,12h 是常量 B .S 、h 是变量,12是常量C . S 、h 是变量,12a 是常量D .S 、h 、a 是变量,12是常量5. 若一个三角形成轴对称图形,且有一个内角为60°,则这个三角形一定是( ▲ ) A .直角三角形 B .等腰直角三角形C .等边三角形D .底和腰不相等的等腰三角形6.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的( ▲ )二.填空题(本大题共10小题,每小题3分,共30分)7.16的算术平方根是 ▲.B. A .C.D . (1) (2) (3) (4)(第6题图)8.奥运火炬接力传递的总路程约为137000000米,这个数用科学记数法表示为▲米.9.取圆周率π=3.1415926…的近似值时,若要求精确到0.001,则π≈▲.10.已知等腰三角形的两边长分别为2和5,则它的周长为▲.11.有一个数值转换机,原理如下:(第11题图)当输入的x=81时,输出的y= ▲.12.如图,在△ABC中,∠C=28°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A= ▲°.B(第12题图)(第13题图)(第14题图)(第15题图)13. 如图,点A的坐标是(1,1),如果将线段OA绕点O按逆时针方向旋转135°,那么点A旋转后的对应点的坐标是▲.14.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、4、2、3,则最大正方形E的面积是▲.15.如图,在等边△ABC中,点D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.若CD=1,则EF的长为▲.16.在一个长为8分米,宽为5分米,高为7分米的长方体上,截去一个长为6分米,宽为5分米,深为2分米的长方体后,得到一个如图所示的几何体. 一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到几何体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是▲分米.三.解答题(本大题共10小题,共102分)17.(本题满分12分)求下列各式中的x:(第16题图)-3-2-154321(1) 已知3216x =-,求x ; (2)18. (本题满分8分)作图题(不写作法,保留作图痕迹):(1)如图,已知△ABC ,∠C =Rt ∠,AC <BC ,D 为BC 上一点,且到A 、B 两点的距离相等. 用直尺和圆规,作出点D 的位置;(第18题①图)(2)用直尺和圆规在如图所示的数轴上作出表示的点.(第18题②图)19. (本题满分8分)如图,把长方形纸片ABCD 沿EF 折叠后,使得点D 与点B 重合,点C 落在点C ′的位置上.(1)△BEF 是等腰三角形吗?试说明理由; (2)若AB =8,DE =10,求CF 的长度.B(第19题图)20. (本题满分8分)在弹性限度内,弹簧长度y (cm )是所挂物体的质量x (g )的一次函数.已知一根弹簧挂10g 物体时的长度为11cm ,挂30g 物体时的长度为15cm . (1)求y 与x 的函数表达式;(2)当所挂物体的质量为14g 时,求弹簧的长度.21.(本题满分10分)按下列要求确定点的坐标.(1)已知点A 在第四象限,且到x 轴距离为1,到y 轴距离为5,求点A 的坐标; (2)已知点B (a -1,-2a +8),且点B 在第一、三象限的角平分线上,求a ;(3)试判断(1)、(2)中的点A、B与坐标原点O围成的△ABO是何种特殊三角形?并说明理由.(第21题图)22.(本题满分10分)如图,在8×8网格纸中,每个小正方形的边长都为1.(1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(-4,4),(-1,3),并写出点B的坐标为▲;(2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(3)在y轴上求作一点P,使△P AB的周长最小,并直接写出点P的坐标.(第22题图)23.(本题满分10分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b﹣a).∴12b2+12ab=12c2+12a(b﹣a),∴a2+b2=c2.图1 图2(第23题图)请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠ABC=90°.求证:a2+b2=c2.证明:24.(本题满分10分)如图,在△ABC中,CE⊥BA的延长线于E,BF⊥CA的延长线于F,M为BC的中点,分别连接ME、MF、EF.(1)若EF=3,BC=8,求△EFM的周长;(2)若∠ABC=28°,∠ACB=48°,求△EFM的三个内角的度数.FB(第24题图)25.(本题满分12分)如图,点N是△ABC的边BC延长线上的一点,∠ACN=2∠BAC,过点A作AC的垂线交CN于点P.(1)若∠APC=30°,求证:AB=AP;(2)若AP=8,BP=16,求AC的长;(3)若点P在BC的延长线上运动,∠APB的平分线交AB于点M. 你认为∠AMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠AMP的大小.B(第25题图)26.(本题满分14分)如图,长方形ABCO的顶点A、C、O都在坐标轴上,点B的坐标为(8,3),M为AB的中点.(1)试求点M的坐标和△AOM的周长;(2)若P是OC上的一个动点,它以每秒1个单位长度的速度从点C出发沿射线..CO 方向匀速运动,设运动时间为t秒(t>0).①若△POM的面积等于△AOM的面积的一半,试求t的值;②是否存在某一时刻t,使△POM是等腰三角形?若存在,求出此时t的值;若不存在,试说明理由.(第26题图)(备用图)2015年秋学期期末学业质量测试八年级数学参考答案与评分标准一、选择题(本大题共有6小题,每小题3分,共18分) 1.D ;2.C ;3.A ;4.C ;5.C ;6.B.二、填空题(本大题共有10小题,每小题3分,共30分)7.4; 8.1.37×108; 9.3.142; 10.12; 11. 12.96;13.( ; 14.38; 15. 16. 149得3分; 13或157得2分 .三、解答题(共10题,102分.下列答案....仅供参考....,有其它答案或解法.......,参照标准给分.......) 17.(本题满分12分)(1)(本小题6分)38x =-(3分);2x =-(3分).(2)(本小题6分)原式=3-2+5(3分,每对1个得1分)=6(3分). 18.(本题满分8分)(1)(本小题4分)作图正确(3分),标出点D (1分).(2)(本小题4分)作图正确(3分),标出点(1分)(的点且正确得2分) 19. (本题满分8分)(1)(本小题4分)(课本63页改编)△BEF 是等腰三角形(1分);沿EF 折叠得∠DEF =∠BEF (1分),由长方形纸片的上下两边平行,可得∠DEF =∠BFE (1分),所以∠BEF=∠BFE ,根据“等角对等边”可知△BEF 是等腰三角形(1分); (2)(本小题4分)由勾股定理得AE=6(2分);CF=6(2分)。
2015八年级(上)期中数学试卷附 答案
八年级(上)期中数学试卷一、单项选择题(本题共10分,每小题3分,共30分)1.在实数,,0.1414,,﹣,0.1010010001…,,0,,,中,有几个无理数()A.3个B.4个C.5个D.6个2.下列运算正确的是()A.=+B.()2=3 C.3a﹣a=3 D.(a2)3=a53.在下列各组数据中,不能作为直角三角形的三边边长的是()A.3,4,6 B.7,24,25 C.6,8,10 D.9,12,154.在平面直角坐标系中,点P的横坐标是﹣3,且点P到x轴的距离为5,则点P的坐标是()A.(5,﹣3)或(﹣5,﹣3)B.(﹣3,5)或(﹣3,﹣5)C.(﹣3,5)D.(﹣3,﹣3)5.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.6.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D 重合,折痕为MN,则线段BN的长为()A.B.C.4 D.57.△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B﹣∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b﹣c);④a:b:c=5:12:13,其中能判断△ABC是直角三角形的个数有()A.1个B.2个C.3个D.4个8.直线y=kx+b不经过第四象限,则()A.k>0,b>0 B.k<0,b>0 C.k≥0,b≥0 D.k<0,b≥09.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.10.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14 B.16 C.8+5D.14+11.如图,直角三角形三边上的半圆面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是()A.S l+S2>S3 B.S l+S2<S3 C.S1+S2=S3 D.S12+S22=S32二.填空题(本题共8个小题,每个小题3分,共24分)12.的平方根是.13.已知直角三角形的两边的长分别是3和4,则第三边长为.14.点P(2,3)关于x轴的对称点的坐标为.15.的绝对值是,相反数是,倒数是.16.已知函数是正比例函数,且图象在第二、四象限内,则m的值是.17.函数中自变量x的取值范围是.18.实数a在数轴上的位置如图,化简+a=.19.没有上盖的圆柱盒高为10cm,底面周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.则蚂蚁需要爬行的最短路程的长为cm.三、计算题(共4道题,每题4分,共16分)20.计算:(1)﹣5(2)+﹣(3)(+)(﹣)﹣(﹣2)2(4)(﹣3)0﹣+|1﹣|+.四、解答题(本题共6小题,共50分)21.已知5既是(2x﹣1)的算术平方根,又是(3x﹣7y+2)的立方根,求x2+y2的平方根.22.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.23.如图,在平面直角坐标系中,一次函数y=kx+5的图象经过点A(1,4),点B是一次函数y=kx+5的图象与x轴的交点.(1)求点B的坐标.(2)求△AOB的面积.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点A的坐标为(1,4)点B的坐标为(2,0)点C的坐标为(4,0).(1)在下图的直角坐标系中画出A,B,C三点,并作出△ABC关于x轴对称的△A1B1C1,求出A1,B1,C1坐标;(2)在y轴上是否存在点D,使得△COD为等腰直角三角形?若存在,请求出D的坐标.25.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费y1与包装盒数x满足如图1所示的函数关系.方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系.根据图象回答下列问题:(1)方案一中每个包装盒的价格是多少元?(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?(3)请分别求出y1、y2与x的函数关系式.(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由.26.观察下列等式:①;②;③;…回答下列问题:(1)仿照上列等式,写出第n个等式:;(2)利用你观察到的规律,化简:;(3)计算:….参考答案与试题解析一、单项选择题(本题共10分,每小题3分,共30分)1.在实数,,0.1414,,﹣,0.1010010001…,,0,,,中,有几个无理数()A.3个B.4个C.5个D.6个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,,0.1010010001…,1﹣,共有4个.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列运算正确的是()A.=+B.()2=3 C.3a﹣a=3 D.(a2)3=a5考点:二次根式的性质与化简;合并同类项;幂的乘方与积的乘方;二次根式的乘除法.分析:本题运用二次根式的乘方,合关同类项及幂的乘方的法则进行计算.解答:解:A、=,故A错误;B、()2=3,故B正确;C、3a﹣a=2a.故C错误;D、(a2)3=a6,故D错误.故选:B.点评:本题主要考查了二次根式的乘方,合关同类项及幂的乘方,熟记法则是解题的关键.3.在下列各组数据中,不能作为直角三角形的三边边长的是()A.3,4,6 B.7,24,25 C.6,8,10 D.9,12,15考点:勾股数.分析:根据勾股定理的逆定理,只需验证两较小边的平方和是否等于最长边的平方即可.解答:解:A、32+42≠62,故A符合题意;B、72+242=252,故B不符合题意;C、62+82=102,故C不符合题意;D、92+122=152,故D不符合题意.故选:A.点评:本题考查了勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.4.在平面直角坐标系中,点P的横坐标是﹣3,且点P到x轴的距离为5,则点P的坐标是()A.(5,﹣3)或(﹣5,﹣3)B.(﹣3,5)或(﹣3,﹣5)C.(﹣3,5)D.(﹣3,﹣3)考点:点的坐标.分析:根据点到x轴的距离为点的纵坐标的绝对值可得:P的纵坐标绝对值是5,进而得到纵坐标,再判断点A的坐标.解答:解:∵点P的横坐标是﹣3,∴设点P的坐标是(﹣3,a),∵点P到x轴的距离为5,∴|a|=5,∴a=±5,∴点P的坐标是(﹣3,5),故选:B,点评:此题主要考查了点的坐标的几何意义,注意:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.5.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.考点:勾股定理;点到直线的距离;三角形的面积.专题:计算题.分析:根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.解答:解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选A点评:此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.6.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D 重合,折痕为MN,则线段BN的长为()A.B.C.4 D.5考点:翻折变换(折叠问题).专题:几何图形问题.分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.7.△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B﹣∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b﹣c);④a:b:c=5:12:13,其中能判断△ABC是直角三角形的个数有()A.1个B.2个C.3个D.4个考点:勾股定理的逆定理;三角形内角和定理.分析:直角三角形的定义或勾股定理的逆定理是判定直角三角形的方法之一.解答:解;①∠A=∠B﹣∠C,∠A+∠B+∠C=180°,解得∠B=90°,故①是直角三角形;②∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,解得∠A=45°,∠B=60°,∠C=75°,故②不是直角三角形;③∵a2=(b+c)(b﹣c),∴a2+c2=b2,符合勾股定理的逆定理,故③是直角三角形;④∵a:b:c=5:12:13,∴a2+b2=c2,符合勾股定理的逆定理,故④是直角三角形.能判断△ABC是直角三角形的个数有3个;故选:C.点评:本题考查了利用直角三角形的定义和勾股定理的逆定理来判定一个三角形是不是直角三角形,是判定直角三角形的常见方法.8.直线y=kx+b不经过第四象限,则()A.k>0,b>0 B.k<0,b>0 C.k≥0,b≥0 D.k<0,b≥0考点:一次函数图象与系数的关系.专题:数形结合.分析:分类讨论:当k=0,y=b,则b≥0时,直线y=b不过第四象限;当k≠0时,直接根据一次函数图象与系数的关系求解.解答:解:当k=0,y=b,则b≥0时,直线y=b不过第四象限;当k≠0时,直线y=kx+b不经过第四象限,即直线过第一、二、三象限且与y轴的交点不在x轴的下方,则k>0,b≥0,综合所述,k≥0,b≥0.故选:C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).9.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.考点:动点问题的函数图象.专题:数形结合.分析:将动点P的运动过程划分为PD、DC、CB、BA、AP共5个阶段,分别进行分析,最后得出结论.解答:解:动点P运动过程中:①当0≤s≤时,动点P在线段PD上运动,此时y=2保持不变;②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;③当<s≤时,动点P在线段CB上运动,此时y=1保持不变;④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;⑤当<s≤4时,动点P在线段AP上运动,此时y=2保持不变.结合函数图象,只有D选项符合要求.故选:D.点评:本题考查了动点运动过程中的函数图象.把运动过程分解,进行分类讨论是解题的关键.10.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14 B.16 C.8+5D.14+考点:实数的运算.专题:图表型.分析:将n的值代入计算框图,判断即可得到结果.解答:解:当n=时,n(n+1)=×(+1)=2+<15;当n=2+时,n(n+1)=(2+)×(3+)=6+5+2=8+5>15,则输出结果为8+5.故选:C.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.如图,直角三角形三边上的半圆面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是()A.S l+S2>S3 B.S l+S2<S3 C.S1+S2=S3 D.S12+S22=S32考点:勾股定理.专题:压轴题.分析:依据半圆的面积公式,以及勾股定理即可解决.解答:解:设直角三角形三边分别为a,b,c,则三个半圆的半径分别为,,由勾股定理得a2+b2=c2,即()2+()2=()2两边同时乘以π得π()2+π()2=π()2即S1、S2、S3之间的关系是S1+S2=S3故选C.点评:根据勾股定理,然后变形,得出三个半圆之间的关系.二.填空题(本题共8个小题,每个小题3分,共24分)12.的平方根是±.考点:算术平方根;平方根.分析:先求出,再根据平方根的定义解答.解答:解:∵=5,∴的平方根是±.故答案为:±.点评:本题考查了算术平方根,平方根的定义,是基础题,熟记概念是解题的关键.13.已知直角三角形的两边的长分别是3和4,则第三边长为5或.考点:勾股定理.专题:分类讨论.分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.解答:解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.点评:此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.14.点P(2,3)关于x轴的对称点的坐标为(2,﹣3).考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y)得出即可.解答:解:∵点P(2,3)∴关于x轴的对称点的坐标为:(2,﹣3).故答案为:(2,﹣3).点评:此题主要考查了关于x轴、y轴对称点的性质,正确记忆坐标规律是解题关键.15.的绝对值是﹣2,相反数是2﹣,倒数是+2.考点:实数的性质.分析:分别根据绝对值、相反数、倒数的概念即可求解.解答:解:∵>2,∴>0,∴||=﹣2;﹣()=2﹣,即的相反数是2﹣;==+2.故答案是:﹣2;2﹣;+2.点评:本题考查了实数的性质.掌握实数的绝对值、相反数、倒数的定义,注意区分概念,不要混淆.16.已知函数是正比例函数,且图象在第二、四象限内,则m的值是﹣2.考点:正比例函数的定义.分析:当一次函数的图象经过二、四象限可得其比例系数为负数,据此求解.解答:解:∵函数是正比例函数,∴m2﹣3=1且m+1≠0,解得m=±2.又∵函数图象经过第二、四象限,∴m+1<0,解得m<﹣1,∴m=﹣2.故答案是:﹣2.点评:此题主要考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.17.函数中自变量x的取值范围是x≥﹣5.考点:函数自变量的取值范围;二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于等于0可知:x+5≥0,解不等式求x的范围.解答:解:根据题意得:x+5≥0,解得x≥﹣5.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.18.实数a在数轴上的位置如图,化简+a=1.考点:二次根式的性质与化简;实数与数轴.分析:根据二次根式的性质,可化简二次根式,根据整式的加法,可得答案.解答:解:+a=1﹣a+a=1,故答案为:1.点评:本题考查了实数的性质与化简,=a(a≥0)是解题关键.19.没有上盖的圆柱盒高为10cm,底面周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.则蚂蚁需要爬行的最短路程的长为20cm.考点:平面展开-最短路径问题.分析:将圆柱侧面展开,得到长方形MNQP,作点B关于PQ的对称点B′,构造直角三角形ACB′,根据勾股定理求出AB′=20cm,即是所求.解答:解:如图,点B与点B′关于PQ对称,可得AC=16cm,B′C=12cm,则最短路程为AB′==20cm.故答案为:20.点评:本题考查平面展开最短路径问题,关键知道圆柱展开图是长方形,根据两点之间线段最短可求出解,注意是从圆柱盒外爬到盒内,审准题也是关键.三、计算题(共4道题,每题4分,共16分)20.计算:(1)﹣5(2)+﹣(3)(+)(﹣)﹣(﹣2)2(4)(﹣3)0﹣+|1﹣|+.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:(1)先把分子中各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)利用平方差公式和完全平方公式计算;(4)根据零指数幂的意义和分母有理化得到原式=1﹣3+﹣1+﹣,然后合并即可.解答:解:(1)原式=﹣5=5﹣5=0;(2)原式=+2﹣10=﹣;(3)原式=5﹣2﹣(3﹣4+8)=3﹣11+4=﹣8+4;(4)原式=1﹣3+﹣1+﹣=﹣3.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.四、解答题(本题共6小题,共50分)21.已知5既是(2x﹣1)的算术平方根,又是(3x﹣7y+2)的立方根,求x2+y2的平方根.考点:立方根;平方根.分析:根据算术平方根和立方根的定义得出方程,求出x、y的值,求出x2+y2的值,最后根据平方根定义求出即可.解答:解:∵5既是(2x﹣1)的算术平方根,又是(3x﹣7y+2)的立方根,∴2x﹣1=25,3x﹣7y+2=125,解得:x=13,y=﹣14,∴x2+y2=365,∴x2+y2的平方根是±.点评:本题考查了算术平方根,平方根,立方根的应用,主要考查学生的理解能力和计算能力,解此题的关键是求出x、y的值.22.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.考点:勾股定理的应用;三角形的面积;勾股定理的逆定理.专题:应用题.分析:连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.解答:解:连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC﹣S△ACD=AC•BC﹣AD•CD=×15×36﹣×12×9=270﹣54=216.答:这块地的面积是216平方米.点评:解答此题的关键是通过作辅助线使图形转化成特殊的三角形,可使复杂的求解过程变得简单.23.如图,在平面直角坐标系中,一次函数y=kx+5的图象经过点A(1,4),点B是一次函数y=kx+5的图象与x轴的交点.(1)求点B的坐标.(2)求△AOB的面积.考点:一次函数图象上点的坐标特征.分析:(1)利用待定系数法把A点坐标代入y=kx+5中即可算出k的值,然后联立两个函数解析式,即可算出B点坐标;(2)根据A、B两点的坐标和三角形的面积公式进行计算即可.解答:解:(1)把A(1,4)代入y=kx+5中得:4=k+5,解得:k=﹣1,则一次函数解析式为y=﹣x+5,令y=0,则0=﹣x+5,解得x=5,故B点坐标是(5,0);(2)∵A(1,4),B(5,0);∴S△AOB=×OB×y A=×5×4=10.点评:此题考查了一次函数的坐标特征以及与坐标轴交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点A的坐标为(1,4)点B的坐标为(2,0)点C的坐标为(4,0).(1)在下图的直角坐标系中画出A,B,C三点,并作出△ABC关于x轴对称的△A1B1C1,求出A1,B1,C1坐标;(2)在y轴上是否存在点D,使得△COD为等腰直角三角形?若存在,请求出D的坐标.考点:作图-轴对称变换;等腰直角三角形.分析:(1)根据题意画出△ABC,再根据轴对称的性质作出△ABC关于x轴对称的△A1B1C1,写出A1,B1,C1坐标即可;(2)根据C(4,0)可直接找出符合条件的点.解答:解:(1)如图所示,A1(1,﹣4),B1(2,0),C1(4,0);(2)∵C(4,0),∠COD=90°,∴D(0,4)或(0,﹣4).点评:本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.25.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费y1与包装盒数x满足如图1所示的函数关系.方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系.根据图象回答下列问题:(1)方案一中每个包装盒的价格是多少元?(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?(3)请分别求出y1、y2与x的函数关系式.(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由.考点:一次函数的应用.专题:综合题.分析:(1)根据图象1可知100个盒子共花费500元,据此可以求出盒子的单价;(2)根据图2可以知道租赁机器花费20000元,根据图象所经过的点的坐标求出盒子的单价即可;(3)根据图象经过的点的坐标用待定系数法求得函数的解析式即可;(4)求出当x的值为多少时,两种方案同样省钱,并据此分类讨论最省钱的方案即可.解答:解:(1)500÷100=5,∴方案一的盒子单价为5元;(2)根据函数的图象可以知道租赁机器的费用为20000元,盒子的单价为÷4000=2.5,故盒子的单价为2.5元;(3)设图象一的函数解析式为:y1=k1x,由图象知函数经过点(100,500),∴500=100k1,解得k1=5,∴函数的解析式为y1=5x;设图象二的函数关系式为y2=k2x+b由图象知道函数的图象经过点(0,20000)和∴,解得:,∴函数的解析式为y2=2.5x+20000;(4)令5x=2.5x+20000,解得x=8000,∴当x=8000时,两种方案同样省钱;当x<8000时,选择方案一;当x>8000时,选择方案二.点评:本题考查了一次函数的应用,解题的关键是从实际问题中整理出函数模型,并利用函数的知识解决实际问题.26.观察下列等式:①;②;③;…回答下列问题:(1)仿照上列等式,写出第n个等式:,;(2)利用你观察到的规律,化简:;(3)计算:….考点:分母有理化.专题:规律型.分析:根据观察,可得规律,根据规律,可得答案.解答:解:(1)写出第n个等式,故答案为:;(2)原式==;(3)原式=+…+=﹣1.点评:本题考查了分母有理化,发现规律是解题关键.。
2015八年级数学上学期期中试卷(带答案)
2015八年级数学上学期期中试卷(带答案)辽宁省锦州实验中学2014~2015学年度八年级上学期期中数学试卷一、选择题(每题2分,共14分) 1.在实数�3.14,,π,,,0,,0.1010010001…(每两个1之间的0的个数依次多1)中,无理数的个数是() A. 2个 B. 3个 C. 4个 D. 5个 2.估算�2的值在() A.在5和6之间 B.在4和5之间 C.在3和4之间 D.在2和3之间 3.函数y=2x�5的图象一定过()A.(�2,1) B. C.(�1,2) D.(1,�2) 4.如图图象可能是关于x的一次函数y=k(x�1)的图象的是()A. B. C. D. 5.一架250cm的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm,如果梯子顶端沿墙下滑40cm,那么梯足将向外滑动() A. 150cm B. 90c m C. 80cm D. 40cm 6.如图,直角三角形ABC中,∠C=90°,D为AC上一点,DA=DB=5,△ABD 的面积为10,则CD长是() A. 3 B. 4 C. 5 D. 6 7.△ABC 中,AB=15,AC=13,高AD=12,则△ABC的周长为() A. 42 B. 32 C. 42或32 D. 37或33 二、填空(每题2分,共14分) 8.的算术平方根是. 9.1�的绝对值是. 10.已知直角三角形的两边的长分别是3和4,则第三边长为. 11.点(�4,y1),都在直线y=�x+2上,则y1 y2(填“>”或“<”) 12.已知点P在第四象限,且P到x轴和y轴的距离分别是3和4,则点P的坐标为. 13.一个正数的平方根为2x�4和3x�1,则x= . 14.关于x的一次函数y=kx�3的图象过点M(�2,1),则该图象与x轴交点坐标,与y轴交点坐标.三、计算(每小题20分,共20分) 15.(1)���2 (1+ )(3)÷22 × (4)(4 �4 +3 )÷2 .四、作图题 16.作图:在数轴上作出表示的点.(不写作法,保留适当的作图痕迹,要作答)五、解答题 17.如图,有一个长、宽、高分别为2cm、2cm、3cm的长方体,有一只蚂蚁想沿着外侧壁从A点爬到C1处,请你帮助小蚂蚁计算出最短路线. 18.如图,我校实验大楼边上有一块空地需要绿化(用阴影部分表示),通过测量可以知道CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,试求出这块空地的面积(即阴影部分面积) 19.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些. 20.如图,正比例函数与一次函数交于点A(3,4),且一次函数与x轴交于点C,与y轴交于点B,(1)求两个函数解析式;求△AOC的面积.辽宁省锦州实验中学2014~2015学年度八年级上学期期中数学试卷参考答案与试题解析一、选择题(每题2分,共14分) 1.在实数�3.14,,π,,,0,,0.1010010001…(每两个1之间的0的个数依次多1)中,无理数的个数是() A. 2个 B. 3个 C. 4个 D. 5个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,π,1010010001…(每两个1之间的0的个数依次多1)共4个.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 2.估算�2的值在() A.在5和6之间 B.在4和5之间 C.在3和4之间 D.在2和3之间考点:估算无理数的大小.分析:先求出的范围,再两边都减去2,即可得出答案.解答:解:∵6<<7,∴4<�2<5,即�2在4和5之间,故选B.点评:本题考查了估算无理数的大小的应用,解此题的关键是求出的范围. 3.函数y=2x�5的图象一定过() A.(�2,1) B. C.(�1,2) D.(1,�2)考点:一次函数图象上点的坐标特征.分析:分别把各点代入一次函数的关系式进行检验即可.解答:解:A、∵2×(�2)�5=�9≠1,∴此点不在该一次函数的图象上,故本选项错误; B、∵2×2�5=�1,∴此点在该一次函数的图象上,故本选项正确; C、∵2×(�1)�5=�7≠2,∴此点不在该一次函数的图象上,故本选项错误; D、∵2×1�5=�3≠�2,∴此点不在该一次函数的图象上,故本选项错误.故选B.点评:考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合该函数的解析式是解答此题的关键. 4.如图图象可能是关于x的一次函数y=k(x�1)的图象的是() A. B. C. D.考点:一次函数的图象.分析:将y=k(x�1)化为y=kx�k后分k>0和k<0两种情况分类讨论即可.解答:解:y=k(x�1)=kx�k,当k>0时,�k<0,此时图象呈上升趋势,且交与y轴负半轴,无符合选项;当k<0时,�k>0,此时图象呈下降趋势,且交与y轴正半轴,D选项符合;故选D.点评:本题考查了一次函数的性质,解题的关键是能够分类讨论. 5.一架250cm的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm,如果梯子顶端沿墙下滑40cm,那么梯足将向外滑动() A. 150cm B. 90cm C. 80cm D. 40cm考点:勾股定理的应用.分析:根据条件作出示意图,根据勾股定理求得OB′的长度,梯子滑动的距离就是OB′与OB的差.解答::解:在Rt△OAB中,根据勾股定理OA= = =240cm.则OA′=OA�40=240�40=200米.在Rt△A′OB′中,根据勾股定理得到:OB′= = =150cm.则梯子滑动的距离就是OB′�OB=150�70=80cm.故选C.点评:考查了勾股定理的应用,正确作出示意图,把实际问题抽象成数学问题是解题的关键. 6.如图,直角三角形ABC中,∠C=90°,D为AC上一点,DA=DB=5,△ABD的面积为10,则CD长是() A. 3 B. 4 C. 5 D. 6考点:勾股定理.分析:根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.解答:解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴ DA•BC=10,∴BC=4,∴CD= =3.故选A.点评:此题主要考查学生对勾股定理和三角形面积的理解和掌握,此题的突破点是利用三角形面积公式求出BC的长. 7.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为() A. 42 B. 32 C. 42或32 D. 37或33考点:勾股定理.分析:本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.解答:解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中, BD= = =9,在Rt△ACD 中,CD= = =5 ∴BC=5+9=14 ∴△ABC的周长为:15+13+14=42;当△ABC为钝角三角形时,在Rt△ABD中,BD= = =9,在Rt△ACD 中,CD= = =5,∴BC=9�5=4.∴△ABC的周长为:15+13+4=32 ∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.故选C.点评:此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.二、填空(每题2分,共14分) 8.的算术平方根是.考点:算术平方根.分析:根据开方运算,可得一个数的算术平方根.解答:解:的算术平方根是,故答案为:.点评:本题考查了算术平方根,两次求算术平方根. 9.1�的绝对值是�1 .考点:实数的性质.分析:根据绝对值的性质解答即可.解答:解:1�的绝对值是�1.故答案为:�1.点评:本题考查了实数的性质,主要利用了绝对值的性质. 10.已知直角三角形的两边的长分别是3和4,则第三边长为5或.考点:勾股定理.专题:分类讨论.分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.解答:解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为: = ;②长为3、4的边都是直角边时:第三边的长为: =5;综上,第三边的长为:5或.故答案为:5或.点评:此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解. 11.点(�4,y1),都在直线y=� x+2上,则y1 >y2(填“>”或“<”)考点:一次函数图象上点的坐标特征.分析:根据一次函数y=kx+b 的性质可知.解答:解:因为直线y=� x+2中k=�<0,所以y 随x的增大而减小.又因为�4<2,所以y1>y2.故答案为:>.点评:考查了一次函数图象上点的坐标特征,解答此题要熟知一次函数y=kx+b的性质:当k>0时,y随x的增大而增大;当k<0时,y 随x的增大而减小. 12.已知点P在第四象限,且P到x轴和y 轴的距离分别是3和4,则点P的坐标为(4,�3).考点:点的坐标.分析:已知点P在第四象限内,那么横坐标大于0,纵坐标小于0,进而根据到坐标轴的距离判断具体坐标.解答:解:因为点P在第四象限,所以其横、纵坐标分别为正数、负数,又因为点P到x轴和y轴的距离分别是3和4,所以点P的坐标为(4,�3).故答案为(4,�3).点评:本题主要考查了点在第四象限时点的坐标的符号,点到x轴的距离为这点纵坐标的绝对值,到y轴的距离为这点横坐标的绝对值. 13.一个正数的平方根为2x�4和3x�1,则x= 1 .考点:平方根.分析:根据一个正数的平方根互为相反数,可得平方根的和为零.解答:解:一个正数的平方根为2x�4和3x�1,得 +(3x�1)=0. 2x�4+3x�1=0.解得x=1,故答案为:1.点评:本题考查了平方根,利用平方根的和为零得出关于x的一元一次方程是解题关键. 14.关于x的一次函数y=kx�3的图象过点M(�2,1),则该图象与x轴交点坐标(�,0),与y轴交点坐标(0,�3).考点:一次函数图象上点的坐标特征.分析:把点M的坐标代入一次函数即可求得k的值,然后让横坐标等于0得到图象与y轴的交点;让纵坐标等于0得到图象与y轴的交点.解答:解:∵一次函数y=kx�3的图象经过点M(�2,1),∴�2k�3=1.解得:k=�2.∴此一次函数的解析式为y=�2x�3.令y=0,可得x=�.∴一次函数的图象与x轴的交点坐标为(�,0).令x=0,可得y=�3.∴一次函数的图象与y轴的交点坐标为(0,�3).故答案为(�,0),(0,�3).点评:本题考查的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式;x轴上的点纵坐标为0;y轴上的点横坐标为0.三、计算(每小题20分,共20分) 15.(1)���2 (1+ )(3)÷22 × (4)(4 �4 +3 )÷2 .考点:二次根式的混合运算.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;利用多项式乘法展开,然后合并即可;(3)根据二次根式的乘除法则运算;(4)根据二次根式的除法法则运算.解答:解:(1)原式=4 �5 ��= �;原式=2�+2 �5 =�3+ ;(3)原式=1× × = ;(4)原式=2 �1+3 =2 +2.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.四、作图题 16.作图:在数轴上作出表示的点.(不写作法,保留适当的作图痕迹,要作答)考点:作图―代数计算作图;实数与数轴.分析:因为5=1+4,所以只需作出以1和2为直角边的直角三角形,则其斜边的长即是.然后以原点为圆心,以为半径画弧,和数轴的正半轴交于一点即可.解答:解:如图,过表示数1的点A作数轴的垂线AB,取AB=2,以O为圆心,OB为半径画弧与数轴相交于点P,则P点就是表示的点.点评:考查了无理数用数轴上的点表示的方法,能够熟练运用勾股定理进行计算.五、解答题 17.如图,有一个长、宽、高分别为2cm、2cm、3cm的长方体,有一只蚂蚁想沿着外侧壁从A点爬到C1处,请你帮助小蚂蚁计算出最短路线.考点:平面展开-最短路径问题.分析:将长方体展开,根据勾股定理求出AC1的长,进而得出最短路线.解答:解:如图1所示,AC1= =5cm;如图2所示, AC1= = cm,∵ >5,∴按图1的爬行路线最短.点评:本题考查的是平面展开�最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题. 18.如图,我校实验大楼边上有一块空地需要绿化(用阴影部分表示),通过测量可以知道CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,试求出这块空地的面积(即阴影部分面积)考点:勾股定理;勾股定理的逆定理.分析:先根据勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACB为直角三角形,再根据S阴影= AC×BC�AD×CD即可得出结论.解答:解:在Rt△ADC中,∵CD=6米,AD=8米,BC=24米,AB=26米,∴AC2=AD2+CD2=82+62=100,∴AC=10(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB 为直角三角形,∠ACB=90°.∴S阴影= AC×BC�AD×CD=×10×24�×8×6=96(米2).答:剩余土地(图中阴影部分)的面积为:96米2.点评:本题考查的是勾股定理在实际生活中的应用,有利于培养学生生活联系实际的能力和计算能力. 19.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些.考点:一次函数的应用.分析:(1)因为移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话xm in,两种方式的费用分别为y1元和y2元,则y1=50+0.4x,y2=0.6x;令y1=y2,解方程即可;(3)令x=300,分别求出y1、y2的值,再做比较即可.解答:解:(1)y1=50+0.4x;y2=0.6x;令y1=y2,则50+0.4x=0.6x,解之,得x=250 所以通话250分钟两种费用相同;(3)令x=300 则y1=50+0.4×300=170;y2=0.6×300=180 所以选择全球通合算.点评:本题需仔细分析题意,建立函数解析式,利用方程或简单计算即可解决问题. 20.如图,正比例函数与一次函数交于点A(3,4),且一次函数与x轴交于点C,与y轴交于点B,(1)求两个函数解析式;求△AOC的面积.考点:两条直线相交或平行问题.分析:(1)首先设正比例函数解析式为y=kx,再把(3,4)点代入可得k的值,进而得到解析式;设一次函数解析式为y=kx+b,把(3,4)( 0,�5)代入可得关于k、b的方程组,然后再解出k、b的值,进而得到解析式.根据一次函数的解析式即可求得C的坐标,根据A、C的坐标进而求得三角形AOC 的面积.解答:解:(1)设正比例函数解析式为y=kx,∵图象经过点A(3,4),∴4=k×3, k= ,∴正比例函数解析式为y= x;设一次函数解析式为y=kx+b,∵图象经过(3,4)(0,�5),∴ ,解得,∴一次函数解析式为y=3x�5.∵一次函数解析式为y=3x�5.∴C(,0)∴S△AOC= × ×4= .点评:此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数经过的点必能满足解析式.。
2015学年苏科版八年级上期中考试数学试卷及答案
2015学年苏科版八年级上期中考试练习试卷及答案(考试时间100分钟,试卷总分100分)一、选择题(本大题共8小题,每小题2分,共16分) 1.下列图形中,不是..轴对称图形的是( )2.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .6,8,10C .2,3,4D .1,1,23.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长为( ) A .16 B .20 C .16或20 D .18 4.9的平方根是( )A .3B .±3C .9D .±95.如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定....△ABC ≌△ADC 的是( )A .∠B =∠D =90° B .CB =CDC .∠BAC =∠DACD .∠BCA =∠DCA 6.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是( )A .SSSB .ASAC . SASD .AAS7.如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD .则下列结论:①∠C =2∠A ;②BD 平分∠ABC ;③ BC =AD ; ④CD =OD .正确的有( )A .1个B .2个C .3个D .4个8.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为 E , S △ABC =8,DE =2,AB =5,则AC 长是( ) A .6 B .5C .4D .3二、填空题(本大题共10小题,每小题2分,共20分) 9.=__________. 10_______ 12. A .BD .C .ACBD(第5题图)AEBC (第8题11.若等腰三角形的一个角是80°,则其底角为_ .12.如图,长方形OABC 中,OC =2,OA =1.以原点O 为圆心,对角线OB 长为半径画弧交数轴于点D ,则数轴上点D 表示的数是 .13.如图,△ABC ≌△DEF ,请根据图中提供的信息,写出x = .14.如图,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△C OB .你补充的条件是_____________ .(填写一个即可)15.如图,AD 是△ABC 的中线,∠ADC =60°,BC =4,把△ABC 沿直线AD 折叠后,点C 落在C ’的位置上,那么BC ’的长为 .16.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD =6,DE =5,则CD 的长等于 .17.把一张长方形纸片按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB =3cm ,BC =5cm ,则重叠部分△DEF 的面积是 ___ cm 2.18.如图,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,在直线AC 上找一点P ,使△ABP是等腰三角形,则∠APB 的度数为__________.三、解答题(本大题共6小题,每小题6分,共36分) 19.求下列各式中的x :(1) 2510x = (2)()3464x +=-20.计算:(1)(-3)2; (2(π-3)0-1AD OCBCBA(第12题A BCFEA ′ (B ')D21.已知:如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF ,∠ACB =∠DFE .证明:AB ∥ED .22.已知:如图,AB =AC ,BE =CE ,点D 在AE 的延长线上.求证:BD =CD .23.如图,锐角三角形ABC 的两条高BD 、CE 相交于点O ,且OB =OC .(1)证明:AB =AC ;(2)判断点O 是否在∠BAC 的平分线上,并说明理由.DEECBAOEC DBA24.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得BD长为1.3米,求梯子顶端A下落了多少米?四、操作与探究(本大题共3小题,第25题8分,其余各题10分,共28分)25.如图,已知直线l1∥l2∥l3,且l1,l2之间的距离为1,l2,l3之间的距离为2 ,点A、C分别在直线l2,l1上,(1)利用直尺和圆规作出以AC为底的等腰△ABC,使得点B落在直线l3上(保留作图痕迹,不写作法);(2)若(1)中得到的△ABC为等腰直角三角形,求AC的长.26.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A —C —B 向点B 运动,设运动时间为t 秒(t >0),(1)在AC 上是否存在点P ,使得P A =PB ?若存在,求出t 的值;若不存在,说明理由;(2)若点P 恰好在△ABC 的角平分线上,请直接..写出t 的值.27.如图(1),凸四边形ABCD ,如果点P 满足∠APD =∠APB =α.且∠BPC =∠CPD=β,则称点P 为四边形ABCD 的一个半等角点.(1)在图(2)正方形ABCD 内画一个半等角点P ,且满足α≠β;(2)在图(3)四边形ABCD 中画出一个半等角点P ,保留画图痕迹(不需写出画法); (3)若四边形ABCD 有两个半等角点P 1、P 2(如图(4)),证明线段P 1P 2上任一点也是它的半等角点.2015-2016学年度第一学期期中练习卷八年级数学参考答案评分标准二、填空题(本大题共10小题,每小题2分,共20分)9.-4.10.﹥.11.50°或80°.12..13.20.14.AB≒CD 等. 15.2. 16.8. 17.5.1 . 18.15°或30°或75°或120°三、解答题(本大题共6小题,每小题6分,共36分)x=……1分(2)解:∵x+4是-64的立方根…1分19.(1)解:22∴x是2的平方根…2分∴x+4=-4 …2分∴x=……3分即x=-8 ……3分-++…2分20.(1)解:原式=9-9+3 …2分(2)解:原式=11(1=3 ……3分=1……3分21.证明:∵FB=CE∴FB+FC=CE+FC即BC=EF…………………………1分在△ABC和△DEF中BC=EF∠ACB=∠DFEAC=DF∴△ABC≌△DEF………………5分∴MD=ME………………………6分22.证明:连接BC∵AB=AC∴点A在BC的垂直平分线上…………1分同理:点E也在BC的垂直平分线上………2分∴直线AE是BC的垂直平分线………4分∵点D在直线AE上∴BD=CD………6分23.(1)证明:∵OB=OC∴∠OBC=∠OCB…………1分∵BD 、CE 是△ABC 的高 ∴∠ABC =90°-∠OCB ∠ACB =90°-∠OBC∴∠ABC =∠ACB ……2分∴AB =AC ………………3分(2)解:点O 在∠BAC 的平分线上 ……4分在△BOE 和△COD 中∠BOE =∠COD∠BEO =∠CDO =90°BO =CO∴△BOE ≌△COD ………………5分∴EO =DO又∵BD ⊥AC ,CE ⊥AB∴点O 在∠BAC 的平分线上 ………………6分24.解:根据题意:AB =DE =2.5;BC =0.7;CD =2 在Rt △ABC 中 :222AC BC AB += 即 2220.7 2.5AC +=∴AC =2.4 …………2分在Rt △DCE 中 :222CE CD DE +=即 2222 2.5CE +=∴CE =1.5 …………4分∴AE =AC -CE =2.4-1.5=0.9 …………5分 答:梯子顶端A 下滑了0.9米. …………6分25.解:(1)如图所示(要有痕迹). …………2分 (2)如图,过点A 、C 作AD ⊥3l 、CF ⊥3l ,垂足分别为D 、F ∵△ABC 是等腰直角三角形∴∠ABC =90°;AB =BC …………3分 ∵AD ⊥3l 、CF ⊥3l∴∠ADB =∠CFB =90°∵∠DAB +∠ABD =90°;∠ABD +∠CBF =90°∴∠DAB =∠CBF 在△ABD 和△BCF 中 ∠DAB =∠CBF ∠ADB =∠CFBAB =BC∴△ABD ≌△BCF ………………5分 ∴AD =BF =2;CF =BD =3 …………6分∴在Rt △BCF 根据勾股定理:BC∴在Rt △ABC 根据勾股定理:AC ………8分 26.(1)解:AC 存在这样的点P .在Rt △ABC 根据勾股定理:AC =4 ∵PA =PB =2t ∴PC =4 - 2t在Rt △PBC 根据勾股定理:()()2224232t t -+= ………3分解得: 2516t =………4分 (2)分类讨论:①当点P 在点C 、点B 时2t =、 3.5t =…………6分 ②当点P 在∠B 、∠A 的角平分线上时54t =、83t = …………………10分27.(1)所画的点P 在AC 上且不是AC 的中点和AC 的端点; ……2分 (2)画点B 关于AC 的对称点B ’,延长DB ’交AC 于点P ,点P 为所求……4分 (3)连P1A 、P 1D 、P 1B 、P 1C 和P 2D 、P 2B ,根据题意,∠AP 1D =∠AP 1B ,∠DP 1C =∠BP 1C , ∴∠AP 1B +∠BP 1C =180°.∴P 1在AC 上,同理,P 2也在AC 上. …………6分 在△DP 1P 2和△BP 1P 2中,∠DP 2P 1=∠BP 2P 1, ∠DP 1P 2=∠BP 1P 2, P 1P 2=P 1P 2∴△DP 1P 2≌△BP 1P 2. …………8分 ∴DP 1=BP 1,DP 2=BP 2, ∴B 、D 关于AC 对称.设P是P1P2上任一点,连接PD、PB,由对称性,得∠DPA=∠BPA,∠DPC=∠BPC,∴点P是四边形的半等角点.…………10分。
2015秋期初二数学期中试卷(含答案和解释)
2015秋期初二数学期中试卷(含答案和解释)2014-2015学年浙江省温州市泰顺县八年级(上)期中数学试卷一、选择题(每小题3分,共30分) 1.在下列各组图形中,是全等的图形是() A. B. C. D. 2.下列图形中,对称轴最多的是() A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形 3.以下列各数为边长,不能组成直角三角形的是() A. 3,4,5 B. 5,12,13 C. 6,8,10 D. 4,5,6 4.下列图形中,不具有稳定性的是()A. B. C. D. 5.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带()去. A.第1块 B.第2块 C.第3块 D.第4块 6.下列命题的逆命题是真命题的是() A.直角都相等 B.等边三角形是锐角三角形 C.相等的角是对顶角 D.全等三角形的对应角相等7.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD是斜边AB上的中线,则图中与CD的长度相等的线段有() A. AD与BD B. BD与BC C. AD与BC D. AD、BD与BC 8.如图是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,则∠A+∠B+∠C+∠D+∠E的度数是() A.180° B.150° C.135° D.120° 9.下列条件中,不能判定两个直角三角形全等的是() A.两个锐角对应相等 B.一条边和一个锐角对应相等 C.两条直角边对应相等 D.一条直角边和一条斜边对应相等 10.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4等于()A. 4 B. 5 C. 6 D. 14 二、填空题(每小题4分,共32分)11.等腰三角形一边长为1cm,另一边长为2cm,它的周长是cm. 12.在Rt△ABC中,∠C=Rt∠,∠A=70°,则∠B=. 13.一个等腰三角形底边上的高、和顶角的互相重合. 14.如图,已知AC=BD,要使△ABC≌△DCB,只需增加的一个条件是. 15.如图,把一副三角板按如图所示放置,已知∠A=45°,∠E=30°,则两条斜边相交所成的钝角∠AOE的度数为度. 16.如图,用尺规作图作“一个角等于已知角”的原理是:因为△D′O′C′≌△DOC,所以∠D′O′C ′=∠DOC.由这种作图方法得到的△D′O′C′和△DOC全等的依据是(写出全等判定方法的简写). 17.如图,点P是∠BAC的平分线上一点,PB⊥AB 于B,且PB=5cm,AC=12cm,则△APC的面积是cm2. 18.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.三、解答题(共38分) 19.如图,在等腰△ABC中,AB=AC,AD是底边BC上的高线,若AB=10,BC=12,求AD的长. 20.先填空,后作图:(1)到一个角的两边距离相等的点在它的上;(2)到线段两端点距离相等的点在它的上;(3)如图,两条公路AB与CB,C、D是两个村庄,现在要建一个菜市场,使它到两个村庄的距离相等,而且还要使它到两条公路的距离也相等,用尺规作图画出菜市场的位置(不写作法,保留作图痕迹). 21.如图,四边形ABCD中,AC垂直平分BD于点O.(1)图中有多少对全等三角形?请把它们都写出来;(2)任选(1)中的一对全等三角形加以证明. 22.已知:等边△ABC中,BD=CE,AD与BE相交于P点,求证:∠APE=60°. 23.数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).2014-2015学年浙江省温州市泰顺县八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分) 1.在下列各组图形中,是全等的图形是() A. B. C. D.考点:全等图形.分析:根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.解答:解:根据全等图形的定义可得C是全等图形,故选:C.点评:此题主要考查了全等图形,关键是掌握形状大小完全相同的两个图形是全等形. 2.下列图形中,对称轴最多的是() A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形考点:轴对称的性质.分析:根据轴对称图形的对称轴的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.这条直线就是它的对称轴.解答:解:A、等腰三角形的对称轴有1条; B、等边三角形有3条对称轴; C、直角三角形不一定有对称轴; D、等腰直角三角形的对称轴有1条;综上所述,对称轴最多的是等边三角形.故选:B.点评:考查了轴对称图形的对称轴的概念,能够正确找到各个图形的对称轴. 3.以下列各数为边长,不能组成直角三角形的是() A. 3,4,5 B. 5,12,13 C. 6,8,10 D. 4,5,6考点:勾股定理的逆定理.分析:根据勾股定理的逆定理知,当三角形中三边存在:a2+b2=c2关系时是直角三角形.解答:解:A、能,因为32+42=52; B、能,因为52+122=132; C、能,因为62+82=102;D、不能,因为42+52=≠62,不符合勾股定理的逆定理.故选D.点评:本题考查了用勾股定理的逆定理判定直角三角形,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形. 4.下列图形中,不具有稳定性的是() A. B. C. D.考点:三角形的稳定性;多边形.菁优网版权所有分析:三角形具有稳定性,只要选项中的图形可以分解成三角形,则图形就有稳定性,据此即可确定.解答:解:A、可以看成两个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误; B、可以看成一个三角形和一个四边形,而四边形不具有稳定性,则这个图形一定不具有稳定性,故本选项正确; C、可以看成三个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误; D、可以看成7个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误.故选B.点评:本题主要考查了三角形的稳定性,正确理解各个图形具有稳定性的条件是解题的关键. 5.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带()去. A.第1块 B.第2块 C.第3块 D.第4块考点:全等三角形的应用.分析:本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.解答:解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选B.点评:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL. 6.下列命题的逆命题是真命题的是() A.直角都相等 B.等边三角形是锐角三角形 C.相等的角是对顶角 D.全等三角形的对应角相等考点:命题与定理.分析:先分别写出四个命题的逆命题,然后根据直角的定义、等边三角形的判定、对顶角的性质和全等三角形的判定分别进行判断.解答:解:A、直角都相等的逆命题为相等的角都是直角,此逆命题为假命题,所以A选项错误; B、等边三角形是锐角三角形的逆命题为锐角三角形是等边三角形,此逆命题为假命题,所以B选项错误; C、相等的角是对顶角的逆命题为对顶角相等,此逆命题为真命题,所以C选项正确; D、全等三角形的对应角相等的逆命题为对应角相等的两三角形全等,此逆命题为假命题,所以D选项错误.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题. 7.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD是斜边AB上的中线,则图中与CD的长度相等的线段有() A. AD与BD B. BD与BC C. AD与BC D. AD、BD与BC考点:直角三角形斜边上的中线;含30度角的直角三角形.菁优网版权所有分析:根据直角三角形的性质可得CD=BD=AD,再结合∠A=30°,可得BC= AB,可得结论.解答:解:∵∠ACB=90°,∠A=30°,CD是斜边AB上的中线,∴CD=BC=BD=AD= AB,故选D.点评:本题主要考查直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半、30°角所对的直角边等于斜边的一半是解题的关键. 8.如图是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,则∠A+∠B+∠C+∠D+∠E的度数是() A.180° B.150° C.135° D.120°考点:圆心角、弧、弦的关系.专题:压轴题.分析:根据点A、B、C、D、E五等分圆可求出每条弧的度数,再根据圆周角定理即可得出答案.解答:解:∵点A、B、C、D、E五等分圆,∴ = = = = = =72°,∴∠A=∠B=∠C=∠D=∠E,∵∠ADB= = ×72°=36°,∴∠A+∠B+∠C+∠D+∠E=5×36°=180°.故选A.点评:本题考查的是圆心角、弧、弦的关系,能根据题意得出每条弧的度数是解答此题的关键. 9.下列条件中,不能判定两个直角三角形全等的是() A.两个锐角对应相等 B.一条边和一个锐角对应相等 C.两条直角边对应相等 D.一条直角边和一条斜边对应相等考点:直角三角形全等的判定.分析:直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.解答:解:A、全等三角形的判定必须有边的参与,故本选项符合题意; B、符合判定ASA或AAS,故本选项正确,不符合题意; C、符合判定ASA,故本选项不符合题意; D、符合判定HL,故本选项不符合题意.故选A.点评:本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 10.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4等于() A. 4 B. 5 C. 6 D. 14考点:全等三角形的判定与性质;勾股定理;正方形的性质.分析:如图,易证△CDE≌△ABC,得AB2+DE2=DE2+CD2=CE2,同理FG2+LK2=HL2,S1+S2+S3+S4=1+3=4.解答:解:∵在△CDE和△ABC 中,,∴△CDE≌△ABC(AAS),∴AB=CD,BC=DE,∴AB2+DE2=DE2+CD2=CE2=3,同理可证FG2+LK2=HL2=1,∴S1+S2+S3+S4=CE2+HL2=1+3=4.故选A.点评:本题考查了全等三角形的证明,考查了勾股定理的灵活运用,本题中证明AB2+DE2=DE2+C D2=CE2是解题的关键.二、填空题(每小题4分,共32分) 11.等腰三角形一边长为1cm,另一边长为2cm,它的周长是 5 cm.考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为1cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:分两种情况:当腰为1cm时,1+1=2,所以不能构成三角形;当腰为2cm时,1+2>2,所以能构成三角形,周长是:1+2+2=5(cm).故答案为:5.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键. 12.在Rt△ABC中,∠C=Rt∠,∠A=70°,则∠B=20°.考点:直角三角形的性质.分析:根据直角三角形两锐角互余列式计算即可得解.解答:解:∵∠C=Rt∠,∠A=70°,∴∠B=90°�∠A=90°�70°=20°.故答案为:20°.点评:本题考查了直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键. 13.一个等腰三角形底边上的高、底边上的中线和顶角的平分线互相重合.考点:等腰三角形的性质.分析:根据等腰三角形三线合一的性质即可求解.解答:解:一个等腰三角形底边上的高、底边上的中线和顶角的平分线互相重合.故答案为底边上的中线,点评:本题考查了等腰三角形三线合一的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合. 14.如图,已知AC=BD,要使△ABC≌△DCB,只需增加的一个条件是∠ACB=∠DBC(或AB=CD).考点:全等三角形的判定.专题:开放型.分析:要使△ABC≌△DCB,根据三角形全等的判定方法添加适合的条件即可.解答:解:∵AC=BD,BC=BC,∴可添加∠ACB=∠DBC或AB=CD分别利用SAS,SSS判定△ABC≌△DCB.故答案为:∠ACB=∠DBC(或AB=CD).点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键. 15.如图,把一副三角板按如图所示放置,已知∠A=45°,∠E=30°,则两条斜边相交所成的钝角∠AOE的度数为165 度.考点:三角形的外角性质.专题:几何图形问题.分析:根据三角形的一个外角等于与它不相邻的两个内角的和,先求出∠EBO的度数,然后再求∠AOE.解答:解:∵∠A=45°,∠E=30° ,∴∠EBO=∠A+∠C=45°+90°=135°,∠AOE=∠EBO+∠E=135°+30°=165°.故答案为:165.点评:本题主要考查了三角形的外角性质,是基础题,需要熟练掌握. 16.如图,用尺规作图作“一个角等于已知角”的原理是:因为△D′O′C′≌△DOC,所以∠D′O′C′=∠DOC.由这种作图方法得到的△D′O′C′和△DOC全等的依据是SSS (写出全等判定方法的简写).考点:全等三角形的判定;作图―基本作图.专题:常规题型.分析:利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,于是可利用“SSS”判断△D′O′C′≌△DOC,然后根据全等三角形的性质得到角相等.解答:解:根据作图得OD=OC=OD′=OC′,CD=C′D′,所以利用“SSS”可判断为△D′O′C′≌△DOC,所以∠D′O′C′=∠DOC.故答案为“SSS”.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边. 17.如图,点P是∠BAC的平分线上一点,PB⊥AB于B,且PB=5cm,AC=12cm,则△APC的面积是30 cm2.考点:角平分线的性质.专题:分析:根据角平分线上的点到角两边的距离相等,得点P到AC的距离等于5,从而求得△APC的面积.解答:解:∵AP平分∠BAC交BC于点P,∠ABC=90°,PB=5cm,∴点P到AC的距离等于5cm,∵AC=12cm,∴△APC的面积=12×5÷2=30cm2,故答案为30.点评:本题主要考查了角平分线的性质定理,难度适中. 18.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15 度.考点:等边三角形的性质;三角形的外角性质;等腰三角形的性质.专题:几何图形问题.分析:根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.解答:解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.点评:本题考查了等边三角形的性质,互补两角和为180°以及等腰三角形的性质,难度适中.三、解答题(共38分)19.如图,在等腰△ABC中,AB=AC,AD是底边BC上的高线,若AB=10,BC=12,求AD的长.考点:勾股定理;等腰三角形的性质.分析:先根据等腰三角形的性质求出BD的长,再根据勾股定理求出AD的长即可.解答:解:∵AB=AC,AD⊥BC,∴BD=DC=6.由勾股定理得,AD= = =8.点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键. 20.先填空,后作图:(1)到一个角的两边距离相等的点在它的角平分线上;(2)到线段两端点距离相等的点在它的垂直平分线(或中垂线)上;(3)如图,两条公路AB与CB,C、D是两个村庄,现在要建一个菜市场,使它到两个村庄的距离相等,而且还要使它到两条公路的距离也相等,用尺规作图画出菜市场的位置(不写作法,保留作图痕迹).考点:作图―应用与设计作图;角平分线的性质;线段垂直平分线的性质.分析:(1)根据角平分线的性质填空即可;(2)根据线段垂直平分线定理填空即可;(3)作出∠ABC的角平分线BE,与线段CD的垂直平分线有一交点就是菜市场的位置.解答:解:(1)角平分线;(2)垂直平分线(或中垂线);(3)如图所示:点P就是菜市场的位置.点评:此题主要考查了作图与应用作图,以及线段垂直平分线的性质,关键是掌握线段垂直平分线和角平分线的作法. 21.如图,四边形ABCD中,AC垂直平分BD于点O.(1)图中有多少对全等三角形?请把它们都写出来;(2)任选(1)中的一对全等三角形加以证明.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:根据全等三角形的判定方法我们可以得到图中共有三对全等三角形分别为:△AOB≌△AOD,△COB≌△COD,△ABC≌△ADC.解答:(1)解:图中有三对全等三角形:△AOB≌△AOD,△COB≌△COD,△ABC≌△ADC;(3分)(2)证明△ABC≌△ADC.证明:∵AC垂直平分BD,∴AB=AD,CB=CD (中垂线的性质),又∵AC=AC,∴△ABC≌△ADC.(6分)点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 22.已知:等边△ABC中,BD=CE,AD与BE相交于P点,求证:∠APE=60°.考点:全等三角形的判定与性质;等边三角形的性质.专题:证明题.分析:先根据SAS定理得出△ABD≌△BCE,故可得出∠BAD=∠EBC,再由三角形外角的性质即可得出结论.解答:证明:∵△ABC是等边三角形,∴∠ABD=∠C=60°,AB=BC.在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠EBC,∴∠BAD+∠ABP=∠ABD=60°.∵∠APE是△ABP的外角,∴∠APE=∠BAD+∠ABP=60°.点评:本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键. 23.数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE = DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE = DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC 中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).考点:全等三角形的判定与性质;三角形内角和定理;等边三角形的判定与性质.专题:计算题;证明题;压轴题;分类讨论.分析:(1)根据等边三角形的性质和三角形的内角和定理求出∠D=∠ECB=30°,∠ABC=60°,求出∠D=∠DEB=30°,推出DB=BE=AE 即可得到答案;(2)作EF∥BC,证出等边三角形AEF,再证△DBE≌△EFC即可得到答案;(3)分为四种情况:画出图形,根据等边三角形性质求出符合条件的CD即可.解答:解:(1)答案为:=.(2)答案为:=.证明:在等边△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∴∠AEF=∠AFE=∠BAC=60°,∴AE=AF=EF,∴AB�AE=AC�AF,即BE=CF,∵∠ABC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,∵ED=EC,∴∠EDB=∠ECB,∵∠EBC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,∴∠BED=∠FCE,在△DBE和△EFC中,∴△DBE≌△EFC(SAS),∴DB=EF,∴AE=BD.(3)解:分为四种情况:如图1:∵AB=AC=1,AE=2,∴B是AE 的中点,∵△ABC是等边三角形,∴AB=AC=BC=1,△ACE是直角三角形(根据直角三角形斜边的中线等于斜边的一半),∴∠ACE=90°,∠AEC=30°,∴∠D=∠ECB=∠BEC=30°,∠DBE=∠ABC=60°,∴∠DEB=180°�30°�60°=90°,即△DEB是直角三角形.∴BD=2BE=2(30°所对的直角边等于斜边的一半),即CD=1+2=3.如图2,过A作AN⊥BC于N,过E作EM⊥CD于M,∵等边三角形ABC,EC=ED,∴BN=CN= BC= ,CM=MD= CD,AN∥EM,∴△BAN∽△BEM,实用精品文献资料分享∴ = ,∵△ABC边长是1,AE=2,∴ = ,∴MN=1,∴CM=MN�CN=1�= ,∴CD=2CM=1;如图3,∵∠ECD>∠EBC(∠EBC=120°),而∠ECD 不能大于120°,否则△EDC不符合三角形内角和定理,∴此时不存在EC=ED;如图4 ∵∠EDC<∠ABC,∠ECB>∠ACB,又∵∠ABC=∠ACB=60°,∴∠ECD>∠EDC,即此时ED≠EC,∴此时情况不存在,答:CD的长是3或1.点评:本题主要考查对全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.。
201509八年级(上)期中数学试卷 附答案
八年级(上)期中数学试卷一、选择题(每小题2分,共16分)1.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6 B.x6 C.x5 D.﹣x52.若a x=3,a y=2,则a x+y的值是()A.6 B. 5 C.9 D.83.一个三角形的周长是偶数,其中的两条边长分别是4和7,满足上述条件的三角形(三角形的边长均为整数)的个数为()A.1个B.3个C.5个D.7个4.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或185.若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,AD是∠CAE的平分线,∠B=35°,∠DAC=60°,则∠ACD=()A.25° B.85° C.60° D.95°7.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15° B.20° C.25° D.30°8.已知,如图,在△ABC中,AB=AC,∠A=120°,D为BC的中点,DE⊥AB于点E,则的值等于()A.3 B.2 C. 1 D.二、填空题(每小题2分,共16分)9.如果2x2y•A=6x2y2﹣4x3y2,则A=.10.一个凸多边形每一个内角都是135°,则这个多边形是边形.11.将一副三角板如图放置.若AE∥BC,则∠AFD=°.12.在四边形ABDC中,AB=AC,∠B=∠C,BD=10,则DC=.13.在△ABC中,AC=BC,∠ACB=90°,CD⊥AB于D,若S△ABC=16,则CD=.14.如图,P是△ABC的∠ABC和∠ACB的外角的平分线的交点,若∠A=90°,则∠P=.15.如图所示,已知BD⊥AB于B,DC⊥AC于C,若DB=DC,AD=DG,∠BAC=40°,则∠ADG=.16.在△ABC中,AB=AC=4cm,BD为AC边上的高,∠ABD=30°,则∠BAC的度数为.三、解答下列各题(每小题6分,共12分)17.已知:多边形的内角和与外角和的比是7:2,求这个多边形的边数18.先化简,再求值:x2(x﹣3)﹣x(x2﹣x﹣1),其中x=﹣2.四、解答下列各题(每小题7分,共14分)19.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.20.如图,△ABC中,AB=AC,D在BC上,且BD=AD,DC=AC,求∠B的度数.五、每小题7分,共14分21.如图,五边形ABCDE中,∠A=135°,延长CD,AE交于点F,且∠DEF=105°,∠F=45°,∠C=60°.(1)求∠B的度数;(2)AB与CD之间是否存在某种关系,说出你的理由.22.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.六、9分23.如图所示,在△ABC中,AB=AC,在AB边上取点D,在AC的延长线上取点E,使得BD=CE,连接DE交BC于点G,求证:DG=GE.七、9分24.已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.八、10分25.(10分)(2014秋•台安县期中)已知等边△ABC,点D是直线BC上一点,以AD为边在AD的右侧作等边△ADE,连结CE.(1)如图①,若点D在线段BC上,求证:CE+CD=AB;(2)如图②,若点D在BC延长线上,线段CD,CE和AB有怎样的数量关系?证明你的结论.参考答案与试题解析一、选择题(每小题2分,共16分)1.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6 B.x6 C.x5 D.﹣x5考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加计算后选取答案.解答:解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2.若a x=3,a y=2,则a x+y的值是()A.6 B. 5 C.9 D.8考点:同底数幂的乘法.分析:根据同底数幂的乘法,可得答案.解答:解:a x+y=a x•a y=3×2=6,故选:A.点评:本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加.3.一个三角形的周长是偶数,其中的两条边长分别是4和7,满足上述条件的三角形(三角形的边长均为整数)的个数为()A.1个B.3个C.5个D.7个考点:三角形三边关系.分析:首先设三角形第三边长为x,根据三角形的三边关系可得7﹣4<x<7+4,解不等式可得x的取值范围,再根据周长是偶数确定x的值,进而可得答案.解答:解:设三角形第三边长为x,由题意得:7﹣4<x<7+4,解得:3<x<11,∵周长是偶数,∴x=5,7,9,共3个.故选:B.点评:此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.4.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或18考点:等腰三角形的性质;三角形三边关系.专题:计算题.分析:由于等腰三角形的两边长分别是3和6,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的周长的定义计算即可求解.解答:解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选C.点评:此题主要考查了三角形的周长的计算,也利用了等腰三角形的性质,同时也利用了分类讨论的思想.5.若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定考点:三角形内角和定理.分析:根据已知及三角形的内角和定理得出.解答:解:设此三角形的三个内角分别是∠1,∠2,∠3(其中∠3最大),根据题意得∠1=∠3﹣∠2,∴∠1+∠2=∠3,又∵∠1+∠2+∠3=180°,∴2∠3=180°,∴∠3=90°.故选B.点评:本题考查三角形的内角和定理,解答的关键是沟通三个内角的关系.6.如图,AD是∠CAE的平分线,∠B=35°,∠DAC=60°,则∠ACD=()A.25° B.85° C.60° D.95°考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:首先根据平角定义,得∠DAE=60°,再根据三角形的外角性质,得∠ACD=∠B+∠BAC=95°.解答:解:∵∠CAD=∠DAE=60°,∴∠BAC=60°,∴∠ACD=∠B+∠BAC=35°+60°=95°.故选:D.点评:考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.7.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15° B.20° C.25° D.30°考点:全等三角形的性质.分析:根据全等三角形对应角相等,∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,根据∠BED+∠CED=180°,可以得到∠A=∠BED=∠CED=90°,再利用三角形的内角和定理求解即可.解答:解:∵△ADB≌△EDB≌△EDC∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C∵∠BED+∠CED=180°∴∠A=∠BED=∠CED=90°在△ABC中,∠C+2∠C+90°=180°∴∠C=30°故选D.点评:本题主要考查全等三角形对应角相等的性质,做题时求出∠A=∠BED=∠CED=90°是正确解本题的突破口.8.已知,如图,在△ABC中,AB=AC,∠A=120°,D为BC的中点,DE⊥AB于点E,则的值等于()A.3 B. 2 C. 1 D.考点:含30度角的直角三角形;等腰三角形的性质.分析:已知AB=AC,∠BAC=120°,可推出∠ABC=∠ACB=30°,连接AD,求得∠ADE=∠ABC=30°,再由直角三角形性质求解.解答:解:如图,∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°.连接AD.∵DE⊥AB,∴∠ADE=∠ABC=90°,设AE=x,则AD=2x,AB=2AD=4x,∴EB=3x,∴AE:EC=x:3x=1:3.故选:D.点评:本题考查了等腰三角形的性质和有一个角是30°的直角三角形的性质.解答本题的关键是准确作出辅助线.二、填空题(每小题2分,共16分)9.如果2x2y•A=6x2y2﹣4x3y2,则A=3y﹣2xy.考点:单项式乘多项式.分析:直接利用整式的除法运算法则化简求出即可.解答:解:∵2x2y•A=6x2y2﹣4x3y2,∴A=(6x2y2﹣4x3y2)÷2x2y=3y﹣2xy.故答案为:3y﹣2xy.点评:此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.10.一个凸多边形每一个内角都是135°,则这个多边形是八边形.考点:多边形内角与外角.分析:已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.解答:解:多边形的边数是:n=360°÷(180°﹣135°)=8.故这个多边形是八边形.故答案为:八.点评:考查了多边形内角与外角,通过本题要理解已知内角或外角求边数的方法.11.将一副三角板如图放置.若AE∥BC,则∠AFD=75°.考点:平行线的性质.专题:计算题;操作型.分析:本题主要利用两直线平行,同旁内角互补及三角板的特征进行做题.解答:解:因为AE∥BC,∠B=60°,所以∠BAE=180°﹣60°=120°;因为两角重叠,则∠DAF=90°+45°﹣120°=15°,∠AFD=90°﹣15°=75°.故∠AFD的度数是75度.点评:根据三角板的特殊角和平行线的性质解答.要用到:两直线平行,同旁内角互补.12.在四边形ABDC中,AB=AC,∠B=∠C,BD=10,则DC=10.考点:全等三角形的判定与性质.分析:连接BC,由等腰三角形的性质得出∠1=∠2,再由已知条件得出∠3=∠4,由等角对等边得出DC=BD即可.解答:解:连接BC,如图所示:∵AB=AC,∴∠1=∠2,∵∠ABD=∠ACD,∴∠3=∠4,∴DC=BD=10;故答案为:10.点评:本题考查了等腰三角形的判定与性质;熟练掌握等腰三角形的判定与性质,并能进行推理论证是解决问题的关键.13.在△ABC中,AC=BC,∠ACB=90°,CD⊥AB于D,若S△ABC=16,则CD=4.考点:等腰直角三角形.分析:根据AC=BC,∠ACB=90°,于是判断△ABC是等腰直角三角形,由于CD⊥AB于D,根据等腰直角三角形的性质得到CD=AB,然后根据面积公式列方程即可得到结果.解答:解:∵AC=BC,∠ACB=90°,∴△ABC是等腰直角三角形,∵CD⊥AB于D,∴CD=AB,∴S△ABC=AB•CD=CD2=16,∴CD=4(负值舍去).故答案为:4.点评:本题考查了等腰直角三角形的性质,三角形的面积公式,熟练掌握等腰直角三角形的性质是解题的关键.14.如图,P是△ABC的∠ABC和∠ACB的外角的平分线的交点,若∠A=90°,则∠P= 45°.考点:三角形内角和定理;三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式表示出∠ACE和∠PCE,再根据角平分线的定义表示出∠PBC和∠PCE,然后整理求出∠A=2∠P,再代入进行计算即可得解.解答:解:根据三角形的外角性质,∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,∵BP平分∠ABC,CP是△ABC的外角的平分线,∴∠PBC=∠ABC,∠PCE=∠ACE,∴∠P+∠ABC=(∠A+∠ABC),∴∠A=2∠P,∵∠A=90°,∴∠P=45°故答案为:45°点评:本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及角平分线的定义,准确识图并求出∠A=2∠P是解题的关键.15.如图所示,已知BD⊥AB于B,DC⊥AC于C,若DB=DC,AD=DG,∠BAC=40°,则∠ADG=140°.考点:角平分线的性质;等腰三角形的性质.分析:先根据到角的两边距离相等的点在角的平分线上得到AD是∠BAC的平分线,求出∠CAD的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求解.解答:解:∵BD⊥AE于B,DC⊥AF于C,且DB=DC,∴AD是∠BAC的平分线,∵∠BAC=40°,∴∠CAD=∠BAC=20°,∵AD=DG,∴∠AGD=∠GAD=20°,∴∠ADG=180°﹣∠CAD﹣∠AGD=140°,故答案为:140°.点评:本题考查了角平分线的判定与三角形的一个外角等于与它不相邻的两个内角的和的性质,仔细分析图形是解题的关键.16.在△ABC中,AB=AC=4cm,BD为AC边上的高,∠ABD=30°,则∠BAC的度数为60°或120°.考点:等腰三角形的性质.专题:分类讨论.分析:分∠A是锐角和∠A是钝角两种情况进行讨论,利用三角形的内角和定理即可求解.解答:解:当∠A是锐角时,如图(1)∵BD是高,∴∠BAC=90°﹣∠ABD=90°﹣30°=60°;当∠A是钝角时:如图(2)∠BAD=90°﹣∠ABD=90°﹣30°=60°则∠BAC=180°﹣∠BAD=180°﹣60°=120°,故答案是:60°或120°.点评:本题考查了三角形的内角和定理,正确分两种情况进行讨论是关键.三、解答下列各题(每小题6分,共12分)17.已知:多边形的内角和与外角和的比是7:2,求这个多边形的边数考点:多边形内角与外角.专题:计算题.分析:本题由题意得出等量关系即多边形的内角和与外角和的比是7:2,列出方程解出即可.解答:解:设这个多边形的边数为n,则有,解得:n=9.∴这个多边形的边数为9.点评:本题主要考查多边形的内角和定理及多边形的外角和定理,解题的根据是已知等量关系列出方程从而解决问题.18.先化简,再求值:x2(x﹣3)﹣x(x2﹣x﹣1),其中x=﹣2.考点:整式的混合运算—化简求值.专题:计算题.分析:原式利用单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.解答:解:原式=x3﹣3x2﹣x3+x2+x=﹣2x2+x,当x=﹣2时,原式=﹣10.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.四、解答下列各题(每小题7分,共14分)19.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.考点:作图-轴对称变换.分析:(1)利用长方形的面积剪去周围多余三角形的面积即可;(2)首先找出A、B、C三点关于y轴的对称点,再顺次连接即可;(3)根据坐标系写出各点坐标即可.解答:解:(1)如图所示:△ABC的面积:3×5﹣﹣﹣=6;(2)如图所示:(3)A1(2,5),B1(1,0),C1(4,3).点评:此题主要考查了作图﹣﹣轴对称变换,关键是找出对称点的位置,再顺次连接即可.20.如图,△ABC中,AB=AC,D在BC上,且BD=AD,DC=AC,求∠B的度数.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.专题:证明题.分析:根据等腰三角形的性质推出∠B=∠C,∠B=∠BAD,∠CAD=∠ADC,根据三角形的外角性质推出∠ADC=∠DAC=2∠B,设∠B=x°,则∠C=x°,∠BAC=3x°,根据三角形的内角和定理推出∠B+∠C+∠BAC=180°,代入求出即可.解答:解:∵AB=AC,∴∠B=∠C,∵BD=AD,∴∠B=∠BAD,则∠ADC=∠B+∠BAD=2∠B,∵DC=AC,∴∠ADC=∠DAC=2∠B,设∠B=x°,则∠C=∠BAD=x°,∠BAC=∠BAD+∠CAD=x°+2x°=3x°,在△ABC中,∠B+∠BAC+∠C=180°,则x+x+3x=180,∴x=36,即∠B=36°.点评:本题综合运用了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点,综合运用这些性质进行推理是解此题的关键,此题是一道比较典型的题目,并且难度适中,通过做此题培养了学生分析问题和解决问题的能力,用了方程思想.五、每小题7分,共14分21.如图,五边形ABCDE中,∠A=135°,延长CD,AE交于点F,且∠DEF=105°,∠F=45°,∠C=60°.(1)求∠B的度数;(2)AB与CD之间是否存在某种关系,说出你的理由.考点:多边形内角与外角;平行线的判定.分析:(1)首先求得∠DEA和∠EDC的度数,然后利用多边形的内角和定理可求得∠B 的度数;(2)根据∠B+∠C=180°可判定AB∥CD.解答:证明:(1)∵∠DEF=105°,∴∠DEA=75°.∵∠EDC=∠F+∠DEF,∴∠EDC=45°+105°=150°.由多边形的内角和公式可知:∠A+∠B+∠C+∠CDE+∠DEA=540°,∴∠B=120°;(2)∵∠B=120°,∠C=60°,∴∠B+∠C=180°.∴AB∥CD.点评:本题主要考查的是三角形的外角的性质、多边形的内角和公式、平行线的判定,求得∠DEA和∠EDC的度数是解题的关键.22.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.考点:直角三角形全等的判定;全等三角形的性质.分析:(1)证两条线段相等,通常用全等,本题中的AE和CD分别在三角形AEC和三角形CDB中,在这两个三角形中,已经有一组边相等,一组角相等了,因此只需再找一组角即可利用角角边进行解答.(2)由(1)得BD=EC=BC=AC,且AC=12,即可求出BD的长.解答:(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC=∠ECA=90°,且BC=CA,在△DBC和△ECA中,∵∴△DBC≌△ECA(AAS).∴AE=CD.(2)解:由(1)得AE=CD,AC=BC,在Rt△CDB和Rt△AEC中,∴Rt△CDB≌Rt△AEC(HL),∴BD=CE,∵AE是BC边上的中线,∴BD=EC=BC=AC,且AC=12cm.∴BD=6cm.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、9分23.如图所示,在△ABC中,AB=AC,在AB边上取点D,在AC的延长线上取点E,使得BD=CE,连接DE交BC于点G,求证:DG=GE.考点:平行线分线段成比例;等腰三角形的性质.专题:证明题.分析:过D作DF∥AC交BC于F,根据平行线的性质推出∠DFC=∠FCE,∠DFB=∠ACB,根据等腰三角形性质求出DF=CE=BD,根据AAS证出△DFG≌△ECG即可.解答:解:过D作DF∥AC交BC于F,∵DF∥AC(已知),∴∠DFC=∠FCE,∠DFB=∠ACB(平行线的性质),∵AB=AC(已知),∴∠B=∠ACB(等边对等角),∴∠B=∠DFB(等量代换),∴BD=DF(等角对等边),∵BD=CE(已知),∴DF=CE(等量代换),∵∠DFC=∠FCE,∠DGF=∠CGE(已证),∴△DFG≌△ECG(AAS),∴DG=GE(对应边相等).点评:本题考查了利用辅助线找出等比例关系,在同一个等式中找出未知项和已知项的关系进一步确定所要得出的结论.七、9分24.已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.考点:全等三角形的判定与性质.专题:几何综合题.分析:(1)利用ASA判定Rt△DFB≌Rt△DAC,从而得出BF=AC.(2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF(3)利用等腰三角形“三线合一”和勾股定理即可求解.解答:(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,∴BG=CG,∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=CE,∴BG>CE.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.八、10分25.(10分)(2014秋•台安县期中)已知等边△ABC,点D是直线BC上一点,以AD为边在AD的右侧作等边△ADE,连结CE.(1)如图①,若点D在线段BC上,求证:CE+CD=AB;(2)如图②,若点D在BC延长线上,线段CD,CE和AB有怎样的数量关系?证明你的结论.考点:全等三角形的判定与性质;等边三角形的性质.分析:(1)如图①,根据△ADE与△ABC都是等边三角形,容易得到全等条件证明△CAE≌△BAD,再根据全等三角形的性质可以证明题目的结论;(2)如图②,根据(1)可知D的位置对△CAE≌△BAD没有影响,所以BD=CE,所以CE﹣CD=AB,证明方法与(1)相同.解答:证明:(1)如图①,∵△ADE与△ABC都是等边三角形,∴AC=AB,AE=AD,∠DAE=∠BAC=60°.∴∠DAE﹣∠CAD=∠BAC﹣∠CAD.即∠CAE=∠BAD.在△CAE和△BAD中,,∴△CAE≌△BAD(SAS).∴EC=DB(全等三角形的对应边相等);∴CE+CD=DB+CD=BC=AB,即CE+CD=AB;(2)CE﹣CD=AB;理由如下:如图②,∵△ADE与△ABC都是等边三角形,∴AC=AB,AE=AD,∠DAE=∠BAC=60°.∴∠DAE+∠CAD=∠BAC+∠CAD.即∠CAE=∠BAD.在△CAE和△BAD中,,∴△CAE≌△BAD(SAS).∴EC=DB(全等三角形的对应边相等);∴CE﹣AB=DB﹣BC=CD,即CE﹣CD=AB.点评:本题主要考查了等边三角形的性质、全等三角形的判定与性质以及类比思想的运用.发现全等三角形是解决问题的关键.。
2015年秋学期期中考试试题初二数学附答案
学校 班级 姓名 考试号………………………………………………………………………………………………………………………………………………………………2015年秋学期期中考试试题初二数学(说明:本试卷满分120分,考试时间:100分钟) 一、选择题(本大题共10题,每小题3分,共计30分)1.以下分别为绿色食品、回收、节能、节水标志,其中是轴对称图形的是 ----- ( )2.下列实数:2、2、227、0.1010010001、327、π,其中无理数的个数为 ----- ( ) A .1 B .2C .3D .43.下列说法正确的是 -------------------------------------------------------------------------( ) A .(-3)2的平方根是3 B .16=±4 C .1的平方根是1 D .8的立方根是2 4.等腰三角形的两边长分别为2cm 和7cm ,则其周长为-------------------------( )A .11cmB .13cmC .16cmD .11cm 或16cm 5.在下列各组条件中 不能说明△ABC ≌△DEF 的是 -----------------------------( ) A .AB =DE ,∠B =∠E ,∠C =∠F B .AC =DF , BC =EF ,∠A =∠D C .AB =DE ,∠A =∠D ,∠B =∠E D .A B =DE , BC =EF , AC =DF 6.如图,BC 的垂直平分线分别交AB 、BC 于点D 和点E ,连接CD ,AC =DC ,∠B =25° 则∠ACD 的度数是 ------------------------------------------------------------ ( )A .50°B .60°C .80°D .100°7.如图,在数轴上表示1、2的点分别为A 、B ,点B 关于点A 的对称点为C ,则C 点所表示的是--------------------------------------------------------------------------( )A .2- 2B .2-2C .1- 2D .2-18.一个钝角三角形的两边长为5、12,则第三边可以为 -----------------------------------( ) A .11 B .13 C .15 D .179.如图,已知△ABC (AB <BC <AC ),用直尺和圆规在AC 上确定一点P ,使PB +PC =AC ,则下列选项中,一定符合要求的作图痕迹是------------------------------------------( )A .B .C .D .CBAA A第6题图 第7题图C O A EDCB AB A第10题图10.如图,在△ABC 中,AC =BC ,∠ ACB =90°,AE 平分∠BAC 交BC 于E , BD ⊥AE 于 D ,DF ⊥AC 交AC 的延长线于F ,连接C D ,给出三个结论: ①AE =2BD ; ②AB -AC =CE ; ③CE =2FC ;其中正确的结论有-------------------------------------------------------( )A .0个B .1个C .2个D .3个 二、填空题(本大题共8题,每空2分,共计18分) 11.9的平方根是 ; 的立方根是-2. 12.式子x +2有意义,则x 的取值范围是 .13.若一个正数的两个不同的平方根为2m -5与m +2,则这个正数为 . 14.若等腰三角形的一个外角为80°,则它的顶角是为 °.15.如图,已知AB ∥CF ,E 为DF 的中点,若AB =7 cm ,BD =3 cm ,则CF = cm .16.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点,若AD =6,CD =8,则DE 的长等于 .17. 如图,△ABC 中,∠ACB =90°,以AC 为底边在△ABC 外作等腰△ACD ,过点D 作∠ADC 的平分线分别交AB 、AC 于点E 、F .若AC =12cm ,BC =5cm ,点P 是直线DE 上的一个动点,则△PBC 的周长的最小值是_________cm .18.如图,四边形ABCD 中,AD ∥BC ,∠B =90°,AB =AD =4cm ,BC =7cm ,现要在形 如四边形ABCD 的纸片上剪下一个腰长为3cm 的等腰三角形 (要求:等腰三角形的一个顶点与四边形ABCD 的一个顶点 重合,其余两个顶点在四边形ABCD 的边上),则剪下的等腰 三角形的底边的长度的值有 种可能.三、解答题(本大题共9题,共计72分.解答需写出必要的文字说明或演算步骤.)) 19.计算题.(每小题5分,共10分)(1)计算:16-3-8+20150; (2)(-5)2 +|1-2|-(12)-2.20.求出下列x 的值.(每小题5分,共10分)FEDCBAEDCB A第15题图 第16题图 第17题图BA班 姓名 考试号………………………………………………………………………………………………………………DEC BA GDECBA (1)4x 2-9=0 ; (2) (x +1)3=-27.21.(本题满分6分) 在4×4的方格中有三个同样大小的正方形如图摆放,请你在图1—图3中的空白处添加一个正方形方格(涂黑),使它与其余三个正方形组成的新图形是一个轴对称图形.22.(本题满分6分) 已知x -2的算术平方根是3,2x -y +12的立方根是1,求x +y 的值.23.(本题满分6分)如图,C 为线段AB 的中点,CD ∥BE ,CD =BE .求证:AD ∥CE .24.(本题满分8分)如图,将长方形纸片ABCD 沿对角线BD 折叠得到△BDE ,DE 交AB 于点G .(1)求证:DG =BG ; (2) 若AD =4,AB =8,求△BDG 的面积.25.(本题满分8分)爱动脑筋的小明在学习了全等三角形和等腰三角形有关知识后作了如下探索:图1H G DCBA(1)已知,如图,△ABC 中,∠BAC 是锐角,AB =AC ,高AD 、BG 所在的直线相交于点H , 且AG =BG ,则AH 和BC 的关系是:_____________________;(2)若把⑴中的“∠BAC 是锐角”改为“∠BAC 是钝角”(如图2),其他条件都不变, AH 和BC 的关系是否仍然成立, 若成立,请在图2中用三角板和量角器画出完整的图形并证明;若不成立,请说明理由.26.(本题满分9分)已知:如图1,射线MN ⊥AB ,AM =1cm ,MB =4cm. 点C 从M 出发以2cm/s 的 速度沿射线MN 运动,设点 C 的运动时间为t (s) (1) 当△ABC 为等腰三角形时,求t 的值; (2)当△ABC 为直角三角形时,求t 的值;(3)当t 满足条件:__________时,△ABC 为钝角三角形; 当_________时,△ABC 为锐角三角形.N BA N BANBA图1 备用图 备用图图2GB A CFD图327.(本题满分9分)【问题背景】如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.小明同学的方法是将△ABE 绕点A 逆时针旋转120°到△ADG 的位置,然后再证明△AFE ≌△AFG ,从而得出结论:___________________. 【探索延伸】如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由.【结论应用】如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏东60°的A 处,舰艇乙在指挥中心南偏西20°的B 处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正南方向以40海里/小时的速度前进,舰艇乙沿南偏东40°的方向以50海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇与指挥中心O 之间夹角∠EOF =70°,试求此时两舰艇之间的距离.图1 图2BA CFD2015年秋学期期中考试参考答案及评分标准 2015.11初二数学一、选择题(每题3分,共30分)1.A 2.B 3.D 4.C 5.B 6.C 7.A 8.C 9.C 10.D 二、填空题(每空2分,共16分)11. 3 -8; 12.x ≥-2; 13.9; 14.100; 15.4 ; 16. 5; 17.18; 18.7. 三、解答题(本大题共10小题,共84分)19.(1)16-3-8+20150 (2)(-5)2 +|1-2|-(12)-2=4-(-2)+1 …… 3分 = 5+(2-1)-4…… 3分=7…… 5分 = 2 …… 5分20.(1)4x 2-9=0 ; (2) (x +1)3=-274x 2=9 …… 1分 x +1=-3 …… 3分 x 2=94 …… 3分 x =-4 …… 5分x =±32 …… 5分21.(略 ,每画出一个正确图形给2分)22. x -2=9 …… 1分 23. 证得 AC =BC …… 1分 2x -y +12=1 …… 2分 ∠ACD =∠B …… 2分 解得x =11 ……3分 △ACD ≌△CBE …… 4分 y =33 ……4分 AD ∥CE …… 6分 ∴x +y =44 ……6分24.(1)由折叠可知 ∠CDB =∠GDB …… 1分 由矩形ABCD 可证 ∠CDB =∠DBG …… 2分∴ ∠GDB =∠DBG …… 3分∴DG =BG …… 4分 (其他证法参照给分) (2)设DG =BG =x ,则AG =8-x 在△ADG 中,∠A =90°∴ 42+(8-x )2=x 2 …… 6分 解得x =5 ……7分所以△BDG 的面积=12×5×4=10 ……8分25.(1) AH 平分BC 且AH =BC ……2分 (每回答出一种得1分)(2)答:成立 ……3分正确画出图形 …… 5分 证出AH 平分BC ……6分 △AHG ≌△BCG ……7分 AH =BC …… 8分26.(1)当CB =AB 时,在Rt △MCB ,由勾股定理得: t =32 ……2分当AB =AC 时,在Rt △MCA ,由勾股定理得:t =242……4分 当AC =BC 时,C 在AB 的垂直平分线上,与条件不合 ……5分 (2)由题意∠ACB =90°时,∴AC 2+BC 2 =AB 2设CM =x ,在Rt △MCB 中由勾股定理得:BC 2=x 2+42在Rt △MCA 中,由勾股定理得:AC 2=x 2+12 ……6分∴x 2+42+x 2+12=52x =2 t =1 ………7分(3)0<t <1;t >1 (每空1分) ………9分27.问题背景:EF =BE +FD . ……… 2分 探索延伸: EF =BE +FD 仍然成立. ……… 3分 证明:延长FD 到点G ,使DG =BE ,连接AG… 可证△ABE ≌△ADG .∴AE =AG ,∠BAE =∠DAG , ……… 4分 可证△AEF ≌△AGF . ∴EF =FG .又∵FG =DG +DF =BE +DF .∴EF =BE +FD . ……… 5分结论应用:连接EF ,∵∠AOB =30°+90°+20°=140°,∠FOE =70°=12∠AOB , ……… 6分又∵OA =OB ,∠A +∠B =60°+120°=180°,符合探索延伸中的条件,∴结论EF =AE +FB 成立. ……… 8分 即,EF =AE ++FB =2×40+2×50=180(海里)答:此时两舰艇之间的距离为180海里. ……… 9分。
2015秋初二数学上册期中试卷(带答案)
2015秋初二数学上册期中试卷(带答案)江苏省苏州市太仓市、昆山市2014-2015学年八年级上学期期中数学试卷一、选择题(每小题3分,共30分;把下列各题中唯一正确答案前面的字母填涂在答题卡相应的位置上.) 1.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形.其中是轴对称图形有( )个. A.1个 B.2个 C.3个 D.4个2.在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是( ) A.a2+b2=c2 B.b2+c2=a2 C.a2+c2=b2 D.c2�a2=b23.下列四个数中,是负数的是( ) A.|�2| B.(�2)2 C.� D.4.如果a、b、c是一个直角三角形的三边,则a:b:c等于( ) A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:135.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是( ) A.40° B.35° C.25° D.20°6.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD 等于( ) A.4 B.3 C.2 D.17.已知,则的值是( ) A.457.3 B.45.73 C.1449 D.144.9 8.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为( ) A.3cm或5cm B.3cm或7cm C.3cm D.5cm9.在Rt△ABC中,AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为( ) A.24 B.24π C. D.10.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( ) A.90 B.100 C.110 D.121二、填空题(本大题共8小题,每小题3分,共24分,把正确答案填写在答题卡相应位置上) 11.2的平方根是__________.12.若的值在两个整数a与a+1之间,则a=__________.13.如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD折叠后,点C落在C′的位置上,那么BC′为__________.14.如图,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个) __________.15.如图,AB∥CD,AD∥BC,则图中共有全等三角形__________对.16.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处,蚂蚁爬行的最短路程是__________cm.17.△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为__________.18.等腰三角形一腰长为5,一边上的高为3,则底边长为__________.三、解答题(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.求下列各式中x的值(1)(x�1)2=25 (2)�8(2�x)3=27.20.求下列各式的值(1)(2).21.已知:x�2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.22.已知,如图,AD=BC,AC=BD,AC与BD相交于点E.求证:△EAB 是等腰三角形.23.如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,①若△BCD的周长为8,求BC的长;②若BC=4,求△BCD的周长.24.已知,如图,在四边形ABCD中,AB=CD,AD=BC,点E、F在AC 上,且AE=CF.图中有哪些三角形全等?请分别加以证明.25.某开发区有一空地ABCD,如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=3m,BC=4m,AD=12m,CD=13m,若每种植1平方米草皮需要100元,问总共需要投入多少元?26.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ 是什么形状的三角形?试说明你的结论.27.如图,五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB于M,试说明M是AB中点.28.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.29.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x (1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式 + 的最小值.江苏省苏州市太仓市、昆山市2014-2015学年八年级上学期期中数学试卷一、选择题(每小题3分,共30分;把下列各题中唯一正确答案前面的字母填涂在答题卡相应的位置上.) 1.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形.其中是轴对称图形有( )个. A.1个 B.2个 C.3个 D.4个考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:①、②不是轴对称图形;③长方形是轴对称图形;④等腰三角形是轴对称图形.共2个.故选B.点评:轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是( ) A.a2+b2=c2 B.b2+c2=a2 C.a2+c2=b2 D.c2�a2=b2考点:勾股定理.专题:计算题.分析:由已知两角之和为90度,利用三角形内角和定理得到三角形为直角三角形,利用勾股定理即可得到结果.解答:解:∵在△ABC中,∠A+∠C=90°,∴∠B=90°,∴△ABC为直角三角形,则根据勾股定理得:a2+c2=b2.故选C 点评:此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.3.下列四个数中,是负数的是( ) A.|�2| B.(�2)2 C.� D.考点:实数的运算;正数和负数.专题:计算题.分析:根据绝对值的性质,有理数的乘方的定义,算术平方根对各选项分析判断后利用排除法求解.解答:解:A、|�2|=2,是正数,故本选项错误;B、(�2)2=4,是正数,故本选项错误;C、�<0,是负数,故本选项正确;D、 = =2,是正数,故本选项错误.故选C.点评:本题考查了实数的运用,主要利用了绝对值的性质,有理数的乘方,以及算术平方根的定义,先化简是判断正、负数的关键.4.如果a、b、c是一个直角三角形的三边,则a:b:c等于( ) A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:13考点:勾股定理.专题:计算题.分析:将四个选项的数字按照勾股定理进行计算,符合a2+b2=c2的即为正确答案.解答:解:A、∵12+22≠42,∴1:2:4不是直角三角形的三条边;故本选项错误;B、∵12+32≠42,∴1:3:5不是直角三角形的三条边;故本选项错误;C、∵32+42≠72 ,∴3:4:7不是直角三角形的三条边;故本选项错误;D、∵52+122=132,∴1:2:4是直角三角形的三条边;故本选项正确.故选D.点评:本题考查了勾股定理,符合a2+b2=c2的三条边才能构成直角三角形.5.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是( ) A.40° B.35° C.25° D.20°考点:等腰三角形的性质.分析:先根据等腰三角形的性质及三角形内角和定理求出∠ADC的度数,再根据等腰三角形的性质及三角形外角与内角的关系求出∠B的度数即可.解答:解:∵△ABC中,AC=AD,∠DAC=80°,∴∠ADC= =50°,∵AD=BD,∠ADC=∠B+∠BAD=50°,∴∠B=∠BAD=()°=25°.故选C.点评:此题比较简单,考查的是等腰三角形的性质及三角形内角和定理.6.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD 等于( ) A.4 B.3 C.2 D.1考点:菱形的判定与性质;含30度角的直角三角形.专题:几何图形问题.分析:过点P做PM∥CO交AO于M,可得∠CPO=∠POD,再结合题目推出四边形COMP为菱形,即可得PM=4,又由CO∥PM可得∠PMD=30°,由直角三角形性质即可得PD.解答:解:如图:过点P做PM∥CO交AO于M,PM∥CO ∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA ∴四边形COM P为菱形,PM=4 PM∥CO⇒∠PMD=∠AOP+∠BOP=30°,又∵PD⊥OA ∴PD= PC=2.令解:作CN⊥OA.∴CN= OC=2,又∵∠CNO=∠PDO,∴CN∥PD,∵PC∥OD,∴四边形CNDP是长方形,∴P D=CN=2 故选:C.点评:本题运用了平行线和直角三角形的性质,并且需通过辅助线求解,难度中等偏上.7.已知,则的值是( ) A.457.3 B.45.73 C.1449 D.144.9考点:算术平方根.分析:把的被开方的小数点向右移动4位,则其平方根的小数点向右移动2位,即可得到 =144.9.解答:解:∵ = =100 ,而 =1.449,∴ =1.449×100=144.9.故选D.点评:本题考查了算术平方根:若一个正数的平方等于a,那么这个数叫a的算术平方根,记作(a≥0).8.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为( ) A.3cm或5cm B.3cm或7cm C.3cm D.5cm考点:等腰三角形的性质;三角形三边关系.分析:已知的边可能是腰,也可能是底边,应分两种情况进行讨论.解答:解:当腰是3cm时,则另两边是3cm,9cm.而3+3<9,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是6cm,6cm.则该等腰三角形的底边为3cm.故选:C.点评:本题从边的方面考查三角形,涉及分类讨论的思想方法.9.在Rt△ABC中,AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为( ) A.24 B.24π C. D.考点:勾股定理.专题:数形结合.分析:先求出直角三角形的斜边,再利用:阴影部分面积=两个小半圆面积+直角三角形面积�以斜边为直径的大半圆面积.解答:解:在Rt△ABC中,AC=6 ,BC=8,AB= = =10, S阴影= π()2+ π()2+ ×6×8�π()2 = +8π+24�=24.故选A.点评:本题考查勾股定理的知识,难度一般,解答本题的关键是利用勾股定理得出 AB的长及找出阴影部分面积的表示,另外本题也进一步验证了勾股定理.10.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( ) A.90 B.100 C.110 D.121考点:勾股定理的证明.专题:常规题型;压轴题.分析:延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.解答:解:如图,延长AB交KF于点O,延长AC交GM于点P,所以四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以KL=3+7=10,LM =4+7=11,因此矩形KLMJ的面积为10×11=110.故选:C.点评:本题考查了勾股定理的证明,作出辅助线构造出正方形是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分,把正确答案填写在答题卡相应位置上) 11.2的平方根是± .考点:平方根.分析:直接根据平方根的定义求解即可(需注意一个正数有两个平方根).解答:解:2的平方根是± .故答案为:± .点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.若的值在两个整数a与a+1之间,则a=2.考点:估算无理数的大小.专题:计算题.分析:利用”夹逼法“得出的范围,继而也可得出a的值.解答:解:∵2= < =3,∴ 的值在两个整数2与3之间,∴可得a=2.故答案为:2.点评:此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.13.如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD折叠后,点C落在C′的位置上,那么BC′为2.考点:翻折变换(折叠问题).专题:压轴题;数形结合.分析:根据中点的性质得BD=DC=2.再根据对称的性质得∠BDC′=60°,判定三角形为等边三角形即可求.解答:解:根据题意:BC=4,D为BC的中点;故BD=DC=2.由轴对称的性质可得:∠ADC=∠ADC′=60°,DC=DC′=2,则∠BDC′=60°,故△BDC′为等边三角形,即可得BC′=BD= BC=2.故答案为:2.点评:本题考查了翻折变换的知识,同时考查了等边三角形的性质和判定,判定出△BDC为等边三角形是关键.14.如图,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)∠B=∠D或∠C=∠E或AC=AE.考点:全等三角形的判定.专题:开放型.分析:要使要使△ABC≌△ADE,已知AB=AD,∠1=∠2得出∠BAC=∠DAE,若添加∠B=∠D或∠C=∠E可以利用ASA判定其全等,添加AC=AE可以利用SAS判定其全等.解答:解:∵AB=AD,∠1=∠2 ∴∠BAC=∠DAE ∴若添加∠B=∠D或∠C=∠E可以利用ASA判定△ABC≌△ADE 若添加AC=AE可以利用SAS判定△ABC≌△ADE 故填空答案:∠B=∠D或∠C=∠E或AC=AE.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,AB∥CD,AD∥BC,则图中共有全等三角形4对.考点:全等三角形的判定.分析:根据AB∥CD,AD∥BC可得到相等的角,再根据公共边AC、BD易证得:△ACD≌△CAB、△BAD≌△DCB (ASA);由上可得AD=BC、AB=CD,再根据平行线确定的角相等可证得:△AOD≌△COB、△AOB≌△COD(ASA).解答:解:∵AB∥CD,AD∥BC,∴∠CAD=∠ACB,∠BDA=∠DBC,∠BAC=∠DCA,∠ABD=∠CDB,又∵AC、BD为公共边,∴△ACD≌△CAB、△BAD≌△DCB(ASA);∴AD=BC,AB=CD,∴△AOD≌△COB、△AOB≌△COD(ASA).所以全等三角形有:△AOD≌△COB、△AOB≌△COD、△ACD≌△CAB、△BAD≌△DCB,共4对;故答案是:4.点评:本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA 、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处,蚂蚁爬行的最短路程是100cm.考点:平面展开-最短路径问题.分析:蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短的途径.解答:解:第一种情况:如图1,把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是90cm和50cm,则所走的最短线段AB= =10 cm;第二种情况:如图2,把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是110cm和30cm,所以走的最短线段AB= =10 cm;第三种情况:如图3,把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是80cm和60cm,所以走的最短线段AB= =100cm;三种情况比较而言,第三种情况最短.故答案为:100cm.点评:本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.17.△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为BN=DE+ DF.考点:等边三角形的性质;三角形的面积.分析:连接AD,利用三角形的面积相等结合等边三角形的性质可得到BN=DE+DF.解答:解:BN=DE+DF,证明如下:连接AD,∵S△ABC=S△ABD+S△ACD,∴ AC•BN= AB•DE+ AC•DF,∵△ABC为等边三角形,∴AB=AC,∴AC•BN=AC•DE+AC•DF,∴BN=DE+DF.故答案为:BN=DE+DF.点评:本题主要考查等边三角形的性质,利用等积法得到AC•BN= AB•DE+ AC•DF是解题的关键.18.等腰三角形一腰长为5,一边上的高为3,则底边长为8或或3 .考点:勾股定理;等腰三角形的性质.专题:分类讨论.分析:由已知的是一边上的高,分腰上的高于底边上的高两种情况,当高为腰上高时,再分锐角三角形与钝角三角形两种情况,当三角形为锐角三角形时,如图所示,在直角三角形ACD中,由AC及CD的长,利用勾股定理求出AD的长,由AB�AD求出BD的长,在直角三角形BDC中,由BD及CD的长,即可求出底边BC的长;当三角形为钝角三角形时,如图所示,同理求出AD的长,由AB+AD求出BD的长,同理求出BC 的长;当高为底边上的高时,如图所示,由三线合一得到BD=CD,在直角三角形ABD中,由AB及AD的长,利用勾股定理求出BD的长,由BC=2BD即可求出BC的长,综上,得到所有满足题意的底边长.解答:解:如图所示:当等腰三角形为锐角三角形,且CD为腰上的高时,在Rt△ACD中,AC=5,CD=3,根据勾股定理得:AD= =4,∴BD=AB�AD=5�4=1,在Rt△BDC中,CD=3,BD=1,根据勾股定理得:BC= = ;当等腰三角形为钝角三角形,且CD为腰上的高时,在Rt△ACD中,AC=5,CD=3,根据勾股定理得:AD= =4,∴BD=AB+AD=5+4=9,在Rt△BDC中,CD=3,BD=9,根据勾股定理得:BC= =3 ;当AD为底边上的高时,如图所示:∵AB=AC,AD⊥BC,∴BD=CD,在Rt△ABD中,AD=3,AB=5,根据勾股定理得:BD= =4,∴BC=2BD=8,综上,等腰三角形的底边长为8或或3 .故答案为:8或或3 点评:此题考查了勾股定理,以及等腰三角形的性质,利用了分类讨论的数学思想,要求学生考虑问题要全面,注意不要漏解.三、解答题(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.求下列各式中x的值(1)(x�1)2=25 (2)�8(2�x)3=27.考点:立方根;平方根.分析:(1)运用直接开平方求解即可;(2)方程两边直接开立方即可得到方程的解.解答:解:(1)(x�1)2=25,解得:x=6或�4.(2)�8(2�x)3=27,解得:x=�点评:此题主要考查了平方根、立方根的定义,其中用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.20.求下列各式的值(1)(2).考点:实数的运算.分析:(1)分别根据绝对值的性质分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据数的开方法则法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:(1)原式=2� +2 �1 =1+ ;(2)原式=4+4+3 =11.点评:本题考查的是实数的运算,熟知绝对值的性质及数的开方法则是解答此题的关键.21.已知:x�2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.考点:立方根;平方根;算术平方根.专题:计算题.分析:根据平方根、立方根的定义和已知条件可知x�2=4,2x+y+7=27,列方程解出x、y,最后代入代数式求解即可.解答:解:∵x�2的平方根是±2,∴x�2=4,∴x=6,∵2x+y+7的立方根是3 ∴2x+y+7=27 把x的值代入解得: y=8,∴x2+y2的算术平方根为10.点评:本题主要考查了平方根、立方根的概念,难易程度适中.22.已知,如图,AD=BC,AC=BD,AC与BD相交于点E.求证:△EAB 是等腰三角形.考点:全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:先用SSS证△ADB≌△BCA,得到∠DBA=∠CAB,利用等角对等边知AE=BE,从而证得△EAB是等腰三角形.解答:证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠DBA=∠CAB,∴AE=BE,∴△EAB是等腰三角形.点评:本题考查了三角形全等判定及性质和等腰三角形的性质;三角形的全等的证明是正确解答本题的关键.23.如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,①若△BCD的周长为8,求BC的长;②若BC=4,求△BCD的周长.考点:线段垂直平分线的性质;等腰三角形的性质.分析:(1)利用线段垂直平分线的性质可知BD+CD=5,易求BC;(2)根据第一问中BD+CD=5,易求△BCD的周长.解答:解:①AB=AC=5,DE垂直平分AB,故BD=AD.BD+CD=AD+CD=5.△BCD的周长为8⇒BC=3;②∵BC=4,BD+CD=5,∴△BCD=BD+CD+BC=9.点评:本题考查的是线段垂直平分线的性质以及等腰三角形的性质;进行线段的有效转移是正确解答本题的关键.24.已知,如图,在四边形ABCD中,AB=CD,AD=BC,点E、F在AC 上,且AE=CF.图中有哪些三角形全等?请分别加以证明.考点:全等三角形的判定.分析:根据SSS先证明△ABC≌△ADC,得∠BAC=∠DCA,根据平行线的判定得AB∥CD,即可得出△ABE≌△CDF,△EBC≌△FDA.解答:解:全等三角形有三对:△ABC≌△ADC,△ABE≌△CDF,△EBC≌△FDA.在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAC=∠DCA,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF,∵AE=CF,∴AF=CE,在△EBC 和△FDA中,,∴△BCE≌△DAF(SSS).点评:本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.某开发区有一空地ABCD,如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=3m,BC=4m,AD=12m,CD=13m,若每种植1平方米草皮需要100元,问总共需要投入多少元?考点:勾股定理的应用;三角形的面积.专题:应用题.分析:仔细分析题目,需要求得四边形的面积才能求得结果.连接AC,在直角三角形ABC中可求得AC的长,由AC、AD、DC的长度关系可得三角形DAC为一直角三角形,DA为斜边;由此看,四边形ABCD由Rt△ABC和Rt△DAC构成,则容易求解.解答:解:连接AC,在Rt△ABC中,AC2=AB2+BC2=32+42=52,∴AC=5.在△DAC中,CD2=132,AD2=122,而122+52=132,即AC2+AD2=CD2,∴∠DCA=90°, S四边形ABCD=S△BAC+S△DAC= •BC•AB+ DC•AC,= ×4×3+ ×12×5=36.所以需费用36×100=3600(元).点评:本题考查了勾股定理及其逆定理的相关知识,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.26.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ 是什么形状的三角形?试说明你的结论.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.解答:证明:(1)∵△ABC 为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAQ=60°,∴△APQ是等边三角形.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证△ABP≌△ACQ是解题的关键.27.如图,五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB于M,试说明M是AB中点.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:连接AD、BD.易证△ADE≌△DBC,再根据全等三角形的性质可得AD=DB,即△ABD是等腰三角形,而DM⊥AB,利用等腰三角形三线合一定理可得M是AB中点.解答:证明:连接AD、BD,∵ ,∴△ADE≌△DBC(SAS),∴AD=BD,又∵DM⊥AB,∴M是AB的中点.点评:本题考查了全等三角形的判定和性质及等腰三角形三线合一定理;作出辅助线是正确解答本题的关键.28.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.考点:等腰直角三角形;全等三角形的判定与性质.分析:连接OA.先证得△OAN≌△OBM,然后根据全等三角形的对应边相等推知OM=ON;然后由等腰直角三角形ABC的性质、等腰三角形OMN的性质推知∠NOM=90°,即△OMN是等腰直角三角形.解答:解:△OMN是等腰直角三角形.理由:连接OA.∵在△ABC中,∠A=90°,AB=AC,O是BC的中点,∴AO=BO=CO(直角三角形斜边上的中线是斜边的一半);∠B=∠C=45°;在△OAN和OBM中,,∴△OAN≌△OBM(SAS),∴ON=OM(全等三角形的对应边相等);∴∠AON=∠BOM(全等三角形的对应角相等);又∵∠BOM+∠AOM=90°,∴∠NOM=∠AON+∠AOM=90°,∴△OMN是等腰直角三角形.点评:本题考查了等腰直角三角形的判定与性质、全等三角形的判定与性质.解答该题的关键一步是根据等腰直角三角形ABC的“三线合一”的性质推知OA=OB=OC.29.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x (1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式 + 的最小值.考点:轴对称-最短路线问题;勾股定理.分析:(1)由于△ABC和△CDE都是直角三角形,故AC,CE可由勾股定理求得;(2)若点C 不在AE的连线上,根据三角形中任意两边之和>第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小;(3)由(1)(2)的结果可作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,则AE的长即为代数式 + 的最小值,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.解答:解:(1)AC+CE= + ;(2)当A、C、E三点共线时,AC+CE的值最小;(3)如右图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,设BC=x,则AE的长即为代数 + 的最小值.过点A作AF ∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,所以AE= = =13,即 + 的最小值为13.故代数式 + 的最小值为13.点评:此题主要考查了轴对称求最短路线以及勾股定理等知识,本题利用了数形结合的思想,求形如的式子的最小值,可通过构造直角三角形,利用勾股定理求解.。
2015秋人教版八年级数学(上)期中测试题和答案
AD 第16题图 第12题图第8题图第1题图第9题图第17题图第15题图第14题图 新人教版八年级数学(上)10月份抽考试卷(考试用时:120分钟 ; 满分: 120分)一、选择题(共12小题,每小题3分,共36分. 在每小题给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入对应题目后的括号内)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ).2. 对于任意三角形的高,下列说法不正确的是( )A .锐角三角形有三条高B .直角三角形只有一条高C .任意三角形都有三条高D .钝角三角形有两条高在三角形的外部3. 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为( ) A. 5或7 B. 7或9 C. 7 D. 94. 等腰三角形的一个角是80°,则它的底角是( )A. 50°B. 80°C. 50°或80°D. 20°或80°5. 点M (3,2)关于y 轴对称的点的坐标为 ( )。
A.(—3,2) B.(-3,-2) C. (3,-2) D. (2,-3)6. 如图,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( )。
A .30° B. 40° C. 50° D. 60°7. 现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm .从中任取 三根木棒,能组成三角形的个数为( )A .1个B .2个C .3个D .4个 8. 如图,△ABC 中,AB=AC ,D 为BC 的中点,以下结论: (1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线。
其中正确的有( )。
A .1个 B. 2个 C. 3个 D. 4个9. 如图,△ABC 中,AC =AD =BD ,∠DAC =80º, 则∠B 的度数是( ) A .40º B .35º C .25º D .20º10. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是 ( ) A .30º B .36º C .60º D .72º11.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,( )去.A .①B .②C .③D .①和②12.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n 个图案中正三角形的个数为( ) (用含n 的代数式表示).A .2n +1 B. 3n +2 C. 4n +2 D. 4n -2二、填空题(本大题共6小题,每小题3分,共18分.请把答案填写在相应题目后的横线上) 13. 若A (x ,3)关于y 轴的对称点是B (-2,y ),则x =____ ,y =______ , 点A 关于x 轴的对称点的坐标是___________ 。
2015年秋季期中考试初二年数学试卷附答案
2015年秋季期中考试初二年数学试卷班级 号数 姓名一、 选择题:(每小题3分,共21分)1、4的平方根是( )A. ±2B. 2C. -2D. ±42.下列实数中,是无理数的为( )A 、-3B 、722 C 、-3 D 、03、下列运算中,计算结果正确的是( ) A .1234a a a =⋅ B .333)(ab b a =⋅ C .523)(a a = D . 236a a a =÷4、下列命题中是真命题的是( )A .B .相等的角是对顶角 C.2141= D .-27没有立方根 5、下列运算正确的是 ( ) A .222)(y x y x -=-B .9)3(22+=+a aC .22))((b a b a b a -=--+D .22))((y x x y y x -=+-6.下列因式分解错误的是( )A .22()()x y x y x y -=+-B .222()x y x y +=+C .2()x xy x x y +=+D .2269(3)x x x ++=+ 7.一个正方形的边长为acm ,若它的边长增加cm 4,则面积增加了( )2cmA.16B. 8aC. (16+4a )D. (16+8a )二、填空题:(每小题4分,共40分)8、 64的立方根为 .9、计算:2(615)3x xy x -÷= .10.把命题“同旁内角互补,两直线平行”改写成“如果……,那么……”的形式: ________________ _______.11. 比较大小:2 512、因式分解:42-a = .13、若)()(=+-35x x 152-+kx x ,则k 的值为 .14、30y -=,则化简:()y x a = .15、已知多项式)21)(5(x mx -+展开后不含x 的一次项,则m 的值是16. 当整数k = 时,多项式42++kx x 恰好是另一个完全平方式.17. 我们把分子为1的分数叫做理想分数,如21,31,41,…,任何一个理想分数都可以写成两个不同理想分数的和,如613121+=;1214131+=;2015141+=;=51 ;﹍根据对上述式子的观察,请你思考:如果理想分数n 1(n 是不小于2的整数)ba 11+=,那么=+b a .(用含n 的式子表示).三、解答题:(共89分)18、(919(9分)计算: 232)3()129(x x x -÷-20、(9分)因式分解:22242y xy x +-21、(9分)先化简,再求值: ()()()2212121x x x +-+-,其中x = 2-22. (9分)若10=+b a ,6=ab . 求:(1)22ab b a +的值;(2)22b a +的值.23、(9分)若m n y x 23-与n m y x 3-的积与3421y x 是同类项,求n m +4的平方根24、(9分)如图,有一块长为a a +2,宽为a 2的长方形铁皮,将其四个角 分别剪去一个边长为21-a (a >1)的正方形,剩余的部分可制成一个无盖 的长方体盒子。
201509八年级(上)期中数学试卷答案
八年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分,请将你认为正确的答案前面的代号填入括号内)1.下列图形中是轴对称图形的是()A.B.C.D.2.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线3.若一个三角形的一边长为3cm,则它的周长可能为()A.4cm B.5cm C.6cm D.8cm4.已知点M(a,3),B(2,b)关于x轴对称,则(a+b)2014的值()A.﹣3 B.﹣1 C.1 D. 35.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA6.若正n边形的每个内角都是120°,则n的值是()A.3 B. 4 C. 6 D.87.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或78.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B. 4 C. 6 D. 510.已知△DEF≌△ABC,AB=AC,且△ABC的周长是23cm,BC=4cm,则△DEF的边长中必有一边等于()A.9.5cm B.9.5cm或9cm C.4cm或9.5cm D.9cm11.如果D是△ABC中BC边上一点,并且△ADB≌△ADC,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形12.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共8小题,每小题3分,满分24分)13.如图所示,观察规律并填空:.14.如图,用直尺和圆规作一个角等于已知角,能得出的依据是.15.在△ABC中,AC=5cm,AD是△ABC中线,把△ABC周长分为两部分,若其差为3cm,则BA=.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=.17.如图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长为20cm,AE=5cm,则△ABC的周长是cm.18.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有处.19.在直角坐标系中,如果点A沿x轴翻折后能够与点B(﹣1,3)重合,那么A,B两点之间的距离等于.20.如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x﹣2,2x﹣1,3,若这两个三角形全等,则x=.三、(本大题共2小题,每小题6分,共12分)21.小明发现把一双筷子摆在一个盘子上,可构成多种不同的轴对称图形,请你按下列要求各添画一只筷子,完成其中三种图形.22.已知四边形ABCD,如果点D、C关于直线MN对称,(1)画出直线MN;(2)画出四边形ABCD关于直线MN的对称图形.四、(本大题共2小题,23小题6分,24小题8分,共14分)23.已知,如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.证明:在△AOB和△COD中,∴△AOB≌△COD()∴∠B=∠D()∴AB∥CD()24.在学习“多边形的内角和”后,小邹和小梅有一段对话,如下:小邹:这个多边形的内角和是1050°,小梅:不对呀,仔细检查以下,看!你少加了一个内角.请你解答下列问题:(1)小邹是在求几边形的内角和;(2)少加的那个内角为多少度.五、(本大题1小题,8分)25.如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是.(2)添加条件后,请说明△ABC≌△ADE的理由.六、(本大题1小题,8分)26.如图,在△ABC中,AD是高,AE和BF是角平分线,它们相交于点O,∠ABC=60°,∠C=70°,求∠CAD和∠AOF的度数.七、(本大题共1小题,8分)27.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.八、(本大题共1小题,10分)28.(10分)(2014秋•北流市期中)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点M在BC边上,且∠MDF=∠ADF.(1)求证:△ADE≌△BFE.(2)连接EM,如果FM=DM,判断EM与DF的关系,并说明理由.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,请将你认为正确的答案前面的代号填入括号内)1.下列图形中是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线考点:三角形的角平分线、中线和高.分析:根据三角形的高、中线、角平分线的定义对各选项分析判断后利用排除法求解.解答:解:A、只有锐角三角形三条高都在三角形内,故本选项错误;B、三角形三条中线相交于一点正确,故本选项正确;C、三角形的三条角平分线一定都在三角形内,故本选项错误;D、三角形的角平分线是线段,故本选项错误.故选B.点评:本题考查了三角形的高线、中线、角平分线,是基础题,熟记概念是解题的关键.3.若一个三角形的一边长为3cm,则它的周长可能为()A.4cm B.5cm C.6cm D.8cm考点:三角形三边关系.分析:根据三角形的三边关系“任意两边之和大于第三边”,得出另两条边长的和一定大于3cm,它的周长一定大于6cm,再进行分析即可.解答:解:∵一个三角形的一边长为3cm,∴另两条边长的和一定大于3cm,∴它的周长一定大于6cm,故它的周长可能为8cm,故选:D.点评:此题考查了三角形的三边关系,根据三角形三边关系得出它的周长一定大于6cm是解题关键.4.已知点M(a,3),B(2,b)关于x轴对称,则(a+b)2014的值()A.﹣3 B.﹣1 C.1 D. 3考点:关于x轴、y轴对称的点的坐标.分析:利用关于x轴对称点的性质得出a,b的值,进而得出答案.解答:解:∵点M(a,3),B(2,b)关于x轴对称,∴a=2,b=﹣3,∴(a+b)2014=(2﹣3)2014=1.故选:C.点评:此题主要考查了关于x轴对称点的性质,正确记忆关于坐标轴对称点的性质是解题关键.5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA考点:全等三角形的应用.分析:根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.解答:解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.点评:本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.6.若正n边形的每个内角都是120°,则n的值是()A.3 B. 4 C. 6 D.8考点:多边形内角与外角.分析:根据内角度数先算出外角度数,然后再根据外角和计算出边数即可.解答:解:∵正n边形的每个内角都是120°,∴每一个外角都是180°﹣120°=60°,∵多边形外角和为360°,∴多边形的边数为360÷60=6,故选:C.点评:此题主要考查了多边形的内角和外角,关键是掌握多边形的外角和等于360度.7.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或7考点:多边形内角与外角.分析:首先求得内角和为720°的多边形的边数,即可确定原多边形的边数.解答:解:设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,解得:n=6.则原多边形的边数为5或6或7.故选:D.点评:本题考查了多边形的内角和定理,理解分三种情况是关键.8.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN考点:全等三角形的判定.专题:几何图形问题.分析:根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.解答:解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B. 4 C. 6 D. 5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.10.已知△DEF≌△ABC,AB=AC,且△ABC的周长是23cm,BC=4cm,则△DEF的边长中必有一边等于()A.9.5cm B.9.5cm或9cm C.4cm或9.5cm D.9cm考点:全等三角形的性质.分析:根据等腰三角形的性质求出AB,再根据全等三角形对应边相等解答.解答:解:∵BC=4cm,∴腰长AB=×(23﹣4)=9.5cm,∵△DEF≌△ABC,∴△DEF的边长中必有一边等于9.5cm或4cm,故选:C.点评:本题考查了等腰三角形的性质,全等三角形的性质,关键是掌握全等三角形的对应边相等.11.如果D是△ABC中BC边上一点,并且△ADB≌△ADC,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形考点:等腰三角形的判定;全等三角形的性质.分析:画出图形就能明显看出来,运用全等的性质,易解.解答:解:∵△ADB≌△ADC∴AB=AC∴△ABC是等腰三角形.故选D.点评:本题考查了等腰三角形的判定及全等三角形的性质;利用全等三角形的性质是正确解答本题的关键.12.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质.分析:根据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,排除错误答案.解答:解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.点评:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(共8小题,每小题3分,满分24分)13.如图所示,观察规律并填空:.考点:规律型:图形的变化类;轴对称图形.专题:规律型.分析:观察已给出的三个图形,分别是2、4、8的轴对称图形,那么此题的规律应该是偶数数字所组成的轴对称图形,显然空白处应填6构成的轴对称图形.解答:解:由图可以看出,此题的规律是偶数数字所构成的轴对称图形,那么空白处应该填6的轴对称图形.故答案为:.点评:熟练掌握轴对称的性质,并判断出此题的规律是解决问题的关键.14.如图,用直尺和圆规作一个角等于已知角,能得出的依据是SSS.考点:作图—基本作图.分析:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.解答:解:在△ODC和△O′D′C′中,,∴△ODC≌△O′D′C′(SSS),故答案为:SSS.点评:此题主要考查了基本作图,以及全等三角形的判定,关键是掌握作一个角等于已知角的方法.15.在△ABC中,AC=5cm,AD是△ABC中线,把△ABC周长分为两部分,若其差为3cm,则BA=8cm或2cm.考点:三角形的角平分线、中线和高.分析:先根据三角形中线的定义可得BD=CD,再求出AD把△ABC周长分为的两部分的差等于|AB﹣AC|,然后分AB>AC,AB<AC两种情况分别列式计算即可得解.解答:解:∵AD是△ABC中线,∴BD=CD.AD把△ABC周长分为的两部分分别是:AB+BD,AC+CD,|(AB+BD)﹣(AC+CD)|=|AB﹣AC|=3,如果AB>AC,那么AB﹣5=3,AB=8cm;如果AB<AC,那么5﹣AB=3,AB=2cm.故答案为:8cm或2cm.点评:本题考查了三角形的角平分线、中线和高线,熟记概念并求出AD把△ABC周长分为的两部分的差等于|AB﹣AC|是解题的关键.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=360°.考点:三角形内角和定理.分析:根据三角形的外角性质得出∠AQM=∠A+∠B,∠EMN=∠E+∠F,∠CNQ=∠C+∠D,求出∠AQM+∠EMN+∠CNQ=360°,代入求出即可.解答:解:∵∠AQM=∠A+∠B,∠EMN=∠E+∠F,∠CNQ=∠C+∠D,∠AQM+∠EMN+∠CNQ=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360°.点评:本题考查了三角形外角性质和三角形的外角和定理的应用,注意:三角形的外角和等于180°.17.如图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长为20cm,AE=5cm,则△ABC的周长是30cm.考点:线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD 的周长=AB+BC,再根据三角形的周长公式列式计算即可得解.解答:解:∵DE是AC的中垂线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,又∵AE=5cm,∴AC=2AE=2×5=10cm,∴△ABC的周长=20+10=30(cm).故答案为:30.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质并求出△ABD的周长=AB+BC是解题的关键.18.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有4处.考点:三角形的内切圆与内心;直线与圆的位置关系.专题:应用题.分析:由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.解答:解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故填4.点评:此题考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.19.在直角坐标系中,如果点A沿x轴翻折后能够与点B(﹣1,3)重合,那么A,B两点之间的距离等于6.考点:关于x轴、y轴对称的点的坐标.分析:利用关于x轴对称点的性质得出A点坐标,再利用两点的位置关系得出其距离.解答:解:∵点A沿x轴翻折后能够与点B(﹣1,3)重合,∴A(﹣1,﹣3),∴A,B两点之间的距离等于:3﹣(﹣3)=6.故答案为:6.点评:此题主要考查了关于x轴对称点的性质,得出A点坐标是解题关键.20.如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x﹣2,2x﹣1,3,若这两个三角形全等,则x=3.考点:全等三角形的性质.专题:计算题.分析:根据全等三角形的对应边相等得到3x﹣2=7且2x﹣1=5或3x﹣2=5且2x﹣1=7,然后分别解两方程求出满足条件的x的值.解答:解:∵△ABC与△DEF全等,∴3x﹣2=7且2x﹣1=5,解得x=3,或3x﹣2=5且2x﹣1=7,没有满足条件的x的值.故答案为:3.点评:本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的对应边上的高、中线以及对应角的平分线相等.三、(本大题共2小题,每小题6分,共12分)21.小明发现把一双筷子摆在一个盘子上,可构成多种不同的轴对称图形,请你按下列要求各添画一只筷子,完成其中三种图形.考点:作图-轴对称变换.专题:作图题.分析:首先根据题意可判断,根据两支筷子相交,平行,既不平行又不相交的特点可得出相应的对称点,最后连线即可.解答:解:(1)根据等腰三角形的性质作两支筷子相交;(2)根据圆切线的性质作两支筷子平行即两切点与圆心共线;(3)根据圆切线的性质作两支筷子平行即两切点与圆心不共线;如图就是所求作的图形.点评:本题考查了基本概念,学生需要对相交、平行、不平行一二部相交有明晰的理解,这样才能拥有一个扎实的基本功.22.已知四边形ABCD,如果点D、C关于直线MN对称,(1)画出直线MN;(2)画出四边形ABCD关于直线MN的对称图形.考点:作图-轴对称变换.专题:作图题.分析:(1)根据轴对称的性质,作出CD的垂直平分线,即为所求作的直线MN;(2)先找出点A、B关于直线MN的对称点A′、B′,然后与C、D顺次连接即可.解答:解:(1)如图,直线MN即为所求;(2)四边形A′B′DC即为四边形ABDC关于直线MN的对称图形.点评:本题考查了利用轴对称作图,轴对称的性质,找出对称点是解题的关键.四、(本大题共2小题,23小题6分,24小题8分,共14分)23.已知,如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.证明:在△AOB和△COD中,∴△AOB≌△COD(SAS)∴∠B=∠D(全等三角形的对应角相等)∴AB∥CD(内错角相等,两直线平行)考点:全等三角形的判定与性质;平行线的判定.专题:推理填空题.分析:由SAS证明△AOB≌△COD,得出对应角相等∠B=∠D,再由内错角相等,即可得出AB∥CD.解答:解:在△AOB和△COD中,,∴△AOB≌△COD(SAS )∴∠B=∠D(全等三角形的对应角相等)∴AB∥CD(内错角相等,两直线平行);故答案为:∠AOB,∠COD,对顶角相等,SAS,全等三角形的对应角相等,内错角相等,两直线平行.点评:本题考查了全等三角形的判定与性质、平行线的判定方法;熟练掌握全等三角形的判定方法,并能进行推理论证是解决问题的关键.24.在学习“多边形的内角和”后,小邹和小梅有一段对话,如下:小邹:这个多边形的内角和是1050°,小梅:不对呀,仔细检查以下,看!你少加了一个内角.请你解答下列问题:(1)小邹是在求几边形的内角和;(2)少加的那个内角为多少度.考点:多边形内角与外角.分析:设除去这个内角为x度,这个多边形的边数为n,根据多边形的内角和公式列出算式,根据多边形的一个内角的度数大于0度,且小于180度可求得n的值.解答:解:(1)设除去这个内角为x度,这个多边形的边数为n则1050+x=(n﹣2)180,x=(n﹣2)180﹣1050,∵0<x<180,∴0<(n﹣2)180﹣1050<180,∵n为整数,∴n=8.(2)x=(n﹣2)180﹣1050=(8﹣2)180﹣1050=30,∴除去这个内角为30度.点评:本题主要考查的是多边形的内角和定理的应用,根据多边形的一个内角的度数大于0度,且小于180度求得多边形的边数是解题的关键.五、(本大题1小题,8分)25.如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是∠C=∠E.(2)添加条件后,请说明△ABC≌△ADE的理由.考点:全等三角形的判定.专题:开放型.分析:(1)可以根据全等三角形的不同的判定方法选择添加不同的条件;(2)根据全等三角形的判定方法证明即可.解答:解:(1)∵AB=AD,∠A=∠A,∴若利用“AAS”,可以添加∠C=∠E,若利用“ASA”,可以添加∠ABC=∠ADE,或∠EBC=∠CDE,若利用“SAS”,可以添加AC=AE,或BE=DC,综上所述,可以添加的条件为∠C=∠E(或∠ABC=∠ADE或∠EBC=∠CDE或AC=AE或BE=DC);故答案为:∠C=∠E;(2)选∠C=∠E为条件.理由如下:在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).点评:本题主要考查了全等三角形的判定,开放型题目,根据不同的三角形全等的判定方法可以选择添加的条件也不相同.六、(本大题1小题,8分)26.如图,在△ABC中,AD是高,AE和BF是角平分线,它们相交于点O,∠ABC=60°,∠C=70°,求∠CAD和∠AOF的度数.考点:三角形内角和定理;三角形的外角性质.分析:在直角三角形中根据两锐角互余即可得到∠CAD,根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的性质可求出∠EAC=∠BAC,而∠EAC=90°﹣∠C,然后利用∠DAE=∠DAC﹣∠EAC进行计算即可.由三角形外角的性质求得∠AFO=100°,利用三角形内角和定理得到∠AOF=55°.解答:解∵AD是△ABC的高,∴∠ADC=90°,∴在△ADC中,∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣70°=20°;在△ABC中,∵∠ABC=60°,∠C=70°,∴∠BAC=180°﹣∠ABC﹣∠C=50°,∵AE是的角平分线,∴∠EAC=∠BAC=25°,∵BF是∠ABC的平分线,∠ABC=60°,∴∠FBC=∠ABC=30°,又∵∠C=70°,∴∠AFO=100°,∴∠AOF=180°﹣100°﹣25°=55°.点评:本题考查了三角形的内角和定理,外角的性质,三角形的高线与角平分线的性质,熟练掌握各性质定理是解题的关键.七、(本大题共1小题,8分)27.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.考点:角平分线的性质.专题:证明题.分析:(1)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;(2)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.解答:解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.点评:本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.八、(本大题共1小题,10分)28.(10分)(2014秋•北流市期中)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点M在BC边上,且∠MDF=∠ADF.(1)求证:△ADE≌△BFE.(2)连接EM,如果FM=DM,判断EM与DF的关系,并说明理由.考点:全等三角形的判定与性质;线段垂直平分线的性质.分析:(1)由平行线的性质得出∠ADE=∠BFE,由E为AB的中点,得出AE=BE,由AAS证明△AED≌△BFE即可;(2)由△AED≌△BFE,得出对应边相等DE=EF,证明FM=DM,由三角形的三线合一性质得出EM⊥DF,即可得出结论.解答:(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△AED和△BFE中,,∴△AED≌△BFE(AAS);(2)解:EM与DM的关系是EM垂直且平分DF;理由如下:连接EM,如图所示:由(1)得:△AED≌△BFE,∴DE=EF,∵∠MDF=∠ADF,∠ADE=∠BFE,∴∠MDF=∠BFE,∴FM=DM,∴EM⊥DF,∴ME垂直平分DF.点评:本题考查了平行线的性质、全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握全等三角形的判定与性质,并能进行推理论证是解决问题的关键.。
2015年(华师大版)八年级数学上册期中测试题及答案
学 班 姓 名 考…… ………………密○………………………………………封○………………………………………○线………………○○○2015年八年级数学上册期中考试试卷(后附答案)( 考试时间1 20分钟 满分120分 ) 一、把唯一正确的答案填入题前括号内!(每小题2分,共26分) 1、( )4平方根是A 、2B 、±2C 、2D 、±22、( )下列写法错误的是A 、2.004.0±=±B 、1.001.0±=±C 、981±=D 、364-=-43、( )计算25-38-的结果是A 、3B 、7C 、-3D 、74、( )分解因式x 3-x 的结果是A 、x (x 2-1)B 、x (x -1)2C 、x (x +1)2D 、x (x +1)(x -1)5、( )计算x 32x •的结果是A 、x 6B 、2xC 、3xD 、 5x6、( )和数轴上的点一一对应的数是A 、分数B 、有理数C 、无理数D 、实数 7、( )在实数4,0,722,3125.0,0.1010010001…,3,2π中无理数有 A 、0个 B 、1个 C 、2个 D 、3个8、( )我们知道5是一个无理数,那么5- 1在哪两个整数之间?A 、1与2B 、2与3C 、3与4D 、4与59、( )(2 + x )(x -2)的结果是A 、2 - x 2B 、2+x 2C 、4 + x 2D 、x 2-410、( )如果()()n x m x -+中不含x 的项,则m 、n 满足0.,.,0.,.=-===n D n m C m B n m A11、( )计算2(1)(1)a a a -+-的结果为A 、1B 、1-C 、221a +D 、221a -12、 下列可使两个直角三角形全等的条件是A.一条边对应相等B.两条直角边对应相等C.一个锐角对应相等D.两个锐角对应相等13、 给出下列条件: ①两边一角对应相等 ②两角一边对应相等 ③三角形中三角对应相等 ④三边对应相等,其中,不能使两个三角形全等的条件是 A. ①③B. ①②C. ②③D. ②④二、认真填一填,把答案写在横线上,相信你能填对!(每小题2分,共26分)14、计算:2(93)(3)x x x -+÷-= ____ .1 5.如果1-a 有意义,那么a 的取值范围是 . 16、多项式2263a b ab -的公因式是 .17、若(x -1)(x +1)= x 2 +px -1,则p的值是______.18.如图1,数轴上点A 所对应的数为a ,化简:2)1(a -= .20、用简便方法计算20082-4016×2007+20072的结果是 ____ _.21、已知x 2+x -1 = 0,则代数式x 3+2x 2 +2008的值为 . 22、长为a 、宽为b 的矩形,它的周长为16,面积为12,则a 2b +ab 2的值为 23、若一个正数的两个平方根是21a -和a-2,这个正数是24、在横线处填上适当的数,使等式成立:2241______21⎪⎭⎫⎝⎛-=+-x x x25、x 2-10x+_____=( )2 26、已知:,则m mm m+=+=13122_____________ . 三、计算、化简、或求解,解答应写出必要的计算过程,写好步骤,按步给分。
2015年八年级上册期中考试数学试卷(含答案和解释)
2015年八年级上册期中考试数学试卷(含答案和解释)2015-2016学年福建省龙岩市上杭县八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分,每小题的四个选项中,只有一项符合题目要求) 1.下列四个交通标志中,轴对称图形是( ) A. B. C. D.2.七边形的外角和为( ) A.1260° B.900° C.360° D.180°3.如图,∠1=∠2,3=∠4,OE=OF,则图中全等三角形有( ) A.1对 B.2对 C.3对 D.4对4.已知图中的两个三角形全等,则∠1等于( ) A.72° B.60° C.50° D.58°5.如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为( ) A.9 B.8 C.6 D.126.三角形中,到三个顶点距离相等的点是( ) A.三条高线的交点 B.三条中线的交点 C.三条角平分线的交点 D.三边垂直平分线的交点7.如图,将两根钢条AA′、BB′的中点 O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( ) A.SAS B.ASA C.SSS D.AAS8.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD:S△ACD=( ) A.3:4 B.4:3 C.16:9 D.9:169.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( ) A.25° B.30° C.35° D.40°10.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则( ) A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC二、填空题(本大题共6小题,每小题3分,共18分) 11.等腰三角形的底角是80°,则它的顶角是__________.12.已知:如图,∠ACB=∠BDA=90°,要使△ACB≌△BDA,请添加一个条件是__________.13.在活动课上,小红已有两根长为4cm,8cm的小木棒,现打算拼一个等腰三角形,则小红应取的第三根小木棒长是__________cm.14.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为__________.15.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P的距离BP=__________海里.16.在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标__________.三、解答题(本大题共9小题,共92分) 17.如图,∠B=∠D,∠BAC=∠DAC,求证:△ABC≌△ADC.18.如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.19.已知:如图:∠AOB.求作:∠AOB的平分线OC.(不写作法,保留作图痕迹)20.如图,写出△ABC关于x轴对称的△A1B1C1的各顶点坐标,并在图中画出△ABC关于y轴对称的△A2B2C2.21.求出下列图形中的x值.22.如图,△ABC,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=8,求CD的长.23.如图,CD⊥DB于D,AB⊥DB于B,CD=EB,AB=ED.求证:CE⊥AE.24.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.25.(14分)如图,△ABC是等边三角形,点D在AC上,点E在BC 的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,求证:AD=CE.(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论:(提示:过点D作DF∥BC,交AB于点F.)(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,给予证明;如果不成立,请说明理由.2015-2016学年福建省龙岩市上杭县八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分,每小题的四个选项中,只有一项符合题目要求) 1.下列四个交通标志中,轴对称图形是( ) A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误; B、不是轴对称图形,故本选项错误; C、是轴对称图形,故本选项正确; D、不是轴对称图形,故本选项错误.故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.七边形的外角和为( ) A.1260° B.900° C.360° D.180° 【考点】多边形内角与外角.【分析】根据多边形的外角和定理即可判断.【解答】解:七边形的外角和为360°.故选C.【点评】本题考查了多边形的外角和定理,理解定理内容是关键.3.如图,∠1=∠2,3=∠4,OE=OF,则图中全等三角形有( ) A.1对 B.2对 C.3对 D.4对【考点】全等三角形的判定.【分析】先找完可能全等的三角形再逐对验证条件,如找到△AOF≌△BOE,再找条件∠1=∠2、∠O=∠O、AE=BF,之后易得△AEM≌△BFM.从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找得出答案即可.【解答】解:如图,在△AOF和△BOE中,,∴△AOF≌△BOE,∴OA=OB,又∵OE=OF,∴AE=BF,在△AEM和△BFM中,∴△AEM≌△BFM.共2对.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与.4.已知图中的两个三角形全等,则∠1等于( ) A.72° B.60° C.50° D.58° 【考点】全等三角形的性质.【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°�50°�72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【点评】本题考查了全等三角形的性质,解题的关键是找准对应角.5.如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为( ) A.9 B.8 C.6 D.12 【考点】等边三角形的判定与性质.【专题】计算题.【分析】根据∠B=60°,AB=AC,即可判定△ABC为等边三角形,由BC=3,即可求出△ABC的周长.【解答】解:在△ABC中,∵∠B=60°,AB=AC,∴∠B=∠C=60°,∴∠A=180°�60°�60°=60°,∴△ABC为等边三角形,∵BC=3,∴△ ABC的周长为:3BC=9,故选A.【点评】本题考查了等边三角形的判定与性质,属于基础题,关键是根据已知条件判定三角形为等边三角形.6.三角形中,到三个顶点距离相等的点是( ) A.三条高线的交点 B.三条中线的交点 C.三条角平分线的交点 D.三边垂直平分线的交点【考点】线段垂直平分线的性质.【分析】运用到三角形的某边两端距离相等的点在该边的垂直平分线上的特点,可以判断到三个顶点距离相等的点是三边垂直平分线的交点.【解答】解:根据到线段两端的距离相等的点在线段的垂直平分线上,可以判断:三角形中,到三个顶点距离相等的点是三边垂直平分线的交点.故选D.【点评】该题主要考查了线段垂直平分线的性质及其应用问题;应牢固掌握线段垂直平分线的性质.7.如图,将两根钢条AA′、BB′的中点 O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( ) A.SAS B.ASA C.SSS D.AAS 【考点】全等三角形的应用.【分析】由O是AA′、BB′的中点,可得AO=A′O,BO=B′O,再有∠AOA′=∠BOB′,可以根据全等三角形的判定方法SAS,判定△OAB≌△OA′B′.【解答】解:∵O是AA′、BB′的中点,∴AO=A′O,BO=B′O,在△OAB和△OA′B′中,∴△OAB≌△OA′B′(SAS),故选:A.【点评】此题主要全等三角形的应用,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS,HL,要证明两个三角形全等,必须有对应边相等这一条件.8.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD:S△ACD=( ) A.3:4 B.4:3 C.16:9 D.9:16 【考点】三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD 与△ACD 的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.9.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( ) A.25° B.30° C.35° D.40° 【考点】翻折变换(折叠问题).【专题】压轴题.【分析】先根据三角形内角和定理求出∠B的度数,再由图形翻折变换的性质得出∠CB′D的度数,再由三角形外角的性质即可得出结论.【解答】解:∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°�25°=65°,∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D�∠A=65°�25°=40°.故选D.【点评】本题考查的是图形的翻折变换及三角形外角的性质,熟知图形反折不变性的性质是解答此题的关键.10.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则( ) A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC 【考点】全等三角形的判定与性质.【分析】根据题中的条件可证明出△ADF≌△ABF,由全等三角形的性质可的∠ADF=∠ABF,再由条件证明出∠ABF=∠C,由角的传递性可得∠ADF=∠C,根据平行线的判定定理可证出FD∥BC.【解答】解:在△AFD和△AFB中,∵AF=AF,∠1=∠2,AD=AB,∴△ADF≌△ABF,∴∠ADF=∠ABF.∵AB⊥BC,BE⊥AC,即:∠BAC+∠C=∠BAC+∠ABF=90°,∴∠ABF=∠C,即:∠ADF=∠ABF=∠C,∴FD∥BC,故选D.【点评】本题主要考查全等三角形的性质,涉及到的知识点还有平行线的判定定理,关键在于运用全等三角形的性质证明出角与角之间的关系.二、填空题(本大题共6小题,每小题3分,共18分) 11.等腰三角形的底角是80°,则它的顶角是20°.【考点】等腰三角形的性质;三角形内角和定理.【分析】根据三角形内角和定理和等腰三角形的性质,可以求得其顶角的度数.【解答】解:∵ 等腰三角形的一个底角为80° ∴顶角=180°�80°×2=20°.故答案为:20°.【点评】考查三角形内角和定理和等腰三角形的性质的运用,比较简单.12.已知:如图,∠ACB=∠BDA=90°,要使△ACB≌△BDA,请添加一个条件是AC=BD或BC=AD或∠ABC=∠BAD或∠CAB=∠DBA.【考点】全等三角形的判定.【专题】开放型.【分析】要使△ACB≌△BDA,已知∠ACB=∠BDA=90°,AB=BA,则可以添加AC=BD或BC=AD利用HL 判定;或添加∠ABC=∠BAD或∠CAB=∠DBA利用AAS判定.【解答】解:∵∠ACB=∠BDA=90°,AB=BA,∴可以添加AC=BD或BC=AD利用HL判定;添加∠ABC=∠BAD或∠CAB=∠DBA利用AAS判定.故填空答案为:AC=BD或BC=AD或∠ABC=∠BAD或∠CAB=∠DBA.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.13.在活动课上,小红已有两根长为4cm,8cm的小木棒,现打算拼一个等腰三角形,则小红应取的第三根小木棒长是8cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出两条小棒长为4cm和8cm打算拼一个等腰三角形,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当第三根是4cm时,其三边分别为4cm,4cm,8cm,不符合三角形三边关系,故舍去;当第三根是8cm时,其三边分别是8cm,8cm,4cm,符合三角形三边关系;所以第三根长8cm.故填8.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC 的周长=AB+BC+AC=13+6=19cm.故答案为19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.15.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P的距离BP=7海里.【考点】解直角三角形的应用-方向角问题.【专题】计算题.【分析】过P作AB的垂线PD,在直角△BPD中可以求的∠PAD的度数是30度,即可证明△APB是等腰三角形,即可求解.【解答】解:过P作PD⊥AB于点D.∵∠PBD=90°�60°=30° 且∠PBD=∠PAB+∠APB,∠PAB=90�75=15° ∴∠PAB=∠APB ∴BP=AB=7(海里)故答案是:7.【点评】解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.正确证明△APB是等腰三角形是解决本题的关键.16.在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标(1,5)或(1,�1)或(5,�1).【考点】全等三角形的性质;坐标与图形性质.【专题】计算题.【分析】根据题意画出符合条件的所有情况,根据点A、B、C的坐标和全等三角形性质求出即可.【解答】解:如图所示:有3个点,当E在E、F、N处时,△ACE 和△AC B全等,点E的坐标是:(1,5),(1,�1),(5,�1),故答案为:(1,5)或(1,�1)或(5,�1).【点评】本题考查了全等三角形性质和坐标与图形性质的应用,关键是能根据题意求出符合条件的所有情况,题目比较好,但是一道比较容易出错的题目.三、解答题(本大题共9小题,共92分) 17.如图,∠B=∠D,∠BAC=∠DAC,求证:△ABC≌△ADC.【考点】全等三角形的判定.【专题】证明题.【分析】根据题干中给出条件和公共边AC即可证明△BAC≌△DAC,即可解题.【解答】证明:在△B AC和△DAC中,,∴△BAC≌△DAC(AAS).【点评】本题考查了全等三角形的判定,本题中求证△BAC≌△DAC是解题的关键.18.如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.【考点】平行线的性质;角平分线的定义.【分析】由角平分线的定义,结合平行线的性质,易求∠EDC的度数.【解答】解:∵DE∥BC,∠AED=80°,∴∠ACB=∠AED=80°(两直线平行,同位角相等),∵CD 平分∠ACB,∴∠BCD= ∠ACB=40°,∵DE∥BC,∴∠EDC=∠BCD=40°(两直线平行,内错角相等).【点评】这类题首先利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系转化求解.19.已知:如图:∠AOB.求作:∠AOB的平分线OC.(不写作法,保留作图痕迹)【考点】作图―基本作图.【分析】可利用边边边作两个三角形全等得到相应的角相等.【解答】解:作法:①以点O为圆心,以适当长为半径作弧交OA、OB于两点M、N;②分别以点M、N为圆心,以大于 MN长为半径作弧,两弧相交于点C;③作射线OC.【点评】考查了基本作图的知识,用到的知识点为:边边边可证得两三角形全等;全等三角形的对应角相等.20.如图,写出△ABC关于x轴对称的△A1B1C1的各顶点坐标,并在图中画出△ABC关于y轴对称的△A2B2C2.【考点】作图-轴对称变换.【分析】利用关于x轴对称点的性质以及关于y轴对称点性质分别得出对应点坐标进而得出答案.【解答】解:△ABC关于x轴对称的△A1B1C1的各顶点坐标分别为: A1(�3,�2),B1(�4,3),C1(�1,1),如图所示:△A2B2C2,即为所求.【点评】此题主要考查了关于坐标轴对称点的性质,正确把握横纵坐标关系是解题关键.21.求出下列图形中的x值.【考点】多边形内角与外角.【分析】根据五边形的内角和等于540°,列方程即可得到结果.【解答】解:∵五边形的内角和为(5�2)×180°=540,∴90°x°+(x�10)°+x°+(x+20)°=540°,解得:x=110°.【点评】本题考查了五边形的内角和,熟记五边形的内角和是解题的关键.22.如图,△ABC,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=8,求CD的长.【考点】含30度角的直角三角形;等腰三角形的判定与性质.【分析】根据题意得出∠A=30°,根据角平分线的性质得出∠A=∠ABD,根据30°角所对的直角边等于斜边的一半,得CD= DB,即可得出CD=4.【解答】解:∵∠C=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∴∠A=∠ABD,∴∠DB=AD=8,∵∠C=90°,∠CBD=30°,∴CD= DB,∴CD=4.【点评】本题考查了含30度角的直角三角形以及等腰三角形的判定和性质,掌握直角三角形的性质是解题的关键.23.如图,CD⊥DB于D,AB⊥DB于B,CD=EB,AB=ED.求证:CE⊥AE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据SAS证△EDC≌△ABE,推出∠CED=∠A,根据∠B=90°求出∠A+∠AEB=90°,推出∠CED+∠AEB=90° ,求出∠CEA=90°即可.【解答】解:∵CD⊥DE,AB⊥DB,∴∠D=∠B=90°,在△EDC 和△ABE中∵ ,∴△EDC≌△ABE(SAS),∴∠CED=∠A,∵∠B=90°,∴∠A+∠AEB=90°,∴∠CED+∠AEB=90°,∴∠CEA=90°,∴CE⊥AE.【点评】本题考查了全等三角形的性质和判定,三角形的内角和定理,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,解决本题的关键是证明三角形全等.24.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.【考点】全等三角形的判定与性质.【专题】探究型.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【解答】解:CF⊥DE,CF平分DE,理由是:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE,CF平分DE(三线合一).【点评】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.25.(14分)如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,求证:AD=CE.(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论:(提示:过点D作DF∥BC,交AB于点F.)(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,给予证明;如果不成立,请说明理由.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】(1)求出∠E=∠CDE,推出CD=CE,根据等腰三角形性质求出AD=DC,即可得出答案;(2)过D作DF∥BC,交AB于F,证△BFD≌△DCE,推出DF=CE,证△ADF 是等边三角形,推出AD=DF,即可得出答案.(3)(2)中的结论仍成立,如图3,过点D作DP∥BC,交AB的延长线于点P,证明△BPD≌△DCE,得到PD=CE,即可得到AD=CE.【解答】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC=BC,∵D为AC中点,∴∠DBC=30°,AD=DC,∵BD=DE,∴∠E=∠DBC=30°∵∠ACB=∠E+∠CDE,∴∠CDE=30°=∠E,∴CD=CE,∵AD=DC,∴AD=CE;(2)成立,如图2,过D作DF∥BC,交AB于F,则∠ADF=∠ACB=60°,∵∠A=60°,∴△AFD是等边三角形,∴AD=DF=AF,∠AFD=60°,∴∠BFD=∠DCE=180°�60°=120°,∵DF∥BC,∴∠FDB=∠DBE=∠E,在△BFD和△DCE中∴△BFD≌△DCE,∴CE=DF=AD,即AD=CE.(3)(2)中的结论仍成立,如图3,过点D作DP∥BC,交AB的延长线于点P,∵△ABC 是等边三角形,∴△APD也是等边三角形,∴AP=PD=AD,∠APD=∠ ABC=∠ACB=∠PDC=60°,∵DB=DE,∴∠DBC=∠DEC,∵DP∥BC,∴∠PDB=∠CBD,∴∠PDB=∠DEC,在△BPD和△DCE中,∴△BPD≌△DCE,∴PD=CE,∴AD=CE.【点评】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,解决本题的关键是作出辅助线,构建全等三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015秋八年级上册期中考试数学试卷(附答案)2014-2015学年江苏省盐城市盐都区八年级(上)期中数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个是符合题目要求的. 1.下列是我国四大银行的商标,其中不是轴对称图形的是() A. B. C. D. 2.下列实数3.14,,,0.121121112,中,无理数有() A. 1个 B. 2个 C. 3个 D. 4个 3.设三角形的三边长分别等于下列各数,能构成直角三角形的是() A. 2,4,6 B. 4,5,6 C. 5,6,10 D. 6,8,10 4.如果等腰直角三角形的两边长为2cm,4cm,那么它的周长为() A. 8cm B. 10cm C. 11cm D. 8cm或10cm 5.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是() A. CB=CDB.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90° 6.如图,△A BC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,则△AEF的周长为() A. 12 B. 13 C. 14 D. 18 7.在△ABC中,①若AB=BC=CA,则△ABC 为等边三角形;②若∠A=∠B=∠C,则△ABC为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有() A. 1个 B. 2个 C. 3个 D. 4个 8.如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A. 2个 B. 3个 C. 4个 D. 5个二、填空题:本大题共10小题,每小题2分,共20分.请把答案填在题中横线上 9.4的平方根是. 10.如果等腰三角形的底角是50°,那么这个三角形的顶角的度数是. 11.如果△ABC≌△DEF,∠A=40°,∠B=55°,那么∠E=. 12.如图,Rt△ABC中,∠C=90°,D是AB 的中点,若AB=10,则CD的长等于. 13.等腰△ABC 中,AB=AC=10cm,BC=12cm,则BC边上的高是cm. 14.如图,在△ABC中,AB=AC,∠A=40°,BD⊥AC于D,则∠DBC=度. 15.一根新生的芦苇高出水面1尺,一阵风吹过,芦苇向一边倾斜,顶端齐至水面,芦苇移动的距离为5尺,则芦苇的长度是尺. 16.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为. 17.若直角三角形的三边分别为3,4,x,则x= . 18.如图,在△ABC中,∠ACB=90°,∠BAC=40°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为.三、解题题:本大题共9小题,共76分.解答应写出文字说明,证明过程或演算步骤 19.计算:(1)�(1�π)0 (2)已知(x�1)2=25,求x的值. 20.已知:如图,点C为AB中点,CD=BE,CD∥BE.(1)求证:△ACD≌△C BE;(2)若∠D=35°,求∠DCE的度数. 21.如图,在长度为1个单位长度的小正方形组成的长方形中,点A,B,C 在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)△ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为. 22.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线MN交AC于点D,交AB于E.(1)求∠DBC的度数;(2)猜想△BCD的形状并证明. 23.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长. 24.(10分)(2014秋•盐都区期中)如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上,(1)若∠1=55°,求∠2,∠3的度数;(2)若AB=8,AD=16,求AE的长度. 25.(10分)(2011秋•都江堰市校级期末)如图,一架梯子的长度为25米,斜靠在墙上,梯子低部离墙底端为7米.(1)这个梯子顶端离地面有米;(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向滑动了几米? 26.(10分)(2014秋•盐都区期中)△ABC中,DE,FG分别垂直平分边AB,AC,垂足分别为点D,G.(1)如图,①若∠B=30°,∠C=40°,求∠EAF的度数;②如果BC=10,求△EAF的周长;③若AE⊥AF,则∠BAC=°.(2)若∠BAC=n°,则∠EAF=°(用含n代数式表示)27.(12分)(2015•盘锦四模)已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F、Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE 与BF的位置关系是,QE与QF的数量关系是;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.2014-2015学年江苏省盐城市盐都区八年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个是符合题目要求的. 1.下列是我国四大银行的商标,其中不是轴对称图形的是()A. B. C. D.考点:轴对称图形.分析:根据轴对称图形和的概念和各图形特点解答即可.解答:解:A、不是轴对称图形,故本选项正确; B、是轴对称图形,故本选项错误; C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误;故选A.点评:本题考查了轴对称图形的特点,判断轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合; 2.下列实数3.14,,,0.121121112,中,无理数有() A. 1个 B. 2个 C. 3个 D. 4个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.解答:解:,π是无理数,故选:B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 3.设三角形的三边长分别等于下列各数,能构成直角三角形的是() A. 2,4,6 B. 4,5,6 C. 5,6,10 D. 6,8,10考点:勾股定理的逆定理.分析:判断是否可以作为直角三角形的三边长,则判断两小边的平方和是否等于最长边的平方即可.解答:解:A、22+42≠62,不是直角三角形,故此选项错误; B、42+52≠62,不是直角三角形,故此选项错误; C、52+62≠102,不是直角三角形,故此选项错误; D、62+82=102,是直角三角形,故此选项正确.故选:D.点评:此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形. 4.如果等腰直角三角形的两边长为2cm,4cm,那么它的周长为() A. 8cm B. 10cm C. 11cm D. 8cm或10cm考点:勾股定理.分析:分两种情况:①底为2cm,腰为4cm时,求出三角形的周长即可;②底为4cm,腰为2cm时;2+2=4,由三角形的三边关系得出不能构成三角形.解答:解:分两种情况:①底为2cm,腰为4cm时,等腰三角形的周长=2+4+4=10(cm);②底为4cm,腰为2cm时,∵2+2=4,∴不能构成三角形;∴等腰三角形的周长为10cm;故选:B.点评:本题考查了等腰三角形的性质、三角形的三边关系定理;熟练掌握等腰三角形的性质,并能进行推理计算是解决问题的关键. 5.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是() A. CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°考点:全等三角形的判定.分析:本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.解答:解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意; B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意; C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意; D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 6.如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,则△AEF的周长为() A. 12 B. 13 C. 14 D. 18考点:等腰三角形的判定与性质;平行线的性质.分析:根据平行线的性质得到∠EDB=∠DBC,∠FDC=∠DCB,根据角平分线的性质得到∠EBD=∠DBC,∠FCD=∠DCB,等量代换得到∠EDB=∠EBD,∠FDC=∠FCD,于是得到ED=EB,FD=FC,即可得到结果.解答:解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13.故选B.点评:此题考查了等腰三角形的判定与性质.此题难度适中,注意证得△BDE与△CDF是等腰三角形是解此题的关键. 7.在△ABC中,①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC 为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有()A. 1个 B. 2个 C. 3个 D. 4个考点:等边三角形的判定.分析:根据等边三角形的判定判断即可.解答:解:①根据等边三角形的定义可得△ABC为等边三角形,结论正确;②根据判定定理1可得△ABC为等边三角形,结论正确;③一个三角形中有两个角都是60°时,根据三角形内角和定理可得第三个角也是60°,那么这个三角形的三个角都相等,根据判定定理1可得△ABC为等边三角形,结论正确;④根据判定定理2可得△ABC为等边三角形,结论正确.故选D.点评:本题考查了等边三角形的判定,等边三角形的判定方法有三种:(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.注意:在证明一个三角形是等边三角形时,若已知或能求得三边相等则用定义来判定;若已知或能求得三个角相等则用判定定理1来证明;若已知等腰三角形且有一个角为60°,则用判定定理2来证明. 8.如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A. 2个 B. 3个 C. 4个 D. 5个考点:利用轴对称设计图案.分析:根据轴对称图形的概念求解.解答:解:如图所示,有4个位置使之成为轴对称图形.故选C.点评:此题考查的是利用轴对称设计图案,解答此题关键是找对称轴,按对称轴的不同位置,可以有4种画法.二、填空题:本大题共10小题,每小题2分,共20分.请把答案填在题中横线上9.4的平方根是±2.考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 10.如果等腰三角形的底角是50°,那么这个三角形的顶角的度数是80°.考点:等腰三角形的性质.分析:在等腰三角形中,2个底角是相等的,这里用180°减去2个50°就是等腰三角形的顶角的度数.解答:解:180°�50°×2 =180°�100° =80°.故这个三角形的顶角的度数是80°.故答案为:80°.点评:本题考查了等腰三角形的性质,关键是熟悉三角形的内角和是180°和等腰三角形2个底角是相等的,运用内角和求角. 11.如果△ABC≌△DEF,∠A=40°,∠B=55°,那么∠E=55°.考点:全等三角形的性质.分析:根据全等三角形的性质可得∠B=∠E=55°.解答:解:∵△ABC≌△DEF,∴∠B=∠E,∵∠B=55°,∴∠E=55°,故答案为:55°.点评:此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等. 12.如图,Rt△ABC中,∠C=90°,D是AB的中点,若AB=10,则CD的长等于 5 .考点:直角三角形斜边上的中线.分析:根据直角三角形斜边上的中线等于斜边的一半即可求解.解答:解:∵Rt△ABC中,∠ACB=90°,D是AB的中点,∴CD= AB,∵AB=10,∴CD= ×10=5.故答案为5.点评:本题考查了直角三角形斜边上的中线的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键. 13.等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是8 cm.考点:勾股定理;等腰三角形的性质.专题:几何图形问题.分析:利用等腰三角形的“三线合一”的性质得到BD= BC=6cm,然后在直角△ABD中,利用勾股定理求得高线AD的长度.解答:解:如图,AD是BC边上的高线.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD= = =(8cm).故答案是:8.点评:本题主要考查了等腰三角形的三线合一定理和勾股定理.等腰三角形底边上的高线把等腰三角形分成两个全等的直角三角形. 14.如图,在△ABC中,AB=AC,∠A=40°,BD⊥AC于D,则∠DBC=20 度.考点:等腰三角形的性质;三角形内角和定理.分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.解答:解:∵AB=AC,∠A=40° ∴∠ABC=∠ACB=70° ∵BD⊥AC ∴∠DBC=90°�70°=20°.点评:综合运用了等腰三角形的性质和三角形的内角和定理. 15.一根新生的芦苇高出水面1尺,一阵风吹过,芦苇向一边倾斜,顶端齐至水面,芦苇移动的距离为5尺,则芦苇的长度是13 尺.考点:勾股定理的应用.分析:设水池深度为x尺,则芦苇长为(x+1)尺,此题中水深、芦苇长及芦苇移动的水平距离构成一直角三角形,利用勾股定理可得x2+52=(x+1)2,再解即可.解答:解:设水池深度为x尺,则芦苇长为(x+1)尺,根据勾股定理得x2+52=(x+1)2,解得:x=12,即水池深度为12尺,则芦苇长度为13尺,故答案为:13.点评:本题考查了勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用. 16.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为.考点:翻折变换(折叠问题).分析:利用勾股定理求出BC=4,设BE=x,则CE=4�x,在Rt△B'EC中,利用勾股定理解出x的值即可.解答:解:BC= =4,由折叠的性质得:BE=BE′,AB=AB′,设BE=x,则B′E=x,CE=4�x,B′C=AC�AB′=AC�AB=2,在Rt△B′EC 中,B′E2+B′C2=EC2,即x2+22=(4�x)2,解得:x= .故答案为:.点评:本题考查了翻折变换的知识,解答本题的关键是掌握翻折变换的性质及勾股定理的表达式. 17.若直角三角形的三边分别为3,4,x,则x= 5或.考点:勾股定理.专题:分类讨论.分析:本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.解答:解:设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得: 32+42=x2,所以x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理得: 32+x2=42,所以x= ;所以第三边的长为5或,故答案为5或.点评:本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解. 18.如图,在△ABC中,∠ACB=90°,∠BAC=40°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为20°或40°或70°或100°.考点:等腰三角形的判定.分析:分四种情况:①AB=BP1时,②当AB=AP3时,③当AB=AP2时,④当AP4=BP4时,分别讨论,根据等腰三角形的性质求出答案即可.解答:解:∵在Rt△ABC中,∠C=90°,∠A=40°,∴当AB=BP1时,∠BAP1=∠BP1A=40°,当AB=AP3时,∠ABP3=∠AP3B= ∠BAC= ×40°=20°,当AB=AP4时,∠ABP4=∠AP4B= ×(180°�40°)=70°,当AP2=BP2时,∠BAP2=∠ABP2,∴∠AP2B=180°�40°×2=100°,∴∠APB的度数为:20°、40°、70°、100°.故答案为:20°或40°或70°或100°.点评:此题主要考查了等腰三角形的判定,分类讨论思想的运用是解题关键.三、解题题:本大题共9小题,共76分.解答应写出文字说明,证明过程或演算步骤 19.计算:(1)�(1�π)0 (2)已知(x�1)2=25,求x的值.考点:实数的运算;平方根;零指数幂.专题:计算题.分析:(1)原式第一项利用算术平方根定义计算,第二项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果;(2)已知方程开方即可求出x的值.解答:解:(1)原式=3+3��1=5�;(2)方程(x�1)2=25,开方得:x�1=5或x�1=�5,解得:x=6或x=�4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 20.已知:如图,点C为AB中点,CD=BE,CD∥BE.(1)求证:△ACD≌△CBE;(2)若∠D=35°,求∠DCE的度数.考点:全等三角形的判定与性质.分析:(1)根据中点定义求出AC=CB,根据两直线平行,同位角相等,求出∠ACD=∠B,然后利用SAS即可证明△ACD≌△CBE;(2)由△ACD≌△CBE,可知∠A=∠BCE,则AD∥CE,所以∠DCE=∠D.解答:解:(1)∵C是AB的中点(已知),∴AC=CB(线段中点的定义).∵CD∥BE(已知),∴∠ACD=∠B (两直线平行,同位角相等).在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).(2)∵△ACD≌△CBE,∴∠A=∠BCE,∴AD∥CE,∴∠DCE=∠D,∵∠D=35°,∴∠DCE=35°.点评:本题主要考查了全等三角形的判定与性质以及平行线的判定与性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 21.如图,在长度为1个单位长度的小正方形组成的长方形中,点A,B,C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)△ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为 5 .考点:作图-轴对称变换;轴对称-最短路线问题.分析:(1)根据轴对称的性质画出△ABC关于直线l成轴对称的△AB′C′即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可;(3)连接BC′交直线l于点P,则P点即为所求点,PB+PC的最短长度为线段BC′的长.解答:解:(1)如图所示;(2)S△ABC=4×3�×1×3�×2×3�×1×4 =12��3�2 = .故答案为:;(3)连接BC′交直线l于点P,则P点即为所求点,此时PB+PC的最短长度为线段BC′的长,BC′= =5.故答案为:5.点评:本题考查的是作图�轴对称变换,熟知轴对称图形的作法是解答此题的关键. 22.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线MN交AC于点D,交AB于E.(1)求∠DBC的度数;(2)猜想△BCD的形状并证明.考点:线段垂直平分线的性质;等腰三角形的判定与性质.分析:(1)根据线段的垂直平分线的性质得到DA=DB,求出∠DBC的度数;(2)根据等腰三角形的性质得到答案.解答:解:(1)∵DE是AB 的垂直平分线,∴DA=DB,∴∠ABD=∠A=36°,∵AC=AB,∴∠C=∠ABC=72°,∴∠DBC=∠ABC�∠ABD=36°;(2)△BCD是等腰三角形,∵∠DBC=36°,∠C=72°,∴∠BDC=180°�∠C�∠DBC=72°,∴∠C=∠BDC,∴BD=BC,∴△BCD是等腰三角形.点评:本题考查的是线段的垂直平分线的性质和三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键. 23.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.考点:等边三角形的判定与性质.分析:(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.解答:解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°�∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.点评:本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半. 24.(10分)(2014秋•盐都区期中)如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上,(1)若∠1=55°,求∠2,∠3的度数;(2)若AB=8,AD=16,求AE的长度.考点:翻折变换(折叠问题).分析:(1)根据平行线的性质得到∠2的度数,根据翻折变换的性质得到∠BE F的度数,根据三角形内角和定理得到答案;(2)AE=x,根据翻折变换的性质和勾股定理列出方程,解方程得到答案.解答:解:(1)∵AD∥BC,∴∠2=∠1=55°,由翻折变换的性质得∠BEF=∠2=55°,∴∠3=180°�∠BEF�∠2=70°;(2)设AE=x,则ED=16�x,∴EB=16�x,∵AB2+AE2=BE2,即82+x2+(16�x)2,解得x=6.答:AE的长为6.点评:本题考查的是翻折变换的性质,找出对应线段、对应角是解题的关键.注意方程思想的运用. 25.(10分)(2011秋•都江堰市校级期末)如图,一架梯子的长度为25米,斜靠在墙上,梯子低部离墙底端为7米.(1)这个梯子顶端离地面有24 米;(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向滑动了几米?考点:勾股定理的应用.专题:计算题.分析:在直角三角形中,已知斜边和一条直角边,根据勾股定理即可求出另一条直角边;根据求得的数值减去下滑的4米即可求得新直角三角形中直角边,根据梯子长度不变的等量关系即可解题.解答:解:(1)水平方向为7米,且梯子长度为25米,则在梯子与底面、墙面构成的直角三角形中,梯子顶端与地面距离为 =24,故答案为24;(2)设梯子的底部在水平方向滑动了x米则(24�4)2+(7+x)2=252 (7+x)2=252�202=225 ∴7+x=15 x=8 答:梯子在水平方向移动了8米.点评:本题考查了勾股定理在实际生活中的应用,考查了勾股定理的巧妙运用,本题中找到梯子长度不变的等量关系是解题的关键. 26.(10分)(2014秋•盐都区期中)△ABC中,DE,FG分别垂直平分边AB,AC,垂足分别为点D,G.(1)如图,①若∠B=30°,∠C=40°,求∠EAF的度数;②如果BC=10,求△EAF的周长;③若AE⊥AF,则∠BAC=135°°.(2)若∠BAC=n°,则∠EAF=2n�180 °(用含n代数式表示)考点:线段垂直平分线的性质.分析:(1)①根据三角形内角和定理得到∠BAC=110°,根据线段垂直平分线的性质得到EA=EB,FA=FC,根据等腰三角形的性质得到答案;②根据线段垂直平分线的性质求出△EAF的周长;③根据三角形内角和定理求出∠BAC的度数;(2)根据三角形内角和定理和(1)中的结论得到答案.解答:解:(1)①∵∠B=30°,∠C=40°,∴∠BAC=180°�30°�40°=110°,∵DE,FG分别垂直平分边AB,AC,∴EA=EB,FA=FC,∴∠BAE=∠B=30°,∠FAC=∠C=40°,∴∠EAF=110°�30°�40°=40°;②△EAF的周长=EA+FA+EF=BE+EF+FC=BC=10;③由①得,∠BAE=∠B,∠FAC=∠C,∴2∠BAE+2∠FAC+∠EAF=180°,∴∠BAE+∠FAC=45°,∴∠BAC=90°+45°=135°;(2)∠B+∠C=180°�n°,∠EAF=n°�(180°�n°)=2n�180.点评:本题考查的是线段的垂直平分线的性质和三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键. 27.(12分)(2015•盘锦四模)已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F、Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是AE=BF ;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.考点:全等三角形的判定与性质;直角三角形斜边上的中线.分析:(1)根据AAS推出△AEQ≌△BFQ,推出AE=BF即可;(2)延长EQ 交BF于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可;(3)延长EQ交FB于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可.解答:解:(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是AE=BF,理由是:∵Q为AB的中点,∴AQ=BQ,∵AE⊥CQ,BF⊥CQ,∴AE∥BF,∠AEQ=∠BFQ=90°,在△AEQ和△BFQ中∴△AEQ≌△BFQ,∴AE=BF,故答案为:AE∥BF,AE=BF;(2) QE=QF,证明:延长EQ交BF于D,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF;,(3)当点P在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EQ交FB于D,如图3,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF.点评:本题考查了平行线的性质和判定,全等三角形的性质和判定,直角三角形的性质的应用,解此题的关键是求出△AEQ≌△BDQ,用了运动观点,难度适中.。