高中数学阶段质量检测四定积分含解析北师大版选修2_2

合集下载

北师大版高中数学高中数学选修2-2第四章《定积分》测试(含答案解析)

北师大版高中数学高中数学选修2-2第四章《定积分》测试(含答案解析)

一、选择题1.已知71()x x +展开式中,5x 的系数为a ,则62axdx =⎰( )A .10B .11C .12D .132.一物体作变速直线运动,其v t -曲线如图所示,则该物体在1s~6s 2间的运动路程为( )m .A .1B .43C .494D .23.由曲线22y x =和直线4y x =-所围成的图形的面积( ) A .18B .19C .20D .214.计算211x dx x ⎛⎫+ ⎪⎝⎭⎰的值为( )A .34B .3ln 22+ C .55ln 22+ D .3ln 2+5.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 6.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .2 7.已知10(31)()0ax x b dx ,,a b ∈R ,则⋅a b 的取值范围为( )A .1,9B .1,1,9C .1,[1,)9D .()1,+∞8.定积分()1e2xx dx -⎰的值为( )A .e 2-B .e 1-C .eD .e 1+9.使函数()322912f x x x x a =-+-图象与x 轴恰有两个不同的交点,则实数a 可能的取值为( ) A .8B .6C .4D .210.定义{},,min ,,,a ab a b b a b ≤⎧=⎨>⎩设31()min ,f x x x ⎧⎫=⎨⎬⎩⎭,则由函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积( ) A .12ln 26+ B .12ln 24+ C .1ln 24+ D .1ln 26+ 11.由直线0,,2y x e y x ===及曲线2y x=所围成的封闭图形的面积为( ) A .3B .32ln 2+C .223e -D .e12.计算()122x x dx -⎰的结果为( )A .0B .1C .23D .53二、填空题13.定积分11sin )x dx -=⎰________.14.定积分211(2)x dx x+⎰的值为_____ .15.=__________16.若定义在R 上的函数()f x 对任意两个不等的实数12,x x 都有()()()()11221221x f x x f x x f x x f x +>+,则称函数()f x 为“z 函数”.给出下列四个定义在()0,+∞的函数:①31y x =-+;②2sinx-cosx y x =+;③,0{0,0ln x x y x ≠==;④224,0{,0x x x y x x x +≥=-+<,其中“z 函数”对应的序号为__________.17.(12x dx +=⎰________18.函数3y x x =-的图象与x 轴所围成的封闭图形的面积等于_______.19.定积分11d ex x ⎰的值为____________________. 20.曲线2yx 和曲线y x =围成一个叶形图(如图所示阴影部分),其面积是________.三、解答题21.设函数()32f x x ax bx =++在点1x =处有极值2-.(1)求常数,a b 的值;(2)求曲线()y f x =与x 轴所围成的图形的面积.22.已知2()2ln ,(0,]f x ax x x e =-∈ 其中e 是自然对数的底 . (1)若()f x 在1x = 处取得极值,求a 的值; (2)求()f x 的单调区间; 23.设函数()x x f x e e -=- (1)证明:'()2f x ≥;(2)若对任意[0,)x ∈+∞都有21(22)f x x e e ---<-,求x 的取值范围. 24.已知()xkx bf x e+=. (Ⅰ)若()f x 在0x =处的切线方程为1y x =+,求k 与b 的值; (Ⅱ)求1x xdx e ⎰. 25.已知曲线sin y x =和直线0,x x π==及0y =所围成图形的面积为0S . (1)求0S .(2)求所围成图形绕ox 轴旋转所成旋转体的体积. 26.已知函数()sin cos ,f x x x a x =+且()f x 在3x π=处的切线的斜率为6π. (1)求a 的值,并讨论()f x 在,22ππ⎡⎤-⎢⎥⎣⎦上的单调性; (2)设1()ln(1),0,01x g x mx x m x -=++≥>+,若对任意[)10,x ∈+∞,总存在20,2x π⎡⎤∈⎢⎥⎣⎦,使得12()()g x f x ≥成立,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用二项式的通项公式求得7a =,从而求得762xdx ⎰的值.【详解】在71()x x +展开式中,得二项式的通项公式7721771rr r r r r T C x C x x --+⎛⎫== ⎪⎝⎭, 令725r -=,解得1r =,所以5x 的系数为177C =,即7a =.所以7267662213axdx xdx x ===⎰⎰.故选:D 【点睛】本题主要考查二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,求定积分的值,属于中档题.2.C解析:C 【分析】由图像用分段函数表示()v t ,该物体在1s~6s 2间的运动路程可用定积分612()d s v t t =⎰表示,计算即得解 【详解】由题中图像可得,2,01()2,1311,363t t v t t t t ⎧⎪≤<⎪=≤≤⎨⎪⎪+<≤⎩由变速直线运动的路程公式,可得61311132621()d 22d 1d 3s v t t tdt t t t ⎛⎫==+++ ⎪⎝⎭⎰⎰⎰⎰6132211231492(m)64tt t t ⎛⎫=+++= ⎪⎝⎭.所以物体在1s~6s 2间的运动路程是49m 4. 故选:C 【点睛】本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题.3.A解析:A 【分析】画出两曲线的图像,求得交点坐标,由定积分求得图形的面积即可. 【详解】根据题意,画出量曲线的图像,设其交点为,A B ,如下所示:联立22y x =和4y x =-, 解得()()2,2,8,4A B -, 根据抛物线的对称性, 即可得两曲线围成的面积28222d (24)d S x x x x x =++⎰⎰2322021622d 2233x x x ⎛⎫⎰== ⎪⎝⎭ 82(24)d x x x +⎰83222212432x x x ⎫=-+⎪⎭32221884832⎫=⨯-⨯+⨯⎪⎭32221382242323⎫-⨯-⨯+⨯=⎪⎭故所求面积为2824)d x x x ++⎰⎰163833=+ 18=.故选:A. 【点睛】本题考查由定积分求解曲边梯形的面积,需要注意的是,本题中需要对曲边梯形的面积进行拆分求解,这是本题的难点.4.B解析:B 【分析】根据牛顿莱布尼茨公式,即可代值求解. 【详解】根据牛顿莱布尼茨公式211x dx x ⎛⎫+ ⎪⎝⎭⎰2211()2x lnx =+1142122ln ln ⎛⎫=⨯+-+ ⎪⎝⎭ 322ln =+. 故选:B. 【点睛】本题考查牛顿莱布尼茨公式的直接应用,属基础题.5.B解析:B【解析】求导函数,可得()1'220f x mx x x=+->,,函数()2ln 2f x mx x x =+-在定义域内是增函数,所以()'0f x < 成立,即1220(0)mx x x+-<>恒成立,所以21211m x ⎛⎫->-- ⎪⎝⎭,所以21m ->-,所以12m < 时,函数()f x 在定义域内是增函数.故选B .6.A【解析】试题分析:由1(1)1x f x x e ++=-+知()2x f x x e =-+,则()1(0)2x f x e f ''=+⇒=,而(0)1f =-,即切点坐标为()0,1-,切线斜率(0=2k f '=),则切线()():12021l y x y x --=-⇒=-,切线l 与坐标轴的交点分别为1,02⎛⎫⎪⎝⎭和()0,1-,则切线l 与坐标轴围成的三角形的面积为1111224S =⋅⋅-= 考点:函数在某点处的切线7.C解析:C 【分析】本题可以先根据定积分的运算法则建立a 与b 的等量关系,然后设abt ,则312t a b,再然后根据构造法得出a 、b 为方程23102t xx t 的根,最后根据判别式即可得出结果. 【详解】112(31)()(33)ax x b dx ax abx x b dx 12230331()02222abx x ab ax bx a b =+++=+++=, 即3210ab a b ,设abt ,则312t a b,a 、b 为方程23102t xx t 的根,有231402t t ,解得19t 或1t ≥, 所以1,[1,)9a b ,故选C .【点睛】本题考查定积分的运算法则以及构造法,能否根据被积函数的解析式得出原函数的解析式是解决本题的关键,考查韦达定理的使用,是中档题.8.A解析:A 【解析】()1e 2x x dx -⎰21()1120x e x e e =-=--=- ,选A.9.C【解析】f ′(x )=6x 2−18x +12,令f ′(x )=0得x 2−3x +2=0,解得x =1,或x =2. ∴当x <1或x >2时,f ′(x )>0,当1<x <2时,f ′(x )<0,∴f (x )在(−∞,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增, ∴当x =1时,f (x )取得极大值f (1)=5−a , 当x =2时,f (x )取得极小值f (2)=4−a ,∵f (x )只有两个零点,∴5−a =0或4−a =0,即a =5或a =4. 本题选择C 选项.10.B解析:B 【解析】由31x x=,得1x =±,则图象的交点为(1,1)--,(1,1) ∵()31min ,f x x x ⎧⎫=⎨⎬⎩⎭∴根据对称性可得函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积为143401141111|ln |ln 42ln 201444x dx dx x x x +=+=+=+⎰⎰ 故选B11.A解析:A 【解析】如图所示,曲边四边形OABC 的面积为11121212ln 12(ln ln1)1232eedx x e x ⨯⨯+=+=+-=+=⎰.故选A.点睛:本题考查了曲线围成的图形的面积,着重考查了定积分的几何意义和定积分计算公式等知识,属于基础题;用定积分求平面图形的面积的步骤:(1)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;(2)解方程组求出每两条曲线的交点,以确定积分的上、下限;(3)具体计算定积分,求出图形的面积.12.C解析:C 【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限后作差得答案. 【详解】122312300112(2)()|11333x x dx x x -=-=-⨯=⎰, 故选C. 【点睛】该题考查的是有关定积分的运算求解问题,属于简单题目.二、填空题13.【解析】分析:由定积分的几何意义画出图形由面积可得定积分由奇函数在对称区间的积分知为0可得解详解:∵表示圆与x 轴围成的图形CDAB ∴又为奇函数所以∴故答案为:点睛:定积分的计算一般有三个方法:(1)解析:233π+. 【解析】分析:由定积分的几何意义画出图形由面积可得定积分,由奇函数在对称区间的积分知为0,可得解.详解:11122111(4sin )4sin x x dx x dx xdx ----+=-+=⎰⎰⎰,∵214x dx --表示圆224x y +=与x 轴围成的图形CDAB ,OAB 1214233632OCB ODAS SSππ=⨯⨯=+=⨯扇形,.∴212433x dx π--=又sin x 为奇函数,所以11sin 0xdx -=⎰,∴112sin )3x dx π-=⎰故答案为:23π+ 点睛:定积分的计算一般有三个方法: (1)利用微积分基本定理求原函数;(2)利用定积分的几何意义,利用面积求定积分;(3)利用奇偶性对称求定积分,奇函数在对称区间的定积分值为0.14.【解析】15.【解析】表示以(10)为圆心1为半径的圆的个圆的面积所以π×12=;故答案为:解析:4π【解析】表示以(1,0)为圆心,1为半径的圆的14个圆的面积,所以14π×12=4π;故答案为:4π16.②④【解析】函数在上单调递增①②③为单调递减④单调递增;单调递增;且所以为单调递增选②④解析:②④【解析】()()()()()()()()1122122112120x f x x f x x f x x f x x x f x f x +>+⇔-->⇔函数()f x 在R 上单调递增.①230y x =-'≤,②π2cos sin 204y x x x ⎛⎫=++=++> ⎪⎝⎭',③()0,ln x y x <=-为单调递减, ④20,4x y x x ≥=+单调递增; 20,x y x x <=-+单调递增;且220,4x y x x x x ==+=-+,所以224,0{,0x x x y x x x +≥=-+<为单调递增,选②④ 17.【详解】因而应填答案 解析:14π+【详解】因11(2(2)x dx x dx +=+⎰⎰,而1220(2)101x dx =-=⎰,2222000111cos(1cos2)sin2|22224dx tdt t dt tπππππ==+=⨯+=⎰⎰,应填答案14π+.18.【解析】试题分析:由得或所以所围成的封闭图形的面积为==考点:定积分的运算及几何意义解析:12【解析】试题分析:由30x x-=,得0x=或1x=±,所以所围成的封闭图形的面积为132()x x dx-⎰=24102()|24x x-=11242⨯=.考点:定积分的运算及几何意义.19.1【分析】根据定积分求解【详解】故答案为:1【点睛】本题考查定积分考查基本分析求解能力属基础题解析:1【分析】根据定积分求解【详解】111d ln|1eex xx==⎰故答案为:1【点睛】本题考查定积分,考查基本分析求解能力,属基础题.20.【分析】先求出两个曲线的交点坐标得所求阴影部分应该是曲线从0到1的一段投影到x轴的面积减去曲线从0到1的一段投影到x轴的面积最后根据定积分的几何意义用积分计算公式可以算出阴影部分面积【详解】设阴影部解析:13【分析】先求出两个曲线的交点坐标(1,1)C,得所求阴影部分应该是曲线y=0到1的一段投影到x轴的面积减去曲线2y x从0到1的一段投影到x轴的面积,最后根据定积分的几何意义,用积分计算公式可以算出阴影部分面积.【详解】设阴影部分面积为S,由题意得两个图象的交点为(1,1)C,)1323212133S x dx x x⎛⎫∴==-⎪⎝⎭⎰33332221211110033333⎛⎫⎛⎫=⨯-⨯-⨯-⨯=⎪ ⎪⎝⎭⎝⎭.故答案为:13. 【点睛】 本题着重考查了定积分的几何意义和积分的计算公式等知识点,属于中档题.三、解答题21.(1)0,3a b ==-;(2)92. 【分析】(1)求出导函数,利用函数()32f x x ax bx =++在1x =处有极值2-,由()12f =-且()'10f =,解方程组,即可求得,a b 的值;(2)利用定积分的几何意义,先确定确定函数的积分区间,被积函数,再求出原函数,利用微积分基本定理,结合函数的对称性即可得结论.【详解】(1)由题意知()2'32f x x ax b =++, ()12f =-且()'10f =,即12,320,a b a b ++=-⎧⎨++=⎩,解得0,3a b ==-. (2)如图,由1问知()33f x x x =-.作出曲线33y x x =-的草图,所求面积为阴影部分的面积.由330x x -=得曲线33y x x =-与x 轴的交点坐标是()3,0,()0,0和)3,0, 而33y x x =-是R 上的奇函数,函数图象关于原点中心对称.所以y 轴右侧阴影面积与y 轴左侧阴影面积相等.所以所求图形的面积为()33013S x x dx ⎤=-⎣⎦ 4213932|4220x x ⎛⎫=--= ⎪⎝⎭. 【点睛】本题主要考查利用导数研究函数的极值、定积分的几何意义以及微积分基本定理的应用,属于中档题. 已知函数的极值()f m n =求参数的一般步骤是:(1)列方程求参数()()'0f m n f m ⎧=⎪⎨=⎪⎩;(2)检验方程的解的两边导函数符号是否相反. 22.(1)1a = (2)见解析【解析】试题分析(1)先求导数,再根据极值定义得()1220f a -'==,解得a 的值(2)由导函数是否变号进行分类讨论: 当0a ≤时,导函数恒负,所以在定义区间上为单调递减函数;当e ≥ 时,导函数恒正, 所以在定义区间上为单调递增函数;e <时,导函数先负后正,所以减区间是⎛ ⎝⎭,增区间是e ⎤⎥⎝⎦. 试题(1 ) ()22222ax f x ax x x='-=-. 由已知()1220f a -'==, 解得1a =.经检验, 1a =符合题意.(2) ()22222ax f x ax x x='-=-. 1)当0a ≤时,()()0,f x f x <'∴在(]0,e 上是减函数. 2)当0a >时,()2a x x f x x⎛⎫⎛'⎫ ⎪⎪⎝⎭⎝⎭=. ①e <,即21a e >, 则()f x在⎛ ⎝⎭上是减函数,在e ⎤⎥⎝⎦上是增函数; ②若e a≥ ,即210a e <≤,则()f x 在(]0,e 上是减函数. 综上所述,当21a e ≤时,()f x 的减区间是(]0,e , 当21a e >时,()f x的减区间是⎛ ⎝⎭,增区间是e ⎤⎥⎝⎦. 点睛:导数与函数的单调性(1)函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则 ()y f x =在该区间为增函数;如果()0f x '<,则()y f x =在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间或存在单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.23.(1)见解析;(2) x 的范围是[0,3).【解析】试题分析:(1)根据均值不等式,()'x xf x e e -=+乘积是定值,可以证得问题. (2)首先要根据根据函数特殊值()11f e e -=-,再由函数的单调性直接比较函数自变量的大小关系即可.(1)()'2x x f x e e -=+≥=(当且仅当x x e e -=即0x =时取“=”)∴ ()'2f x ≥(2)由(1)可知,对任意x R ∈,均有()'20f x ≥>,所以 函数()y f x =在(),-∞+∞上单调递增从而()()()21222221f x x e e f x x f ---<-⇔--< 2221x x ⇔--< 13x ⇔-<< ,故当对任意[)0,x ∈+∞都有()2122f x x e e ---<-时,x 的取值范围是[)0,3. 点睛:这道题目是考查不等式与函数最值集合的问题,第一问因为x x e e -和乘积是定值,故就想到了均值不等式求最值.第二问,解不等式,根据抽象函数的单调性,直接去掉f ,直接比较括号内的大小关系即可.24.(Ⅰ)1b =,2k =;(Ⅱ)21e -. 【解析】试题分析:(Ⅰ)求出函数的的导函数;根据题意知()()011{{011f k b f b =-=⇒==',可解得1b =,2k =;(Ⅱ)根据微积分的基本定理设()x x kx k b x f x e e--'+==,解得1k =-,1b =-,得()1x x f x e --=,从而求得10112|10x x x x dx e e e --==-⎰. 试题解:()()()2x x x x x k e kx b e kx b kx k b f x e e e '⋅-++-+-⎛⎫== ⎪⎝⎭'=. (Ⅰ)依题意:()()011{{011f k b f b =-=⇒==',解得1b =,2k =; (Ⅱ)设()x x kx k b x f x e e--'+==,则1{0k k b -=-=,解得1k =-,1b =-,即()1xx f x e --=,∴10112|10x x x x dx e e e --==-⎰. 考点:导数的几何意义;微积分的基本定理.25.(1)2,;(2)22π. 【分析】(1)根据题意可知曲线sin y x =和直线0,x x π==及0y =所围成图形的面积为00sin S xdx π=⎰,解之即可;(2)所围成图形绕ox 轴旋转所成旋转体的体积为20sin V xdx ππ=⎰,根据定积分的定义解之即可. 【详解】(1)000sin cos |(cos )(cos0)112S xdx x πππ==-=---=+=⎰;(2)220011sin sin 2|(0)24242x V xdx x πππππππ⎛⎫==-=-⨯= ⎪⎝⎭⎰. 【点睛】 本题主要考查定积分的几何意义,意在考查灵活利用所学知识解答问题的能力,属于中档题.26.(1)函数()f x 在,02上单调递减,在0,2π⎡⎤⎢⎥⎣⎦上单调递增;(2) 2.m ≥. 【解析】试题分析:(1)运用“函数在某点的切线斜率,就是该点的导数值”,确定直线的斜率。

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测卷(包含答案解析)

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测卷(包含答案解析)

一、选择题1.曲线y =sin x ,y =cos x 与直线x =0,x =2π所围成的平面区域的面积为( ) A .π20⎰(sin x -cos x )d x B .2π40⎰(sin x -cos x )d x C .π20⎰(cos x -sin x )d xD .2π40⎰(cos x -sin x )d x2.若函数()32nxf x x x =++在点()1,6M 处切线的斜率为33ln3+,则n 的值是( )A .1B .2C .4D .33.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 4.已知1a xdx =⎰, 12b x dx =⎰, 1c xdx =⎰,则a , b , c 的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .c a b <<5.已知二次函数()y f x =的图象如图所示,则它与x 轴所围图形的面积为:A .2π5B .32C .43D .π26.定积分220[4(2)]x x dx ---⎰的值为( )A .24π- B .2π- C .22π- D .48π-7.如图,设D 是途中边长分别为1和2的矩形区域,E 是D 内位于函数1(0)y x x=>图象下方的阴影部分区域,则阴影部分E 的面积为( )A .ln 2B .1ln 2-C .2ln 2-D .1ln 2+8.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .2 9.等比数列{}n a 中,39a =前三项和为32303S x dx =⎰,则公比的值是( ) A .1B .12-C .1或12-D .-1或12-10.由直线0,,2y x e y x ===及曲线2y x=所围成的封闭图形的面积为( ) A .3 B .32ln 2+C .223e -D .e11.已知320n x dx =⎰,且21001210(2)(23)n x x a a x a x a x +-=+++⋅⋅⋅+,则12310012102310a a a a a a a a +++⋅⋅⋅++++⋅⋅⋅+的值为( )A .823B .845C .965-D .87712.120(1(1))x x dx ⎰---=( ) A .22π+B .12π+ C .122π-D .142π- 二、填空题13.021214edx x dx x-+-=⎰⎰______________.14.2322(4)x x dx -+-=⎰___________15.若()()122f x x f x dx =+⎰,则()1f x dx =⎰_______.16.若二项式62515x x ⎛⎫+ ⎪ ⎪⎝⎭的展开式中的常数项为m ,则21mx dx =⎰__________. 17.定积分211(2)x dx x+⎰的值为_____ .18.曲线2yx 与直线2y x =所围成的封闭图形的面积为_______________.19.若()()4112ax x -+的展开式中2x 项的系数为4,则21ae dx x=⎰________________ 20.曲线与直线所围成的封闭图形的面积为____________.三、解答题21.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈). (1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=, 试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由. 22.已知函数21()ln (1)12f x x ax a x =-+-+. (1)当1a =时,)求函数()f x 在2x =处的切线方程; (2)求函数()f x 在[]1,2x ∈时的最大值.23.设函数()()3223168f x x a x ax =-+++,其中a R ∈,已知()f x 在3x =处取得极值. (1)求()f x 在点()()1,1A f 处的切线方程; (2)求函数()f x 的单调区间.24.已知函数()1x f x e ex =--,其中e 为自然对数的底数,函数()(2)g x e x =-. (1)求函数()()()h x f x g x =-的单调区间; (2)若函数(),,()(),f x x m F x g x x m ≤⎧=⎨>⎩的值域为R ,求实数m 的取值范围.25.现有一个以OA 、OB 为半径的扇形池塘,在OA 、OB 上分别取点C 、D ,作DE OA 、CF OB 分别交弧AB 于点E 、F ,且BD AC =,现用渔网沿着DE 、EO 、OF 、FC 将池塘分成如图所示的养殖区域.已知1km OA =,2AOB π∠=,EOF θ∠=(02πθ<<).(1)若区域Ⅱ的总面积为21km 4,求θ的值; (2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是30万元、40万元、20万元,试问:当θ为多少时,年总收入最大?26.利用定积分的定义,计算221(2)d x x x -+⎰的值,并从几何意义上解释这个值表示什么.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】π40⎰(-sin x +cos x )d x 2π4π+⎰(sin x -cos x )dx=2π40⎰(cos x -sin x )d x ,选D. 点睛:1.求曲边图形面积的方法与步骤 (1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.2.A解析:A【解析】由题意,得()13ln32n x f x nx-=++', ()13ln3233ln3f n =++=+',所以1n =;故选A.3.B解析:B【解析】求导函数,可得()1'220f x mx x x=+->,,函数()2ln 2f x mx x x =+-在定义域内是增函数,所以()'0f x < 成立,即1220(0)mx x x+-<>恒成立,所以21211m x ⎛⎫->-- ⎪⎝⎭,所以21m ->-,所以12m < 时,函数()f x 在定义域内是增函数.故选B .4.C解析:C【解析】因为1113212312000000111122,,|223333a xdx x b x dx x c x =========⎰⎰,所以b ac <<,故选C.5.C解析:C 【解析】试题分析:由图像可知函数解析式为()21f x x =-+∴由定积分的几何意义可知面积()12311111141|113333S x dx x x --⎛⎫⎛⎫⎛⎫=-+=-+=---=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰ 考点:定积分及其几何意义6.B解析:B 【解析】试题分析:由定积分的几何意义有2204(2)x dx --⎰表示的是以(2,0)为圆心,半径为2的圆的14部分,而20xdx ⎰表示的是直线y x =,0,2,x x x ==轴所围成的面积,故220[4(2)]x x dx ---⎰表示的图形如下图的阴影部分,面积为221122242ππ⨯-⨯=-.故选B.考点:1.定积分的几何意义;2.方程的化简.7.D解析:D 【解析】试题分析:由题意,阴影部分E 由两部分组成,因为函数1(0),y x x=>当2y =时,1,2x =所以阴影部分E 的面积为1111221121ln |1ln 2,2dx x x ⨯+=+=+⎰故选D . 考点:利用定积分在曲边形的面积.8.A解析:A 【解析】试题分析:由1(1)1x f x x e++=-+知()2x f x x e =-+,则()1(0)2xf x e f ''=+⇒=,而(0)1f =-,即切点坐标为()0,1-,切线斜率(0=2k f '=),则切线()():12021l y x y x --=-⇒=-,切线l 与坐标轴的交点分别为1,02⎛⎫⎪⎝⎭和()0,1-,则切线l 与坐标轴围成的三角形的面积为1111224S =⋅⋅-= 考点:函数在某点处的切线9.C解析:C 【解析】由题意得3330|27S x ==. ①当q ≠1时,则有313231(1)2719a q S q a a q ⎧-==⎪-⎨⎪==⎩,解得12q =-或1q =(舍去).②当q =1时,a 3=a 2=a 1=9,故S 3=27,符合题意. 综上12q =-或1q =.选C . 点睛:在运用等比数列的前n 项和公式时,必须注意对1q =与1q ≠分类讨论,防止因忽略1q = 这一特殊情况而导致解题失误.10.A解析:A 【解析】如图所示,曲边四边形OABC 的面积为11121212ln 12(ln ln1)1232eedx x e x ⨯⨯+=+=+-=+=⎰.故选A.点睛:本题考查了曲线围成的图形的面积,着重考查了定积分的几何意义和定积分计算公式等知识,属于基础题;用定积分求平面图形的面积的步骤:(1)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;(2)解方程组求出每两条曲线的交点,以确定积分的上、下限;(3)具体计算定积分,求出图形的面积.11.A解析:A 【分析】利用微积分基本定理,可计算得329n x dx ==⎰,又210998012101210()2...10(23)27(2)(23)a a x a x a x a a x a x x x x '+++⋅⋅⋅+=+++=--+-利用赋值法,令1x =,可得解 【详解】由题意3323200|3093x n x dx ===-=⎰ 令1x =有:901210(21)(23)3a a a a +++⋅⋅⋅+=+-=-210998012101210()2...10(23)27(2)(23)a a x a x a x a a x a x x x x '+++⋅⋅⋅+=+++=--+-令1x =有:9812102...10(23)27(21)(23)82a a a +++=--+-=- 故12310012102310823a a a a a a a a +++⋅⋅⋅+=+++⋅⋅⋅+故选:A 【点睛】本题考查了导数、定积分和二项式定理综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题12.D解析:D 【分析】 函数()1201(1)y x dx =--⎰的图象是以(1,0)为圆心,以1为半径的上半圆,作出直线y x =,则图中阴影部分的面积为题目所要求的定积分.【详解】 由题意,()()111221(1)1(1)()x x dx x dx x dx ---=--+-⎰⎰⎰,如图:1201(1)x dx --⎰的大小相当于是以(1,0)为圆心,以1为半径的圆的面积的14,故其值为4π,021011()1()|22x d x x --=-=⎰,所以,)1111()42x dx dx x dx π=+-=-⎰⎰⎰ 所以本题选D. 【点睛】本题考查求定积分,求解本题关键是根据定积分的运算性质将其值分为两部分来求,其中一部分要借用其几何意义求值,在求定积分时要注意灵活选用方法,求定积分的方法主要有两种,一种是几何法,借助相关的几何图形,一种是定义法,求出其原函数,本题两种方法都涉及到了,由定积分的形式分析,求解它的值得分为两部分来求,1dx ⎰和1()x dx -⎰.二、填空题13.【分析】根据以及定积分的几何意义可得答案【详解】因为表示的是圆在x 轴及其上方的面积所以所以=故答案为:【点睛】本题考查了定积分的计算考查了定积分的几何意义属于基础题 解析:21π+【分析】根据1(ln )x x'=以及定积分的几何意义可得答案.【详解】11edx x⎰=ln 1e x ln ln1101e =-=-=,因为2-⎰表示的是圆224x y +=在x 轴及其上方的面积,所以2-⎰21222ππ=⨯⨯=,所以11edx x ⎰2-+⎰=12π+. 故答案为:21π+.【点睛】本题考查了定积分的计算,考查了定积分的几何意义,属于基础题.14.2π【分析】为奇函数再利用定积分的几何意义计算得到答案【详解】为奇函数故设即对应半圆的面积为故故答案为:【点睛】本题考查了定积分的计算意在考查学生的计算能力和应用能力转化为对应半圆的面积是解题的关键解析:2π 【分析】3y x =为奇函数,2320x dx -=⎰,再利用定积分的几何意义计算得到答案.【详解】3y x =为奇函数,故22223322(x dx x dx ----=+=⎰⎰⎰⎰,设y =224x y +=,0y ≥,对应半圆的面积为21222ππ⋅=,故232(2x dx π-=⎰.故答案为:2π. 【点睛】本题考查了定积分的计算,意在考查学生的计算能力和应用能力,转化为对应半圆的面积是解题的关键.15.【分析】所以对等式在上积分得到关于的方程解得的值即可【详解】解:设则解得所以故答案为:【点睛】本题考查了定积分的应用考查了定积分的求法属于中档题解题时要注意根据题目要求灵活的在固定区间上积分进而构造解析:13-【分析】1()f x dx n =⎰,所以2()2f x x n =+,对等式在(0,1)上积分,得到关于n 的方程,解得n 的值即可. 【详解】解:设10()f x dx n =⎰,则2()2f x x n =+2311111()(2)22033f x dx n x n dx x nx n ⎛⎫∴⎰==⎰+=+=+ ⎪⎝⎭,解得13n =-, 所以101()3f x dx =⎰.故答案为:13-. 【点睛】本题考查了定积分的应用,考查了定积分的求法.属于中档题.解题时要注意根据题目要求灵活的在固定区间上积分,进而构造出需要的方程.16.【详解】二项式的展开式的通项为令所以常数项为二项式的展开式中的常数项为则故答案为【方法点晴】本题主要考查二项展开式定理的通项与系数属于简单题二项展开式定理的问题也是高考命题热点之一关于二项式定理的命 解析:263【详解】二项式6215x x ⎛⎫+ ⎪ ⎪⎝⎭的展开式的通项为6161235r rrr T C x -+-⎛=⎝⎭,令1234r r -⇒= 所以常数项为2642411153,55C x x ⎛⎫⎛⎫⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭二项式6215x x ⎛⎫+ ⎪ ⎪⎝⎭的展开式中的常数项为3m =,则32233111126|33mx dx x dx x ===⎰⎰,故答案为263. 【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C rn r rr n T ab -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.17.【解析】18.【解析】由解得或∴曲线及直线的交点为和因此曲线及直线所围成的封闭图形的面积是故答案为点睛:本题考查了曲线围成的图形的面积着重考查了定积分的几何意义和定积分计算公式等知识属于基础题;用定积分求平面图形解析:43【解析】由2 2y x y x⎧=⎨=⎩,解得0 0x y =⎧⎨=⎩或24x y =⎧⎨=⎩,∴曲线2y x =及直线2y x =的交点为()0,0O 和()2,4A 因此,曲线2y x =及直线2y x =所围成的封闭图形的面积是()222320014233S x x dx x x ⎛⎫=-=-= ⎪⎝⎭⎰,故答案为43.点睛:本题考查了曲线围成的图形的面积,着重考查了定积分的几何意义和定积分计算公式等知识,属于基础题;用定积分求平面图形的面积的步骤:(1)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;(2)解方程组求出每两条曲线的交点,以确定积分的上、下限;(3)具体计算定积分,求出图形的面积.19.【解析】由题意得项的系数为所以点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项可依据条件写出第项再由特定项的特点求出值即可(2)已知展开式的某项求特定项的系数可由某项得出参数项 解析:ln51-【解析】由题意得2x项的系数为221445224,2C aC a ⋅-⨯==,所以5225152ln |ln ln ln5 1.222e e dx x e x ==-=-⎰ 点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出r 值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.20.【解析】【分析】确定被积函数与被积区间利用用定积分表示面积即可求得结论【详解】曲线y=sinx 与直线x=0x=π4y=0所围成的封闭图形的面积为0π4sin xdx=-cosx|0π4=1-22故答案 解析:【解析】 【分析】确定被积函数与被积区间,利用用定积分表示面积,即可求得结论. 【详解】 曲线与直线所围成的封闭图形的面积为,故答案为.【点睛】本题主要考查利用定积分求面积,意在考查对基础知识掌握的熟练程度,属于基础题.三、解答题21.(1)当0a ≤时,()0f x '>,()f x 在()0,+∞上单调递增,0(),22a a a f x 所以时,的单调减区间是,单调增区间是⎛⎫>+∞ ⎪ ⎪⎝⎭;(2)()y f x =在0x 处的切线不能平行于x 轴. 。

新北师大版高中数学高中数学选修2-2第四章《定积分》检测题(包含答案解析)

新北师大版高中数学高中数学选修2-2第四章《定积分》检测题(包含答案解析)

一、选择题1.一物体作变速直线运动,其v t -曲线如图所示,则该物体在1s~6s 2间的运动路程为( )m .A .1B .43C .494D .22.12201x dx -=⎰( )A .12πB .3128π+ C .368π+ D .364π+3.已知函数sin (11)()1(12)x x f x x x-≤≤⎧⎪=⎨<≤⎪⎩,则21()f x dx -=⎰( ) A .ln 2B .ln 2-C .12-D .3cos 1-4.4片叶子由曲线2||y x =与曲线2||y x =围成,则每片叶子的面积为() A .16B .36C .13D .235.如图所示的阴影部分是由x 轴,直线1x =及曲线1x y e =-围成,现向矩形区域OABC 内随机投掷一点,则该点落在阴影部分的概率是( )A .1eB .11e - C .11e-D .21e e --6.已知()22214a x ex dx π-=--⎰,若()201620121ax b b x b x -=++ 20162016b x ++(x R ∈),则12222b b + 201620162b ++的值为( ) A .1-B .0C .1D .e7.已知1a xdx =⎰, 12b x dx =⎰, 1c xdx =⎰,则a , b , c 的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .c a b <<8.22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰若 ,则s 1,s 2,s 3的大小关系为( )A .s 1<s 2<s 3B .s 2<s 1<s 3C .s 2<s 3<s 1D .s 3<s 2<s 19.已知二次函数()y f x =的图像如图所示 ,则它与x 轴所围图形的面积为( )A .25πB .43C .32D .2π 10.设函数2e ,10()1,01x x f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,计算11()d f x x -⎰的值为( ) A .1e πe 4-+ B .e 1πe 4-+ C .e 12πe - D .e 1πe 2-+ 11.已知320n x dx =⎰,且21001210(2)(23)n x x a a x a x a x +-=+++⋅⋅⋅+,则12310012102310a a a a a a a a +++⋅⋅⋅++++⋅⋅⋅+的值为( )A .823B .845C .965-D .87712.1201(1))x x dx ⎰--=( ) A .22π+B .12π+ C .122π-D .142π- 二、填空题13.如图所示,直线y kx =分抛物线2y x x 与x 轴所围图形为面积相等的两部分,则k的值为__________.14.若()()122f x x f x dx =+⎰,则()1f x dx =⎰_______.15.已知121a x dx -=-⎰,则61[(2)]2a x xπ+--展开式中的常数项为______.16.12021sin x dx xdx π--=⎰⎰______17.曲线y=x 2与y=x 所围成的封闭图形的面积为______. 18.定积分211(2)x dx x+⎰的值为_____ .19.已知()[](]221,1,11,1,2x x f x x x ⎧-∈-⎪=⎨-∈⎪⎩,则()21f x dx -=⎰______. 20.定积分11d ex x ⎰的值为____________________. 三、解答题21.已知二次函数()f x 满足(0)0f =,且对任意x 恒有(1)()22f x f x x +-=+. (1)求()f x 的解析式;(2)设函数()()'()g x f x f x λ=-,其中'()f x 为()f x 的导函数.若对任意[0,1]x ∈,函数()y g x =的图象恒在x 轴上方,求实数λ的取值范围.22.已知函数()21ln ,2f x x ax a R =-∈.(1)求函数()f x 的单调区间;(2)若关于x 的不等式()()11f x a x ≤--恒成立,求整数a 的最小值.23.已知曲线C :322321y x x x =--+,点1(,0)2P ,求过P 的切线l 与C 围成的图形的面积.24.求由抛物线28(0)y x y =>与直线60x y +-=及0y =所围成图形的面积. 25.已知函数1211()(1)x f x adt x t+=++⎰()1x >-. (1)若()f x 在1x =处有极值,问是否存在实数m ,使得不等式2214()m tm e f x ++-≤对任意[]1,x e e ∈-及[]1,1t ∈-恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.()2.71828e =;(2)若1a =,设2()()(1)F x f x x x =-+-. ①求证:当0x >时,()0F x <; ②设*111()12(1)n a n N n n n n =++⋅⋅⋅+∈++++,求证:ln 2n a > 26.已知()[](]22122f x 1x 24x x x ⎧+∈-⎪=⎨+∈⎪⎩,,,,,求k 的值,使()3k40f x dx 3=⎰.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由图像用分段函数表示()v t ,该物体在1s~6s 2间的运动路程可用定积分612()d s v t t =⎰表示,计算即得解 【详解】由题中图像可得,2,01()2,1311,363t t v t t t t ⎧⎪≤<⎪=≤≤⎨⎪⎪+<≤⎩由变速直线运动的路程公式,可得61311132621()d 22d 1d 3s v t t tdt t t t ⎛⎫==+++ ⎪⎝⎭⎰⎰⎰⎰6132211231492(m)64tt t t ⎛⎫=+++= ⎪⎝⎭.所以物体在1s~6s 2间的运动路程是49m 4. 故选:C 【点睛】本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于2.B解析:B 【分析】令21y x =-,则()2210x y y +=≥,点(),x y 的轨迹表示半圆,则该积分表示该半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,求出面积即可. 【详解】解:令21y x =-,则()2210x y y +=≥,点(),x y 的轨迹表示半圆,12201x dx -⎰表示以原点为圆心,2为半径的圆的上半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,如图:故12201131311222612OAB BOCx dx SS ππ-=+=⨯⨯⨯=+扇形. 故选:B. 【点睛】本题考查定积分的几何意义,属基础题.3.A解析:A 【分析】将所求积分分成两段来进行求解,根据积分运算法则可求得结果. 【详解】()21212111111sin cos ln cos1cos1ln 2ln1ln 2f x dx xdx dx x x x ---=+=-+=-++-=⎰⎰⎰ 故选:A 【点睛】本题考查积分的计算问题,关键是能够按照分段函数的形式将所求积分进行分段求解.4.C解析:C 【分析】先计算图像交点,再利用定积分计算面积.如图所示:由2y x y x ⎧=⎪⎨=⎪⎩,解得0,0,x y =⎧⎨=⎩11x y =⎧⎨=⎩, 根据图形的对称性,可得每片叶子的面积为()13023210211d 333x x x x x ⎛⎫⎰-=-= ⎪⎝⎭.故答案选C 【点睛】本题考查定积分的应用,考查运算求解能力5.D解析:D 【解析】试题分析:由几何概型可知,所求概率为.考点:几何概型、定积分.6.A解析:A 【解析】因为2224d x x --表示的是以原点为圆心、半径为2的上半圆的面积,即224d 2πx x --=,222221e d (e )|02x x x --==⎰,所以)22214e d 2a x x x π-=-=⎰,则()2016201212x b b x b x -=++ 20162016b x ++,令0x =,得01b =,令12x =,得1202022b b b =++ 201620162b ++,则12222b b + 2016201612b ++=-;故选A. 点睛:在处理二项展开式的系数问题要注意两个问题:一是要正确区分二项式系数和各项系数;二要根据具体问题合理赋值(常用赋值是1、-1、0).7.C解析:C【解析】因为11113212312000000111122,,|223333a xdx x b x dx x c xdx x =========⎰⎰⎰,所以b ac <<,故选C.8.B解析:B 【解析】3221321322217ln |ln 2||,.11133x S x S x S e e e S S S ==<==<==-∴<<选B.考点:此题主要考查定积分、比较大小,考查逻辑推理能力.9.B解析:B 【解析】设()()()11,0f x a x x a =-+<,又点()0,1在函数()f x 的图象上,则()21,1a f x x =-∴=-,由定积分几何意义,围成图形的面积为()123111141|33S x dx x x --⎛⎫=-=-= ⎪⎝⎭⎰,故选B. 10.B解析:B 【解析】因为函数2e ,10()1,01x x f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,所以102110()d e d 1d x f x x x x x --=+-⎰⎰⎰,其中01101e 1e d e e e 11e e x x x ---==-=-=-⎰,201d x x -表示圆221x y +=在第一象限的面积,即2π1d 4x x -=⎰,所以11e 1π()d e 4f x x --=+⎰,故选B .11.A解析:A 【分析】利用微积分基本定理,可计算得329n x dx ==⎰,又210998012101210()2...10(23)27(2)(23)a a x a x a x a a x a x x x x '+++⋅⋅⋅+=+++=--+-利用赋值法,令1x =,可得解 【详解】由题意3323200|3093x n x dx ===-=⎰ 令1x =有:901210(21)(23)3a a a a +++⋅⋅⋅+=+-=-210998012101210()2...10(23)27(2)(23)a a x a x a x a a x a x x x x '+++⋅⋅⋅+=+++=--+-令1x =有:9812102...10(23)27(21)(23)82a a a +++=--+-=- 故12310012102310823a a a a a a a a +++⋅⋅⋅+=+++⋅⋅⋅+故选:A 【点睛】本题考查了导数、定积分和二项式定理综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题12.D解析:D 【分析】 函数()1201(1)y x dx =--⎰的图象是以(1,0)为圆心,以1为半径的上半圆,作出直线y x =,则图中阴影部分的面积为题目所要求的定积分.【详解】 由题意,()()111221(1)1(1)()x x dx x dx x dx ---=--+-⎰⎰⎰,如图:1201(1)x dx --⎰的大小相当于是以(1,0)为圆心,以1为半径的圆的面积的14,故其值为4π,021011()1()|22x d x x --=-=⎰, 所以,()()11122011(1)1(1)()42x x dx x dx x dx π---=--+-=-⎰⎰⎰ 所以本题选D. 【点睛】本题考查求定积分,求解本题关键是根据定积分的运算性质将其值分为两部分来求,其中一部分要借用其几何意义求值,在求定积分时要注意灵活选用方法,求定积分的方法主要有两种,一种是几何法,借助相关的几何图形,一种是定义法,求出其原函数,本题两种方法都涉及到了,由定积分的形式分析,求解它的值得分为两部分来求,()1201(1)x dx --⎰和1()x dx -⎰.二、填空题13.【分析】根据题意求出直线与抛物线的交点横坐标再根据定积分求两部分的面积列出等式求解即可【详解】联立或由图易得由题设得即即化简得解得故答案为:【点睛】本题主要考查了定积分的运用需要根据题意求到交界处的解析:3412-【分析】根据题意求出直线与抛物线的交点横坐标,再根据定积分求两部分的面积,列出等式求解即可. 【详解】联立2y x x y kx⎧=-⇒⎨=⎩ 0x =或1x k =-.由图易得1,11x k k由题设得()()112212kx x kx dx x x dx ---=-⎰⎰, 即232123100111111||232223k x x kx x x -⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭. 即()()()232111111123212k k k k -----= 化简得()3112k -=.解得12k =-.故答案为:12- 【点睛】本题主要考查了定积分的运用,需要根据题意求到交界处的点横坐标,再根据定积分的几何意义列式求解即可.属于中档题.14.【分析】所以对等式在上积分得到关于的方程解得的值即可【详解】解:设则解得所以故答案为:【点睛】本题考查了定积分的应用考查了定积分的求法属于中档题解题时要注意根据题目要求灵活的在固定区间上积分进而构造解析:13-【分析】1()f x dx n =⎰,所以2()2f x x n =+,对等式在(0,1)上积分,得到关于n 的方程,解得n 的值即可. 【详解】解:设10()f x dx n =⎰,则2()2f x x n =+2311111()(2)22033f x dx n x n dx x nx n ⎛⎫∴⎰==⎰+=+=+ ⎪⎝⎭,解得13n =-, 所以101()3f x dx =⎰.故答案为:13-. 【点睛】本题考查了定积分的应用,考查了定积分的求法.属于中档题.解题时要注意根据题目要求灵活的在固定区间上积分,进而构造出需要的方程.15.【分析】根据定积分的几何意义求出的值再利用二项式定理求展开式中的常数项【详解】根据定积分的几何意义知积分的值等于半圆的面积其展开式的通项公式为;令解得;展开式中常数项为故答案为:【点睛】本题考查二项 解析:160-【分析】根据定积分的几何意义求出a 的值,再利用二项式定理求展开式中的常数项. 【详解】根据定积分的几何意义知,积分1-⎰的值等于半圆的面积2π, 6611[(2)](2)2a x x x xπ∴+--=-,其展开式的通项公式为66621661(2)()(1)2r r r r r rr r T C x C x x---+=-=-;令620r -=,解得3r =;∴展开式中常数项为3336(1)2160C -=-.故答案为:160-. 【点睛】本题考查二项式定理的展开式、定积分的几何意义计算,考查方程思想的运用和基本运算求解能力,属于中档题.16.【分析】利用定积分的几何意义可求的值再由微积分基本定理求得的值从而可得结果【详解】根据题意等于半径为1的圆的面积的四分之一为所以则;故答案为【点睛】本题主要考查定积分的几何意义属于中档题一般情况下定 解析:22π-【分析】利用定积分的几何意义可求1⎰的值,再由微积分基本定理求得sin xdx π⎰的值,从而可得结果. 【详解】根据题意,12=⎰⎰,⎰等于半径为1的圆的面积的四分之一,为21144ππ⨯⨯=,所以10242ππ=⨯=⎰,()sin cos 2xdx x ππ=-=⎰,则10sin 22xdx ππ-=-⎰⎰;故答案为22π-.【点睛】本题主要考查定积分的几何意义,属于中档题.一般情况下,定积分()baf x dx ⎰的几何意义是介于x 轴、曲线y =()f x 以及直线,x a x b ==之间的曲边梯形面积的代数和 ,其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还是互为相反数;两条曲线之间的面积可以用两曲线差的定积分来求解.17.【分析】首先求得两个函数交点的坐标然后利用定积分求得封闭图形的面积【详解】根据解得画出图像如下图所示封闭图像的面积为【点睛】本小题主要考查利用定积分求封闭图形的面积考查运算求解能力属于基础题解题过程解析:16【分析】首先求得两个函数交点的坐标,然后利用定积分求得封闭图形的面积. 【详解】根据2y x y x⎧=⎨=⎩解得()()0,01,1,.画出图像如下图所示,封闭图像的面积为()12x x dx -⎰2310111|23236x x ⎛⎫=-=-= ⎪⎝⎭.【点睛】本小题主要考查利用定积分求封闭图形的面积,考查运算求解能力,属于基础题.解题过程中首先求得两个函数图像的交点坐标,然后画出图像,判断出所要求面积的区域,然后利用微积分基本定理求得封闭图形的面积.18.【解析】19.【解析】由题意可得答案:【点睛】求定积分的题型一种是:几何方法求面积一般是圆第二种是:求用被积函数的原函数用积分公式第三种是:利用奇函数关于原点对称区间的积分为0本题考查了第一种和第二种 解析:π423+ 【解析】由题意可得()222111(1)f x dx x dx --=+-=⎰⎰2214()|2323x x ππ+-=+,答案:423π+. 【点睛】求定积分的题型,一种是:几何方法求面积,一般是圆.第二种是:求用被积函数的原函数,用积分公式,第三种是:利用奇函数关于原点对称区间的积分为0.本题考查了第一种和第二种.20.1【分析】根据定积分求解【详解】故答案为:1【点睛】本题考查定积分考查基本分析求解能力属基础题解析:1 【分析】 根据定积分求解 【详解】111d ln |1ee x x x ==⎰ 故答案为:1 【点睛】本题考查定积分,考查基本分析求解能力,属基础题.三、解答题21.(1)()2f x x x =+;(2){|0}λλ<【解析】分析:(1)设2()f x ax bx c =++,代入已知,由恒等式知识可求得,,a b c ; (2)由(1)得()g x ,题意说明()0<g x 在[0,1]x ∈上恒成立,由分离参数法得221x x x λ+<+,问题转化为求22([0,1])21x xx x +∈+的最小值. 详解:(1)设()()20f x ax bx c a =++≠,()00f =,0c ∴=.于是()()()()22111f x f x a x b x ax bx +-=+++--222ax a b x =++=+.解得1a =,1b =. 所以()2f x x x =+.(2)由已知得()()221g x x x x λ=+-+ 0>在[]0,1x ∈上恒成立.即221x x x λ+<+在[]0,1x ∈上恒成立.令()221x xh x x +=+,[]0,1x ∈可得()()()()()22222212221'02121x x x x x h x x x +-+++==>++. ∴函数()h x 在[]0,1单调递增,∴ ()()min 00h x h ==. ∴ λ的取值范围是{|0}λλ<.点睛:本题考查用导数研究不等式恒成立问题,不等式恒成立问题通常伴随着考查转化与化归思想,例如常用分离参数法化为()()g h x λ≤,这样只要求得()h x 的最小值min ()h x ,然后再解min ()()g h x λ≤,即得λ范围.22.(1) 当0a ≤时,()f x 的单调递增区间为()0,∞+,无减区间,当0a >时,()f x的单调递增区间为⎛ ⎝,单调递减区间为⎫+∞⎪⎪⎭;(2)2. 【解析】 试题分析:(1)首先对函数求导,然后对参数分类讨论可得当0a ≤时,()f x 的单调递增区间为()0,+∞,无减区间,当0a >时,()f x的单调递增区间为⎛ ⎝,单调递减区间为⎫+∞⎪⎪⎭; (2)将原问题转化为()22ln 12x x a x x++≥+在()0,+∞上恒成立,考查函数()()22ln 12x x g x x x++=+的性质可得整数a 的最小值是2.试题(1)()211'ax f x ax x x-=-=,函数()f x 的定义域为()0,+∞.当0a ≤时,()'0f x >,则()f x 在()0,+∞上单调递增, 当0a >时,令()'0f x =,则x =舍负),当0x <<时,()'0f x >,()f x 为增函数,当x >()'0f x <,()f x 为减函数, ∴当0a ≤时,()f x 的单调递增区间为()0,+∞,无减区间,当0a >时,()f x的单调递增区间为⎛ ⎝,单调递减区间为⎫+∞⎪⎪⎭. (2)解法一:由()21ln 112x ax a x -≤--得()()22ln 12x x a x x ++≤+, ∵0x >, ∴原命题等价于()22ln 12x x a x x++≥+在()0,+∞上恒成立,令()()22ln 12x x g x x x++=+,则()()()()22212ln '2x x x g x x x-++=+,令()2ln h x x x =+,则()h x 在()0,+∞上单调递增, 由()110h =>,112ln2022h ⎛⎫=-+< ⎪⎝⎭, ∴存在唯一01,12x ⎛⎫∈⎪⎝⎭,使()00h x =,002ln 0x x +=. ∴当00x x <<时,()'0g x >,()g x 为增函数, 当0x x >时,()'0g x <,()g x 为减函数, ∴0x x =时,()()()0002max 000002ln 12122x x x g x x x x x x +++===++,∴01a x ≥, 又01,12x ⎛⎫∈⎪⎝⎭,则()011,2x ∈,由a Z ∈,所以2a ≥. 故整数a 的最小值为2. 解法二:()21ln 112x ax a x -≤--得, ()2222ln 20ax a x x +---≥,令()()()2222ln 20g x ax a x x x =+--->,()2'222g x ax a x=+--,①0a ≤时,()'0g x <,()g x 在()0,+∞上单调递减, ∵()1340g a =-<,∴该情况不成立.②0a >时,()()()()22222221'ax a x ax x g x xx+---+==当10,x a ⎛⎫∈ ⎪⎝⎭时,()'0g x <,()g x 单调递减; 当1,x a ⎛⎫∈+∞⎪⎝⎭时,()'0g x >,()g x 单调递增, ∴()min 1112ln g x g a a a ⎛⎫==--⎪⎝⎭, ()0g x ≥恒成立()min 112ln 0g x aa⇔=--≥, 即112ln0a a+≤. 令()112lnh a a a=+,显然()h a 为单调递减函数. 由a Z ∈,且()110h =>,()12ln402h =-<, ∴当2a ≥时,恒有()0h a ≤成立, 故整数a 的最小值为2.综合①②可得,整数a 的最小值为2.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 23.2732. 【解析】 试题分析:先根据导数的几何意义求得曲线在点P 处的切线,然后画出草图,结合图形得到被积函数和积分区间,最后由定积分求得图形的面积. 试题∵322321y x x x =--+, ∴2662y x x =--'.设切点为00(,)A x y ,则0200|662x x y x x =-'=-, ∴所求切线方程为20000(662)()y y x x x x -=---, 即,∵切线过点P (),∴ ,整理得,解得,∴01y =, ∴点(0,1)A .故切线方程为12(0)y x -=--,即. 由,解得.∴点B 的坐标为().画出图形如图所示.∴切线l 与C 围成的图形的面积333223232432000127[(12)(2321)](23)()|232S x x x x dx x x dx x x =----+=-+=-+=⎰⎰. 点睛:利用定积分求平面图形面积的步骤(1)根据题意画出图形;(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;(3)把平面图形的面积表示成若干个定积分的和或差;(4)计算定积分得出答案. 24.图形面积为403. 【详解】首先利用已知函数和抛物线作图,然后确定交点坐标,然后利用定积分表示出面积为628(6)A xdx x dx =+-⎰⎰,所以得到 322620228|(6)|32x A x x =+-,由此得到结论为403 解:设所求图形面积为A ,则2628(6)A xdx x dx =+-⎰⎰322620228|(6)|32x A x x =⨯+-=403.即所求图形面积为 403.25.(1)存在,22m -≤≤;(2)①证明见解析;②证明见解析. 【分析】(1)根据微积分基本定理求得()f x ,由()10f '=,求得参数a ;利用导数求函数的在区间上的最值,结合一次不等式在区间上恒成立问题,即可求得参数m 的范围; (2)①求得()F x ',利用导数求得()F x 的单调性,即可容易证明; ②由①中所求,可得12ln()11k k k +>++,利用对数运算,即可证明. 【详解】由题可知2()ln(1)(1)f x a x x =+++,∴()221af x x x '=+++. (1)由()01f '=,可得2202a++=,8a =-. 又当8a =-时,()()()2311x x f x x +'-=+,故()f x 在区间()0,1单调递减,在()1,+∞单调递增. 故函数()f x 在1x =处取得极值,所以8a =-.∵11e <-,82(1)(3)()2211x x f x x x x --+'=++=++.∴()0f x '>,当[]1,x e e ∈-时,由上述讨论可知,()f x 单调递增, 故2min ()(1)8f x f e e =-=-+不等式2214()m tm e f x ++-≤对任意[]1,x e e ∈-及[]1,1t ∈-恒成立, 即:22222min 14()148m tm e f x m tm e e ++-≤⇔++-≤-+,即:260m tm +-≤对[]1,1t ∈-恒成立,令2()6g t m mt =+-,(1)0g ⇒-≤,(1)0g ≤即260m m --≤,且260m m +-≤,整理得()()320m m -+≤,且()()320m m +-≤, 解得:22m -≤≤,即为所求.(2)①∵2()()(1)ln(1)F x f x x x x x =-+-=+-,∴()1xF x x-'=+ 当0x >时,()0F x '<,∴()F x 在(0,)+∞上单调递减,()(0)0F x F ∴<=即证.②由①可得:ln(1)(0)x x x +<> 令:11x k =+,得11ln(1)11k k +<++,即:12ln()11k k k +>++ ∴1112322ln ln ln 12(1)1221n n n n n n n n n n +++++⋅⋅⋅+>++⋅⋅⋅++++++++=ln 2 即证. 【点睛】本题考查由极值点求参数值,利用导数由恒成立问题求参数范围,以及利用导数证明不等式以及数列问题,属压轴题. 26.k =0或k =-1 【分析】由题意,要讨论k 与2的大小关系,分别计算两种情况下的定积分,然后确定k 值. 【详解】分2<k≤3和-2≤k≤2两种情况讨论:当2<k≤3时,()()()33332k k3x k 40f x dx 1x dx x 39k 333k ⎛⎫⎛⎫=+=+=+-+=⎪ ⎪⎝⎭⎝⎭⎰⎰. 整理,得k 3+3k +4=0,即k 3+k 2-k 2+3k +4=0.∴(k +1)(k 2-k +4)=0,∴k =-1.又∵2<k≤3,∴k =-1舍去.当-2≤k≤2时,()()()3232kk2f x dx 2x 1dx 1x dx =+++⎰⎰⎰()3223x x x x 23k ⎛⎫=+++ ⎪⎝⎭()()()2842k k 3923⎛⎫=+-+++-+ ⎪⎝⎭()24040k k 33=-+=, ∴k 2+k =0,即k =0或k =-1,满足条件.综上所述,k =0或k =-1时,使()3k40f x dx 3=⎰. 【点睛】本题考查了定积分的计算和分类讨论的思想,关键是由题意讨论k 的范围得到不同的定积分.属于中档题.。

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测(包含答案解析)(1)

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测(包含答案解析)(1)

一、选择题1.一物体作变速直线运动,其v t -曲线如图所示,则该物体在1s~6s 2间的运动路程为( )m .A .1B .43C .494D .22.12201x dx -=⎰( )A .12πB .3128π+ C .368π+ D .364π+3.曲线y =sin x ,y =cos x 与直线x =0,x =2π所围成的平面区域的面积为( ) A .π20⎰(sin x -cos x )d xB .2π40⎰(sin x -cos x )d xC .π20⎰(cos x -sin x )d xD .2π40⎰(cos x -sin x )d x4.若函数()32nxf x x x =++在点()1,6M 处切线的斜率为33ln3+,则n 的值是( ) A .1 B .2 C .4 D .35.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( )A .12m ≥B .12m < C .1m ≥ D .1m < 6.已知二次函数()y f x =的图象如图所示,则它与x 轴所围图形的面积为:A .2π5B .32 C .43 D .π2 7.曲线3y x=在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .438.曲线22y x x =-与直线11x x =-=,以及x 轴所围图形的面积为( ) A .2 B .83 C .43 D .239.等比数列{}n a 中,39a =,前3项和为3230S x dx =⎰,则公比q 的值是( )A .1B .12-C .1或12-D .1-或12-10.设函数2e ,10()1,01x x f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,计算11()d f x x -⎰的值为( ) A .1e πe 4-+ B .e 1πe 4-+ C .e 12πe -+D .e 1πe 2-+ 11.由直线0,,2y x e y x ===及曲线2y x=所围成的封闭图形的面积为( ) A .3B .32ln 2+C .223e -D .e12.若函数31()log ()(01)(,0)3a f x x ax a a 且在区间=->≠-内单调递增,则实数a 的取值范围是( ). A .2[,1)3B .1[,1)3C .1[,1)(1,3]3D .(1,3]二、填空题13.232319x x dx -⎛⎫-+= ⎪ ⎪⎝⎭⎰____________________. 14.如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为_________.15.由直线2y x =+与曲线2y x 围成的封闭图形的面积是__________.16.定积分21d 1x x ⎰-的值为__________. 17.2222(sin 4)x x x dx -+-⎰=______.18.若定义在R 上的函数()f x 对任意两个不等的实数12,x x 都有()()()()11221221x f x x f x x f x x f x +>+,则称函数()f x 为“z 函数”.给出下列四个定义在()0,+∞的函数:①31y x =-+;②2sinx-cosx y x =+;③,0{0,0ln x x y x ≠==;④224,0{,0x x x y x x x +≥=-+<,其中“z 函数”对应的序号为__________.19.定积分2sin cos t tdt π=⎰________.20.函数3y x x =-的图象与x 轴所围成的封闭图形的面积等于_______.三、解答题21.已知函数1ln(1)()x f x x++=(1)求函数的定义域;(2)判定函数()f x 在(1,0)-的单调性,并证明你的结论; (3)若当0x >时,()1kf x x >+恒成立,求正整数k 的最大值. 22.计算: (1)710C (2)()22224x x dx -+-⎰23.已知抛物线2:2C y x x =-+,在点(0,0)A ,(2,0)B 分别作抛物线的切线12,l l .(1)求切线1l 和2l 的方程;(2)求抛物线C 与切线1l 和2l 所围成的面积S .24.如图,有一块半圆形空地,开发商计划建一个矩形游泳池ABCD 及其矩形附属设施EFGH ,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为O ,半径为R ,矩形的一边AB 在直径上,点C 、D 、G 、H 在圆周上,E 、F 在边CD 上,且3BOG π∠=,设BOC θ∠=.(1)记游泳池及其附属设施的占地面积为()f θ,求()f θ的表达式; (2)怎样设计才能符合园林局的要求?25.已知函数()xe f x x=.(1)若曲线()y f x =与直线y kx =相切于点P ,求点P 的坐标; (2)当a e ≤时,证明:当()0,x ∈+∞时,()()ln f x a x x ≥-. 26.利用定积分的定义,计算221(2)d x x x -+⎰的值,并从几何意义上解释这个值表示什么.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由图像用分段函数表示()v t ,该物体在1s~6s 2间的运动路程可用定积分612()d s v t t =⎰表示,计算即得解 【详解】 由题中图像可得,2,01()2,1311,363t t v t t t t ⎧⎪≤<⎪=≤≤⎨⎪⎪+<≤⎩由变速直线运动的路程公式,可得61311132621()d 22d 1d 3s v t t tdt t t t ⎛⎫==+++ ⎪⎝⎭⎰⎰⎰⎰6132211231492(m)64tt t t ⎛⎫=+++= ⎪⎝⎭.所以物体在1s~6s 2间的运动路程是49m 4. 故选:C 【点睛】本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题.2.B解析:B 【分析】令21y x =-,则()2210x y y +=≥,点(),x y 的轨迹表示半圆,则该积分表示该半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,求出面积即可. 【详解】解:令21y x =-,则()2210x y y +=≥,点(),x y 的轨迹表示半圆,12201x dx -⎰表示以原点为圆心,2为半径的圆的上半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,如图:故12201131311222612OAB BOCx dx SS ππ-=+=⨯⨯⨯=+扇形. 故选:B. 【点睛】本题考查定积分的几何意义,属基础题.3.D解析:D 【解析】π40⎰(-sin x +cos x )d x 2π4π+⎰(sin x -cos x )dx=2π40⎰(cos x -sin x )d x ,选D. 点睛:1.求曲边图形面积的方法与步骤 (1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.4.A解析:A【解析】由题意,得()13ln32n x f x nx-=++', ()13ln3233ln3f n =++=+',所以1n =;故选A.5.B解析:B【解析】求导函数,可得()1'220f x mx x x=+->,,函数()2ln 2f x mx x x =+-在定义域内是增函数,所以()'0f x < 成立,即1220(0)mx x x+-<>恒成立,所以21211m x ⎛⎫->-- ⎪⎝⎭,所以21m ->-,所以12m < 时,函数()f x 在定义域内是增函数.故选B .6.C解析:C 【解析】试题分析:由图像可知函数解析式为()21f x x =-+∴由定积分的几何意义可知面积()12311111141|113333S x dx x x --⎛⎫⎛⎫⎛⎫=-+=-+=---=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰ 考点:定积分及其几何意义7.A解析:A 【解析】 试题分析:()'323x x=,所以切线方程为13(1),32y x y x -=-=-,所以切线与x 轴、直线2x =所围成的三角形的面积()2238323S x dx =-=⎰.考点:1、切线方程;2、定积分.【易错点晴】本题易错点有三个,一个是切线方程,错解为看成过()1,1的切线方程;第二个错误是看成与y 轴围成的面积,()()22320328103232333S x dx x dx =--+-=+=⎰⎰;第三个是没有将切线与x 轴的交点求出来,导致没有办法解决题目.切线的常见问题有两种,一种是已知切点求切线方程;另一种是已知切线过一点求切线方程,两种题目都需要我们认真掌握.8.A解析:A 【解析】试题分析:在抄纸上画出图像,可根据图像列出方程1221(20)(2)x x dx x x dx---+-+⎰⎰=320321111()33x x x x --+-+=110(1)(1)33---+-+=4233+=2考点:区间函数的运用9.C解析:C 【分析】先由微积分基本定理得到327S =,再由等比数列的求和公式以及通项公式,即可求出结果. 【详解】23312333133|2727003S x dx x a a a =⎰=⋅=∴++=,,即333227a a a q q ++=,解得1q =或1-2q =. 【点睛】本题主要考查定积分的就算,以及等比数列的公比,熟记微积分基本定理,以及等比数列的通项公式及前n 项和公式即可,属于常考题型.10.B解析:B 【解析】因为函数e ,10()1x x f x x ⎧-≤≤⎪=<≤,所以10110()d e d x f x x x x --=+⎰⎰,其中01101e 1e d e e e 11e e x x x ---==-=-=-⎰,0x 表示圆221x y +=在第一象限的面积,即12π1d 4x x -=⎰,所以11e 1π()d e 4f x x --=+⎰,故选B .11.A解析:A 【解析】如图所示,曲边四边形OABC 的面积为11121212ln 12(ln ln1)1232eedx x e x ⨯⨯+=+=+-=+=⎰.故选A.点睛:本题考查了曲线围成的图形的面积,着重考查了定积分的几何意义和定积分计算公式等知识,属于基础题;用定积分求平面图形的面积的步骤:(1)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;(2)解方程组求出每两条曲线的交点,以确定积分的上、下限;(3)具体计算定积分,求出图形的面积.12.B解析:B 【解析】由题意得0y '≥1,03⎛⎫- ⎪⎝⎭在区间恒成立,即210(3)ln x a a ≥-1,03⎛⎫- ⎪⎝⎭在区间恒成立, 当1a > 时2min (3)0a x a <⇒≤ ,舍;当01a << 时2min 111(3)3=1933a x a a ,>⇒≥⨯∴≤< ,选B.点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.二、填空题13.【分析】利用微积分基本定理和定积分的几何意义求解即可【详解】令则表示以原点为圆心半径为的圆的上半部分则故答案为:【点睛】本题主要考查了微积分基本定理的应用及几何意义属于中档题 解析:3182π+ 【分析】利用微积分基本定理和定积分的几何意义求解即可. 【详解】33313--=⎰⎰令y =,则y =表示以原点为圆心,半径为3的圆的上半部分则2333922ππ-⨯==⎰ 3323331183x dx x --==⎰33322331931818322x dx x dx ππ---⎫∴=+=⨯+=+⎪⎪⎭⎰⎰⎰ 故答案为:3182π+ 【点睛】本题主要考查了微积分基本定理的应用及几何意义,属于中档题.14.【分析】根据积分求解出阴影部分面积再利用几何概型求解得到结果【详解】由图象可知直线方程为:则阴影部分面积为:所求概率本题正确结果:【点睛】本题考查几何概型中面积型的求解关键是能够通过积分的知识求得阴解析:14【分析】根据积分求解出阴影部分面积,再利用几何概型求解得到结果. 【详解】由图象可知,直线OB 方程为:y x = 则阴影部分面积为:()132401111111000024244S x x dx x x =-==--+=⎰ ∴所求概率114114P ==⨯ 本题正确结果:14【点睛】本题考查几何概型中面积型的求解,关键是能够通过积分的知识求得阴影部分面积.15.【解析】作出两条曲线所对应的封闭区域如图所示由得解得或则根据定积分的几何意义可知所示的封闭区域的面积故答案为解析:92【解析】作出两条曲线所对应的封闭区域,如图所示,由22y x y x=+⎧⎨=⎩,得22x x =+,解得1x =-或2x =,则根据定积分的几何意义可知所示的封闭区域的面积223212119(2)d 21322S x x x x x x -⎛⎫=+-=-++= ⎪-⎝⎭⎰,故答案为92.16.【解析】根据定积分的定义知故填解析:23【解析】根据定积分的定义知,1231111112d |3333x x x --⎛⎫==--= ⎪⎝⎭⎰,故填23.17.;【解析】而函数是奇函数它在和的积分值大小相等符号相反故而表示圆与轴围成的半圆的面积即解析:2π; 【解析】2222222222(4)sin 4x sinx x dx x xdx x dx ----=+-⎰⎰ ,而函数2sin y x x =是奇函数,它在()2,0-和()0,2的积分值大小相等,符号相反,故222sin 0x xdx -=⎰,而224x dx--⎰表示圆224x y += 与x 轴围成的半圆的面积,222214222x dx ππ-∴-=⨯⨯=,即2222(4)2x sinx x dx π--==⎰18.②④【解析】函数在上单调递增①②③为单调递减④单调递增;单调递增;且所以为单调递增选②④解析:②④【解析】()()()()()()()()1122122112120x f x x f x x f x x f x x x f x f x +>+⇔-->⇔函数()f x 在R 上单调递增.①230y x =-'≤, ②π2cos sin 22sin 04y x x x ⎛⎫=++=++> ⎪⎝⎭',③()0,ln x y x <=-为单调递减, ④20,4x y x x ≥=+单调递增; 20,x y x x <=-+单调递增;且220,4x y x x x x ==+=-+,所以224,0{,0x x x y x x x +≥=-+<为单调递增,选②④ 19.【解析】试题分析:因为所以考点:定积分的计算【方法点睛】本题主要考察利用换元法求定积分计算定积分首先要熟悉常见函数的导函数因题中恰好为的导函数所以可以考虑用换元法来求定积分;本题也可利用三角恒等变换 解析:12【解析】 试题分析:因为,所以2sin cos t tdt π=⎰.考点:定积分的计算.【方法点睛】本题主要考察利用换元法求定积分,计算定积分,首先要熟悉常见函数的导函数,因题中恰好为的导函数,所以可以考虑用换元法来求定积分;本题也可利用三角恒等变换来求,因为,所以有2sin cos t tdt π=⎰22000111sin2sin22sin 244tdt td t udu πππ===⎰⎰⎰ 011cos |42u π-=. 20.【解析】试题分析:由得或所以所围成的封闭图形的面积为==考点:定积分的运算及几何意义 解析:12【解析】试题分析:由30x x -=,得0x =或1x =±,所以所围成的封闭图形的面积为132()x x dx -⎰=24102()|24x x -=11242⨯=.考点:定积分的运算及几何意义.三、解答题21.(1)(1,0)(0,)-+∞ (2)减函数 (3)3【解析】 试题分析:(1)结合函数的解析式可得函数的定义域为()()1,00,-⋃+∞ ; (2)对函数 求导,结合题意和导函数的解析式可得()f x '=-21x ()111ln x x ⎡⎤++⎢⎥+⎣⎦<0,所以函数f (x )在区间(-1,0)上是减函数.(3)首先由不等式的性质可得k 的最大值不大于3,然后结合导函数的性质可得3k =满足题意,即正整数k 的最大值是3. 试题解:(Ⅰ)函数的定义域为 (Ⅱ)=21x =-设()()()()()221111,01111x g x ln x g x x x x x =++=-+=+++'<+, 故g (x )在(-1,0)上是减函数,而g (x )>g (0)=1>0, 故()f x '=-21x ()111ln x x ⎡⎤++⎢⎥+⎣⎦<0, 所以函数f (x )在区间(-1,0)上是减函数. (III )当x>0时,f (x)>1kx +恒成立, 令x=1有k<2[]12ln + 又k 为正整数.∴k 的最大值不大于3. 下面证明当k=3时,f (x)>1kx +(x>0)恒成立. 即证当x>0时,()1x + ()1ln x ++1-2x>0恒成立. 令g(x)=()1x + ()1ln x ++1-2x,则()g x '=()1ln x +-1, 当x>e-1时,()g x '>0;当0<x<e-1时,()g x '<0. ∴当x=e-1时,g(x)取得最小值g(e -1)=3-e>0. ∴当x>0时,()1x + ()1ln x ++1-2x>0恒成立. 因此正整数k 的最大值为3. 22.(1)120;(2)2π 【分析】(1)根据组合数的对称性计算;(2)将括号中内容拆分,一部分按定积分性质计算,另一部分使用定积分几何意义计算. 【详解】(1)7310101098C =C ==1203⨯⨯!; (2)(222222=2x dx xdx ---+⎰⎰⎰,其中222xdx -⎰中()2f x x =是奇函数,所以 2220xdx -=⎰;2-⎰表示圆心在原点半径等于2的圆在x 轴上方的面积,故(2222242=2022x dx xdx ππ---++=+=⎰⎰⎰. 【点睛】 (1)计算()aaf x dx -⎰(0a >)时,若()f x 为奇函数,则()0aaf x dx -=⎰;若()f x 为偶函数,则()2()2()aaaaf x dx f x dx f x dx --==⎰⎰⎰.(2)组合数对称性:C =C ()mn mn nm n -≤.23.(1)切线1l 方程:2y x =,切线2l 方程:24y x =-+;(2)23. 【解析】 【分析】(1)由题意可得'22y x =-+,则切线的斜率为12k =,22k =-,据此可得切线方程;(2)联立直线方程可得12x y =⎧⎨=⎩,由定积分的定义可得所求面积为()()()12220122242S x x x dx x x x dx ⎡⎤⎡⎤=--++-+--+⎣⎦⎣⎦⎰⎰, 计算定积分确定面积的值即可. 【详解】(1)因为'22y x =-+,()0,0A ,()2,0B 都在抛物线上,则12k =,22k =-, 所以切线1l 方程:2y x =,切线2l 方程:24y x =-+. (2)由224y x y x =⎧⎨=-+⎩,解得12x y =⎧⎨=⎩,则两切线交点坐标为()1,2.所以抛物线C 与切线1l 和2l 所围成的面积为()()()12220122242S x x x dx x x x dx ⎡⎤⎡⎤=--++-+--+⎣⎦⎣⎦⎰⎰ ()12220144x dx x x dx =+-+⎰⎰ 2133201111812242333333x x x x ⎛⎫⎛⎫=+-+=+--= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查导函数研究函数的切线方程,利用定积分求解面积的方法等知识,意在考查学生的转化能力和计算求解能力.24.(1)2()(2sin cos sin (0,)3f R πθθθθθ=-+∈(2)cos θ=【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值 试题(1)由题意,2cos AB R θ=,sin BC R θ=,且HOG 为等边三角形,所以,HG R =,sin EH R θ=-, ()=ABCD EFGH f S S θ+2cos sin sin R R R R R θθθ⎫=⋅+-⎪⎪⎝⎭2(2sin cos sin R θθθ=-,03πθ⎛⎫∈ ⎪⎝⎭,.(2)要符合园林局的要求,只要()fθ最小,由(1)知,()()22222'(2cos 2sin cos =4cos cos 2f R R θθθθθθ=----)令()'0f θ=,即24cos cos 2=0θθ--,解得cos θ或cos θ(舍去),令00cos =083,πθθ⎛⎫∈ ⎪⎝⎭, 当00θθ∈(,)时,()()'0,f fθθ<是单调减函数, 当03πθθ∈(,)时,()()'0,f fθθ>是单调增函数,所以当0=θθ时,()fθ取得最小值.答:当θ满足cos =8θ时,符合园林局要求. 25.(1)22,2e P ⎛⎫⎪⎝⎭;(2)详见解析.【解析】试题分析:(1)设点P 的坐标为()00,P x y ,()()21x e x f x x='-,由题意列出方程组,能求出点P 的坐标.(2)设函数()()()ln g x f x a x x =--,()()()21xe ax x g x x '--=,设()xh x e ax =-,()0,x ∈+∞,则()x h x e a '=-,由此利用分类讨论和导数性质即能证明.试题(1)设点P 的坐标为()00,P x y ,()()21x e x f x x='-,由题意知()0002001{x x e x kxe kx x -==,解得02x =,所以02002x e e y x ==, 从而点P 的坐标为22,2e P ⎛⎫⎪⎝⎭.(2)设函数()()()()ln ln xe g xf x a x x a x x x=--=--,()()()()21,0,xe ax x g x x x--∈'=+∞,设()xh x e ax =-,()0,x ∈+∞,则()xh x e a '=-,当1a ≤时,因为0x >,所以1x e >,所以()0xh x e a ='->,所以()h x 在区间()0,+∞上单调递增,所以()()010h x h >=>; 当1a e <≤时,令()0h x '=,则ln x a =,所以()()0,ln ,0x a h x '∈<;()ln ,x a ∈+∞,()0h x '>. 所以()()()ln 1ln 0h x h a a a ≥=-≥, 由①②可知:()0,x ∈+∞时,有()0h x ≥,所以()g x 在区间()0,1上单调递减,在区间()1,+∞上单调递增,()()1g x g =极小, 所以()()min 10g x g e a ==-≥,从而有当()0,x ∈+∞时,()()ln f x a x x ≥-. 点睛:导数在不等式问题中的应用问题的常见类型及解题策略(1)利用导数证明不等式。

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测(包含答案解析)(2)

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测(包含答案解析)(2)

一、选择题1.如图所示的阴影部分是由x 轴,直线1x =及曲线1x y e =-围成,现向矩形区域OABC 内随机投掷一点,则该点落在阴影部分的概率是( )A .1eB .11e - C .11e-D .21e e -- 2.三棱锥D ABC -及其正视图和侧视图如图所示,且顶点,,,A B C D 均在球O 的表面上,则球O 的表面积为( )A .32πB .36πC .128πD .144π3.22221231111,,,xS x dx S dx S e dx x ===⎰⎰⎰若 ,则s 1,s 2,s 3的大小关系为( )A .s 1<s 2<s 3B .s 2<s 1<s 3C .s 2<s 3<s 1D .s 3<s 2<s 14.曲线22,y x y x ==所围成图形的面积是( ) A .1B .13C .12D .235.设曲线e xy x =-及直线0y =所围成的封闭图形为区域D ,不等式组1102x y -≤≤⎧⎨≤≤⎩所确定的区域为E ,在区域E 内随机取一点,则该点落在区域D 内的概率为A .2e 2e 14e--B .2e 2e 4e-C .2e e 14e --D .2e 14e-6.已知125113,log ,log 3,a a x dx m a n p a-====⎰,则 ( ) A .m n p << B .m p n <<C .p m n <<D .p n m <<7.由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( ) A .2ln3- B .4ln3+C .4ln3-D .3298.函数0()(4)xf x t t dt =-⎰在[1,5]-上( )A .有最大值0,无最小值B .有最大值0,最小值323-C .最小值323-,无最大值 D .既无最大值,也无最小值9.已知320n x dx =⎰,且21001210(2)(23)n x x a a x a x a x +-=+++⋅⋅⋅+,则12310012102310a a a a a a a a +++⋅⋅⋅++++⋅⋅⋅+的值为( )A .823B .845C .965-D .87710.下列积分值最大的是( ) A .222sin +1x x dx -⎰()B .()22cos x dx ππ--⎰C.-⎰D .11edx x11.由曲线4y x =,1y x=,2x =围成的封闭图形的面积为( ) A .172ln 22- B .152ln 22- C .15+2ln 22D .17+2ln 2212.二维空间中圆的一维测度(周长)2l r π=,二维测度(面积)2S r π=,观察发现()S r l '=:三维空间中球的二维测度(表面积)24S r π=,三维测度(体积)343V r π=,观察发现()V r S '=.则由四维空间中“超球”的三维测度38V r π=,猜想其四维测度W =( ). A .224r πB .283r πC .514r πD .42r π二、填空题13.由函数()ln f x x x x =-的图像在点(,())P e f e 处的切线,l 直线1x e -=直线x e =(其中e 是自然对数的底数)及曲线ln y x =所围成的曲边四边形(如图中的阴影部分)的面积S =_________.14.计算 121dx x--⎰=_____________. 15.已知函数()()()22ln 1,0ln 1,0x x x x f x x x x x ⎧++≥⎪=⎨--+<⎪⎩,若()()()21f a f a f -+≤,则实数a 的取值范围是___________.16.若二项式62515x x ⎛⎫+ ⎪ ⎪⎝⎭的展开式中的常数项为m ,则21mx dx =⎰__________. 17.曲线2yx 与直线2y x =所围成的封闭图形的面积为_______________.18.曲线21y x =-与直线2,0x y ==所围成的区域的面积为_______________.19.若,则的值是__________.20.从如图所示的正方形OABC 区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为__.三、解答题21.如图,函数()sin()f x x ωϕ=+(其中π0,2ωϕ>≤)的图象与坐标轴的三个交点为,,P Q R ,且π(,0)6P ,2π(,0)3Q ,M 为QR 的中点,且M 的纵坐标为3(1)求()f x 的解析式;(2)求线段QR 与函数()f x 图象围成的图中阴影部分的面积. 22.已知函数()22()x f x e x x R =-+∈. (1)求()f x 的最小值;(2)求证:x >0时,221x e x x >-+.23.设函数()32,0{,0x x x x f x axe x ->=≤,其中0a >.(1)若直线y m =与函数()f x 的图象在(]0,2上只有一个交点,求m 的取值范围; (2)若()f x a ≥-对x ∈R 恒成立,求实数a 的取值范围. 24.计算下列定积分 (1) ()12xx e dx +⎰(2)2442cos tan 2x x dx ππ-⎛⎫+ ⎪⎝⎭⎰ (3)214x dx --25.已知()()21ln 12f x x a x ax =-++,a ∈R . (1)若1a =,求()f x 在()()22f ,处的切线方程; (2)讨论()f x 的单调性;(3)设1x ,()212x x x <是()f x 的两个极值点,若2a ≥,求()()12f x f x -的最小值. 26.计算:(1)2132d x x -⎰;(2)2πsin d x x ⎰.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由几何概型可知,所求概率为.考点:几何概型、定积分.2.A解析:A 【解析】由三视图可得:DC ⊥平面ABC 且底面ABC 为正三角形,如图所示,取AC 中点F ,连BF ,则BF AC ⊥,在Rt BCF 中,2BF =,2CF =,4BC =, 在Rt BCD 中,4CD =,所以42BD =ABC 的距离为d ,因为DC ⊥平面ABC ,且底面ABC 为正三角形,所以2d =,因为ABC 的外接圆的半径为2,所以由勾股定理可得22228R d =+=,则该三棱锥外接球的半径22R =以三棱锥外接球的表面积是2432R ππ=,故选A .点睛:本题考查几何体的三视图,线面垂直的定义,以及几何体外接球问题,由三视图正确还原几何体、以及判断几何体位置关系是解题关键;由三视图画出几何体的直观图,由三视图判断出DC ⊥平面ABC 、求出ABC 的外接圆的半径,列出方程求出三棱锥外接球的半径,由球的表面积公式求出答案.3.B解析:B 【解析】3221321322217ln |ln 2||,.11133x S x S x S e e e S S S ==<==<==-∴<<选B. 考点:此题主要考查定积分、比较大小,考查逻辑推理能力.4.B解析:B 【分析】由题意,可作出两个函数y x =与2yx 的图象,先求出两函数图象交点A 的坐标,根据图象确定出被积函数2 x x -与积分区间[0,1],计算出定积分的值即可. 【详解】 作出如图的图象联立22 y x y x ⎧=⎨=⎩解得0 0x y =⎧⎨=⎩或11x y =⎧⎨=⎩,即点()11A ,, 所求面积为()132312002121133333S x x dx x x ⎛⎫=-=-=-= ⎪⎝⎭⎰,故选B. 【点睛】本题考点是定积分在求面积中的应用,考查了作图的能力及利用积分求面积,解题的关键是确定出被积函数与积分区间,熟练掌握积分的运算.5.D解析:D 【详解】曲线e x y x =-及直线0y =所围成封闭图形的面积()1211112x x S e x dx e x -⎛⎫=-=- ⎪-⎝⎭⎰阴影=1e e --;而不等式组1102x y -≤≤⎧⎨≤≤⎩所确定区域的面积22 4.S =⨯=所以该点落在区域D 内的概率1S 4S e e P --==阴影=2e 14e-.故选D. 【方法点睛】本题题主要考查定积分的几何意义及“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与体积有关的几何概型问题关鍵是计算问题题的总面积以及事件的面积积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.6.B解析:B 【解析】1235211132,log 2,log 3,12a x dx x m n p -===∴===-⎰5211log 2log ,log 31,22m n p ====m p n ∴<<故选B7.C解析:C 【详解】由1xy y x =⎧⎨=⎩,解得11x y =⎧⎨=⎩,13xy y =⎧⎨=⎩解得133x y ⎧=⎪⎨⎪=⎩,3y y x =⎧⎨=⎩解得33x x =⎧⎨=⎩,所围成的平面图形的面积为S ,则()()1111331131(31)323ln |2S dx x x x ⎛⎫=⨯--+-=+- ⎪⎝⎭⎰,4ln 3S =-,故选C.8.B解析:B 【分析】根据定积分的运算,可得321()23f x x x =-,再利用导数求得()f x 的单调性和极值,检验端点值,即可得答案. 【详解】由题意,函数3232011()(4)2233xxf x t t dt t t x x ⎛⎫=-=-=- ⎪⎝⎭⎰,则2()4(4)f x x x x x '=-=-,当[1,0)x ∈-时,()0f x '>,()f x 单调递增; 当(0,4)x ∈时,()0f x '<,()f x 单调递减; 当(4,5]x ∈时,()0f x '>,()f x 单调递增;又由7(1)3f -=-,(0)0f =,32(4)3f =-,25(5)3f =-, 所以函数()f x 的最大值为0,最小值为323-. 故选:B . 【点睛】本题考查定积分的运算,利用导数求函数的最值问题,考查分析理解,求值化简的能力,属中档题.9.A解析:A 【分析】利用微积分基本定理,可计算得329n x dx ==⎰,又210998012101210()2...10(23)27(2)(23)a a x a x a x a a x a x x x x '+++⋅⋅⋅+=+++=--+-利用赋值法,令1x =,可得解 【详解】由题意3323200|3093x n x dx ===-=⎰ 令1x =有:901210(21)(23)3a a a a +++⋅⋅⋅+=+-=-210998012101210()2...10(23)27(2)(23)a a x a x a x a a x a x x x x '+++⋅⋅⋅+=+++=--+-令1x =有:9812102...10(23)27(21)(23)82a a a +++=--+-=-故12310012102310823a a a a a a a a +++⋅⋅⋅+=+++⋅⋅⋅+故选:A 【点睛】本题考查了导数、定积分和二项式定理综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题10.A解析:A 【分析】对各个选项计算出被积函数的原函数,再将上下限代入即可得到结果,进行比较即可得到结果. 【详解】A :22222222sin +1sin 1x x dx x xdx dx ---=+⎰⎰⎰(),函数y=2sin x x 为奇函数,故222sin 0x xdx -=⎰,2222222sin +11|2(2)4x x dx dx x ---===--=⎰⎰(),B:2222(cos )sin sin sin 222x dx x ππππππ--⎡⎤⎛⎫-=-=---=- ⎪⎢⎥⎝⎭⎣⎦⎰,C:-⎰表示以原点为圆心,以2为半径的圆的面积的14,故144ππ-=⨯⨯=⎰, D:111dx ln |ln ln11ee x e x==-=⎰, 通过比较可知选项A 的积分值最大, 故选A 【点睛】计算定积分的步骤:①先将被积函数变形为基本初等函数的和、差等形式;②根据定积分的基本性质,变形;③分别利用求导公式的逆运算,找到相应的的原函数;④利用微积分基本定理分别求出各个定积分的值,然后求代数和(差).11.B解析:B 【解析】 【分析】联立方程组,确定被积区间和被积函数,得出曲边形的面积2121(4)S x dx x=-⎰,即可求解,得到答案. 【详解】由题意,联立方程组41y xy x =⎧⎪⎨=⎪⎩,解得12x =, 所以曲线4y x =,1y x=,2x =围成的封闭图形的面积为 22222112211115(4)(2ln )|(22ln 2)[2()ln ]2ln 2222S x dx x x x =-=-=⨯--⨯-=-⎰, 故选B . 【点睛】本题主要考查了利用定积分求解曲边形的面积,其中解答中根据题意求解交点的坐标,确定被积分区间和被积函数,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.12.D解析:D 【解析】因为4328W r W r V ππ'=⇒==,所以42W r π=,应选答案D . 点睛:观察和类比题设中的函数关系,本题也可以这样解答:34418824W r dr r r πππ=⎰=⨯=,应选答案D . 二、填空题13.【分析】利用导数求得切线的方程利用定积分计算出阴影部分的面积【详解】所以切线的方程为:故阴影部分面积为故答案为:【点睛】本小题主要考查切线方程的计算考查定积分计算面积属于中档题解析:2221122e e e++-【分析】利用导数求得切线l 的方程,利用定积分计算出阴影部分的面积. 【详解】()()()''ln ,ln 1,0f x x f e e f e e e ====-=,所以切线l 的方程为:y x e =-.故阴影部分面积为()2111ln ln |2eeeex x e dx x x x x ex ⎛⎫-+=--+ ⎪⎝⎭⎰2221111111ln ln 22e e e e e e e e e e e ⎡⎤⎛⎫=--⋅+---+⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦22121122e e e ⎡⎤=⋅---+⎢⎥⎣⎦2221122e e e ++-=. 故答案为:2221122e e e++-【点睛】本小题主要考查切线方程的计算,考查定积分计算面积,属于中档题.14.【分析】用求导公式求出的原函数再利用微积分基本定理及定积分的几何意义即可得到答案【详解】的原函数是故答案为:【点睛】利用微积分基本定理求定积分的步骤(1)把被积函数变形为幂函数正弦函数余弦函数指数函 解析:ln 2-【分析】 用求导公式求出1x的原函数ln x ,再利用微积分基本定理及定积分的几何意义即可得到答案. 【详解】1x的原函数是ln (0)x x >,1221211ln ln 21dx dx x x x --=-=-=-⎰⎰ 故答案为:ln 2- 【点睛】利用微积分基本定理求定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差. (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分. (3)分别用求导公式找到一个相应的原函数. (4)利用微积分基本定理求出各个定积分的值. (5)计算原始定积分的值.15.【解析】分析:判断为偶函数运用导数判断在的单调性则转化为解不等式即可得到的范围详解:∵函数∴当时则;当时则∴即函数为偶函数当时则故函数在上为单调增函数∵∴即∴∴故答案为点睛:本题考查函数的奇偶性和单 解析:[]1,1-【解析】分析:判断()f x 为偶函数,运用导数判断()f x 在[0,)+∞的单调性,则()()()21f a f a f -+≤转化为1a ≤,解不等式即可得到a 的范围.详解:∵函数()()()221,01,0xln x x x f x xln x x x ⎧++≥⎪=⎨--+<⎪⎩∴当0x >时,则0x -<,2()ln(1)()f x x x x f x -=++=; 当0x <时,则0x ->,2()ln(1)()f x x x x f x -=--+=. ∴()()f x f x -=,即函数()f x 为偶函数.当0x ≥时,2()ln(1)f x x x x =++,则()ln(1)201xf x x x x=+++≥+',故函数()f x 在[0,)+∞上为单调增函数. ∵()()()21f a f a f -+≤ ∴2()2(1)f a f ≤,即()(1)f a f ≤. ∴1a ≤ ∴11a -≤≤ 故答案为[]1,1-.点睛:本题考查函数的奇偶性和单调性的应用.在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去f “”,即将函数值的大小转化自变量大小关系16.【详解】二项式的展开式的通项为令所以常数项为二项式的展开式中的常数项为则故答案为【方法点晴】本题主要考查二项展开式定理的通项与系数属于简单题二项展开式定理的问题也是高考命题热点之一关于二项式定理的命解析:263【详解】二项式62515x x ⎛⎫+ ⎪ ⎪⎝⎭的展开式的通项为61612355r rrr T C x -+-⎛⎫= ⎪ ⎪⎝⎭,令1234r r -⇒= 所以常数项为26424511153,55C x x ⎛⎫⎛⎫⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭二项式62515x x ⎛⎫+ ⎪ ⎪⎝⎭的展开式中的常数项为3m =,则32233111126|33m x dx x dx x ===⎰⎰,故答案为263. 【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C rn r rr n T ab -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.17.【解析】由解得或∴曲线及直线的交点为和因此曲线及直线所围成的封闭图形的面积是故答案为点睛:本题考查了曲线围成的图形的面积着重考查了定积分的几何意义和定积分计算公式等知识属于基础题;用定积分求平面图形解析:43【解析】由2 2y x y x⎧=⎨=⎩,解得0 0x y =⎧⎨=⎩或24x y =⎧⎨=⎩,∴曲线2y x =及直线2y x =的交点为()0,0O 和()2,4A 因此,曲线2y x =及直线2y x =所围成的封闭图形的面积是()222320014233S x x dx x x ⎛⎫=-=-= ⎪⎝⎭⎰,故答案为43.点睛:本题考查了曲线围成的图形的面积,着重考查了定积分的几何意义和定积分计算公式等知识,属于基础题;用定积分求平面图形的面积的步骤:(1)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;(2)解方程组求出每两条曲线的交点,以确定积分的上、下限;(3)具体计算定积分,求出图形的面积.18.【解析】试题分析:故应填考点:定积分的计算公式及运用 解析:【解析】 试题分析:,故应填.考点:定积分的计算公式及运用.19.2【解析】试题分析:∵易得故答案为考点:定积分的计算解析:2 【解析】 试题分析:∵,易得,故答案为.考点:定积分的计算.20.【解析】试题分析:由题意可知此题求解的概率类型为关于面积的几何概型由图可知基本事件空间所对应的几何度量S (Ω)=1先将y2=x 化成:联立的:因为x≥0所以解得:x=0或x=1所以曲线y=x2与所围成解析:13【解析】试题分析:由题意可知,此题求解的概率类型为关于面积的几何概型, 由图可知基本事件空间所对应的几何度量S (Ω)=1, 先将y 2=x 化成:,联立的:因为x≥0,所以解得:x=0或x=1,所以曲线y=x 2与所围成的图形的面积S ,即满足所取的点落在阴影部分内部所对应的几何度量: S (A )==.则点M 取自阴影部分的概率为P (A )=考点:几何概型;定积分在求面积中的应用点评:本题考查了利用定积分求面积以及几何摡型知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题三、解答题21.(1)()sin 23πf x x ⎛⎫=- ⎪⎝⎭;(2334π 【解析】分析:(1)由2,0,,063P Q ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则周期22236T πππω⎛⎫=-=⇒= ⎪⎝⎭, 又34m y =-,则32R y =-,故323sin πϕϕ=-⇒=-,从而可得结果;(2)将阴影部分的面积分成两部分,分别利用定积分的几何意义求的曲边形的面积,求和即可.详解:(1)由,则周期又(2)由图可知,设轴上方的阴影部分面积为,轴下方的阴影部分面积为,则则点睛:本题主要考查三角函数的图象与性质以及定积分的几何意义,属于中档题.一般情况下,定积分()baf x dx ⎰的几何意义是介于x 轴、曲线y =()f x 以及直线,x a x b ==之间的曲边梯形面积的代数和 ,其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还是互为相反数;两条曲线之间的面积可以用两曲线差的定积分来求解. 22.(1) 当x=ln2时,f (x )有极小值也是最小值为f (ln2)=2(2﹣ln2);(2)见解析. 【解析】试题分析:(1)对函数求导,列出表格得到导函数在定义域内的正负情况,从而得到函数的最值。

(常考题)北师大版高中数学高中数学选修2-2第四章《定积分》检测(包含答案解析)

(常考题)北师大版高中数学高中数学选修2-2第四章《定积分》检测(包含答案解析)

一、选择题1.222024xdx x dx +-=⎰⎰( )A .2π B .12π+C .4π D .π2.22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰若 ,则s 1,s 2,s 3的大小关系为( )A .s 1<s 2<s 3B .s 2<s 1<s 3C .s 2<s 3<s 1D .s 3<s 2<s 13.等比数列{}n a 中,36a =,前三项和3304S xdx =⎰,则公比q 的值为( )A .1-或12-B .1或12-C .12-D .14.由23y x =-和2y x =围成的封闭图形的面积是( ) A .23 B .923- C .323 D .3535.曲线22y x x =-与直线11x x =-=,以及x 轴所围图形的面积为( ) A .2 B .83 C .43 D .236.一物体在力(单位:N)的作用下沿与力相同的方向,从x=0处运动到(单位:)处,则力做的功为( ).A .44B .46C .48D .50 7.若向区域(){},|0101x y x y Ω=≤≤≤≤,内投点,则该点落在由直线y x =与曲线y x = )A .18B .16C .13D .128.若2221111,,,xa e dxb xdxc dx x ===⎰⎰⎰则a ,b ,c 的大小关系是( ) A .a b c <<B .b c a <<C .c a b <<D .c b a <<9.已知125113,log ,log 3,a a x dx m a n p a-====⎰,则 ( ) A .m n p << B .m p n <<C .p m n <<D .p n m <<10.由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( )A .2ln3-B .4ln3+C .4ln3-D .32911.函数0()(4)xf x t t dt =-⎰在[1,5]-上( )A .有最大值0,无最小值B .有最大值0,最小值323-C .最小值323-,无最大值 D .既无最大值,也无最小值12.若函数31()log ()(01)(,0)3a f x x ax a a 且在区间=->≠-内单调递增,则实数a 的取值范围是( ). A .2[,1)3B .1[,1)3C .1[,1)(1,3]3D .(1,3]二、填空题13.由曲线2y x=,直线y =2x ,x =2所围成的封闭的图形面积为______. 14.质点运动的速度()2183/v t t m s =-,则质点由开始运动到停止运动所走过的路程是______. 15.已知12ea dx x=⎰,则()()41x x a ++展开式中3x 的系数为______. 16.曲线2yx x 和2y x x 所围成的封闭图形的面积是_______.17.若定义在R 上的函数()f x 对任意两个不等的实数12,x x 都有()()()()11221221x f x x f x x f x x f x +>+,则称函数()f x 为“z 函数”.给出下列四个定义在()0,+∞的函数:①31y x =-+;②2sinx-cosx y x =+;③,0{0,0ln x x y x ≠==;④224,0{,0x x x y x x x +≥=-+<,其中“z 函数”对应的序号为__________.18.计算(22x dx -⎰得__________.19.曲线2y x =与直线230x y --=所围成的平面图形的面积为________. 20.曲线21y x =-与直线2,0x y ==所围成的区域的面积为_______________.三、解答题21.已知函数()32f x x ax =+图像上一点()1,P b 的切线斜率为3-,()()()3261302t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[]1,4x ∈-时,求()f x 的值域;(Ⅲ)当[]1,4x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围. 22.计算: (1)781010C C +; (2)222(24)x x dx -+-⎰.23.根据《山东省全民健身实施计划(2016-2020年)》,到2020年乡镇(街道)普遍建有“两个一”工程,即一个全民健身活动中心或灯光篮球场、一个多功能运动场.某市把甲、乙、丙、丁四个多功能运动场全部免费为市民开放.(1)在一次全民健身活动中,四个多功能运动场的使用场数如图,用分层抽样的方法从甲、乙、丙、丁四场馆的使用场数中依次抽取a ,b ,c ,d 共25场,在a ,b ,c ,d 中随机取两数,求这两数和ξ的分布列和数学期望;(2)设四个多功能运动场一个月内各场使用次数之和为x ,其相应维修费用为y 元,根据统计,得到如下表的y 与x 数据:x10 15 20 25 30 35 40 y23022708 2996 3219 3401 3555 3689 10013102y z e =+ 2.49 2.993.554.004.494.995.49(i )用最小二乘法求z 与x 之间的回归直线方程; (ii )40yx +叫做运动场月惠值,根据(i )的结论,试估计这四个多功能运动场月惠值最大时x 的值.参考数据和公式:4z =,()721700ii x x =-=∑,()()7170i i i x x z z =--=∑,320e =,()()()71721ˆiii ii x x z z bx x ==--=-∑∑,a y bx =-.24.设函数()()1xf x aex =+(其中 2.71828e =⋅⋅⋅),()22g x x bx =++,已知它们在0x =处有相同的切线.(1)求函数()f x ,()g x 的解析式; (2)若函数()f x 在[],1t t +上的最小值为22e -,求实数t 的取值范围. 25.计算下列定积分 (1) ()12xx e dx +⎰(2)2442cos tan 2x x dx ππ-⎛⎫+ ⎪⎝⎭⎰ (3)1-26.已知21()cos cos 2f x x x x =-+ . (Ⅰ)写出()f x 的最小正周期T ; (Ⅱ)求由555()(0),0(0),(10),666y f x x y x x y πππ=≤≤=≤≤=-≤≤ 以及10(0)2x y =-≤≤ 围成的平面图形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分别根据积分的运算法则和几何意义求得两个积分的值,进而得到结果. 【详解】112xdx x ==表示下图所示的阴影部分的面积S2OA =,2OC =4AOC π∴∠=12221422S ππ∴=⨯-=- 2220241122x dx ππ+-∴=+-=⎰故选:A 【点睛】本题考查积分的求解问题,涉及到积分的运算法则和几何意义的应用.2.B解析:B 【解析】3221321322217ln |ln 2||,.11133x S x S x S e e e S S S ==<==<==-∴<<选B.考点:此题主要考查定积分、比较大小,考查逻辑推理能力.3.B解析:B 【解析】试题分析:解:∵3304S xdx =⎰=18,,∴a 1+a 2=32a q (1+q)=12,⇒2q 2-q-1=0,⇒q=1或q=12-,故选B考点:等比数列的前n 项和, 定积分的基本运算点评:本题考查等比数列的前n 项和、定积分的基本运算,求定积分关键是找出被积函数的原函数,本题属于基础题.4.C解析:C 【解析】试题分析:画出函数图象如下图所示,所以围成的面积为()13122333232333x xx dx x x --⎛⎫--=--= ⎪⎝⎭⎰.考点:定积分.5.A解析:A 【解析】试题分析:在抄纸上画出图像,可根据图像列出方程1221(20)(2)x x dx x x dx---+-+⎰⎰=320321111()33x x x x --+-+=110(1)(1)33---+-+=4233+=2考点:区间函数的运用6.B解析:B 【解析】由定积分的物理意义,得,即力做的功为46.考点:定积分的物理意义.7.B解析:B 【解析】 区域(){},|01,01x y x y Ω=≤≤≤≤是正方形,面积为1,根据定积分定理可得直线y x =与曲线y x =)1321200211|326x x dx x x ⎛⎫=-= ⎪⎝⎭⎰,根据几何概型概率公式可得该点落在由直线y x =与曲线y x =16,故选B .8.D解析:D 【解析】∵22211xx a e dx ee e ===-⎰,222111132222b xdx x ===-=⎰,22111ln ln 21c dx x x ===<⎰,则a ,b ,c 的大小关系是c b a <<,故选D.9.B解析:B 【解析】1235211132,log 2,log 3,12a x dx x m n p -===∴===-⎰5211log 2log ,log 31,22m n p ====m p n ∴<<故选B10.C解析:C 【详解】由1xy y x =⎧⎨=⎩,解得11x y =⎧⎨=⎩,13xy y =⎧⎨=⎩解得133x y ⎧=⎪⎨⎪=⎩,3y y x =⎧⎨=⎩解得33x x =⎧⎨=⎩,所围成的平面图形的面积为S ,则()()1111331131(31)323ln |2S dx x x x ⎛⎫=⨯--+-=+- ⎪⎝⎭⎰,4ln 3S =-,故选C.11.B解析:B 【分析】根据定积分的运算,可得321()23f x x x =-,再利用导数求得()f x 的单调性和极值,检验端点值,即可得答案. 【详解】由题意,函数3232011()(4)2233xxf x t t dt t t x x ⎛⎫=-=-=- ⎪⎝⎭⎰,则2()4(4)f x x x x x '=-=-,当[1,0)x ∈-时,()0f x '>,()f x 单调递增; 当(0,4)x ∈时,()0f x '<,()f x 单调递减;当(4,5]x ∈时,()0f x '>,()f x 单调递增; 又由7(1)3f -=-,(0)0f =,32(4)3f =-,25(5)3f =-, 所以函数()f x 的最大值为0,最小值为323-. 故选:B . 【点睛】本题考查定积分的运算,利用导数求函数的最值问题,考查分析理解,求值化简的能力,属中档题.12.B解析:B 【解析】由题意得0y '≥1,03⎛⎫- ⎪⎝⎭在区间恒成立,即210(3)ln x a a ≥-1,03⎛⎫- ⎪⎝⎭在区间恒成立, 当1a > 时2min (3)0a x a <⇒≤ ,舍;当01a << 时2min 111(3)3=1933a x a a ,>⇒≥⨯∴≤< ,选B.点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.二、填空题13.3-2ln2【分析】求出曲线直线y=2x 的交点坐标根据定积分的几何意义列式即可求解【详解】依题意联立方程组解得所以封闭的图形面积为=(x2-2lnx )=3-2ln2故答案为:3-2n2【点睛】本题考解析:3-2ln2 【分析】 求出曲线2y x=,直线y=2x 的交点坐标,根据定积分的几何意义列式,即可求解. 【详解】依题意,联立方程组22y x y x⎧=⎪⎨⎪=⎩,解得12x y =⎧⎨=⎩, 所以封闭的图形面积为212(2)x dx x -⎰=(x 2-2lnx )21=3-2ln2.故答案为:3-2n2.【点睛】本题考查了定积分的几何意义,定积分的求法,其中解答中确定定积分式,准确运算是解答的关键,着重考查数形结合思想,以及计算能力,属于基础题.14.108m 【分析】令速度为0求出t 的值0和6求出速度函数在上的定积分即可【详解】由得或当时质点运动的路程为故答案为:108m 【点睛】本题主要考查了定积分定积分在物理中的应用属于中档题解析:108m. 【分析】令速度为0求出t 的值 0和6,求出速度函数在[0,6]上的定积分即可. 【详解】由21830t t -=,得0t =或6t =,当[0,6]t ∈时,质点运动的路程为()()662233201839696108S t t dt t t=-=-=-+⨯=⎰,故答案为:108m 【点睛】本题主要考查了定积分,定积分在物理中的应用,属于中档题.15.32【分析】由定积分求出实数的值再利用二项式展开式的通项公式求解即可【详解】解:因为==2由展开式的通项为=即展开式中的系数为+=32故答案为32【点睛】本题考查了二项式展开式的通项公式属基础题解析:32 【分析】由定积分求出实数a 的值,再利用二项式展开式的通项公式求解即可. 【详解】 解:因为12ea dx x=⎰=2ln x e 1| =2, 由()42x +展开式的通项为1r T +=r4C 42r r x - ,即()()412x x ++展开式中3x 的系数为24C 22⨯+14C 2⨯ =32,故答案为32.【点睛】本题考查了二项式展开式的通项公式,属基础题.16.【解析】【分析】本题首先可以绘出曲线和的图像并找出两曲线图像围成的区域然后通过微积分以及定积分的基本定理即可解出答案【详解】如图所示曲线和所围成的封闭图形的面积为:故答案为【点睛】本题考查几何中面积解析:13【解析】 【分析】本题首先可以绘出曲线2y x x 和2y x x 的图像,并找出两曲线图像围成的区域,然后通过微积分以及定积分的基本定理即可解出答案。

北师大版高中数学高中数学选修2-2第四章《定积分》检测题(含答案解析)

北师大版高中数学高中数学选修2-2第四章《定积分》检测题(含答案解析)

一、选择题1.222024xdx x dx +-=⎰⎰( )A .2π B .12π+ C .4π D .π2.设113a x dx -=⎰,1121b x dx =-⎰,130c x dx =⎰则a ,b ,c 的大小关系( )A .a>b>cB .b>a>cC .a>c>bD .b>c>a3.如图所示的阴影部分是由x 轴,直线1x =及曲线1x y e =-围成,现向矩形区域OABC 内随机投掷一点,则该点落在阴影部分的概率是( )A .1eB .11e - C .11e-D .21e e -- 4.若连续可导函数()F x 的导函数()()'F xf x =,则称()F x 为()f x 的一个原函数.现给出以下函数()F x 与其导函数()f x :①()2cos F x x x =+, ()2sin f x x x =-;②()3sin F x x x =+, ()23cos f x x x =+,则以下说法不正确...的是( ) A .奇函数的导函数一定是偶函数 B .偶函数的导函数一定是奇函数 C .奇函数的原函数一定是偶函数 D .偶函数的原函数一定是奇函数5.3侧面与底面所成的角是45︒,则该正四棱锥的体积是( ) A .23B .43C .23D .236.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .2 7.已知42cos 2d t x x π=⎰,执行下面的程序框图,如果输入的,2a t b t ==,那么输出的n 的值为( )A .3B .4C .5D .68.若2221111,,,xa e dxb xdxc dx x ===⎰⎰⎰则a ,b ,c 的大小关系是( ) A .a b c << B .b c a <<C .c a b <<D .c b a <<9.由直线y= x - 4,曲线2y x =以及x 轴所围成的图形面积为( )A .15B .13C .252D .40310.设21,[0,1]()1,[1,0)x x f x x x ⎧⎪-∈=⎨+∈-⎪⎩,则11()f x dx -⎰等于( ) A .12π+B .122π+ C .124π+ D .14π+11.计算()122x x dx -⎰的结果为( )A .0B .1C .23D .5312.下列积分值最大的是( ) A .222sin +1x x dx -⎰()B .()22cos x dx ππ--⎰C .224x dx --⎰D .11edx x二、填空题13.已知曲线与直线所围图形的面积______.14.)20x dx =⎰______.15.曲线y =21y x =-及x 轴所围成的封闭图形的面积为 ____.16.定积分11sin )x dx -=⎰________.17.定积分()12xx e dx +=⎰__________.18.若定义在R 上的函数()f x 对任意两个不等的实数12,x x 都有()()()()11221221x f x x f x x f x x f x +>+,则称函数()f x 为“z 函数”.给出下列四个定义在()0,+∞的函数:①31y x =-+;②2sinx-cosx y x =+;③,0{0,0ln x x y x ≠==;④224,0{,0x x x y x x x +≥=-+<,其中“z 函数”对应的序号为__________.19.定积分2sin cos t tdt π=⎰________.20.已知平面区域(){,|0x y y Ω=≤≤,直线:2l y mx m =+和曲线:C y =l 与曲线C 围成的平面区域为M ,向区域Ω内随机投一点A ,点A 落在区域M 内的概率为()P M ,若2(),12P M ππ-⎡⎤∈⎢⎥⎣⎦,则实数m 的取值范围是___________.三、解答题21.已知函数()f x 为一次函数,若函数()f x 的图象过点()0,2,且()28f x dx =⎰.(1)求函数()f x 的表达式.(2)若函数()22g x x =+,求函数()f x 与()g x 的图象围成图形的面积.22.为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c (单位:万元)与隔热层厚度x (单位:cm )满足关系()(010)25kc x x x =≤≤+,若不建隔热层,每年能源消耗为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小?并求最小值. 23.计算下列定积分. (1)1211e dx x +-⎰;(2)342x dx -+⎰.24.已知曲线sin y x =和直线0,x x π==及0y =所围成图形的面积为0S . (1)求0S .(2)求所围成图形绕ox 轴旋转所成旋转体的体积. 25.求曲线6y x =-和8y x =,y =0围成图形的面积.26.已知()ln f x x x mx =+,2()3g x x ax =-+-(1)若函数()f x 在(1,)+∞上为单调函数,求实数m 的取值范围;(2)若当0m =时,对任意(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分别根据积分的运算法则和几何意义求得两个积分的值,进而得到结果. 【详解】22200112xdx x ==⎰ 2224x dx -⎰表示下图所示的阴影部分的面积S2OA =,2OC =4AOC π∴∠=12221422S ππ∴=⨯-=- 2220241122xdx x dx ππ+-∴=+-=⎰故选:A 【点睛】本题考查积分的求解问题,涉及到积分的运算法则和几何意义的应用.2.A解析:A 【解析】借助定积分的计算公式可算得1121330033|22a x dx x -===⎰,1131220022111|1333b x dx x =-=-=-=⎰,13410011|44c x dx x ===⎰,所以a b c >>,应选答案A 。

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测(含答案解析)(2)

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测(含答案解析)(2)

一、选择题1.给出以下命题: (1)若()0haf x dx >⎰,则()0f x >;(2)20|sin |4x dx π=⎰;(3)()f x 的原函数为()F x ,且()F x 是以T 为周期的函数,则:()()aa TTf x dx f x dx +=⎰⎰其中正确命题的个数为( ). A .1B .2C .3D .42.已知是i 虚数单位,复数()1a i z a R i -=∈-,若01||(sin )z x dx ππ=-⎰,则a =( ) A .±1B .1C .1-D .12±3.设11130,,a xdx b xdx c x dx ===⎰⎰⎰,则,,a b c 的大小关系为( )A .b c a >>B .b a c >>C .a c b >>D .a b c >>4.三棱锥D ABC -及其正视图和侧视图如图所示,且顶点,,,A B C D 均在球O 的表面上,则球O 的表面积为( )A .32πB .36πC .128πD .144π5.设曲线e x y x =-及直线0y =所围成的封闭图形为区域D ,不等式组1102x y -≤≤⎧⎨≤≤⎩所确定的区域为E ,在区域E 内随机取一点,则该点落在区域D 内的概率为A .2e 2e 14e --B .2e 2e 4e -C .2e e 14e --D .2e 14e-6.设函数2e ,10()1,01x x f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,计算11()d f x x -⎰的值为( ) A .1e πe 4-+ B .e 1πe 4-+ C .e 12πe - D .e 1πe 2-+7.等比数列{}n a 中,39a =前三项和为32303S x dx =⎰,则公比的值是( )A .1B .12-C .1或12-D .-1或12-8.20ln 1()231mx x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,,,且()()10f f e =,则m 的值为( ) A .1B .2C .1-D .2-9.已知函数()[](]2sin ,,01,0,1x x f x x x π⎧∈-⎪=⎨-∈⎪⎩,则()1f x dx π-=⎰( ) A .2π+B .2πC .22π-+D .24π-10.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .2311.下列积分值最大的是( ) A .222sin +1x x dx -⎰()B .()22cos x dx ππ--⎰C .24x dx --⎰D .11edx x12.由曲线4y x =,1y x=,2x =围成的封闭图形的面积为( ) A .172ln 22- B .152ln 22- C .15+2ln 22D .17+2ln 22二、填空题13.设函数2y nx n =-+和1122y x n =-+(*n N ∈,2n ≥)的图像与两坐标轴围成的封闭图形的面积为n S ,则lim n n S →∞=________ 14.由曲线2y x=与直线1y =x -及1x =所围成的封闭图形的面积为__________.15.曲线y x =与直线21y x =-及x 轴所围成的封闭图形的面积为 ____.16.()12012x x dx -+=⎰__________.17.定积分21d 1x x ⎰-的值为__________. 18.由曲线22y x =+与3y x =,1x =,2x =所围成的平面图形的面积为________________.19.如图所示,则阴影部分的面积是 .20.定积分2sin cos t tdt π=⎰________.三、解答题21.已知函数()()2log 3a f x x =-++(0a >且1a ≠),()112x g x -⎛⎫= ⎪⎝⎭.(1)函数()y f x =的图象恒过定点A ,求A 点坐标;(2)若函数()()()F x f x g x =-的图象过点()1,5--,证明:方程()0F x =在()1,5x ∈上有唯一解.22. 求曲线2yx 和直线y x =所围成的平面图形绕x 轴旋转一周所得旋转体的体积.23.已知函数f (x )=x 3-3ax+e ,g (x )=1-lnx ,其中e 为自然对数的底数.(I )若曲线y=f (x )在点(1,f (1))处的切线与直线l :x+2y=0垂直,求实数a 的值; (II )设函数F (x )=-x[g (x )+12x-2],若F (x )在区间(m,m+1)(m ∈Z )内存在唯一的极值点,求m 的值;(III )用max{m ,n}表示m ,n 中的较大者,记函数h (x )=max{f (x ),g (x )}(x>0). 若函数h (x )在(0,+∞)上恰有2个零点,求实数a 的取值范围.24.求由抛物线28(0)y x y =>与直线60x y +-=及0y =所围成图形的面积. 25.已知曲线sin y x =和直线0,x x π==及0y =所围成图形的面积为0S . (1)求0S .(2)求所围成图形绕ox 轴旋转所成旋转体的体积.26.如图,在棱长为1的正方体1111ABCD A BC D -中,E 为AB 的中点.求:(1)异面直线1BD 与CE 所成角的余弦值; (2)点A 到平面1A EC 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】(1)根据微积分基本定理,得出()()()0haf x dx F h F a =->⎰,可以看到与()f x 正负无关.(2)注意到sin x 在[]0,2π的取值符号不同,根据微积分基本运算性质,化为220|sin ||sin ||sin |x dx x dx x dx ππππ=+⎰⎰⎰求解判断即可.(3)根据微积分基本定理,两边分别求解,再结合()()F a T F a +=,()()0F T F =判定. 【详解】 (1)由()()()0haf x dx F h F a =->⎰,得()()F h F a >,未必()0f x >.(1)错误.(2)()22200|sin ||sin ||sin |sin sin x dx x dx x dx xdx x dx πππππππ=+=+-⎰⎰⎰⎰⎰()()20cos |cos |11114x x πππ=-+=--+--=,(2)正确.(3)()()0()0af x dx F a F =-⎰,()()()()()0a TTf x dx F a T F T F a F +=+-=-⎰;故()()aa T Tf x dx f x dx +=⎰⎰;(3)正确.所以正确命题的个数为2, 故选:B. 【点睛】本题主要考查了命题真假的判定与定积分的计算,属于中档题.2.A解析:A 【解析】 因为11122a i a a z i i -+-==+-,所以222111()()22222a a z a +-=+=+,由定积分公式0011(sin )[cos ]|1x dx x x ππππ-=--=⎰,故22122112a a +=⇒=,即1a =±,应选答案A 。

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测题(含答案解析)

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测题(含答案解析)

一、选择题1.12201x dx -=⎰( )A .12πB .3128π+C .368π+D .364π+2.由曲线22y x =和直线4y x =-所围成的图形的面积( ) A .18B .19C .20D .213.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .24.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 5.已知函数()f x 的图像如图所示, ()f x '就()f x 的导函数,则下列数值排序正确的是( )A .()()()()224224f f f f <-'<'B .()()()()242242f f f f '<<-'C .()()()()222442f f f f '<<-'D .()()()()422422f f f f '<'-< 6.设函数()f x 是R 上的奇函数, ()()f x f x π+=-,当02x π≤≤时,()cos 1f x x =-,则22x ππ-≤≤时, ()f x 的图象与x 轴所围成图形的面积为( )A .48π-B .24π-C .2π-D .36π-7.等比数列{}n a 中,36a =,前三项和3304S xdx =⎰,则公比q 的值为( )A .1-或12-B .1或12-C .12-D .18.曲线xy e =在点(0,1)处的切线与坐标轴所围三角形的面积为( ) A .12B .1C .2D .3 9.121(1)x x dx --+=⎰( )A .1π+B .1π-C .πD .2π 10.使函数()322912f x x x x a =-+-图象与x 轴恰有两个不同的交点,则实数a 可能的取值为( ) A .8B .6C .4D .211.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .2312.已知11em dx x =⎰,函数()f x 的导数()()()f x a x m x a '=++,若()f x 在x a =-处取得极大值,则a 的取值范围是( )A .1a <B .10a -<<C .1a >或0a <D .01a <<或0a <二、填空题13.计算)2204(2)x x dx --⎰=_____.14.已知函数()()()22ln 1,0ln 1,0x x x x f x x x x x ⎧++≥⎪=⎨--+<⎪⎩,若()()()21f a f a f -+≤,则实数a 的取值范围是___________. 15.2222(sin 4x x x dx -+-⎰=______.16.已知函数2()2ln f x x x =-,若方程()0f x m +=在1[,]e e 内有两个不等的实数根,则实数m 的取值范围是__________.17.函数()xf x e x =-在[-1,1]上的最小值__________.18.由直线0x =, 23x π=,0y =与曲线2sin y x =所围成的图形的面积等于________.19.曲线21y x =-与直线2,0x y ==所围成的区域的面积为_______________. 20.二项式33()6a x -的展开式的第二项的系数为,则的值为______.三、解答题21.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈). (1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=, 试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由. 22.某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y (分钟)与车辆进入该路段的时刻t 之间的关系可近似地用如下函数给出:3221362936,69844159{,91084366345,1012t t t t y t t t t t --+-≤<=+≤≤-+-<≤ 求从上午6点到中午12点,通过该路段用时最多的时刻. 23.求曲线y x =与直线2y x =-及y 轴围成的封闭图形的面积.24.已知函数2()11xf x x =++,2()e (0)ax g x x a =<. (1)求函数()f x 的单调区间.(2)若对任意1x ,2[0,2]x ∈,12()()f x g x ≥恒成立,求a 的取值范围. 25.设是二次函数,方程有两个相等的实根,且()22f x x =+'(1)求()y f x =的表达式;(2)求()y f x =的图像与两坐标轴所围成图形的面积 26.已知函数()ln mf x x x=+()m R ∈. (1)若函数()f x 的图象与直线240x y +-=相切,求m 的值; (2)求()f x 在区间[]1,2上的最小值;(3)若函数()f x 有两个不同的零点1x , 2x ,试求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令21y x =-,则()2210x y y +=≥,点(),x y 的轨迹表示半圆,则该积分表示该半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,求出面积即可. 【详解】解:令21y x =-,则()2210x y y +=≥,点(),x y 的轨迹表示半圆,12201x dx -⎰表示以原点为圆心,2为半径的圆的上半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,如图:故12201131311222612OAB BOCx dx SS ππ-=+=⨯⨯⨯=+扇形. 故选:B. 【点睛】本题考查定积分的几何意义,属基础题.2.A解析:A 【分析】画出两曲线的图像,求得交点坐标,由定积分求得图形的面积即可. 【详解】根据题意,画出量曲线的图像,设其交点为,A B ,如下所示:联立22y x =和4y x =-, 解得()()2,2,8,4A B -, 根据抛物线的对称性, 即可得两曲线围成的面积28222d (24)d S x x x x x =++⎰⎰23022021622d 2233x x x ⎛⎫⎰== ⎪⎝⎭ 82(24)d x x x +⎰83222212432x x x ⎫=-+⎪⎭322212884832⎫=⨯-⨯+⨯⎪⎭322213822242323⎫-⨯-⨯+⨯=⎪⎭故所求面积为28222d (24)d x x x x x ++⎰⎰163833=+ 18=.故选:A. 【点睛】本题考查由定积分求解曲边梯形的面积,需要注意的是,本题中需要对曲边梯形的面积进行拆分求解,这是本题的难点.3.D解析:D【解析】由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是122201(1)(1)S x dx x dx =---⎰⎰31320111281()|()|2133333x x x x -+-=+--+ 4.B解析:B【解析】求导函数,可得()1'220f x mx x x=+->,,函数()2ln 2f x mx x x =+-在定义域内是增函数,所以()'0f x < 成立,即1220(0)mx x x+-<>恒成立,所以21211m x ⎛⎫->-- ⎪⎝⎭,所以21m ->-,所以12m < 时,函数()f x 在定义域内是增函数.故选B .5.A解析:A【解析】解:观察所给的函数图象可知: ()()()()42'2'442f f f f -<<- ,整理可得: ()()()()224224f f f f <-'<' . 本题选择A 选项.6.A解析:A【解析】由题设()()()()2f x f x f x f x ππ+=-⇒+=,则函数()y f x =是周期为2π的奇函数,画出函数()[],0,2y f x x π=∈的图像,结合函数的图像可知:只要求出该函数(),0,2y f x x π⎡⎤=∈⎢⎥⎣⎦的图像与x 轴所围成的面积即可。

北师大高中数学选修22培优新方案阶段质量检测四 定 积 分 含解析

北师大高中数学选修22培优新方案阶段质量检测四 定 积 分 含解析

阶段质量检测(四) 定 积 分(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知⎠⎛a b f (x )d x =m ,则⎠⎛ab nf (x )d x =( )A .m +nB .m -nC .mnD .m n解析:选C 根据定积分的性质, ⎠⎛a bnf (x )d x =n ⎠⎛a bf (x )d x =mn . 2. ⎠⎛01 (e x +2x )d x 等于( )A .1B .e -1C .eD .e +1解析:选C ⎠⎛01(e x +2x )d x =(ex+x 2)⎪⎪⎪1=(e 1+1)-e 0=e , 故选C.3.若⎠⎛0k (2x -3x 2)d x =0,则k 等于( )A .0B .1C .0或1D .不确定解析:选B ⎠⎛0k (2x -3x 2)d x=(x 2-x 3)⎪⎪⎪k=k 2-k 3=0,∴k =0(舍去)或k =1,故选B.4.如图所示,图中曲线方程为y =x 2-1,用定积分表示围成封闭图形(阴影部分)的面积是( )A.⎠⎛02(x 2-1)d xB.⎠⎛01(x 2-1)d x C.⎠⎛02|x 2-1|d xD.⎠⎛01(x 2-1)d x +⎠⎛12(x 2-1)d x解析:选C 由定积分的几何意义和性质可得:图中围成封闭图形(阴影部分)的面积S =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎠⎛02|x 2-1|d x ,故选C.5.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( ) A .-1 B .-13C.13D .1解析:选B ∵f (x )=x 2+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =⎝⎛⎭⎫13x 3+2x ⎠⎛01f (x )d x 10=13+2⎠⎛01f (x )d x . ∴⎠⎛01f (x )d x =-13.6.已知f (x )为偶函数且⎠⎛06f (x )d x =8,则⎠⎛-66f (x )d x =( )A .0B .4C .8D .16解析:选D ∵f (x )为偶函数,∴其图像关于y 轴对称, ∴⎠⎛-66f (x )d x =2⎠⎛06f (x )d x =16.7.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为( ) A.12 B .13C.14D.15解析:选B 根据题意得S 阴影=⎠⎛013x 2d x =x 3⎪⎪⎪1=1,则点M 取自阴影部分的概率为S 阴影S 长方形=13×1=13.8.若⎠⎜⎛0π2 (sin x +a cos x )d x =2,则实数a 等于( )A .-1B .1C .- 3D. 3解析:选B ∵⎠⎜⎛π2 (sin x +a cos x )d x =2,∴⎠⎜⎛0π2 (sin x +a cos x )d x =⎠⎜⎛0π2sin x d x +a ⎠⎜⎛0π2cos x d x =(-cos x ) ⎪⎪⎪⎪π20+(a sin x ) ⎪⎪⎪⎪π20=0-(-1)+a =2,∴a =1.9.由y =-x 2与直线y =2x -3围成的图形的面积是( ) A.53 B .323C.643D .9解析:选B 解⎩⎪⎨⎪⎧y =-x 2,y =2x -3,得交点A (-3,-9),B (1,-1).则y =-x 2与直线y =2x -3围成的图形的面积 S =⎠⎛-31 (-x 2)d x -⎠⎛-31 (2x -3)d x=-13x 3⎪⎪⎪1-3-(x 2-3x ) ⎪⎪⎪1-3=323. 10.由曲线y =x ,x =4和x 轴所围成的平面图形绕x 轴旋转生成的旋转体的体积为( ) A .16π B .32π C .8πD .4π解析:选C 由图知旋转体的体积为π⎠⎛04 (x )2d x =π2x 2⎪⎪⎪4=8π.11.已知自由落体运动的速率v =gt ,则落体运动从t =0到t =t 0所走的路程为( ) A .gt 20B .gt 203C.gt 202D.gt 206解析:选C s =⎠⎛0t0v (t )d t =12gt 2⎪⎪⎪t=12gt 20.12.如图,两曲线y =3-x 2与y =x 2-2x -1所围成的图形面积是( ) A .6 B .9 C .12D .3解析:选B 由⎩⎪⎨⎪⎧y =3-x 2,y =x 2-2x -1,解得交点(-1,2),(2,-1),所以S =⎠⎛-12 [(3-x 2)-(x 2-2x -1)]d x=⎠⎛-12 (-2x 2+2x +4)d x=⎝⎛⎭⎫-23x 3+x 2+4x ⎪⎪⎪2-1=9.二、填空题(本大题共4小题,每小题5分,共20分.请把正确的答案填在题中的横线上) 13.∫π30cos x d x =________.解析:⎠⎜⎛0π3cos x d x =sin x ⎪⎪⎪⎪π3=32.答案:3214.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.解析:⎠⎛01f (x )d x =⎠⎛01 (ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪1=a 3+c =ax 20+c ,则x 0=33. 答案:3315.有一横截面面积为4 cm 2的水管控制往外流水,打开水管后t s 末的流速为v (t )=6t -t 2(单位:cm/s)(0≤t ≤6).则t =0到t =6这段时间内流出的水量为________cm 3.解析:由题意可得t =0到t =6这段时间内流出的水量V =⎠⎛064(6t -t 2)d t =4⎠⎛06 (6t -t 2)d t=4⎝⎛⎭⎫3t 2-13t 3⎪⎪⎪60=144(cm 3). 答案:14416.已知函数y =f (x )的图像是折线段ABC ,其中A (0,0),B ⎝⎛⎭⎫12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图像与x 轴围成的图形的面积为________.解析:由题意可得f (x )=⎩⎨⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎨⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1.与x 轴围成的图形的面积为⎠⎛1210x 2d x +⎠⎜⎛12110x -10x 2)d x =103x 3⎪⎪⎪⎪120+⎝⎛⎭⎫5x 2-103x 3⎪⎪⎪⎪121=54. 答案:54三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知f (x )=⎠⎛-ax (12t +4a )d t ,F (a )=⎠⎛01[f (x )+3a 2]d x ,求函数F (a )的最小值.解:∵f (x )=⎠⎛-ax(12t +4a )d t =(6t 2+4at )⎪⎪⎪x-a=6x 2+4ax -(6a 2-4a 2) =6x 2+4ax -2a 2,∵F (a )=⎠⎛01[f (x )+3a 2]d x =⎠⎛01(6x 2+4ax +a 2)d x =(2x 3+2ax 2+a 2x )10=a 2+2a +2=(a +1)2+1≥1,∴当a =-1时,F (a )最小值=1.18.(本小题满分12分)求由曲线y =x 2+2与直线y =3x ,x =0,x =2所围成的平面图形的面积.解:S =⎠⎛01(x 2+2-3x )d x +⎠⎛12(3x -x 2-2)d x =⎝⎛⎭⎫13x 3-32x 2+2x ⎪⎪⎪1+⎝⎛⎭⎫-13x 3+32x 2-2x ⎪⎪⎪21=⎝⎛⎭⎫13-32+2+⎝⎛⎭⎫-13×8+32×4-4-⎝⎛⎭⎫-13+32-2 =56-23+56=53-23=1. 19.(本小题满分12分)如图,求由曲线y =-x 2,4y =-x 2及直线y =-1所围图形的面积.解:由图形的对称性知,所求图形面积为位于y 轴右侧图形面积的2倍.法一:由⎩⎪⎨⎪⎧y =-x 2,y =-1,得C (1,-1).同理得D (2,-1).则所求图形的面积S =2⎩⎨⎧⎭⎬⎫⎠⎛01⎣⎡⎦⎤-x 24-(-x 2)d x +⎠⎛12⎣⎡⎦⎤-x 24-(-1)d x =2⎝⎛⎭⎫⎠⎛013x 24d x -⎠⎛12x 24d x +⎠⎛12d x =2⎝ ⎛⎭⎪⎫x 34⎪⎪⎪ 10-x 312⎪⎪⎪ 21+x ⎪⎪⎪21=43.法二:同法一得C (1,-1),D (2,-1).则所求图形的面积为S =2⎠⎛-10 (2-y --y )d y=2⎠⎛-1-y d y =2×⎝⎛⎭⎫-23×(-y )32⎪⎪⎪-1=43. 20.(本小题满分12分)设有一长25 cm 的弹簧,若加以100 N 的力,将弹簧伸长到30 cm ,已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求将弹簧由25 cm 伸长到40 cm 所做的功.解:设x 表示弹簧伸长的量(单位:m),F (x )表示加在弹簧上的力(单位:N).由题意,设F (x )=kx . 当x =0.05时,F (0.05)=100,即0.05k =100,∴k =2 000,∴F (x )=2 000x . ∴将弹簧由25 cm 伸长到40 cm 时所做的功 W =⎠⎛00.152 000x d x =1 000x 2⎪⎪⎪0.15=22.5(J).21.(本小题满分12分)已知函数f (x )=e x -1,直线l 1:x =1,l 2:y =e t -1(t 为常数,且0≤t ≤1),直线l 1,l 2与函数f (x )的图像围成的封闭图形,以及直线l 2,y轴与函数f (x )的图像围成的封闭图形如图中阴影部分所示.求当t 变化时,阴影部分的面积的最小值.解:依题意知,阴影部分的面积S =⎠⎛0t (e t -1-e x +1)d x +⎠⎛t1 (e x -1-e t +1)d x=⎠⎛0t (e t -e x )d x +⎠⎛t1 (e x -e t )d x=(x e t-e x)⎪⎪⎪t0+(e x -x e t )⎪⎪⎪1t=(2t -3)e t +e +1,令g (t )=(2t -3)e t +e +1(0≤t ≤1), 则g ′(t )=(2t -1)e t , 取g ′(t )=0,解得t =12.当t ∈⎣⎡⎭⎫0,12时,g ′(t )<0,g (t )是减函数; 当t ∈⎝⎛⎦⎤12,1时,g ′(t )>0,g (t )是增函数. 因此g (t )的最小值为g ⎝⎛⎭⎫12=e +1-2e 12=(e -1)2, 故阴影部分的面积的最小值为(e -1)2.22.(本小题满分12分)已知函数f (x )=13x 3+12ax 2+bx ,f ′(x )是函数f (x )的导数.在区间[-1,1]内任取实数a ,b ,求方程f ′(x )=0有实数根的概率.解:f ′(x )=x 2+ax +b .若方程f ′(x )=0,即x 2+ax +b =0有实数根,则Δ≥0,即a 2≥4b , 因此方程f ′(x )=0有实数根的条件是⎩⎪⎨⎪⎧-1≤a ≤1,-1≤b ≤1,a 2≥4b ,满足此不等式组的点P (a ,b )形成的图形为图中阴影部分,其面积为S 1=⎠⎛-11⎣⎡⎦⎤a 24-(-1)d a =⎠⎛-11⎝⎛⎭⎫a24+1d a =a 312⎪⎪⎪1-1+2=136. 而坐标满足条件-1≤a ≤1,-1≤b ≤1的点形成的图形的面积S =4,根据几何概型的概率公式可知,方程f ′(x )=0有实数根的概率为P =S 1S =1324.。

(常考题)北师大版高中数学高中数学选修2-2第四章《定积分》检测(答案解析)

(常考题)北师大版高中数学高中数学选修2-2第四章《定积分》检测(答案解析)

一、选择题1.设11130,,a xdx b xdx c x dx ===⎰⎰⎰,则,,a b c 的大小关系为( )A .b c a >>B .b a c >>C .a c b >>D .a b c >>2.曲线22y x x =-与直线11x x =-=,以及x 轴所围图形的面积为( ) A .2 B .83 C .43 D .233.曲线与两坐标轴所围成图形的面积为( ) A .B .C .D .4.定积分()1e2xx dx -⎰的值为( )A .e 2-B .e 1-C .eD .e 1+5.图中阴影部分的面积用定积分表示为( )A .12d xx ⎰B .()1021d xx -⎰C .()1021d xx +⎰D .()1012d xx -⎰6.20ln 1()231mx x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,,,且()()10f f e =,则m 的值为( ) A .1B .2C .1-D .2-7.定义{},,min ,,,a ab a b b a b ≤⎧=⎨>⎩设31()min ,f x x x ⎧⎫=⎨⎬⎩⎭,则由函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积( )A .12ln 26+ B .12ln 24+ C .1ln 24+ D .1ln 26+ 8.由直线0,,2y x e y x ===及曲线2y x=所围成的封闭图形的面积为( ) A .3B .32ln 2+C .223e -D .e9.函数()2,02x x f x x -<⎧=≤≤,则22()f x dx -⎰的值为( )A .6π+B .2π-C .2πD .810.已知函数20()cos 0x f x x x ≥⎧=⎨<⎩,则12()f x dx π-⎰的值等于( )A .1B .2C .3D .411.10)x dx ⎰=( ) A .22π+B .12π+ C .122π-D .142π- 12.设[0,1]()1,[1,0)x f x x x ∈=+∈-⎪⎩,则11()f x dx -⎰等于( )A .12π+B .122π+ C .124π+ D .14π+二、填空题13.323x dx -⎫=⎪⎪⎭⎰____________________. 14.已知0a >,6x ⎫-⎪⎭展开式的常数项为15,则(02a x x dx -++=⎰______.15.曲线y =21y x =-及x 轴所围成的封闭图形的面积为 ____.16.在直线0x =,1x =,0y =,1y e =+围成的区域内撒一粒豆子,则落入0x =,1y e =+,e 1x y =+围成的区域内的概率为__________.17.由直线2y x =+与曲线2yx 围成的封闭图形的面积是__________.18.设函数2()f x ax b =+(0a ≠),若300()3()f x dx f x =⎰,00x >,则0x =__________.19.已知等差数列{}n a 中, 225701a a x dx +=-⎰,则468a a a ++=__________.20.曲线2y x和曲线y =________.三、解答题21.如图,四边形ABCD 为菱形,60DAB ∠=︒,ED ⊥面ABCD ,EF AB ∥,22ED AD EF ===,M 为BC 的中点.(1)求证:FM ∥平面BDE ;(2)若G 为线段BE 上一点,当三棱锥B GCD -23BG BE 的值.22.已知函数31()ln 2f x x ax x =--()a R ∈.(1)若()f x 在(1,2)上存在极值,求(1)f 的取值范围; (2)当0x >时,()0f x <恒成立,比较a e 2e. 23.为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c (单位:万元)与隔热层厚度x (单位:cm )满足关系()(010)25kc x x x =≤≤+,若不建隔热层,每年能源消耗为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小?并求最小值.24.某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y (分钟)与车辆进入该路段的时刻t 之间的关系可近似地用如下函数给出:3221362936,69844159{,91084366345,1012t t t t y t t t t t --+-≤<=+≤≤-+-<≤ 求从上午6点到中午12点,通过该路段用时最多的时刻.25.已知函数()1x f x e ex =--,其中e 为自然对数的底数,函数()(2)g x e x =-.(1)求函数()()()h x f x g x =-的单调区间; (2)若函数(),,()(),f x x m F x g x x m ≤⎧=⎨>⎩的值域为R ,求实数m 的取值范围.26.已知二次函数()21f x ax bx =+-在1x =-处取得极值,且在点()0,1-处的切线与直线20x y -=平行. (1)求()f x 的解析式;(2)求函数()()2g x xf x x =+的极值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】根据微积分定理,13120022|33a xdx x ⎛⎫=== ⎪⎝⎭⎰,1210011|22b xdx x ⎛⎫=== ⎪⎝⎭⎰,13410011|44c x dx x ⎛⎫=== ⎪⎝⎭⎰,所以a b c >>,故选择D 。

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测(包含答案解析)

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测(包含答案解析)

一、选择题1.计算211x dx x ⎛⎫+ ⎪⎝⎭⎰的值为( )A .34 B .3ln 22+ C .55ln 22+ D .3ln 2+2.4片叶子由曲线2||y x =与曲线2||y x =围成,则每片叶子的面积为() A .16B .36C .13D .233.已知1a xdx =⎰, 12b x dx =⎰, 1c xdx =⎰,则a , b , c 的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .c a b << 4.由23y x =-和2y x =围成的封闭图形的面积是( ) A .23 B .923- C .323 D .3535.由曲线2y x =与直线2y x =+所围成的平面图形的面积为( ) A .52 B .4 C .2 D .926.定积分()1e2xx dx -⎰的值为( )A .e 2-B .e 1-C .eD .e 1+7.由直线,1y x y x ==-+,及x轴所围成平面图形的面积为 ( ) A .()101y y dy ⎡⎤--⎣⎦⎰B .()1201x x dx ⎡⎤-+-⎣⎦⎰C .()121y y dy ⎡⎤--⎣⎦⎰D .()101x x dx ⎡⎤--+⎣⎦⎰8.等比数列{}n a 中,39a =前三项和为32303S x dx =⎰,则公比的值是( )A .1B .12-C .1或12-D .-1或12-9.一物体在力F (x )=3x 2-2x +5(力单位:N ,位移单位:m)作用力下,沿与力F (x )相同的方向由x =5 m 直线运动到x =10 m 处做的功是( ). A .925 J B .850 JC .825 JD .800 J10.曲线2yx 与直线y x =所围成的封闭图形的面积为( )A .16B .13C .12D .56 11.由直线y= x - 4,曲线2y x =以及x 轴所围成的图形面积为( )A .15B .13C .252D .40312.由曲线4y x =,1y x=,2x =围成的封闭图形的面积为( ) A .172ln 22- B .152ln 22- C .15+2ln 22D .17+2ln 22二、填空题13.已知12ea dx x=⎰,则()()41x x a ++展开式中3x 的系数为______. 14.12021sin x dx xdx π--=⎰⎰______15.定积分121(4sin )x x dx --+=⎰________.16.定积分21d 1x x ⎰-的值为__________.17.已知函数2()2ln f x x x =-,若方程()0f x m +=在1[,]e e 内有两个不等的实数根,则实数m 的取值范围是__________.18.已知等差数列{}n a 中, 225701a a x dx +=-⎰,则468a a a ++=__________.19.()402sin cos 2x a x dx π-=-⎰,则实数a =____________. 20.定积分120124x x dx π⎛⎫-+- ⎪⎝⎭⎰的值______. 三、解答题21.如图,四边形ABCD 为菱形,60DAB ∠=︒,ED ⊥面ABCD ,EF AB ∥,22ED AD EF ===,M 为BC 的中点.(1)求证:FM ∥平面BDE ;(2)若G 为线段BE 上一点,当三棱锥B GCD -23BG BE 的值.22.求曲线y =2y x =-及y 轴围成的封闭图形的面积.23.计算:(1)781010C C +;(2)22(2x dx -⎰.24.计算下列定积分. (1)1211e dx x +-⎰; (2)342x dx -+⎰.25.设函数()()1xf x ae x =+(其中 2.71828e =⋅⋅⋅),()22g x x bx =++,已知它们在0x =处有相同的切线.(1)求函数()f x ,()g x 的解析式; (2)若函数()f x 在[],1t t +上的最小值为22e -,求实数t 的取值范围.26.计算由直线4,y x =-曲线y =x 轴所围图形的面积S 。

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测卷(含答案解析)(2)

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测卷(含答案解析)(2)

一、选择题1.若函数()31f x x ax x =++在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ) A .1,2⎛⎫-+∞ ⎪⎝⎭ B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .13,4⎛⎫+∞ ⎪⎝⎭D .13,4⎡⎫+∞⎪⎢⎣⎭ 2.设若20lg ,0()3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,((1))1f f =,则a 的值是( ) A .-1 B .2 C .1 D .-23.定积分220[4(2)]x x dx ---⎰的值为( )A .24π- B .2π- C .22π- D .48π-4.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .435.定积分()1e2xx dx -⎰的值为( )A .e 2-B .e 1-C .eD .e 1+6.已知幂函数a y x =图像的一部分如下图,且过点(2,4)P ,则图中阴影部分的面积等于( )A .163B .83C .43D .237.设函数2e ,10()1,01x x f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,计算11()d f x x -⎰的值为( ) A .1e πe 4-+ B .e 1πe 4-+ C .e 12πe - D .e 1πe 2-+ 8.由直线y= x - 4,曲线2y x =x 轴所围成的图形面积为( )A .15B .13C .252D .403 9.由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( ) A .2ln3-B .4ln3+C .4ln3-D .32910.函数()2,02x x f x x -<⎧=≤≤,则22()f x dx -⎰的值为( )A .6π+B .2π-C .2πD .811.=⎰( )A .1B .4πC .2π D .π12.10)x dx ⎰=( ) A .22π+B .12π+ C .122π-D .142π- 二、填空题13.011edx x-+=⎰⎰______________.14.)2x dx =⎰______.15.直线x =0、直线y =e +1与曲线y =e x +1围成的图形的面积为_____. 16.已知12ea dx x=⎰,则()()41x x a ++展开式中3x 的系数为______. 17.由曲线22y x =+与3y x =,1x =,2x =所围成的平面图形的面积为________________.18.计算(22x dx -⎰得__________.19.由直线0x =, 23x π=,0y =与曲线2sin y x =所围成的图形的面积等于________.20.曲线21y x =-与直线2,0x y ==所围成的区域的面积为_______________.三、解答题21.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈). (1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=,试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由.22.已知函数()221y f x x x ==-++和()1y g x x ==-,求:由()y f x =和()y g x =围成区域的面积.23.已知函数1()ln f x a x x=-,a R ∈。

新北师大版高中数学高中数学选修2-2第四章《定积分》检测(含答案解析)

新北师大版高中数学高中数学选修2-2第四章《定积分》检测(含答案解析)

一、选择题1.给出下列函数:①()()2ln 1f x x x =+-;②()3cos f x x x =;③()xf x e x =+.0a ∃>使得()0aaf x dx -=⎰的函数是( )A .①②B .①③C .②③D .①②③2.已知函数22(1),10()1,01x x f x x x ⎧+-≤≤⎪=⎨-<≤⎪⎩则11()d f x x -=⎰( ) A .3812π- B .4312π+ C .44π+ D .4312π-+ 3.已知函数sin (11)()1(12)x x f x x x-≤≤⎧⎪=⎨<≤⎪⎩,则21()f x dx -=⎰( )A .ln 2B .ln 2-C .12-D .3cos 1-4.222024xdx x dx +-=⎰⎰( )A .2π B .12π+ C .4π D .π5.4片叶子由曲线2||y x =与曲线2||y x =围成,则每片叶子的面积为() A .16B .36C .13D .236.如图所示的阴影部分是由x 轴,直线1x =及曲线1x y e =-围成,现向矩形区域OABC 内随机投掷一点,则该点落在阴影部分的概率是( )A .1eB .11e - C .11e-D .21e e -- 7.对于函数()sin xf x x =, 30,2x π⎛⎤∈ ⎥⎝⎦,下列说法错误的是( ) A .函数()f x 在区间()0,π是单调函数 B .函数()f x 只有1个极值点C .函数()f x 在区间0,2π⎛⎫⎪⎝⎭有极大值 D .函数()f x 有最小值,而无最大值 8.已知函数f(x)=x 2+1的定义域为[a,b](a<b),值域为[1,5],则在平面直角坐标系内,点(a,b)的运动轨迹与两坐标轴围成的图形的面积为( ) A .8 B .6 C .4 D .29.曲线22,y x y x ==所围成图形的面积是( ) A .1B .13C .12D .2310.等比数列{}n a 中,39a =前三项和为32303S x dx =⎰,则公比的值是( ) A .1B .12-C .1或12-D .-1或12-11.由直线0,,2y x e y x ===及曲线2y x=所围成的封闭图形的面积为( ) A .3B .32ln 2+C .223e -D .e12.下列积分值最大的是( ) A .222sin +1x x dx -⎰()B .()22cos x dx ππ--⎰C .24x dx --⎰D .11edx x二、填空题13.2322(4)x x dx --=⎰___________14.定积分211(2)x dx x+⎰的值为_____ .15.已知函数()xxf x e =,在下列命题中,其中正确命题的序号是_________. (1)曲线()y f x =必存在一条与x 轴平行的切线; (2)函数()y f x =有且仅有一个极大值,没有极小值;(3)若方程()0f x a -=有两个不同的实根,则a 的取值范围是1()e-∞,; (4)对任意的x ∈R ,不等式1()2f x <恒成立; (5)若1(0,]2a e∈,则12,x x R +∃∈,可以使不等式()f x a ≥的解集恰为12[,]x x ; 16.1321(tan sin )x x x x dx -++⎰的值为______________________17.()12111x dx ---=⎰__________.18.已知等差数列{}n a 中, 225701a a x dx +=-⎰,则468a a a ++=__________.19.若定义在R 上的函数()f x 对任意两个不等的实数12,x x 都有()()()()11221221x f x x f x x f x x f x +>+,则称函数()f x 为“z 函数”.给出下列四个定义在()0,+∞的函数:①31y x =-+;②2sinx-cosx y x =+;③,0{0,0ln x x y x ≠==;④224,0{,0x x x y x x x +≥=-+<,其中“z 函数”对应的序号为__________.20.已知()12111,a x dx -=+-⎰则932a x x π⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭展开式中的各项系数和为________三、解答题21.已知函数()3812f x x x =+-. (1)求()f x 的单调区间;(2)求函数()y f x =的极大值和极小值. 22.计算曲线223y x x =-+与直线3y x所围图形的面积.23.已知函数2()11xf x x =++,2()e (0)ax g x x a =<. (1)求函数()f x 的单调区间.(2)若对任意1x ,2[0,2]x ∈,12()()f x g x ≥恒成立,求a 的取值范围. 24.已知函数f (x )=3sin2x cos 2x +cos 22x +m 的图象过点(56π,0). (1)求实数m 值以及函数f (x )的单调递减区间; (2)设y=f (x )的图象与x 轴、y 轴及直线x=t (0<t <23π)所围成的曲边四边形面积为S ,求S 关于t 的函数S (t )的解析式.25.计算由直线4,y x =-曲线2y x =x 轴所围图形的面积S 。

北师大版高中数学高中数学选修2-2第四章《定积分》检测(含答案解析)(2)

北师大版高中数学高中数学选修2-2第四章《定积分》检测(含答案解析)(2)

一、选择题1.已知函数22(1),10()1,01x x f x x x ⎧+-≤≤⎪=⎨-<≤⎪⎩则11()d f x x -=⎰( ) A .3812π- B .4312π+ C .44π+ D .4312π-+ 2.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .23.已知函数()f x 的图像如图所示, ()f x '就()f x 的导函数,则下列数值排序正确的是( )A .()()()()224224f f f f <-'<'B .()()()()242242f f f f '<<-'C .()()()()222442f f f f '<<-'D .()()()()422422f f f f '<'-< 4.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .2 5.等比数列{}n a 中,39a =,前3项和为3230S x dx =⎰,则公比q 的值是( )A .1B .12-C .1或12-D .1-或12-6.曲线22,y x y x ==所围成图形的面积是( ) A .1B .13C .12D .237.已知二次函数()y f x =的图像如图所示 ,则它与x 轴所围图形的面积为( )A .25π B .43C .32D .2π 8.已知402cos 2d t x x π=⎰,执行下面的程序框图,如果输入的,2a t b t ==,那么输出的n 的值为( )A .3B .4C .5D .69.曲线2y x 与直线y x =所围成的封闭图形的面积为( )A .16 B .13C .12D .5610.()211x dx --=⎰( )A .1B .4π C .2π D .π11.20sin xdx π=⎰( )A .4B .2C .-2D .012.若函数f (x )=cos x +2xf ′π()6,则f π()3-与f π()3的大小关系是( ) A .f π()3-=f π()3B .f π()3->f π()3 C .f π()3-<f π()3D .不确定二、填空题13.定积分211dx x⎰的值等于________. 14.计算()2204(2)x x dx ---⎰=_____.15.由曲线x y e x =+与直线0,1,0x x y ===所围成图形的面积等于________. 16.曲线y x =与直线21y x =-及x 轴所围成的封闭图形的面积为 ____.17.已知函数()()()22ln 1,0ln 1,0x x x x f x x x x x ⎧++≥⎪=⎨--+<⎪⎩,若()()()21f a f a f -+≤,则实数a 的取值范围是___________.18.定积分2211x dx x +=⎰ __________.19.定积分12(1)x x dx --=⎰______________.20.曲线21y x =-与直线2,0x y ==所围成的区域的面积为_______________.三、解答题21.设点P 在曲线2yx 上,从原点向(2,4)A 移动,如果直线OP ,曲线2y x 及直线2x =所围成的两个阴影部分的面积分别记为1S ,2S ,如图所示.(1)当12S S 时,求点P 的坐标;(2)当12S S +有最小值时,求点P 的坐标.22.已知函数()22()x f x e x x R =-+∈. (1)求()f x 的最小值;(2)求证:x >0时,221x e x x >-+. 23.设函数()x x f x e e -=- (1)证明:'()2f x ≥;(2)若对任意[0,)x ∈+∞都有21(22)f x x e e ---<-,求x 的取值范围. 24.已知()xkx bf x e +=. (Ⅰ)若()f x 在0x =处的切线方程为1y x =+,求k 与b 的值;(Ⅱ)求1x xdx e ⎰. 25.已知()[](]22122f x 1x 24x x x ⎧+∈-⎪=⎨+∈⎪⎩,,,,,求k 的值,使()3k40f x dx 3=⎰. 26.已知()ln f x x x mx =+,2()3g x x ax =-+-(1)若函数()f x 在(1,)+∞上为单调函数,求实数m 的取值范围;(2)若当0m =时,对任意(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据积分的性质将所求积分化为()0211x dx -++⎰⎰,根据微积分基本定理和定积分的求法可求得结果. 【详解】()()22321100011112100101111333x dx x x dx x x x --+=++=++=++-++=---⎰⎰,0⎰表示以原点为圆心,1为半径的圆在第一象限中的部分的面积,4π∴=⎰,()()121114313412f x dx x dx ππ--+∴=++=+=⎰⎰⎰. 故选:B . 【点睛】本题考查积分的求解问题,涉及到积分的性质、微积分基本定理和定积分的求解等知识,属于基础题.2.D解析:D 【解析】由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是122201(1)(1)S x dx x dx =---⎰⎰31320111281()|()|2133333x x x x -+-=+--+ 3.A解析:A【解析】解:观察所给的函数图象可知: ()()()()42'2'442f f f f -<<- ,整理可得: ()()()()224224f f f f <-'<' . 本题选择A 选项.4.A解析:A 【解析】试题分析:由1(1)1x f x x e ++=-+知()2x f x x e =-+,则()1(0)2x f x e f ''=+⇒=,而(0)1f =-,即切点坐标为()0,1-,切线斜率(0=2k f '=),则切线()():12021l y x y x --=-⇒=-,切线l 与坐标轴的交点分别为1,02⎛⎫⎪⎝⎭和()0,1-,则切线l 与坐标轴围成的三角形的面积为1111224S =⋅⋅-= 考点:函数在某点处的切线5.C解析:C 【分析】先由微积分基本定理得到327S =,再由等比数列的求和公式以及通项公式,即可求出结果. 【详解】23312333133|2727003S x dx x a a a =⎰=⋅=∴++=,,即333227a a a q q ++=,解得1q =或1-2q =. 【点睛】本题主要考查定积分的就算,以及等比数列的公比,熟记微积分基本定理,以及等比数列的通项公式及前n 项和公式即可,属于常考题型.6.B解析:B 【分析】由题意,可作出两个函数y x =与2yx 的图象,先求出两函数图象交点A 的坐标,根据图象确定出被积函数2 x x -与积分区间[0,1],计算出定积分的值即可. 【详解】 作出如图的图象联立22 y x y x ⎧=⎨=⎩解得0 0x y =⎧⎨=⎩或11x y =⎧⎨=⎩,即点()11A ,, 所求面积为()132312002121133333S x x dx x x ⎛⎫=-=-=-= ⎪⎝⎭⎰,故选B. 【点睛】本题考点是定积分在求面积中的应用,考查了作图的能力及利用积分求面积,解题的关键是确定出被积函数与积分区间,熟练掌握积分的运算.7.B解析:B 【解析】设()()()11,0f x a x x a =-+<,又点()0,1在函数()f x 的图象上,则()21,1a f x x =-∴=-,由定积分几何意义,围成图形的面积为()123111141|33S x dx x x --⎛⎫=-=-= ⎪⎝⎭⎰,故选B. 8.B解析:B 【解析】由题意得4402cos2d sin 2|sin 12t x x x πππ====⎰.所以输入的1,2a b ==. 执行如图所示的程序,可得:①3,5,5,2a b S n ====,不满足条件,继续运行; ②8,13,18,3a b S n ====,不满足条件,继续运行;③21,33,51,4a b S n ====,满足条件,停止运行,输出4.选B .9.A解析:A 【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x =与直线y x =所围成的封闭图形的面积为()122310111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A. 10.B解析:B 【分析】令21(1),(0)y x y =--≥,它表示以(1,0)为圆心,以1为半径的圆的上半圆,再利用定积分的几何意义求解即可. 【详解】令21(1),0y x y =--∴≥, 所以22(1)1x y -+=,(0)y ≥,它表示以(1,0)为圆心,以1为半径的圆的上半圆,如图所示,()211x dx --⎰表示由0,10x x y ===,和半圆围成的曲边梯形的面积,即14个圆的面积. 由题得14个圆的面积为211=44ππ⨯⨯.由定积分的几何意义得()1211x dx --=⎰4π. 故选:B. 【点睛】本题主要考查定积分的求法,意在考查学生对这些知识的理解掌握水平.11.D解析:D 【分析】根据积分公式直接计算即可. 【详解】2200sin cos |cos 2cos0110xdx x πππ=-=-+=-+=⎰.故选:D. 【点睛】本题主要考查积分的计算,要求熟练掌握常见函数的积分公式,属于基础题.12.C解析:C 【解析】依题意得f′(x)=-sin x +2f′π()6 ,所以f′π()6=-sin π()6+2f′π()6,f′π()6=,f′(x)=-sin x +1,因为当x ∈ππ(,)22-时,f′(x)>0,所以f(x)=cos x +x 在ππ(,)22-上是增函数,所以f π3⎛⎫-⎪⎝⎭<f π3⎛⎫⎪⎝⎭,选C. 二、填空题13.ln2【分析】直接根据定积分的计算法则计算即可【详解】故答案为:ln2【点睛】本题考查了定积分的计算关键是求出原函数属于基础题解析:ln 2【分析】直接根据定积分的计算法则计算即可. 【详解】22111|2dx lnx ln x==⎰, 故答案为:ln2. 【点睛】本题考查了定积分的计算,关键是求出原函数,属于基础题.14.【分析】根据定积分的几何意义求得由定积分的计算公式求得再根据定积分的性质即可求解【详解】由定积分的性质可得根据定积分的几何意义可知表示的面积即半径为的一个个圆的面积所以又由所以【点睛】本题主要考查了 解析:2π-【分析】根据定积分的几何意义求得π=⎰,由定积分的计算公式,求得22xdx =⎰,再根据定积分的性质,即可求解.【详解】由定积分的性质可得)22x dx xdx =-⎰⎰⎰,根据定积分的几何意义,可知⎰表示22(2)4(02,0)x y x y -+=<<≥的面积,即半径为2的一个14个圆的面积,所以20124ππ=⨯=⎰,又由222001|22xdx x ==⎰,所以)202x dx π=-⎰,【点睛】本题主要考查了定积分的计算,以及定积分的几何意义的应用,其中熟记定积分的计算和定积分的几何意义是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.15.【分析】根据定积分的几何意义得到积S =(ex +x)dx 由牛顿莱布尼茨公式可得到答案【详解】根据定积分的几何意义得到面积S =(ex +x)dx =故答案为【点睛】这个题目考查了定积分的几何意义以及常见函数解析:12e -【分析】根据定积分的几何意义得到积S =10⎰(e x +x )d x ,由牛顿莱布尼茨公式可得到答案.【详解】根据定积分的几何意义得到,面积S =10⎰(e x +x )d x =210111|1.222xe x e e ⎛⎫+=+-=- ⎪⎝⎭ 故答案为1.2e - 【点睛】这个题目考查了定积分的几何意义,以及常见函数的积分值的求法.16.【分析】根据定积分的几何意义先联立直线与曲线方程求出积分的上下限将面积转化为定积分从而可求出所围成的图形的面积【详解】由曲线与直线构成方程组解得由直线与构成方程组解得;曲线与直线及x 轴所围成的封闭图解析:512【分析】根据定积分的几何意义,先联立直线与曲线方程,求出积分的上下限,将面积转化为定积分11102(21)xdx x dx --⎰⎰,从而可求出所围成的图形的面积.【详解】由曲线y x =21y x =-构成方程组21y x y x ⎧=⎪⎨=-⎪⎩,解得{11x y ==,由直线21y x =-与0y =构成方程组,解得120x y ⎧=⎪⎨⎪=⎩;∴曲线y x =21y x =-及x 轴所围成的封闭图形的面积为:()131212011222215(21)||33412S xdx x dx x x x =--=--=-=⎰⎰. 故答案为512. 【点睛】本题主要考查定积分的几何意义,属于中档题.一般情况下,定积分()baf x dx ⎰的几何意义是介于x 轴、曲线y =()f x 以及直线,x a x b ==之间的曲边梯形面积的代数和 ,其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还是互为相反数;两条曲线之间的面积可以用两曲线差的定积分来求解.17.【解析】分析:判断为偶函数运用导数判断在的单调性则转化为解不等式即可得到的范围详解:∵函数∴当时则;当时则∴即函数为偶函数当时则故函数在上为单调增函数∵∴即∴∴故答案为点睛:本题考查函数的奇偶性和单 解析:[]1,1-【解析】分析:判断()f x 为偶函数,运用导数判断()f x 在[0,)+∞的单调性,则()()()21f a f a f -+≤转化为1a ≤,解不等式即可得到a 的范围.详解:∵函数()()()221,01,0xln x x x f x xln x x x ⎧++≥⎪=⎨--+<⎪⎩∴当0x >时,则0x -<,2()ln(1)()f x x x x f x -=++=; 当0x <时,则0x ->,2()ln(1)()f x x x x f x -=--+=. ∴()()f x f x -=,即函数()f x 为偶函数.当0x ≥时,2()ln(1)f x x x x =++,则()ln(1)201xf x x x x=+++≥+',故函数()f x 在[0,)+∞上为单调增函数. ∵()()()21f a f a f -+≤ ∴2()2(1)f a f ≤,即()(1)f a f ≤. ∴1a ≤ ∴11a -≤≤ 故答案为[]1,1-.点睛:本题考查函数的奇偶性和单调性的应用.在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去f “”,即将函数值的大小转化自变量大小关系18.【解析】分析:先化简再求定积分得解详解:由题得=所以故填点睛:本题必须要先化简再求定积分因为不化简无法找到原函数解析:3ln 22+【解析】分析:先化简2211x dx x +⎰,再求定积分得解. 详解:由题得2211x dx x +⎰=12222111111()(ln )|(ln 22)(ln11)222x dx x x x +=+=+⨯-+⨯⎰. 所以2211x dx x +⎰ 322ln =+. 故填3ln22+. 点睛:本题必须要先化简再求定积分,因为不化简,无法找到原函数.19.【解析】函数表示以为圆心为半径的单位圆位于第一象限的部分则由微积分基本定理可得:则: 解析:24π-【解析】函数()2101y x x =-≤≤表示以()0,0为圆心,1为半径的单位圆位于第一象限的部分,则12014x dx π-=⎰,由微积分基本定理可得:()1210011|22x dx x ⎛⎫-=-=- ⎪⎝⎭⎰,则:()120121424x x dx ππ---=-=⎰. 20.【解析】试题分析:故应填考点:定积分的计算公式及运用 解析:【解析】 试题分析:,故应填.考点:定积分的计算公式及运用.三、解答题21.(1)41639⎛⎫⎪⎝⎭,;(2)()22,.【解析】分析:(1)设点P 的横坐标为t ,得点P 的坐标,利用定积分求解22128,2636t t S S t ==-+,利用12S S ,求得t 的值,即可求得点P 的坐标.(2)由(1)可求当12S S +,化简后,为t 的函数,再利用导数求得12S S +的最小值. 详解:(1)设点P 的横坐标为t (0<t <2),则P 点的坐标为(t ,t 2), 直线OP 的方程为y=tx S 1=∫0t (tx ﹣x 2)dx=,S 2=∫t 2(x 2﹣tx )dx=38t 2t 36-+, 因为S 1=S 2,,所以4t 3=,点P 的坐标为41639⎛⎫⎪⎝⎭, (2)S=S 1+S 2=333t 8t t 82t 2t 63633+-+=-+S ′=t 2﹣2,令S'=0得t 2﹣2=0,因为0<t S'<0t <2时,S'>0所以,当S 1+S 2有最小值,P 点的坐标为).点睛:本题主要考查了定积分的应用及利用导数求解函数的最值问题,着重考查了分析问题和解答问题的能力,以及推理与运算能力.22.(1) 当x=ln2时,f (x )有极小值也是最小值为f (ln2)=2(2﹣ln2);(2)见解析. 【解析】试题分析:(1)对函数求导,列出表格得到导函数在定义域内的正负情况,从而得到函数的最值。

新北师大版高中数学高中数学选修2-2第四章《定积分》检测(答案解析)(3)

新北师大版高中数学高中数学选修2-2第四章《定积分》检测(答案解析)(3)

一、选择题1.设11130,,a xdx b xdx c x dx ===⎰⎰⎰,则,,a b c 的大小关系为( )A .b c a >>B .b a c >>C .a c b >>D .a b c >>2.若连续可导函数()F x 的导函数()()'F x f x =,则称()F x 为()f x 的一个原函数.现给出以下函数()F x 与其导函数()f x :①()2cos F x x x =+, ()2sin f x x x =-;②()3sin F x x x =+, ()23cos f x x x =+,则以下说法不正确...的是( ) A .奇函数的导函数一定是偶函数 B .偶函数的导函数一定是奇函数 C .奇函数的原函数一定是偶函数 D .偶函数的原函数一定是奇函数3.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 4.设函数()f x 是R 上的奇函数, ()()f x f x π+=-,当02x π≤≤时,()cos 1f x x =-,则22x ππ-≤≤时, ()f x 的图象与x 轴所围成图形的面积为( )A .48π-B .24π-C .2π-D .36π-5.设()2012a x dx =-⎰,则二项式6212a x x ⎛⎫+ ⎪⎝⎭的常数项是( )A .240B .240-C .60-D .606.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .437.如图,设D 是途中边长分别为1和2的矩形区域,E 是D 内位于函数1(0)y x x=>图象下方的阴影部分区域,则阴影部分E 的面积为( )A .ln 2B .1ln 2-C .2ln 2-D .1ln 2+8.曲线22y x x =-与直线11x x =-=,以及x 轴所围图形的面积为( )A .2B .83C .43D .239.等比数列{}n a 中,39a =,前3项和为3230S x dx =⎰,则公比q 的值是( )A .1B .12-C .1或12-D .1-或12-10.()()122011d x x x ---⎰的值是( )A .π143- B .π14- C .π123- D .π12- 11.已知402cos 2d t x x π=⎰,执行下面的程序框图,如果输入的,2a t b t ==,那么输出的n 的值为( )A .3B .4C .5D .612.已知t >0,若(2x ﹣2)dx=8,则t=( ) A .1B .﹣2C .﹣2或4D .4二、填空题13.02114edx x dx x-+-=⎰⎰______________.14.已知0a >,6x x ⎫-⎪⎭展开式的常数项为15,则(0224a x x x dx -++-=⎰______.15.由曲线2y x=,直线y =2x ,x =2所围成的封闭的图形面积为______.16.由直线2x y +=,曲线2y x =所围成的图形面积是________17.若二项式6 2515xx⎛⎫+⎪⎪⎝⎭的展开式中的常数项为m,则21mx dx=⎰__________.18.曲线()sin0πy x x=≤≤与x轴围成的封闭区域的面积为__________.19.已知()[](]2,0,11,1,x xf xx ex⎧∈⎪=⎨∈⎪⎩(e为自然对数的底数),则()ef x dx=⎰_________.20.设函数2()f x ax b=+(0a≠),若3()3()f x dx f x=⎰,00x>,则0x=__________.三、解答题21.已知函数()lnf x x=(0)x≠,函数⑴当0x≠时,求函数()y g x=的表达式;⑵若0a>,函数()y g x=在(0,)+∞上的最小值是2 ,求a的值;⑶在⑵的条件下,求直线与函数的图象所围成图形的面积.22.设点P在曲线y=x2上,从原点向A(2,4)移动,如果直线OP,曲线y=x2及直线x=2所围成的面积分别记为S1、S2.(1)当S1=S2时,求点P的坐标;(2)当S1+S2有最小值时,求点P的坐标和最小值.23.求曲线y x=,2y x=-,13y x=-所围成图形的面积.24.设点P在曲线2y x上,从原点向(2,4)A移动,如果直线OP,曲线2y x及直线2x=所围成的两个阴影部分的面积分别记为1S,2S,如图所示.(1)当12S S 时,求点P 的坐标;(2)当12S S +有最小值时,求点P 的坐标.25.设是二次函数,方程有两个相等的实根,且()22f x x =+'(1)求()y f x =的表达式;(2)求()y f x =的图像与两坐标轴所围成图形的面积 26.已知()1313d 26x ax a b x a -⎰++-=+,且()()33d tf t x ax a b x ⎰=++-为偶函数,求a ,b .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】根据微积分定理,3120022|33a xdx x ⎛⎫=== ⎪⎝⎭,1210011|22b xdx x ⎛⎫=== ⎪⎝⎭⎰,13410011|44c x dx x ⎛⎫=== ⎪⎝⎭⎰,所以a b c >>,故选择D 。

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测题(答案解析)

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测题(答案解析)

一、选择题1.给出以下命题: (1)若()0haf x dx >⎰,则()0f x >;(2)20|sin |4x dx π=⎰;(3)()f x 的原函数为()F x ,且()F x 是以T 为周期的函数,则:()()aa TTf x dx f x dx +=⎰⎰其中正确命题的个数为( ). A .1 B .2C .3D .42.设113a x dx -=⎰,1121b x dx =-⎰,130c x dx =⎰则a ,b ,c 的大小关系( )A .a>b>cB .b>a>cC .a>c>bD .b>c>a3.若函数()32nxf x x x =++在点()1,6M 处切线的斜率为33ln3+,则n 的值是( ) A .1 B .2 C .4 D .34.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 5.设若20lg ,0()3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,((1))1f f =,则a 的值是( ) A .-1 B .2 C .1 D .-26.定积分220[4(2)]x x dx ---⎰的值为( )A .24π- B .2π- C .22π- D .48π-7.如图,设D 是途中边长分别为1和2的矩形区域,E 是D 内位于函数1(0)y x x=>图象下方的阴影部分区域,则阴影部分E 的面积为( )A .ln 2B .1ln 2-C .2ln 2-D .1ln 2+8.11)x dx -=⎰( )A .1π+B .1π-C .πD .2π 9.使函数()322912f x x x x a =-+-图象与x 轴恰有两个不同的交点,则实数a 可能的取值为( ) A .8B .6C .4D .210.曲线()sin 0πy x x =≤≤与直线12y =围成的封闭图形的面积是 AB.2C .π23-Dπ311.已知11em dx x=⎰,函数()f x 的导数()()()f x a x m x a '=++,若()f x 在x a =-处取得极大值,则a 的取值范围是( ) A .1a < B .10a -<< C .1a >或0a <D .01a <<或0a <12.若函数f (x )=cos x +2xf ′π()6,则f π()3-与f π()3的大小关系是( ) A .f π()3-=f π()3B .f π()3->f π()3 C .f π()3-<f π()3D .不确定二、填空题13.已知12ea dx x=⎰,则()()41x x a ++展开式中3x 的系数为______. 14.计算)20x dx ⎰=_____.15.由曲线x y e x =+与直线0,1,0x x y ===所围成图形的面积等于________.16.已知()[](]2,0,11,1,x x f x x e x⎧∈⎪=⎨∈⎪⎩(e 为自然对数的底数),则()e 0f x dx =⎰_________.17.222(sin x x dx -+⎰=______.18.已知等差数列{}n a 中, 225701a a x dx +=-⎰,则468a a a ++=__________.19.若定义在R 上的函数()f x 对任意两个不等的实数12,x x 都有()()()()11221221x f x x f x x f x x f x +>+,则称函数()f x 为“z 函数”.给出下列四个定义在()0,+∞的函数:①31y x =-+;②2sinx-cosx y x =+;③,0{0,0ln x x y x ≠==;④224,0{,0x x x y x x x +≥=-+<,其中“z 函数”对应的序号为__________.20.从如图所示的正方形OABC 区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为__.三、解答题21.已知函数1ln(1)()x f x x++=(1)求函数的定义域;(2)判定函数()f x 在(1,0)-的单调性,并证明你的结论; (3)若当0x >时,()1kf x x >+恒成立,求正整数k 的最大值. 22.已知321()2f x x x ax =+-. (Ⅰ)当4a =时,求()f x 的极值;(Ⅱ)若()f x 在()1,3上不单调,求实数a 的取值范围. 23.已知2()2ln ,(0,]f x ax x x e =-∈ 其中e 是自然对数的底 . (1)若()f x 在1x = 处取得极值,求a 的值; (2)求()f x 的单调区间;24.已知函数()xe f x x=.(1)若曲线()y f x =与直线y kx =相切于点P ,求点P 的坐标; (2)当a e ≤时,证明:当()0,x ∈+∞时,()()ln f x a x x ≥-. 25.已知()xkx bf x e+=. (Ⅰ)若()f x 在0x =处的切线方程为1y x =+,求k 与b 的值; (Ⅱ)求1x xdx e ⎰. 26.已知函数()121f x x x a =+--+ (1)当0a =时,解不等式()0f x ≥;(2)若二次函数2814y x x =-+-的图象在函数()y f x = 的图象下方,求a 的取值范围·【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】(1)根据微积分基本定理,得出()()()0haf x dx F h F a =->⎰,可以看到与()f x 正负无关.(2)注意到sin x 在[]0,2π的取值符号不同,根据微积分基本运算性质,化为220|sin ||sin ||sin |x dx x dx x dx ππππ=+⎰⎰⎰求解判断即可.(3)根据微积分基本定理,两边分别求解,再结合()()F a T F a +=,()()0F T F =判定. 【详解】 (1)由()()()0haf x dx F h F a =->⎰,得()()F h F a >,未必()0f x >.(1)错误.(2)()22200|sin ||sin ||sin |sin sin x dx x dx x dx xdx x dx πππππππ=+=+-⎰⎰⎰⎰⎰()()20cos |cos |11114x x πππ=-+=--+--=,(2)正确.(3)()()0()0af x dx F a F =-⎰,()()()()()0a TTf x dx F a T F T F a F +=+-=-⎰;故()()aa T Tf x dx f x dx +=⎰⎰;(3)正确.所以正确命题的个数为2, 故选:B. 【点睛】本题主要考查了命题真假的判定与定积分的计算,属于中档题.2.A解析:A 【解析】借助定积分的计算公式可算得1121330033|22a x dx x -===⎰,1131220022111|1333b x dx x =-=-=-=⎰,13410011|44c x dx x ===⎰,所以a b c >>,应选答案3.A解析:A【解析】由题意,得()13ln32n x f x nx-=++', ()13ln3233ln3f n =++=+',所以1n =;故选A.4.B解析:B【解析】求导函数,可得()1'220f x mx x x=+->,,函数()2ln 2f x mx x x =+-在定义域内是增函数,所以()'0f x < 成立,即1220(0)mx x x+-<>恒成立,所以21211m x ⎛⎫->-- ⎪⎝⎭,所以21m ->-,所以12m < 时,函数()f x 在定义域内是增函数.故选B .5.C解析:C 【详解】233003|aat dt t a ==⎰,33(1)lg10,(0),1, 1.f f a a a ===∴==故选:C6.B解析:B 【解析】试题分析:由定积分的几何意义有2204(2)x dx --⎰表示的是以(2,0)为圆心,半径为2的圆的14部分,而20xdx ⎰表示的是直线y x =,0,2,x x x ==轴所围成的面积,故220[4(2)]x x dx ---⎰表示的图形如下图的阴影部分,面积为221122242ππ⨯-⨯=-.故选B.考点:1.定积分的几何意义;2.方程的化简.解析:D 【解析】试题分析:由题意,阴影部分E 由两部分组成,因为函数1(0),y x x=>当2y =时,1,2x =所以阴影部分E 的面积为1111221121ln |1ln 2,2dx x x ⨯+=+=+⎰故选D . 考点:利用定积分在曲边形的面积.8.D解析:D 【解析】因1112111111]|2x dx x ----=+=⎰,故设sin ,[,]22x ππθθ=∈-,则12221221cos 21cos sin cos (2)2sin 2|442d d d ππππππππθπθθθθθπθ-----+====⨯+=⎰⎰⎰,应选答案D 。

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测(含答案解析)(1)

最新北师大版高中数学高中数学选修2-2第四章《定积分》检测(含答案解析)(1)

一、选择题1.222024xdx x dx +-=⎰⎰( )A .2π B .12π+ C .4π D .π2.已知()22214a x ex dx π-=--⎰,若()201620121ax b b x b x -=++ 20162016b x ++(x R ∈),则12222b b + 201620162b ++的值为( ) A .1-B .0C .1D .e3.若连续可导函数()F x 的导函数()()'F x f x =,则称()F x 为()f x 的一个原函数.现给出以下函数()F x 与其导函数()f x :①()2cos F x x x =+, ()2sin f x x x =-;②()3sin F x x x =+, ()23cos f x x x =+,则以下说法不正确...的是( ) A .奇函数的导函数一定是偶函数 B .偶函数的导函数一定是奇函数 C .奇函数的原函数一定是偶函数 D .偶函数的原函数一定是奇函数4.已知1a xdx =⎰, 12b x dx =⎰, 1c xdx =⎰,则a , b , c 的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .c a b <<5.若正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心)的侧棱长为3,侧面与底面所成的角是45︒,则该正四棱锥的体积是( ) A .23B .43C .223D .4236.已知二次函数()y f x =的图象如图所示,则它与x 轴所围图形的面积为:A .2π5B .32C .43D .π27.设若20lg ,0()3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,((1))1f f =,则a 的值是( ) A .-1 B .2 C .1 D .-28.曲线x y e =,x y e -=和直线1x =围成的图形面积是( ) A .1e e --B .1e e -+C .12e e ---D .12e e -+-9.函数()2,02x x f x x -<⎧⎪=≤≤,则22()f x dx -⎰的值为( )A .6π+B .2π-C .2πD .810.函数0()(4)xf x t t dt =-⎰在[1,5]-上( )A .有最大值0,无最小值B .有最大值0,最小值323-C .最小值323-,无最大值 D .既无最大值,也无最小值11.10)x dx ⎰=( ) A .22π+B .12π+ C .122π-D .142π- 12.由曲线4y x =,1y x=,2x =围成的封闭图形的面积为( ) A .172ln 22- B .152ln 22- C .15+2ln 22D .17+2ln 22二、填空题13.232(x dx -=⎰___________14.定积分211dx x⎰的值等于________. 15.质点运动的速度()2183/v t t m s =-,则质点由开始运动到停止运动所走过的路程是______.16.1321(tan sin )x x x x dx -++⎰的值为______________________17.曲线2yx 与直线2y x =所围成的封闭图形的面积为_______________.18.已知()[](]21,11,1,2x f x x x ∈-=-∈⎪⎩,则()21f x dx -=⎰______. 19.定积分2sin cos t tdt π=⎰________.20.曲线2y x和曲线y =________.三、解答题21.为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c (单位:万元)与隔热层厚度x (单位:cm )满足关系()(010)25kc x x x =≤≤+,若不建隔热层,每年能源消耗为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小?并求最小值.22.某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y (分钟)与车辆进入该路段的时刻t 之间的关系可近似地用如下函数给出:3221362936,69844159{,91084366345,1012t t t t y t t t t t --+-≤<=+≤≤-+-<≤ 求从上午6点到中午12点,通过该路段用时最多的时刻. 23.计算下列各式的值. (1) ()0sin cos d x x x π-⎰;(2)2132d x x x +-⎰.24.求曲线6y x =-和8y x =y =0围成图形的面积. 25.已知函数()sin cos ,f x x x a x =+且()f x 在3x π=处的切线的斜率为6π. (1)求a 的值,并讨论()f x 在,22ππ⎡⎤-⎢⎥⎣⎦上的单调性; (2)设1()ln(1),0,01x g x mx x m x -=++≥>+,若对任意[)10,x ∈+∞,总存在20,2x π⎡⎤∈⎢⎥⎣⎦,使得12()()g x f x ≥成立,求m 的取值范围.26.如图,阴影部分区域是由函数cos y x =图象,直线1,y x π==围成,求这阴影部分区域面积。

(常考题)北师大版高中数学高中数学选修2-2第四章《定积分》检测(含答案解析)(1)

(常考题)北师大版高中数学高中数学选修2-2第四章《定积分》检测(含答案解析)(1)

一、选择题1.直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为( )A.B.C .2D .42.已知是i 虚数单位,复数()1a i z a R i -=∈-,若01||(sin )z x dx ππ=-⎰,则a =( )A .±1B .1C .1-D .12±3.曲线y =sin x ,y =cos x 与直线x =0,x =2π所围成的平面区域的面积为( ) A .π20⎰(sin x -cos x )d xB .2π40⎰(sin x -cos x )d xC .π20⎰(cos x -sin x )d xD .2π40⎰(cos x -sin x )d x4.设1130,,a b xdx c x dx ===⎰⎰,则,,a b c 的大小关系为( )A .b c a >>B .b a c >>C .a c b >>D .a b c >>5.已知)221a ex dx π-=⎰,若()201620121ax b b x b x -=++ 20162016b x ++(x R ∈),则12222b b + 201620162b ++的值为( ) A .1-B .0C .1D .e6.若函数()32nxf x x x =++在点()1,6M 处切线的斜率为33ln3+,则n 的值是( ) A .1 B .2 C .4 D .37.若连续可导函数()F x 的导函数()()'F x f x =,则称()F x 为()f x 的一个原函数.现给出以下函数()F x 与其导函数()f x :①()2cos F x x x =+, ()2sin f x x x =-;②()3sin F x x x =+, ()23cos f x x x =+,则以下说法不正确...的是( ) A .奇函数的导函数一定是偶函数 B .偶函数的导函数一定是奇函数 C .奇函数的原函数一定是偶函数 D .偶函数的原函数一定是奇函数 8.由直线,1y x y x ==-+,及x轴所围成平面图形的面积为 ( ) A .()101y y dy ⎡⎤--⎣⎦⎰B .()1201x x dx ⎡⎤-+-⎣⎦⎰C .()121y y dy ⎡⎤--⎣⎦⎰D .()101x x dx ⎡⎤--+⎣⎦⎰9.设曲线e xy x =-及直线0y =所围成的封闭图形为区域D ,不等式组1102x y -≤≤⎧⎨≤≤⎩所确定的区域为E ,在区域E 内随机取一点,则该点落在区域D 内的概率为A .2e 2e 14e --B .2e 2e 4e -C .2e e 14e --D .2e 14e-10.20ln 1()231mx x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,,,且()()10f f e =,则m 的值为( ) A .1B .2C .1-D .2-11.由直线0,,2y x e y x ===及曲线2y x=所围成的封闭图形的面积为( ) A .3B .32ln 2+C .223e -D .e12.已知125113,log ,log 3,a a x dx m a n p a-====⎰,则 ( ) A .m n p << B .m p n <<C .p m n <<D .p n m <<二、填空题13.已知曲线与直线所围图形的面积______.14.由曲线2y x=与直线1y =x -及1x =所围成的封闭图形的面积为__________. 15.曲线2yx x 和2y x x 所围成的封闭图形的面积是_______.16.计算:23lim 123n n nn→+∞-=++++________17.已知曲线y x =2y x =-,与x 轴所围成的图形的面积为S ,则S =__________.18.已知函数()xxf x e =,在下列命题中,其中正确命题的序号是_________. (1)曲线()y f x =必存在一条与x 轴平行的切线; (2)函数()y f x =有且仅有一个极大值,没有极小值;(3)若方程()0f x a -=有两个不同的实根,则a 的取值范围是1()e-∞,; (4)对任意的x ∈R ,不等式1()2f x <恒成立; (5)若1(0,]2a e∈,则12,x x R +∃∈,可以使不等式()f x a ≥的解集恰为12[,]x x ; 19.)12111x dx --=⎰__________.20.计算()2224x x dx -+-⎰得__________.三、解答题21.已知函数()ln 3mf x x x x=++. (1)求函数()f x 的单调区间;(2)若对任意的[]0,2m ∈,不等式()()1f x k x ≤+,对[]1,x e ∈恒成立,求实数k 的取值范围.22.某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y (分钟)与车辆进入该路段的时刻t 之间的关系可近似地用如下函数给出:3221362936,69844159{,91084366345,1012t t t t y t t t t t --+-≤<=+≤≤-+-<≤ 求从上午6点到中午12点,通过该路段用时最多的时刻. 23.(2015秋•钦州校级期末)求曲线y=sinx 与直线,,y=0所围成的平面图形的面积. 24.计算下列定积分. (1)1211e dx x +-⎰; (2)342x dx -+⎰.25.计算下列定积分 (1) ()12xx e dx +⎰(2)2442cos tan 2x x dx ππ-⎛⎫+ ⎪⎝⎭⎰ (3)214x dx --26.计算由直线4,y x =-曲线2y x =x 轴所围图形的面积S 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阶段质量检测(四) 定积分(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知⎠⎛a b f (x )d x =m ,则⎠⎛a bnf (x )d x =( )A .m +nB .m -nC .mnD .m n解析:选C 根据定积分的性质,⎠⎛a bnf (x )d x =n ⎠⎛a bf (x )d x =mn .2. ⎠⎛01(e x+2x )d x 等于( )A .1B .e -1C .eD .e +1解析:选C ⎠⎛01(e x+2x )d x =(e x+x 2)⎪⎪⎪1=(e 1+1)-e 0=e ,故选C.3.若⎠⎛0k(2x -3x 2)d x =0,则k 等于( )A .0B .1C .0或1D .不确定解析:选B ⎠⎛0k(2x -3x 2)d x =(x 2-x 3)⎪⎪⎪k=k 2-k 3=0,∴k =0(舍去)或k =1,故选B.4.如图所示,图中曲线方程为y =x 2-1,用定积分表示围成封闭图形(阴影部分)的面积是( )A.⎠⎛02(x 2-1)d x B.⎠⎛01(x 2-1)d x C.⎠⎛02|x 2-1|d xD.⎠⎛01(x 2-1)d x +⎠⎛12(x 2-1)d x解析:选C 由定积分的几何意义和性质可得:图中围成封闭图形(阴影部分)的面积S=⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎠⎛02|x 2-1|d x ,故选C.5.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B ∵f (x )=x 2+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =⎝ ⎛⎭⎪⎫13x 3+2x ⎠⎛01f xx ⎪⎪⎪1=13+2⎠⎛01f (x )d x . ∴⎠⎛01f (x )d x =-13.6.已知f (x )为偶函数且⎠⎛06f (x )d x =8,则⎠⎛-66f (x )d x =( )A .0B .4C .8D .16解析:选D ∵f (x )为偶函数,∴其图像关于y 轴对称,∴⎠⎛-66f (x )d x =2⎠⎛06f (x )d x =16.7.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为( ) A.12 B.13 C.14D.15解析:选B 根据题意得S 阴影=⎠⎛013x 2d x =x 3⎪⎪⎪1=1,则点M 取自阴影部分的概率为S 阴影S 长方形=13×1=13. 8.若⎠⎜⎛0π2 (sin x +a cos x )d x =2,则实数a 等于( )A .-1B .1C .- 3D. 3解析:选B ∵⎠⎜⎛0π2 (sin x +a cos x )d x =2,∴⎠⎜⎛0π2 (sin x +a cos x )d x =⎠⎜⎛0π2sin x d x +a ⎠⎜⎛0π2cos x d x =(-cos x ) ⎪⎪⎪⎪π2+(a sinx ) ⎪⎪⎪⎪π20=0-(-1)+a =2,∴a =1.9.由y =-x 2与直线y =2x -3围成的图形的面积是( ) A.53 B.323C.643D .9解析:选B 解⎩⎪⎨⎪⎧y =-x 2,y =2x -3,得交点A (-3,-9),B (1,-1).则y =-x 2与直线y =2x -3围成的图形的面积S =⎠⎛-31(-x 2)d x -⎠⎛-31(2x -3)d x=-13x 3⎪⎪⎪1-3-(x 2-3x ) ⎪⎪⎪1-3=323. 10.由曲线y =x ,x =4和x 轴所围成的平面图形绕x 轴旋转生成的旋转体的体积为( )A .16πB .32πC .8πD .4π解析:选C 由图知旋转体的体积为π⎠⎛04(x )2d x =π2x 2⎪⎪⎪4=8π.11.已知自由落体运动的速率v =gt ,则落体运动从t =0到t =t 0所走的路程为( ) A .gt 20B.gt 203 C.gt 202D.gt 206解析:选C s =⎠⎛0t 0v (t )d t =12gt 2⎪⎪⎪t 00=12gt 20. 12.如图,两曲线y =3-x 2与y =x 2-2x -1所围成的图形面积是( ) A .6 B .9 C .12D .3解析:选B 由⎩⎪⎨⎪⎧y =3-x 2,y =x 2-2x -1,解得交点(-1,2),(2,-1),所以S =⎠⎛-1 2[(3-x 2)-(x 2-2x -1)]d x =⎠⎛-1 2(-2x 2+2x +4)d x=⎝ ⎛⎭⎪⎫-23x 3+x 2+4x ⎪⎪⎪2-1=9.二、填空题(本大题共4小题,每小题5分,共20分.请把正确的答案填在题中的横线上)13. ⎠⎜⎛0 π3 cos x d x =________.解析:⎠⎜⎛0π3cos x d x =sin x ⎪⎪⎪⎪π3=32. 答案:3214.设函数f (x )=ax 2+c (a ≠0),若⎠⎛0 1f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________. 解析:⎠⎛0 1f (x )d x =⎠⎛01(ax 2+c )d x =⎝ ⎛⎭⎪⎫13ax 3+cx ⎪⎪⎪1=a 3+c =ax 20+c ,则x 0=33. 答案:3315.有一横截面面积为4 cm 2的水管控制往外流水,打开水管后t s 末的流速为v (t )=6t -t 2(单位:cm/s)(0≤t ≤6).则t =0到t =6这段时间内流出的水量为________cm 3.解析:由题意可得t =0到t =6这段时间内流出的水量V =⎠⎛064(6t -t 2)d t =4⎠⎛06(6t -t 2)d t =4⎝⎛⎭⎪⎫3t 2-13t 3⎪⎪⎪60=144(cm 3).答案:14416.已知函数y =f (x )的图像是折线段ABC ,其中A (0,0),B ⎝ ⎛⎭⎪⎫12,5,C (1,0).函数y=xf (x )(0≤x ≤1)的图像与x 轴围成的图形的面积为________.解析:由题意可得f (x )=⎩⎪⎨⎪⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎪⎨⎪⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1.与x 轴围成的图形的面积为⎠⎜⎛01210x 2d x +⎠⎜⎛121 (10x -10x 2)d x =103x 3⎪⎪⎪⎪120+⎝⎛⎭⎪⎫5x 2-103x 3⎪⎪⎪⎪112=54. 答案:54三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知f (x )=⎠⎛-a x (12t +4a )d t ,F (a )=⎠⎛01[f (x )+3a 2]d x ,求函数F (a )的最小值.解:∵f (x )=⎠⎛-a x(12t +4a )d t =(6t 2+4at ) ⎪⎪⎪x-a=6x 2+4ax -(6a 2-4a 2)=6x 2+4ax -2a 2,∵F (a )=⎠⎛01[f (x )+3a 2]d x =⎠⎛01(6x 2+4ax +a 2)d x=(2x 3+2ax 2+a 2x ) ⎪⎪⎪1=a 2+2a +2=(a +1)2+1≥1,∴当a =-1时,F (a )最小值=1.18.(本小题满分12分)求由曲线y =x 2+2与直线y =3x ,x =0,x =2所围成的平面图形的面积.解:S =⎠⎛01(x 2+2-3x )d x +⎠⎛12(3x -x 2-2)d x=⎝ ⎛⎭⎪⎫13x 3-32x 2+2x ⎪⎪⎪1+⎝ ⎛⎭⎪⎫-13x 3+32x 2-2x ⎪⎪⎪21=⎝ ⎛⎭⎪⎫13-32+2+⎝ ⎛⎭⎪⎫-13×8+32×4-4-⎝ ⎛⎭⎪⎫-13+32-2=56-23+56=53-23=1. 19.(本小题满分12分)如图,求由曲线y =-x 2,4y =-x 2及直线y =-1所围图形的面积.解:由图形的对称性知,所求图形面积为位于y 轴右侧图形面积的2倍.法一:由⎩⎪⎨⎪⎧y =-x 2,y =-1,得C (1,-1).同理得D (2,-1).则所求图形的面积S =2⎩⎨⎧⎭⎬⎫⎠⎛01⎣⎢⎡⎦⎥⎤-x24--x2d x +⎠⎛12⎣⎢⎡⎦⎥⎤-x 24--d x =2⎝ ⎛⎭⎪⎫⎠⎛013x 24d x -⎠⎛12x 24d x +⎠⎛12d x ) =2⎝ ⎛⎭⎪⎫x 34⎪⎪⎪ 1-x 312⎪⎪⎪21+x ⎪⎪⎪21=43. 法二:同法一得C (1,-1),D (2,-1).则所求图形的面积为S =2⎠⎛-10(2-y --y )d y =2⎠⎛-1-y d y =2×⎝ ⎛⎭⎪⎫-23×(-y )⎪⎪⎪-1=43. 20.(本小题满分12分)如图所示,抛物线y =12x 2将圆面x 2+y 2≤8分成两部分,现在向圆面上均匀投点,这些点落在图中阴影部分的概率为14+16π,求⎠⎛02⎝⎛⎭⎪⎫8-x 2-12x 2d x 的值. 解:解方程组⎩⎪⎨⎪⎧x 2+y 2=8,y =12x 2,得x =±2.∴阴影部分的面积为⎠⎛-22⎝ ⎛⎭⎪⎫8-x 2-12x 2d x .∵圆的面积为8π,∴由几何概型可得阴影部分的面积是 8π·⎝ ⎛⎭⎪⎫14+16π=2π+43.由定积分的几何意义得⎠⎛02⎝ ⎛⎭⎪⎫8-x 2-12x 2d x=12⎠⎛-22⎝⎛⎭⎪⎫8-x 2-12x 2d x =π+23.21.(本小题满分12分)已知函数f (x )=e x -1,直线l 1:x =1,l 2:y =e t-1(t 为常数,且0≤t ≤1),直线l 1,l 2与函数f (x )的图像围成的封闭图形,以及直线l 2,y 轴与函数f (x )的图像围成的封闭图形如图中阴影部分所示.求当t 变化时,阴影部分的面积的最小值.解:依题意知,阴影部分的面积S =⎠⎛0t (e t -1-e x +1)d x +⎠⎛t 1(e x-1-e t +1)d x =⎠⎛0t(e t -e x )d x +⎠⎛t 1(e x -e t )d x =(x e t -e x )⎪⎪⎪t+(e x -x e t )⎪⎪⎪1t=(2t -3)e t +e +1,令g (t )=(2t -3)e t+e +1(0≤t ≤1), 则g ′(t )=(2t -1)e t , 取g ′(t )=0,解得t =12.当t ∈⎣⎢⎡⎭⎪⎫0,12时,g ′(t )<0,g (t )是减函数; 当t ∈⎝ ⎛⎦⎥⎤12,1时,g ′(t )>0,g (t )是增函数. 因此g (t )的最小值为g ⎝ ⎛⎭⎪⎫12=e +1-2e =(e -1)2,故阴影部分的面积的最小值为(e -1)2.22.(本小题满分12分)已知函数f (x )=13x 3+12ax 2+bx ,f ′(x )是函数f (x )的导数.在区间[-1,1]内任取实数a ,b ,求方程f ′(x )=0有实数根的概率.解:f ′(x )=x 2+ax +b .若方程f ′(x )=0,即x 2+ax +b =0有实数根,则Δ≥0,即a 2≥4b , 因此方程f ′(x )=0有实数根的条件是⎩⎪⎨⎪⎧-1≤a ≤1,-1≤b ≤1,a 2≥4b ,满足此不等式组的点P (a ,b )形成的图形为图中阴影部分,其面积为S 1=⎠⎛-11⎣⎢⎡⎦⎥⎤a 24--1d a=⎠⎛-11⎝ ⎛⎭⎪⎫a 24+1d a =a 312⎪⎪⎪1-1+2=136.而坐标满足条件-1≤a ≤1,-1≤b ≤1的点形成的图形的面积S =4,根据几何概型的概率公式可知,方程f ′(x )=0有实数根的概率为P =S 1S =1324.。

相关文档
最新文档