浦东高中一对一培训 高中物理 万有引力 天体的运动考题解析
高考物理一轮复习专题4.4万有引力定律与天体运动(精讲)(解析版)
专题万有引力定律与天体运动1.掌握万有引力定律的内容,并可以用万有引力定律求解有关问题。
2.理解第一宇宙速的意义。
3.认识第二宇宙速度和第三宇宙速度。
知识点一开普勒行星运动定律的应用定律内容图示或公式开普勒第一全部行星绕太阳运动的轨道都是椭圆,太定律 (轨道定律 )阳处在椭圆的一个焦点上开普勒第二对随意一个行星来说,它与太阳的连线在定律 (面积定律 )相等的时间内扫过的面积相等开普勒第三全部行星的轨道的半长轴的三次方跟它a3T2= k,k 是一个与行星没关的常量定律 (周期定律 )的公转周期的二次方的比值都相等知识点二万有引力定律的理解及应用1.内容(1)自然界中任何两个物体都互相吸引。
(2)引力的方向在它们的连线上。
(3)引力的大小与物体的质量m1和m2的乘积成正比、与它们之间距离r 的二次方成反比。
2.表达式m1m2F=G r 2,此中G 为引力常量,G= 6.67 ×10-11 N ·m2/kg 2,由卡文迪许扭秤实验测定。
3.合用条件(1)两个质点之间的互相作用。
(2)对证量散布平均的球体,r 为两球心间的距离。
知识点三、宇宙速度1.三个宇宙速度第一宇宙速度1v = 7.9 km/s ,是人造卫星在地面邻近绕地球做匀速圆周运动的(环绕速度 ) 速度第二宇宙速度(离开速度 ) v 2= 11.2 km/s ,是物体摆脱地球引力约束的最小发射速度第三宇宙速度(逃逸速度 )v 3= 16.7 km/s ,是物体摆脱太阳引力约束的最小发射速度2.第一宇宙速度的理解:人造卫星的最大环绕速度,也是人造卫星的最小发射速度。
3.第一宇宙速度的计算方法Mmv 2GM (1) 由 G R 2=m R 得 v =R.v 2(2) 由 mg = m R 得 v = gR.知识点四、经典时空观和相对论时空观1.经典时空观(1)在经典力学中,物体的质量是不随运动状态而改变的。
(2)在经典力学中,同一物理过程发生的位移和对应时间的丈量结果在不一样的参照系中是相同的。
高中物理万有引力与天体运动专题讲解
物理总复习:万有引力定律在天体运动中的应用考点一、应用万有引力定律分析天体的运动1、基本方法把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供.公式为 2222224(2)Mm v F G m m r mr m f r r r Tπωπ===== 解决问题时可根据情况选择公式分析、计算。
2、黄金代换式 2GM gR =要点诠释:在地球表面的物体所受重力和地球对该物体的万有引力差别很小,在一般讨论和计算时,可以认为2Mm G mg R=,且有2GM gR =。
在应用万有引力定律分析天体运动问题时,常把天体的运动近似看成是做匀速圆周运动,其所需要的向心力由万有引力提供,我们便可以应用变换式2GM gR =来分析讨论天体的运动。
如分析第一宇宙速度:22Mm v G m r r =,v == ,r R =,代入后得v =【典型例题】类型一、比较分析卫星运行的轨道参量问题例1、(2015 重庆卷)宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。
若飞船质量为,距地面高度为,地球质量为,半径为,引力常量为,则飞船所在处的重力加速度大小为 A. 0 B. 2GM R h +() C. 2GMm R h +() D. 2GM h【解析】对飞船受力分析知,所受到的万有引力提供匀速圆周运动的向心力,等于飞船所在位置的重力,即2()Mm G mg R h =+,可得飞船的重力加速度为2GM g R h =+(),故选B 。
【变式1】(多选)现有两颗绕地球匀速圆周运动的人造地球卫星A 和B ,它们的轨道半径分别为A r 和B r 。
如果A B r r <,则 ( ) A. 卫星A 的运动周期比卫星B 的运动周期大B. 卫星A 的线速度比卫星B 的线速度大C. 卫星A 的角速度比卫星B 的角速度大D. 卫星A 的加速度比卫星B 的加速度大【答案】BCDm h M R G【解析】由222()Mm G m r r T π=得234r T GMπ=, 轨道半径 r 越大,T 越大。
高中物理高考题解析-认识天体运动-考题及答案
课时分层作业(八)认识天体运动题组一开普勒定律的理解1.某行星绕太阳运行的椭圆轨道如图所示,F1和F2是椭圆轨道的两个焦点,行星在A点的速率比在B点的大,则太阳是位于()A.B B.F1C.A D.F2B[根据开普勒第二定律,对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
行星在近日点速率大于在远日点速率,即A为近日点,B 为远日点,太阳位于F1,故B正确。
]2.开普勒行星运动定律为万有引力定律的发现奠定了基础,根据开普勒定律可知,以下说法中正确的是()A.开普勒定律只适用于行星绕太阳的运动,不适用于卫星绕地球的运动B.若某一人造地球卫星的轨道是椭圆,则地球处在该椭圆的一个焦点上C.开普勒第三定律a3T2=k中的k值,不仅与中心天体有关,还与绕中心天体运动的行星(或卫星)有关D.在探究太阳对行星的引力规律时,得到了开普勒第三定律a3T2=k,它是可以在实验室中得到证明的B[开普勒定律既适用于行星绕太阳的运动,也适用于卫星绕行星的运动,故A错误;根据开普勒第一定律知,人造地球卫星的轨道是椭圆时,地球处在椭圆的一个焦点上,故B正确;开普勒第三定律a3T2=k中的k值只与中心天体有关,与绕中心天体运动的行星(或卫星)无关,故C错误;开普勒第三定律是通过观测到的数据研究归纳出来的,不能在实验室中得到证明,故D错误。
]3.(多选)以下关于开普勒行星运动的公式a3T2=k的理解正确的是()A.k是一个与环绕天体无关的量B.T表示行星运动的自转周期C.T表示行星运动的公转周期D.若地球绕太阳运转轨道的半长轴为a地,周期为T地;月球绕地球运转轨道的半长轴为a月,周期为T月,则a3地T2地=a3月T2月AC[公式a3T2=k中的k与中心天体有关,与环绕天体无关,中心天体不一样时,k值不一样,地球公转的中心天体是太阳,月球公转的中心天体是地球,故A正确,D错误。
T表示行星运动的公转周期,故B错误,C正确。
高二物理万有引力定律试题答案及解析
高二物理万有引力定律试题答案及解析1. 2010年10月1日,我国成功发射了“嫦娥二号”探月卫星,在卫星飞赴月球的过程中,随着它与月球间距离的减小,月球对它的万有引力将()A.变小B.变大C.先变小后变大D.先变大后变小【答案】B【解析】根据万有引力定律,万有引力与物体之间的距离的二次方成反比,故在卫星飞赴月球的过程中,随着它与月球间距离r的减小,月球对它的万有引力F将变大,故B正确,【考点】考查了万有引力定律的应用,在赤道2.假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g的大小为g;地球自转的周期为T,引力常数为G,则地球的密度为A.B.C.D.【答案】B【解析】在两极,引力等于重力,则有:,由此可得地球质量,在赤道处,引力与支持力的合力提供向心力,由牛顿第二定律,则有:,而密度公式,,故B正确,ACD错误。
【考点】万有引力定律及牛顿定律的应用.3.假设地球是一半径为R、质量分布均匀的球体。
一矿井深度为d。
已知质量分布均匀的球壳对壳内物体的引力为零。
矿井底部和地面处的重力加速度大小之比为A.B.C.D.【答案】B【解析】据题意,设地球表面重力加速度为g,则有:,即设矿井底部重力加速度为,则有:,即,经过计算比较,得到:,故选项B正确【考点】本题考查万有引力定律。
4.一个摆长为l1的单摆,在地面上做简谐运动,周期为T1,已知地球质量为M1,半径为R1,另一摆长为l2的单摆,在质量为M2,半径为R2的星球表面做简谐运动,周期为T2,若T1=2T2,l1=4l2,M1=4M2,则地球半径与星球半径之比R1∶R2为()A.2∶1B.2∶3C.1∶2D.3∶2【答案】A【解析】由单摆的周期公式有:,代入已知条件可得,由万有引力定律和牛顿第二定律有,即:,代入数据解得,故只有选项A正确;【考点】万有引力定律及其应用、单摆周期公式5.中国正在实施北斗卫星导航系统建设工作,将相继发射五颗静止轨道卫星和三十颗非静止轨道卫星,到2020年左右,建成覆盖全球的北斗卫星导航系统。
高中物理万有引力与天体运动最全讲义及习题及答案详解.doc
第四节万有引力与天体运动一.万有引力定律1、内容:自然界中任何两个物体都是相互吸引的,引力的方向沿两物体的连线,引力的大小F与这两个物体质量的乘积m1m2成正比,与这两个物体间距离r的平方成反比.2、公式:其中G=6.67×10-11 N·m2/kg2,称为引力常量.3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离.对于均匀的球体,r是两球心间的距离.二.万有引力定律的应用1、行星表面物体的重力:重力近似等于万有引力.⑴表面重力加速度:因则⑵轨道上的重力加速度:因则2、人造卫星⑴万有引力提供向心力:人造卫星绕地球的运动可看成是匀速圆周运动,所需的向心力是地球对它的万有引力提供的,因此解决卫星问题最基本的关系是:⑵同步卫星:地球同步卫星,是相对地面静止的,与地球自转具有相同的周期①周期一定:同步卫星绕地球的运动与地球自转同步,它的运动周期就等于地球自转的周期,T=24 h.②角速度一定:同步卫星绕地球运动的角速度等于地球自转的角速度.③轨道一定:所有同步卫星的轨道必在赤道平面内.④高度一定:所有同步卫星必须位于赤道正上方,且距离地面的高度是一定的(轨道半径都相同,即在同一轨道上运动),其确定的高度约为h=3.6×104 km.⑤环绕速度大小一定:所有同步卫星绕地球运动的线速度的大小是一定的,都是3.08 km/s,环绕方向与地球自转方向相同.3、三种宇宙速度⑴第一宇宙速度:要想发射人造卫星,必须具有足够的速度,发射人造卫星最小的发射速度称为第一宇宙速度,v1=7.9 km/s。
但却是绕地球做匀速圆周运动的各种卫星中的最大环绕速度。
当人造卫星进入地面附近的轨道速度大于7.9 km/s时,它绕地球运行的轨迹就不再是圆形,而是椭圆形.⑵第二宇宙速度:当卫星的速度等于或大于11.2 km/s 时,卫星就会脱离地球的引力不再绕地球运行,成为绕太阳运行的人造行星或飞到其他行星上去,我们把v2=11.2 km/s 称为第二宇宙速度,也称脱离速度。
浦东高中一对一培训 高中物理 万有引力 天体的运动
浦东高中一对一培训 高中物理 恒高教育 万有引力天体的运动
考点一、开普勒行星运动定律
1.开普勒第一定律
所有行星绕太阳运动的轨道都是______,太阳处在椭圆的一个______上。
2.开普勒第二定律
对任意一个行星来说,它和太阳的连线在相等的时间内扫过相等的面积。
3.开普勒第三定律
所有行星的轨道的______________跟它的______________的比值都相等,表达式:__________。
考点二、万有引力定律
1.公式
F =__________,其中
G =__________,叫引力常量。
2.公式适用条件
此公式适用于______间的相互作用。
当两物体间的距离远远大于物体本身的大小时,物体可视为质点。
均匀的球体可视为质点,r 是________间的距离。
一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到______间的距离。
3.基本应用
(1)基本方法:把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由________提供。
(2)基本公式:
G Mm r 2=ma =2
222πv m r mr mr T mv ωω
⎧⎪⎪⎪⎪⎨⎛⎫⎪ ⎪⎪⎝⎭⎪⎪⎩
知识梳理
一、1.椭圆 焦点
3.半长轴的三次方 公转周期的二次方 a 3
T 2=k 二、1.G m 1m 2r 2 6.67×10-11 N·m 2/kg 2 2.质点 两球心 质点
3.(1)万有引力。
高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)及解析
高考物理万有引力定律的应用解题技巧解说及练习题( 含答案 ) 及分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间为 R,己知万有引力常量为G,求:t,又已知该星球的半径(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2因此该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.我国首个月球探测计划“嫦娥工程”将分三个阶段实行,大概用十年左右时间达成,这极大地提升了同学们对月球的关注程度.以下是某同学就相关月球的知识设计的两个问题,请你解答:(1)若已知地球半径为R,地球表面的重力加快度为g,月球绕地球运动的周期为T,且把月球绕地球的运动近似看做是匀速圆周运动.试求出月球绕地球运动的轨道半径.(2)若某位宇航员随登月飞船登岸月球后,在月球某水平表面上方h 高处以速度v0水平抛出一个小球,小球落回到月球表面的水平距离为s.已知月球半径为R 月,万有引力常量为 G.试求出月球的质量M 月.【答案】 (1) rgR 2T 22R 月2h 02 3(2)M 月=42Gs2【分析】此题观察天体运动,万有引力公式的应用,依据自由落体求出月球表面重力加快度再由黄金代换式求解3. 为了探测月球的详尽状况,我国发射了一颗绕月球表面飞翔的科学实验卫星.假定卫星绕月球做圆 周运动,月球绕地球也做圆周运动.已知卫星绕月球运行的周期为面重力加快度为 g ,地球半径为 R0,月心到地心间的距离为r0,引力常量为(1)月球的均匀密度;(2)月球绕地球运行的周期.T0,地球表G ,求:3 2r 0 r 0【答案】( 1)2 (2) TgGT 0R 0【分析】【详解】(1)月球的半径为 R ,月球质量为 M ,卫星质量为 m因为在月球表面飞翔,万有引力供给向心力:G mM=m 4 2RR 2 T 02 得 M =4 2R 3 GT 02且月球的体积V = 4 33 πRM42R 32依据密度的定义式得 = GT 0=3=V43GT 023 R(2)地球质量为M0 ,月球质量为M ,月球绕地球运行周期为T由万有引力供给向心力GM 0M = M 4 2r 2 T 2 r 0依据黄金代换 GM 002 = gR2r 0 r 0得 TgR 04. 为了丈量某行星的质量和半径 ,宇航员记录了登岸舱在该行星表面做圆周运动的周期 T,登岸舱内行星表面着陆后 ,用弹簧测力计称量一个质量为 m 的砝码 ,读数为 F. 已知引力常量为 G.求该行星的半径 R 和质量 M 。
高中物理--万有引力与天体运动--最全讲义及习题及答案详解资料
第四节 万有引力与天体运动[本章要点综述] 1、开普勒行星运动定律第一定律: 。
第二定律: 。
第三定律: 。
即: 2、万有引力定律(1)开普勒对行星运动规律的描述(开普勒定律)为万有引力定律的发现奠定了基础。
(2)万有引力定律公式: (3)万有引力定律适用于一切物体,但用公式计算时,注意有一定的适用条件。
3、万有引力定律在天文学上的应用 (1)基本方法:①把天体的运动看成 运动,其所需向心力由万有引力提供: (写出方程)____________________________ ②在忽略天体自转影响时,天体表面的重力加速度: 。
(写出方程) (2)天体质量,密度的估算测出环绕天体作匀速圆周运动的半径r ,周期为T ,由 (写出方程)得出被环绕天体的质量为 (写出表达式),密度为 (写出表达式),R 为被环绕天体的半径。
当环绕天体在被环绕天体的表面运行时,r =R ,则密度为 (写出表达式)。
(3)环绕天体的绕行线速度,角速度、周期与半径的关系。
①由22Mm v G mr r=得 ∴r 越大,v②由22MmG m r rω=得 ∴r 越大,ω 周期定律开普勒行星运动定律轨道定律面积定律发现万有引力定律 表述G 的测定天体质量的计算发现未知天体 人造卫星、宇宙速度应用万有引力定律③由2224MmG m rr Tπ=得∴r越大,T(4)三种宇宙速度①第一宇宙速度(地面附近的环绕速度):v1=7.9km/s,人造卫星在附近环绕地球作匀速圆周运动的速度。
②第二宇宙速度(地面附近的逃逸速度):v2=11.2km/s,使物体挣脱地球束缚,在附近的最小发射速度。
③第三宇宙速度:v3=16.7km/s,使物体挣脱太阳引力束缚,在附近的最小发射速度。
一.万有引力定律1、内容:自然界中任何两个物体都是相互吸引的,引力的方向沿两物体的连线,引力的大小F与这两个物体质量的乘积m1m2成正比,与这两个物体间距离r的平方成反比.2、公式:其中G=6.67×10-11 N·m2/kg2,称为引力常量.3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r是两球心间的距离.二.万有引力定律的应用1、行星表面物体的重力:重力近似等于万有引力.⑴表面重力加速度:因则⑵轨道上的重力加速度:因则2、人造卫星⑴万有引力提供向心力:人造卫星绕地球的运动可看成是匀速圆周运动,所需的向心力是地球对它的万有引力提供的,因此解决卫星问题最基本的关系是:⑵同步卫星:地球同步卫星,是相对地面静止的,与地球自转具有相同的周期①周期一定:同步卫星绕地球的运动与地球自转同步,它的运动周期就等于地球自转的周期,T=24 h.②角速度一定:同步卫星绕地球运动的角速度等于地球自转的角速度.③轨道一定:所有同步卫星的轨道必在赤道平面内.④高度一定:所有同步卫星必须位于赤道正上方,且距离地面的高度是一定的(轨道半径都相同,即在同一轨道上运动),其确定的高度约为h=3.6×104 km.⑤环绕速度大小一定:所有同步卫星绕地球运动的线速度的大小是一定的,都是3.08 km/s,环绕方向与地球自转方向相同.3、三种宇宙速度⑴第一宇宙速度:要想发射人造卫星,必须具有足够的速度,发射人造卫星最小的发射速度称为第一宇宙速度,v1=7.9 km/s。
上海浦东模范中学东校高中物理必修二第七章《万有引力与宇宙航行》测试(包含答案解析)
一、选择题1.如下图所示,惯性系S 中有一边长为l 的立方体,从相对S 系沿x 方向以接近光速匀速飞行的飞行器上观察该立方体的形状是( )A .B .C .D .2.“木卫二”在离木星表面高h 处绕木星近似做匀速圆周运动,其公转周期为T ,把木星看作一质量分布均匀的球体,木星的半径为R ,万有引力常量为G 。
若有另一卫星绕木星表面附近做匀速圆周运动,则木星的质量和另一卫星的线速度大小分别为( ) A .()3222R h GT π+ 32()R h T R π+ B .()3222R h GT π+ 34()3R h T R π+ C .()3224R h GT π+ 32()R h T R π+ D .()3224R h GT π+ 34()3R h T R π+ 3.一项最新的研究发现,在我们所在星系中央隆起处,多数恒星形成于100亿多年前的一次恒星诞生爆发期。
若最新发现的某恒星自转周期为T ,星体为质量均匀分布的球体,万有引力常量为G ,则以周期T 稳定自转的星体的密度最小值约为( )A .23GT πB .24GT πC .26GT πD .28GT π 4.如图所示,一颗人造卫星原来在椭圆轨道1绕地球E 运行,在P 点变轨后进入轨道2做匀速圆周运动。
下列说法正确的是( )A .不论在轨道1还是轨道2运行,卫星在P 点的速度都相同B.不论在轨道1还是轨道2运行,卫星在P点的加速度都相同C.卫星在轨道1的任何位置都具有相同的加速度D.卫星在轨道2的任何位置都具有相同的速度5.如图所示的三个人造地球卫星,则说法正确的是()A.卫星可能的轨道为a、b、cB.卫星可能的轨道为a、cC.同步卫星可能的轨道为a、cD.同步卫星可能的轨道为a、b6.1789年英国物理学家卡文迪许测出引力常量G,因此卡文迪许被人们称为“能称出地球质量的人”。
若已知引力常量为G,地球表面处的重力加速度为g,地球半径为R,地球上一个昼夜的时间为1T(地球自转周期),一年的时间为2T(地球公转周期),地球中心到月球中心的距离为1L,地球中心到太阳中心的距离为2L。
高中物理万有引力定律的应用解题技巧讲解及练习题(含答案)
高中物理万有引力定律的应用解题技巧解说及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.天文学家将相距较近、仅在相互的引力作用下运转的两颗恒星称为双星.双星系统在银河系中很广泛.利用双星系统中两颗恒星的运动特点可计算出它们的总质量.已知某双星系统中两颗恒星环绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试计算这个双星系统的总质量.(引力常量为G)【答案】【分析】设两颗恒星的质量分别为m1 、m2,做圆周运动的半径分别为r1、 r2,角速度分别为w ,w.依据题意有12w1=w2①(1 分)r +r =r ②( 1 分)12依据万有引力定律和牛顿定律,有G③( 3分)G④(3分)联立以上各式解得⑤(2分)依据解速度与周期的关系知⑥(2分)联立③⑤⑥式解得(3 分)本题考察天体运动中的双星问题,两星球间的互相作使劲供给向心力,周期和角速度同样,由万有引力供给向心力列式求解2.我国发射的“嫦娥一号”探月卫星沿近似于圆形的轨道绕月飞翔.为了获取月球表面全貌的信息,让卫星轨道平面迟缓变化.卫星将获取的信息连续用微波信号发回地球.设地球和月球的质量分别为M 和m,地球和月球的半径分别为R 和 R1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r 和 r1,月球绕地球转动的周期为T.假定在卫星绕月运转的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球遮挡而不可以抵达地球的时间(用M 、m、 R、 R1、 r、 r1和T 表示,忽视月球绕地球转动对遮挡时间的影).TMr 13R R 1arc cosR 1【答案】 t mr 3arc cosr 1r【分析】【剖析】【详解】如图 ,O 和 O ′分别表示地球和月球的中心 .在卫星轨道平面上 ,A 是地月连心线 OO ′与地月球面 的公切线 ACD 的交点 ,D?C 和 B 分别是该公切线与地球表面 ?月球表面和卫星圆轨道的交点 .依据对称性 ,过 A 点的另一侧作地月球面的公切线 ,交卫星轨道于 E 点 .卫星在上运动时发出的信号被遮挡 .设探月卫星的质量为m 0,万有引力常量为 G,依据万有引力定律有:G Mmm22 r ①r 2Tmm 0 2 2r 1 ②Gm 0r 12T 1式中T1 是探月卫星绕月球转动的周期.由 ①②式得2M r 1 3T 1 ③Tm r设卫星的微波信号被遮挡的时间为 t,则因为卫星绕月做匀速圆周运动,应用t④T 1式,α=∠ CO ′A , β=∠ CO ′B ,由几何关系得rcos α=R-R 1⑤r 1cos β=R 1⑥由③④⑤⑥ 式得tT Mr 13arccosRR 1 arccos R 1mr3rr 13. 假定在半径为 R 的某天体上发射一颗该天体的卫星 ,若这颗卫星在距该天体表面高度为 h 的轨道做匀速圆周运动 ,周期为 T ,已知万有引力常量为 G ,求 : (1)该天体的质量是多少 ? (2)该天体的密度是多少 ?(3)该天体表面的重力加快度是多少?(4)该天体的第一宇宙速度是多少 ?【答案】 (1)4 2 (R h)3;3 (R h) 34 2 (R h)3;4 2 (R h)3GT(2)2R 3; (3)(4)RT 22GT R 2T2【分析】【剖析】( 1)卫星做匀速圆周运动,万有引力供给向心力,依据牛顿第二定律列式求解; ( 2)依据密度的定义求解天体密度;( 3)在天体表面,重力等于万有引力,列式求解;( 4)该天体的第一宇宙速度是近地卫星的环绕速度.【详解】(1)卫星做匀速圆周运动,万有引力供给向心力 ,依据牛顿第二定律有 :Mm2 22 =m(R+h)GT( R h)解得 : M=4 2 (R h)3①GT 2(2)天体的密度 :42(R h)33MGT 2 3 ( R h)ρ= =4=GT 2R 3 .V3R3(3)在天体表面 ,重力等于万有引力 ,故 :Mmmg=GR2②联立①②解得 : g= 4 2 (R h)3③R 2T 2(4)该天体的第一宇宙速度是近地卫星的环绕速度,依据牛顿第二定律,有:mg=mv 2 R④联立③④解得 : v= gR = 4 2( R h)3.RT 2【点睛】本题重点是明确卫星做圆周运动时,万有引力供给向心力,而地面邻近重力又等于万有引力,基础问题.4. 在不久的未来,我国科学家乘坐 “ N ” ( 可以为是平均球体 ),为了研究月 嫦娥 号 飞上月球 球,科学家在月球的 “赤道 ”上以大小为 v 0 的初速度竖直上抛一物体,经过时间 t 1,物体回到抛出点;在月球的 “ ”v 0 的初速度竖直上抛同一物体,经过时间t 2,物 两极 处仍以大小为 体回到抛出点。
高中物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析
高中物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.由三颗星体构成的系统,忽略其他星体对它们的影响,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做角速度相同的圆周运动(图示为A 、B 、C 三颗星体质量不相同时的一般情况)若A 星体的质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力的大小F A ; (2)B 星体所受合力的大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T .【答案】(1)2223Gm a (2)227Gm a (3)74a (4)3πa T Gm= 【解析】 【分析】 【详解】(1)由万有引力定律,A 星体所受B 、C 星体引力大小为24222A B R CA m m m F G G F r a===,则合力大小为223A m F G a=(2)同上,B 星体所受A 、C 星体引力大小分别为2222222A B AB C B CBm m m F G G r am m m F G G r a==== 则合力大小为22cos 602Bx AB CB m F F F G a =︒+=22sin 603By AB m F F G a=︒=.可得22227B BxBym F F F G a=+=(3)通过分析可知,圆心O 在中垂线AD 的中点,2231742C R a a a ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭ (4)三星体运动周期相同,对C 星体,由22227C B C m F F G m R a T π⎛⎫=== ⎪⎝⎭可得22a T Gm π=2.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用3.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。
高中物理万有引力定律的应用专题训练答案及解析
高中物理万有引力定律的应用专题训练答案及解析一、高中物理精讲专题测试万有引力定律的应用1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R t月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+ (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能即:2312Mm Gmv R = 则探测器离开飞船时的速度(相对于地心)至少是:32GMv R=. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.3.石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性变化,其发现者由此获得2010年诺贝尔物理学奖.用石墨烯超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现.科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球之间便捷的物质交换.(1)若“太空电梯”将货物从赤道基站运到距地面高度为h 1的同步轨道站,求轨道站内质量为m 1的货物相对地心运动的动能.设地球自转的角速度为ω,地球半径为R . (2)当电梯仓停在距地面高度h 2=4R 的站点时,求仓内质量m 2=50kg 的人对水平地板的压力大小.取地面附近的重力加速度g=10m/s 2,地球自转的角速度ω=7.3×10-5rad/s ,地球半径R=6.4×103km . 【答案】(1)22111()2m R h ω+;(2)11.5N 【解析】试题分析:(1)因为同步轨道站与地球自转的角速度相等,根据轨道半径求出轨道站的线速度,从而得出轨道站内货物相对地心运动的动能.(2)根据向心加速度的大小,结合牛顿第二定律求出支持力的大小,从而得出人对水平地板的压力大小. 解:(1)因为同步轨道站与地球自转的角速度相等, 则轨道站的线速度v=(R+h 1)ω, 货物相对地心的动能.(2)根据,因为a=,,联立解得N==≈11.5N .根据牛顿第三定律知,人对水平地板的压力为11.5N .4.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T .【答案】(1)02tan v t α;(2)03tan 2v GRt απ;02tanav R t;(4)02tan Rt v α【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R = 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:02tana v R GMv gR R t===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:0022tan αtan t RtT Rv R v ππα==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.5.地球同步卫星,在通讯、导航等方面起到重要作用。
高考物理万有引力定律的应用解题技巧及练习题(含答案)及解析
高考物理万有引力定律的应用解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.假设在半径为R 的某天体上发射一颗该天体的卫星,若这颗卫星在距该天体表面高度为h 的轨道做匀速圆周运动,周期为T ,已知万有引力常量为G ,求: (1)该天体的质量是多少? (2)该天体的密度是多少?(3)该天体表面的重力加速度是多少? (4)该天体的第一宇宙速度是多少?【答案】(1)2324()R h GT π+; (2)3233()R h GT R π+;(3)23224()R h R T π+;【解析】 【分析】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律列式求解; (2)根据密度的定义求解天体密度;(3)在天体表面,重力等于万有引力,列式求解; (4)该天体的第一宇宙速度是近地卫星的环绕速度. 【详解】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有:G 2()Mm R h +=m 22T π⎛⎫ ⎪⎝⎭(R+h) 解得:M=2324()R h GTπ+ ① (2)天体的密度:ρ=M V =23234()43R h GT R ππ+=3233()R h GT R π+. (3)在天体表面,重力等于万有引力,故: mg=G2MmR② 联立①②解得:g=23224()R h R T π+ ③ (4)该天体的第一宇宙速度是近地卫星的环绕速度,根据牛顿第二定律,有:mg=m 2v R④联立③④解得:【点睛】本题关键是明确卫星做圆周运动时,万有引力提供向心力,而地面附近重力又等于万有引力,基础问题.2.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) v 【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度v v ==3.我国科学家正在研究设计返回式月球软着陆器,计划在2030年前后实现航天员登月,对月球进行科学探测。
上海黄浦学校高中物理必修二第七章《万有引力与宇宙航行》测试题(含答案解析)
一、选择题1.如下图所示,惯性系S 中有一边长为l 的立方体,从相对S 系沿x 方向以接近光速匀速飞行的飞行器上观察该立方体的形状是( )A .B .C .D .2.甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道。
以下判断正确的是( ) A .甲的角速度小于乙的角速度 B .甲的加速度大于乙的加速度 C .乙的速度大于第一宇宙速度D .甲在运行时能经过北京的正上方3.2019年1月3日,“嫦娥四号”成为了全人类第一个在月球背面成功实施软着陆的探测器。
为了减小凹凸不平的月面可能造成的不利影响,“嫦娥四号”采取了近乎垂直的着陆方式。
测得“嫦娥四号”近月环绕周期为T ,月球半径为R ,引力常量为G ,下列说法正确的是( )A .“嫦娥四号”着陆前的时间内处于失重状态B .“嫦城四号”着陆前近月环绕月球做圆周运动的速度为7.9km/sC .月球表面的重力加速度g =24πRT D .月球的密度为ρ=23πGT4.“嫦娥三号”是我国第一个月球软着陆无人探测器,当它在距月球表面为100m 的圆形轨道上运行时,周期为18mim 。
已知月球半径和引力常量,由此不能推算出( ) A .月球的质量 B .“嫦娥三号”的质量C .月球的第一宇宙速度D .“嫦娥三号”在该轨道上的运行速度5.已知地球表面的重力加速度为g ,地面上空离地面高度等于地球半径的某点有一卫星恰好经过,该卫星的质量为m ,则该卫星在该点的重力大小为( ) A .mgB .12mg C .13mgD .14mg6.我国在2020年发射了一颗火星探测卫星,预计2021年7月之前落到火星,对火星展开环绕勘探。
若将地球和火星均视为球体,它们绕太阳的公转均视为匀速圆周运动,有关数据如表所示,则下列说法正确的是()A.火星表面的重力加速度大小约为地球表面重力加速度大小的1 5BC.火星的密度约为地球密度的8倍D.火星绕太阳公转的向心加速度大小约为地球绕太阳公转的向心加速度大小的1 47.2019年12月16日,我国的西昌卫星发射中心又一次完美发射两颗北斗卫星,标志着“北斗三号”全球系统核心星座部署完成。
(物理)高中必备物理万有引力定律的应用技巧全解及练习题(含答案)及解析
(物理)高中必备物理万有引力定律的应用技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)23124GMT h R π(3)h 1= h 2 【解析】 【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=Tω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()Mm Gm R h R h T++ 解得:2312=4πGMTh R(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,22222=()()()Mm Gm R h R h Tπ++ 解得:2322=4GMTh R π- 因此h 1= h 2.故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π- (3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分) r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有 G ③ (3分) G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解3.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用4.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期.(2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?【答案】(1)36R T g =2)0133t gRω-V =【解析】 【分析】 【详解】(1)对卫星运用万有引力定律和牛顿运动定律可得()222433MmG m R T R π⋅=地球表面的物体受到重力等于万有引力2Mmmg G R = 联立解得36R T gπ= ; (2)以地面为参照物,卫星再次出现在建筑物上方时,建筑物随地球转过的弧度比卫星转过弧度少2π. ω1△t -ω0△t =2π, 所以1000222133t gT RV ===πππωωωω---;5.某双星系统中两个星体 A 、B 的质量都是 m ,且 A 、B 相距 L ,它们正围绕两者连线上的某一点做匀速圆周运动.实际观测该系统的周期 T 要小于按照力学理论计算出的周期理论值 T 0,且= k () ,于是有人猜测这可能是受到了一颗未发现的星体 C 的影响,并认为 C 位于双星 A 、B 的连线中点.求: (1)两个星体 A 、B 组成的双星系统周期理论值; (2)星体C 的质量.【答案】(1);(2)【解析】 【详解】(1)两星的角速度相同,根据万有引力充当向心力知:可得:两星绕连线的中点转动,则解得:(2)因为C 的存在,双星的向心力由两个力的合力提供,则再结合:= k可解得:故本题答案是:(1);(2)【点睛】本题是双星问题,要抓住双星系统的条件:角速度与周期相同,再由万有引力充当向心力进行列式计算即可.6.一名宇航员抵达一半径为R 的星球表面后,为了测定该星球的质量,做下实验:将一个小球从该星球表面某位置以初速度v 竖直向上抛出,小球在空中运动一间后又落回原抛出位置,测得小球在空中运动的时间为t ,已知万有引力恒量为G ,不计阻力,试根据题中所提供的条件和测量结果,求:(1)该星球表面的“重力”加速度g 的大小; (2)该星球的质量M ;(3)如果在该星球上发射一颗围绕该星球做匀速圆周运动的卫星,则该卫星运行周期T 为多大?【答案】(1)2v g t =(2)22vR M Gt=(3)22Rt T v π=【解析】 【详解】(1)由运动学公式得:2vt g=解得该星球表面的“重力”加速度的大小 2v g t=(2)质量为m 的物体在该星球表面上受到的万有引力近似等于物体受到的重力,则对该星球表面上的物体,由牛顿第二定律和万有引力定律得:mg =2mM GR解得该星球的质量为 22vR M Gt= (3)当某个质量为m′的卫星做匀速圆周运动的半径等于该星球的半径R 时,该卫星运行的周期T 最小,则由牛顿第二定律和万有引力定律2224m M m RG R Tπ''= 解得该卫星运行的最小周期 22RtT vπ= 【点睛】重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.本题要求学生掌握两种等式:一是物体所受重力等于其吸引力;二是物体做匀速圆周运动其向心力由万有引力提供.7.如图所示,A 是地球的同步卫星.另一卫星 B 的圆形轨道位于赤道平面内.已知地球自转角速度为0ω ,地球质量为M ,B 离地心距离为r ,万有引力常量为G ,O 为地球中心,不考虑A 和B 之间的相互作用.(图中R 、h 不是已知条件)(1)求卫星A 的运行周期A T (2)求B 做圆周运动的周期B T(3)如卫星B 绕行方向与地球自转方向相同,某时刻 A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)02A T πω=(2)32B r T GM=3)03t GM r ω∆=-【解析】 【分析】 【详解】(1)A 的周期与地球自转周期相同 02A T πω=(2)设B 的质量为m , 对B 由牛顿定律:222()BGMm m r r T π= 解得: 32B r T GM= (3)A 、B 再次相距最近时B 比A 多转了一圈,则有:0()2B t ωωπ-∆= 解得:03t GM r ω∆=- 点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.8.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.【答案】(1) 2r T π;(2) 23224r T R π;2324rT Rπ【解析】 【详解】(1)嫦娥三号做匀速圆周运动线速度:2rv r Tπω==(2)由重力等于万有引力:2GMmmg R = 对于嫦娥三号由万有引力等于向心力:2224GMm m rr Tπ= 联立可得:23224r g T Rπ=(3)第一宇宙速度为沿月表运动的速度:22GMm mv mg R R==可得月球的第一宇宙速度:2324r v gR T Rπ==9.阅读如下资料,并根据资料中有关信息回答问题 (1)以下是地球和太阳的有关数据(2)己知物体绕地球表面做匀速圆周运动的速度为v =7.9km/s ,万有引力常量G =6.67×l0-11m 3kg -1s -2,光速C =3×108ms -1;(3)大约200年前法国数学家兼天文学家拉普拉斯曾预言一个密度如地球,直径为太阳250倍的发光星体由于其引力作用将不允许任何光线离开它,其逃逸速度大于真空中的光速2倍),这一奇怪的星体就叫作黑洞.在下列问题中,把星体(包括黑洞)看作是一个质量分布均匀的球体.(①②的计算结果用科学计数法表达,且保留一位有效数字;③的推导结论用字母表达) ①试估算地球的质量;②试估算太阳表面的重力加速度;③己知某星体演变为黑洞时的质量为M ,求该星体演变为黑洞时的临界半径R . 【答案】(1)6×1024kg (2)32310/m s ⨯(3)22GMC 【解析】(1)物体绕地球表面做匀速圆周运动22m GM v m R R =地地 解得:2R v M G=地=6×1024kg (2)在地球表面2mGM mg R =地地地解得:2G R M g =地地地同理在太阳表面2G R M g =日日日2322g g 310/M R m s M R ==⨯日地日地日地 (3)第一宇宙速度212v GMmm R R=第二宇宙速度212v c v == 解得:22GM R C=【点睛】本题考查了万有引力定律定律及圆周运动向心力公式的直接应用,要注意任何物体(包括光子)都不能脱离黑洞的束缚,那么黑洞表面脱离的速度应大于光速.10.高空遥感探测卫星在距离地球表面h 的轨道上绕地球转动,已知地球质量为M ,地球半径为R ,万有引力常量为G ,求: (1)人造卫星的角速度; (2)人造卫星绕地球转动的周期; (3)人造卫星的向心加速度.【答案】(1)R h ω+(2)2T R h π=+(3)()2 GM a R h =+ 【解析】 【分析】根据万有引力提供向心力22222()Mm v G m r m m r ma r T rπω====求解角速度、周期、向心加速度等。
上海杨浦高级中学高中物理必修二第七章《万有引力与宇宙航行》检测(答案解析)
一、选择题1.如下图所示,惯性系S 中有一边长为l 的立方体,从相对S 系沿x 方向以接近光速匀速飞行的飞行器上观察该立方体的形状是( )A .B .C .D .2.我国的“神舟”系列航天飞船的成功发射和顺利返回,显示了我国航天事业取得的巨大成就。
已知地球的质量为M ,引力常量为G ,飞船的质量为m ,设飞船绕地球做匀速圆周运动的轨道半径为r ,则( )A Gm rB r GMC .飞船在此圆轨道上运行的周期为 32r GMD 2Gm r3.2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心发射成功,这颗卫星为地球静止轨道卫星,距地面高度为H 。
已知地球半径为R ,自转周期为T ,引力常量为G 。
下列相关说法正确的是( )A .该卫星的观测范围能覆盖整个地球赤道线B .该卫星绕地球做圆周运动的线速度大于第一宇宙速度C .可以算出地球的质量为2324πH GT D .可以算出地球的平均密度为3233π)R H GT R +( 4.已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G ,有关同步卫星,下列表述中正确的是( )A .卫星的运行速度可能等于第一宇宙速度BC .卫星运行的向心加速度小于地球表面的重力加速度D .卫星运行的向心加速度等于地球赤道表面物体的向心加速度5.设两个行星A 和B 各有一个卫星a 和b ,且两卫星的圆轨道均很贴近行星表面。
若两行星的质量比M A :M B =p ,两行星的半径比R A :R B =q ,那么这两个卫星的运行周期之比T a :T b 应为( )A .12q p ⋅ B .12q q p ⎛⎫⋅ ⎪⎝⎭ C .12p p q ⎛⎫⋅ ⎪⎝⎭ D .12()p q ⋅ 6.根据开普勒关于行星运动的规律和圆周运动知识知:太阳对行星的引力F ∝2m ,行星对太阳的引力F ′∝2M r ,其中M 、m 、r 分别为太阳质量、行星质量和太阳与行星间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浦东高中一对一培训 高中物理 恒高教育 万有引力天体的运动考题解析
1.(2012·江西师大附中、鹰潭一中联考)以下说法正确的是( )
A .丹麦天文学家第谷通过长期的天文观测,指出所有行星绕太阳运动的轨道都是椭圆,揭示了行星运动的有关规律
B .电荷量e 的数值最早是由美国物理学家密立根测得的
C .库仑测出了引力常量G 的数值
D .万有引力定律和牛顿运动定律一样都是自然界普遍适用的基本规律
1.B 解析:应该是开普勒指出所有行星绕太阳运动的轨道都是椭圆,并揭示了行星运动的有关规律,选项A 错误;卡文迪许测出了引力常量G 的数值,选项C 错误;万有引力定律是自然界普遍适用的基本规律,而牛顿运动定律只适用于宏观低速物体,即具有局限性,所以选项D 错误;只有选项B 正确。
2.关于物体运动过程所遵循的规律或受力情况的判断,下列说法中不正确的是( )
A .月球绕地球运动的向心力与地球上的物体所受的重力是同一性质的力
B .月球绕地球运动时受到地球的引力和向心力的作用
C .物体在做曲线运动时一定要受到力的作用
D .物体仅在万有引力的作用下,可能做曲线运动,也可能做直线运动
2.B 解析:重力是地球对物体的引力的一个分力,月球绕地球运动的向心力是地球的引力提供的,从性质上看,都是地球的吸引作用产生的,选项A 正确,选项B 错误;曲线运动一定是变速运动,受到的合力一定不为零,选项C 正确;当物体运动方向与万有引力的方向在同一直线上时,运动方向不发生改变,做直线运动,选项D 正确。
据以上分析可知本题不正确的选项只有B 。
3.(2012·杭州质检)地球表面的重力加速度为g ,地球半径为R ,引力常量为G 。
假设地球是一个质量分布均匀的球体,体积为43
πR 3,则地球的平均密度是( ) A .34πg GR B .234πg GR C .g GR D .2g G R
3.A 解析:由mg =G Mm R 2及ρ=M 43
πR 3可解得ρ=3g 4πGR ,A 正确。
4.易错辨析:
请你判断下列表述是否正确,对不正确的,请予以更正。
(1)根据F =G
2
Mm r 可知,当r →0时,F →∞。
(2)根据v (3)同质量的卫星围绕地球做匀速圆周运动,半径越大,动能越小,势能越大,因而总机械能不变。
(4)只要周期为24小时的卫星都可以看成同步卫星。
(5)所有围绕地球做匀速圆周运动的卫星的运行速度都不能超过第一宇宙速度。
4.答案:(1)错误。
当r →0时,两个物体不能再视为质点,万有引力定律不再成立。
(2)错误。
v =GM r
是卫星运行速度公式,r 越大,运行速度越小,但发射速度越大。
(3)错误。
半径越大,动能越小,势能越大,但势能增大得更多,所以半径越大,卫星机械能也越大。
(4)错误。
若卫星的轨道平面不与赤道重合,但周期为24小时,相对地面也是运动的,
故不能看成同步卫星。
(5)正确。
一、万有引力和重力的关系
自主探究1火星的质量和半径分别约为地球的110和12
,地球表面的重力加速度为g ,则火星表面的重力加速度约为( )
A .0.2g
B .0.4g
C .2.5g
D .5g
思考:不考虑星体自转,星体表面重力加速度是由什么产生的?
【自主探究1】B
提示:由万有引力产生,在火星表面:G
M 1m R 21=mg 1, 可得g 1=GM 1R 21,在地球表面:G Mm
R 2=mg , 可得g =GM R 2, 则g 1g =M 1R 2MR 21=110
×4=0.4,即g 1=0.4g 。
归纳要点
1.由于地球的自转,在地球表面的物体,重力与万有引力不严格相等,重力为万有引力的一个分力,由于二者差别较小,计算时可以认为二者相等,G Mm R 2=mg ,变形后得到地球表面的重力加速度公式g =GM R 2。
2.距地面越高,物体的重力加速度越小,距地面高度为h 处的重力加速度为g ′=GM
(R +h )2,其中R 为地球半径。