考研数学高数基础知识(吐血推荐)

合集下载

2023考研数学高等数学每章知识点汇总精品

2023考研数学高等数学每章知识点汇总精品

2023考研数学高等数学每章知识点汇总精品高等数学基础知识篇一1、函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。

2、一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。

3、一元函数微分学重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。

4、向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。

5、多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。

另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

6、多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。

此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。

7、无穷级数(数一、数三)重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。

8、常微分方程及差分方程重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。

此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结一、函数、极限与连续1. 函数的概念与性质- 有界性- 奇偶性- 单调性- 周期性- 复合函数- 反函数2. 极限的定义与性质- 数列极限- 函数极限- 极限的四则运算- 极限存在的条件- 无穷小与无穷大的比较3. 连续函数- 连续性的定义- 间断点的类型- 连续函数的性质- 闭区间上连续函数的性质(确界存在定理、零点定理、介值定理)二、导数与微分1. 导数的定义- 概念与几何意义- 左导数与右导数- 高阶导数2. 导数的计算- 基本初等函数的导数 - 导数的四则运算- 链式法则- 隐函数求导- 参数方程求导3. 微分- 微分的定义- 微分的几何意义- 微分形式的变换三、中值定理与导数的应用1. 中值定理- 罗尔定理- 拉格朗日中值定理- 柯西中值定理2. 导数的应用- 函数的单调性- 函数的极值问题- 最值问题- 曲线的凹凸性与拐点 - 函数的渐近线四、积分1. 不定积分- 基本积分表- 换元积分法- 分部积分法- 有理函数的积分2. 定积分- 定义与性质- 微积分基本定理- 定积分的计算- 定积分的应用(面积、体积、弧长、工作量等)3. 积分技巧- 特殊技巧(三角函数的积分、积分区间的变换等) - 积分证明五、多元函数微分学1. 多元函数的基本概念- 定义域- 偏导数- 全微分2. 多元函数的极值问题- 偏导数与极值- 拉格朗日乘数法六、重积分1. 二重积分- 直角坐标系下的二重积分- 极坐标系下的二重积分- 积分的换元法2. 三重积分- 直角坐标系下的三重积分- 柱坐标系与球坐标系下的三重积分七、级数1. 数项级数- 收敛性的判别- 无穷级数的性质- 级数的运算2. 幂级数- 幂级数的收敛半径- 泰勒级数- 函数展开成幂级数八、常微分方程1. 一阶微分方程- 可分离变量的微分方程- 齐次微分方程- 一阶线性微分方程2. 二阶微分方程- 二阶线性微分方程- 常系数线性微分方程- 变系数线性微分方程九、傅里叶级数与变换1. 傅里叶级数- 三角级数- 傅里叶级数的收敛性- 正弦级数与余弦级数2. 傅里叶变换- 傅里叶变换的定义- 傅里叶变换的性质- 快速傅里叶变换(FFT)以上是考研高数的主要知识点总结。

考研 高等数学必看知识点

考研 高等数学必看知识点

考研高等数学必看知识点对于准备考研的同学来说,高等数学是一门至关重要的科目。

高等数学的知识点繁多且复杂,需要我们花费大量的时间和精力去理解和掌握。

在这篇文章中,我将为大家梳理一些考研高等数学中必看的知识点,希望能对大家的备考有所帮助。

一、函数、极限与连续函数是高等数学的基础,理解函数的概念、性质和分类是学好高等数学的第一步。

要掌握函数的定义域、值域、单调性、奇偶性、周期性等基本性质,以及常见的函数类型,如幂函数、指数函数、对数函数、三角函数等。

极限是高等数学中的核心概念之一,它贯穿了整个高等数学的学习。

要熟练掌握数列极限和函数极限的定义、性质和计算方法。

极限的计算方法包括四则运算、洛必达法则、等价无穷小替换、泰勒公式等。

连续是函数的一个重要性质,要理解函数在一点连续的定义,以及连续函数的性质,如最值定理、介值定理、零点定理等。

二、一元函数微分学导数是微分学的核心概念,要掌握导数的定义、几何意义和物理意义,以及基本初等函数的导数公式和导数的四则运算法则。

能够熟练运用导数求函数的单调性、极值、最值、凹凸性和拐点。

微分是导数的一种应用,要理解微分的定义和几何意义,掌握微分的基本公式和运算法则,能够用微分进行近似计算和误差分析。

中值定理是微分学中的重要定理,包括罗尔定理、拉格朗日中值定理和柯西中值定理。

要掌握这些定理的条件和结论,并能够运用它们解决相关的问题。

三、一元函数积分学不定积分是积分学的基础,要掌握不定积分的定义、性质和基本积分公式,能够熟练运用换元积分法和分部积分法求不定积分。

定积分是不定积分的应用,要理解定积分的定义、几何意义和物理意义,掌握定积分的基本性质和计算方法,能够用定积分求平面图形的面积、旋转体的体积、曲线的弧长等。

反常积分是定积分的拓展,要掌握反常积分的定义、收敛性的判断和计算方法。

四、多元函数微积分学多元函数的概念和性质是多元函数微积分学的基础,要理解多元函数的定义域、值域、偏导数、全微分等概念,掌握多元函数的连续性和可微性的判断方法。

高数基础知识总结,助你轻松掌握数学要点

高数基础知识总结,助你轻松掌握数学要点

高数基础知识总结,助你轻松掌握数学要点
一、函数与极限
1. 函数的概念及其性质,包括定义域、值域、单调性、奇偶性等。

2. 函数的极限,包括趋近于无穷大时的极限和趋近于某点的极限,以及极限的四则运算法则。

3. 无穷小量与阶的比较,包括无穷小量及其性质,以及阶的比较及其应用。

二、导数与微分
1. 导数的概念及其几何意义,包括导数的定义、几何意义、物理意义等。

2. 导数的运算法则,包括四则运算法则、复合函数求导法则等。

3. 微分概念及其运算,包括微分的定义、几何意义、运算性质等。

三、积分与级数
1. 定积分的概念及其性质,包括定积分的定义、几何意义、可积条件等。

2. 定积分的计算方法,包括直接法、换元法、分部积分法等。

3. 无穷级数的概念及其性质,包括无穷级数的定义、收敛性、绝对收敛与条件收敛等。

4. 无穷级数的求和运算,包括幂级数求和、交错级数求和等。

四、多元函数微积分
1. 多元函数的极限与连续性,包括极限的定义、性质,连续性的概念等。

2. 偏导数与全微分,包括偏导数的概念、全微分的概念及其计算方法等。

3. 二重积分,包括二重积分的概念、性质、计算方法等。

考研高数每章总结知识点

考研高数每章总结知识点

考研高数每章总结知识点一、函数与极限1. 函数的概念与性质2. 一元函数的极限3. 函数的连续性4. 导数与微分5. 多元函数的极限6. 多元函数的连续性7. 偏导数与全微分在这一章节中,我们需要深入理解函数的概念与性质,掌握一元函数的极限和导数与微分的计算方法,以及多元函数的极限、连续性、偏导数与全微分的性质和应用。

二、微分学1. 函数的微分学2. 隐函数与参数方程的微分法3. 高阶导数与微分的应用4. 泰勒公式与函数的逼近5. 不定积分6. 定积分与广义积分7. 定积分的应用在这一章节中,我们需要掌握函数的微分学的相关知识,包括隐函数与参数方程的微分法、高阶导数与泰勒公式的应用,以及不定积分、定积分与广义积分的计算方法及其应用。

三、级数与一些其他杂项1. 数项级数2. 幂级数3. 函数项级数4. 傅立叶级数5. 常微分方程在这一章节中,我们需要掌握数项级数、幂级数和函数项级数的相关知识,包括傅立叶级数的表示和计算方法,以及常微分方程的解法和应用。

四、空间解析几何1. 空间直角坐标系2. 空间点、向量和坐标3. 空间中的直线和平面4. 空间中的曲线5. 空间中的曲面6. 空间曲线和曲面的切线与法线在这一章节中,我们需要掌握空间中的点、向量和坐标的表示和计算方法,以及空间中的直线、平面、曲线和曲面的性质和应用,包括曲线和曲面的切线与法线的计算方法。

五、多元函数微分学1. 函数的极值2. 条件极值与 Lagrange 乘数法3. 二重积分4. 三重积分5. 重积分的应用在这一章节中,我们需要掌握多元函数的极值和条件极值的求解方法,包括 Lagrange 乘数法的应用,以及二重积分和三重积分的计算方法及其应用。

总结起来,考研高数的每个章节都包含了大量的知识点,要想取得好成绩就需要对每个章节的知识点有一个深入的了解和掌握。

在备考的过程中,应该注重理论知识的掌握和应用能力的提升,多做习题和模拟题,以增强对知识点的理解和记忆。

(完整版)考研高等数学知识点总结(最新整理)

(完整版)考研高等数学知识点总结(最新整理)

du u dx u dy u dz x y z
全微分的近似计算:z dz f x (x, y)x f y (x, y)y 多元复合函数的求导法:
z f [u(t),v(t)]
dz z u z v dt u t v t
z f [u(x, y),v(x, y)]
z z u z v x u x v x
x2 a2 dx x x2 a2 a2 ln x x2 a2 C
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
2
2
a
sin
x
2u 1u
2
, cos
x
1 1
u u
2 2
, u
tg
x , dx 2
2du 1 u2
1 / 13
一些初等函数:
两个重要极限:
双曲正弦 : shx ex ex 2
当u u(x, y),v v(x, y)时,
du u dx u dy x y
dv v dx v dy x y
隐函数的求导公式:
隐函数F (x,
y)
0, dy dx
Fx Fy
, d 2 y dx 2
x
(
Fx Fy
)+
y
(
Fx Fy
)
dy dx
隐函数F (x, y, z) 0, z Fx , z Fy
x
x
三角函数公式: ·诱导公式:
函数 角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α
sin cos tg ctg
-sinα cosα cosα sinα -sinα -cosα -cosα -sinα sinα

考研数学的学科知识点总结

考研数学的学科知识点总结

考研数学的学科知识点总结一、高等数学1.极限与连续(1)函数极限的定义及其性质(2)无穷大量与无穷小量(3)函数的连续性(4)洛必达法则2.微分学(1)导数的概念及性质(2)高阶导数及其应用(3)隐函数及参数方程的微分(4)微分中值定理及其应用3.积分学(1)不定积分的性质及计算方法(2)定积分的定义及性质(3)换元积分法(4)分部积分法(5)定积分的应用4.级数(1)级数的收敛性(2)常数项级数(3)幂级数(4)级数的性质5.微分方程(1)常微分方程的解法(2)一阶线性微分方程(3)高阶微分方程的解法(4)常系数齐次线性微分方程6.多元函数微积分(1)偏导数及其应用(2)多元函数的极值(3)多元函数的积分(4)梯度、散度和旋度二、线性代数1.向量空间(1)向量及其线性运算(2)向量组的线性相关性(3)向量空间及其性质2.矩阵及行列式(1)矩阵的概念及运算法则(2)矩阵的秩(3)行列式的概念及性质(4)行列式的应用3.线性方程组(1)线性方程组的解法(2)矩阵的秩与线性方程组的解的关系(3)特解和通解4.线性空间与线性变换(1)线性空间的定义及性质(2)线性变换的概念及性质(3)矩阵表示与特征值特征向量5.内积空间(1)内积的定义及其性质(2)正交性(3)正交矩阵(4)施密特正交化方法三、概率论与数理统计1.概率及其性质(1)事件与概率(2)概率的基本运算法则(3)条件概率与独立性(4)全概率公式与贝叶斯公式2.随机变量及其分布(1)随机变量的概念及其性质(2)离散型随机变量(3)连续型随机变量(4)常见分布的特征及应用3.数理统计(1)抽样及其样本统计量(2)点估计(3)区间估计(4)假设检验四、常微分方程1.一阶常微分方程(1)可分离变量的微分方程(2)一阶线性微分方程(3)恰当微分方程(4)常见微分方程的解法2.高阶常微分方程(1)有限阶、线性、常系数微分方程(2)拉普拉斯变换解法(3)常见高阶微分方程的解法(4)特解与通解五、离散数学1.命题逻辑(1)命题与命题的联结词(2)真值表及其等值演算(3)逻辑推理法则2.集合 theory(1)集合及其运算(2)集合的等价关系与划分(3)集合的运算律3.函数与关系(1)函数的概念及性质(2)函数的复合与反函数(3)关系及其性质4.图论(1)图的定义及运算(2)完全图和酷颠图(3)图的遍历与回路5.格 theory(1)格的定义及性质(2)分配格和布尔格(3)集合与乘积格以上是考研数学学科的知识点总结,希望对大家有所帮助!。

考研高数知识点总结

考研高数知识点总结

【引言概述】考研高数是考研数学中的重点科目之一,它不仅涵盖了高等数学的基本概念和理论,还包括了各种常见的数学方法和技巧。

为了帮助考生更好地备考高数,本文将围绕考研高数的知识点展开详细的总结和解读。

【正文内容】一、函数与极限1.函数的概念与性质a.函数的定义b.函数的分类c.函数的性质及图像d.函数的运算与复合2.极限的概念与性质a.极限的定义b.极限的性质及运算法则c.极限存在准则d.极限的计算方法二、微分与导数1.导数的定义与性质a.导数的几何意义b.导数的物理意义c.导数的计算方法d.导数的性质及运算法则2.微分的概念与性质a.微分的定义b.微分的计算方法c.微分的性质及运算法则d.高阶导数与高阶微分三、积分与定积分1.定积分的概念与性质a.定积分的定义b.定积分的计算方法c.定积分的性质及运算法则d.定积分与不定积分的关系2.积分的应用a.曲线长度与曲面面积b.弧长的计算c.曲线的平均值与中值定理d.牛顿莱布尼茨公式四、级数与幂级数1.级数的概念与性质a.级数的定义与收敛、发散性质b.级数收敛的判定方法c.级数的运算法则d.级数的收敛域与和函数2.幂级数的概念与性质a.幂级数的定义与收敛性质b.幂级数的计算法则c.幂级数的收敛域与和函数d.幂级数的应用与展开式五、微分方程与线性代数1.一阶微分方程a.一阶微分方程的概念与分类b.一阶微分方程的解法及应用c.高阶微分方程的解法及应用d.常系数线性微分方程的解法及应用2.线性代数a.线性代数的基本概念与性质b.线性方程组的解法及应用c.矩阵的运算与特征值特征向量d.线性空间的概念与性质【总结】通过对考研高数知识点的详细总结,可以发现高数知识点的内容广泛且深入,需要考生掌握扎实的基础知识和灵活运用的能力。

在备考过程中,考生应该注重对各个知识点的理解和记忆,并结合实际问题进行练习和应用。

只有通过不断的积累与实践,才能在考试中取得理想的成绩。

希望本文对考生备考高数提供了一定的参考和指导,祝愿考生能够取得优异的成绩!。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结高等数学是考研数学的一个重要组成部分,考研高数考察的内容涉及广泛,难度较大。

要想在考研高数中取得好成绩,必须深入了解各种知识点,并且掌握适当的解题方法。

下面就对考研高数的知识点进行总结,以供考生参考。

一、函数与极限1.1 函数的基本概念函数是一种特殊的关系,即每个自变量对应且只对应一个因变量。

1.2 极限的概念极限是函数在自变量趋于某个值时,相应因变量的趋势。

1.3 极限的性质极限具有唯一性、局部有界性等性质。

1.4 极限的计算利用夹逼定理、洛必达法则等方法来计算极限。

二、导数与微分2.1 导数的概念导数表示函数在某一点的瞬时变化率。

2.2 导数的计算利用极限定义、导数的四则运算等方法来计算导数。

2.3 导数的应用利用导数求函数的单调性、凹凸性、极值等。

2.4 微分的概念微分是导数的几何意义。

三、积分与定积分3.1 不定积分不定积分是积分的基本形式,可以求出函数的原函数。

3.2 定积分定积分可以表示函数在某一区间上的总变化量。

3.3 定积分的计算利用牛顿—莱布尼茨公式、换元积分法、分部积分法等方法来计算定积分。

四、级数4.1 级数的概念级数是无穷项数列部分和的极限。

4.2 级数收敛与发散讨论级数的收敛性是比较重要的知识点。

4.3 常见级数如调和级数、等比级数、幂级数等。

五、常微分方程5.1 常微分方程的基本概念包括常微分方程的解、初值问题等内容。

5.2 一阶常微分方程一阶微分方程的解法包括可分离变量法、齐次方程、一阶线性微分方程等。

5.3 高阶常微分方程高阶微分方程的解法包括常系数线性齐次微分方程、常系数线性非齐次微分方程等。

总结:考研高数是数学中一个重要的分支,需要考生深入理解各种知识点,并且熟练掌握解题方法。

希望以上内容能够帮助考生更好地备考考研高数。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结一、导数与微分导数是研究函数局部性质的重要工具,是高数中一个极其重要的概念。

导数的定义是函数的变化率,它反映了函数在某一点的局部性质。

导数的大小表示函数在某一点的斜率,而导数的正负则表示函数在某一点的单调性。

导数的计算包括求导公式、复合函数的导数、隐函数的导数等。

微分是导数的线性近似,它在近似计算中有重要作用。

微分的定义是函数改变量的线性部分,它反映了函数在某一点的局部变化率。

微分的大小表示函数在某一点的斜率的变化率,而微分的正负则表示函数在某一点的单调性的变化。

微分的计算也包括求微分公式、复合函数的微分、隐函数的微分等。

二、中值定理与不定积分中值定理是微分学中的基本定理,它表明在闭区间上的连续函数至少有一个值等于其最大值和最小值之间的某个值。

这个定理有许多重要的推论,例如拉格朗日中值定理和柯西中值定理。

不定积分是微积分的一个重要部分,它是求一个函数的原函数或反导数的过程。

不定积分的结果是一个函数族,这些函数的导数等于被积函数。

不定积分的计算包括运用积分公式、换元积分法、分部积分法等方法。

三、定积分与定积分的几何意义定积分是微积分的一个重要部分,它是求一个函数在某个区间上的总值的过程。

定积分的几何意义是求一个曲线与坐标轴围成的图形的面积。

定积分的计算包括运用积分公式、换元积分法、分部积分法等方法。

四、级数与反常积分级数是无穷序列的和,它可以分为收敛级数和发散级数。

收敛级数的和是一个有限的数,而发散级数的和是无穷大。

级数的计算包括求和公式、幂级数展开等。

反常积分是瑕积分和反常积分的总称,它们是处理不连续函数或具有奇点的函数的重要工具。

反常积分的计算包括运用积分公式、换元积分法等方法。

以上是考研高数知识点的大致总结。

高数是一门非常深奥的学科,需要我们在学习的过程中不断深入理解并多加练习。

希望这篇文章能对大家的学习有所帮助。

高数知识点总结高等数学是大学数学教育的基础课程,对于很多理工科专业来说,它的重要性不言而喻。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结一、极限与连续1.1 函数的极限1.1.1 函数的极限定义1.1.2 函数极限的性质1.1.3 函数的无穷极限1.1.4 无穷小与无穷大1.2 极限运算法则1.2.1 两个重要极限1.2.2 无穷大与无穷小的比较1.3 一元函数的连续1.3.1 连续函数的定义1.3.2 连续函数的性质1.3.3 初等函数的连续性1.4 中值定理1.4.1 Rolle定理1.4.2 拉格朗日中值定理1.4.3 柯西中值定理1.5 L'Hospital法则二、导数与微分2.1 函数的导数2.1.1 导数的定义2.1.2 导数的几何意义2.1.3 导数的物理意义2.1.4 函数的可导性2.2 导数的运算法则2.2.1 基本初等函数的导数2.2.2 复合函数的求导法则2.2.3 反函数的导数2.2.4 隐函数的导数2.3 高阶导数2.4 微分2.4.1 微分的概念2.4.2 微分的运算法则2.4.3 隐函数的微分2.4.4 高阶微分三、不定积分3.1 不定积分的概念3.2 不定积分的运算法则3.2.1 基本初等函数的积分3.2.2 第一换元法3.2.3 第二换元法3.2.4 分部积分法3.3 不定积分的应用3.3.1 函数的原函数3.3.2 定积分与不定积分的关系3.3.3 牛顿-莱布尼茨公式四、定积分与定积分的应用4.1 定积分的概念4.2 定积分的运算法则4.2.1 定积分与不定积分的关系4.2.2 定积分的性质4.2.3 定积分中值定理4.3 定积分的应用4.3.1 几何应用4.3.2 物理应用4.3.3 概率应用4.3.4 广义积分五、微分方程5.1 微分方程的概念5.2 微分方程的解5.2.1 变量分离法5.2.2 齐次方程5.2.3 一阶线性微分方程5.2.4 一阶齐次线性微分方程5.2.5 可降阶的高阶微分方程5.3 微分方程的应用5.3.1 函数图形的性质5.3.2 物理模型5.3.3 生物模型5.3.4 经济模型六、无穷级数6.1 级数的概念6.2 收敛级数的判别法6.2.1 正项级数6.2.2 任意项级数6.2.3 幂级数6.3 级数的应用6.3.1 函数展开成级数6.3.2 物理应用6.3.3 工程应用七、多元函数微分学7.1 多元函数的概念7.2 偏导数7.2.1 偏导数的定义7.2.2 偏导数的几何意义7.2.3 高阶偏导数7.3 方向导数7.3.1 方向导数的概念7.3.2 方向导数的计算7.3.3 方向导数与梯度7.4 多元函数的极值7.4.1 极值的判别法则7.4.2 拉格朗日乘数法7.5 多元函数的微分学应用7.5.1 向量值函数的导数7.5.2 隐函数的偏导数这些是考研高数知识点的一些主要内容,希望对大家的学习有所帮助。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结高等数学是研究数与其变化规律的一门基础课程,是理工科学生学习的重要课程之一。

在考研数学中,高等数学是必考科目之一,占有较大比重。

下面就考研高等数学知识点进行总结,希望对考生们有所帮助。

一、函数与极限1. 基本概念:函数、反函数、复合函数、有界函数、周期函数等。

2. 极限的定义:数列极限的定义、函数极限的定义等。

3. 极限的性质:极限的唯一性、有界性、局部有界原理等。

4. 极限运算法则:加减乘除、复合函数的极限等相关运算法则。

5. 无穷大与无穷小:无穷大和无穷小的概念、性质及相关推论。

二、导数与微分1. 导数的定义:函数在某一点的导数、导数的几何意义、物理意义等。

2. 基本导数公式:多项式函数、三角函数、指数函数、对数函数等基本函数的导数。

3. 高阶导数:二阶导数、高阶导数及其相关概念。

4. 微分中值定理:拉格朗日中值定理、柯西中值定理等。

5. 隐函数与参数方程的导数:隐函数的导数、参数方程的导数等相关内容。

三、微分中的应用1. 函数的极值与最值:函数的极值点的判定、极值、最值等相关概念。

2. 函数的单调性与凹凸性:函数的单调区间、凹凸区间等相关概念。

3. 泰勒公式与泰勒展开:泰勒公式的表达形式、泰勒展开的求解方法及应用。

4. 微分的应用:函数的近似计算、误差估计、最优化问题等。

四、不定积分1. 不定积分的概念:定义、性质及运算法则。

2. 基本不定积分公式:多项式函数、三角函数、指数函数、对数函数等基本函数的不定积分公式。

3. 换元积分法:第一类换元法、第二类换元法及其应用。

4. 分部积分法:分部积分法的原理、应用条件及相关例题。

5. 有理函数积分法:有理函数积分的基本思路及方法。

五、定积分及其应用1. 定积分的定义:定积分的严格定义及其几何意义。

2. 定积分的性质:定积分的线性性、定积分的区间可加性等性质。

3. 定积分的基本定理:牛顿-莱布尼茨公式及其几何意义。

4. 定积分的应用:面积、定积分表示的物理量、定积分的几何应用等。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结高等数学是考研数学中的重要一部分,对于考研学生来说,掌握高等数学的知识点是非常重要的。

下面是对高等数学知识点的总结,希望对考研学生有所帮助。

一、函数与极限1. 函数的概念:函数的定义域、值域和图像2. 函数的性质:奇偶性、周期性等3. 极限的概念:数列极限和函数极限4. 极限的性质:极限的四则运算、夹逼定理等5. 单调性与有界性:单调递增、单调递减、有界二、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的运算法则:加法减法法则、乘法法则、复合函数法则等3. 高阶导数与隐函数求导4. 微分与微分近似三、高阶导数与泰勒公式1. 高阶导数的定义与运算法则2. 泰勒展开式与泰勒公式四、不定积分与定积分1. 不定积分的概念与运算法则2. 反常积分:可积性、柯西准则、比较判别法等3. 定积分的概念与性质:函数积分的线性性、可加性、区间可加性等4. 牛顿-莱布尼茨公式与定积分的应用五、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、图像等2. 偏导数的概念:一阶偏导数、高阶偏导数3. 隐函数求导与全微分的概念4. 多元函数的极值与条件极值六、重积分与曲线曲面积分1. 二重积分的概念与计算方法:极坐标法、换元法、直角坐标系下的积分法2. 三重积分的概念与计算方法:柱面坐标法、球面坐标法、直角坐标系下的积分法3. 曲线积分与曲面积分的概念与计算方法七、常微分方程1. 常微分方程的基本概念:初值问题、解的存在唯一性2. 高阶线性常微分方程与常系数齐次线性方程3. 常微分方程的解法:分离变量法、齐次方程法、一阶线性非齐次方程法等4. 常微分方程的应用:动力学模型、电路网络分析等八、级数1. 级数的概念与基本性质:收敛、发散、极限、级数的四则运算等2. 正项级数与比较判别法、比值判别法、根值判别法等3. 幂级数与泰勒级数展开高等数学知识点总结完毕,以上知识点对考研的高等数学考试来说是基础中的基础。

考研数学高数重要知识点总结

考研数学高数重要知识点总结

考研数学高数重要知识点总结职高一数学知识点总结篇一一、求导数的方法(1)基本求导公式(2)导数的四则运算(3)复合函数的导数设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即二、关于极限1、数列的极限:粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。

记作:=A。

如:2、函数的极限:当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作三、导数的概念1、在处的导数。

2、在的导数。

3、函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,即k=,相应的切线方程是注:函数的导函数在时的函数值,就是在处的导数。

例、若=2,则=()A—1B—2C1D四、导数的综合运用(一)曲线的切线函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。

由此,可以利用导数求曲线的切线方程。

具体求法分两步:(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。

职高一数学知识点总结篇二一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性。

3、集合的表示:(1){?}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(2)。

用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}4.集合的表示方法:列举法与描述法。

常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R5、关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

考研高数总结知识点归纳

考研高数总结知识点归纳

考研高数总结知识点归纳考研高数是许多考研学子必须面对的科目,其内容广泛,知识点众多。

以下是对考研高数知识点的总结归纳:一、函数、极限与连续性- 函数的概念、性质和分类。

- 极限的定义、性质和求法。

- 无穷小的比较和无穷大的概念。

- 函数的连续性定义和判断方法。

二、一元函数微分学- 导数的定义、几何意义和物理意义。

- 基本初等函数的导数公式。

- 高阶导数和复合函数的求导法则。

- 隐函数、参数方程和相关变化率问题。

- 微分中值定理和洛必达法则。

- 函数的单调性、极值和最值问题。

- 曲线的凹凸性和拐点问题。

三、一元函数积分学- 不定积分和定积分的定义、性质和计算方法。

- 换元积分法和分部积分法。

- 有理函数的积分和三角函数的积分。

- 定积分在几何和物理中的应用。

- 反常积分和广义积分的概念。

四、多元函数微分学- 多元函数的极限和连续性。

- 偏导数和全微分的概念。

- 多元函数的极值和条件极值问题。

- 多元函数的泰勒展开和多元函数的微分中值定理。

五、多元函数积分学- 二重积分和三重积分的定义和计算方法。

- 曲线积分和曲面积分的定义和计算方法。

- 格林公式、高斯公式和斯托克斯公式。

- 多元函数积分在物理学中的应用。

六、无穷级数- 常数项级数的收敛性和发散性判断。

- 幂级数和泰勒级数。

- 函数展开成幂级数的方法。

- 傅里叶级数和傅里叶变换。

七、常微分方程- 一阶微分方程的求解方法,包括可分离变量方程、一阶线性微分方程等。

- 高阶微分方程的求解方法,包括常系数线性微分方程和欧拉方程。

- 微分方程的物理背景和实际应用。

结束语:考研高数的知识点繁多,但只要系统地复习,掌握好每一个概念和方法,就能够在考试中取得好成绩。

希望以上的归纳能够帮助到正在准备考研的同学们,祝大家考研顺利,取得理想的成绩。

考研必看考研数学基础知识点梳理(高数篇)

考研必看考研数学基础知识点梳理(高数篇)

考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。

(完整版)高等数学基本知识点大全大一复习,考研必备

(完整版)高等数学基本知识点大全大一复习,考研必备

大一期末复习和考研复习必备高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。

变量x的变化范围叫做这个函数的定义域。

通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。

注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。

这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。

如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。

这里我们只讨论单值函数。

⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。

由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。

例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。

例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。

c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。

考研高等数学基本知识点大全

考研高等数学基本知识点大全

高等数学基本知识点一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。

如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

即A A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档