高一数学人教A版必修四练习:第一章 三角函数1.1.1 含解析
新人教A版高中数学必修四第一章 三角函数测试题(含答案)
暑假数学课外辅导(必修4)第一章 三角函数一、基本内容串讲本章主干知识:三角函数的定义、图象、性质及应用,函数()ϕω+=x A y sin 的图象,三角函数模型在解决具有周期变化规律问题中的应用。
1.任意角和弧度制从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。
在直角坐标系中,当角的终边确定时,其大小不一定(通常使角的顶点与原点重合,角的始边与x 轴非负半轴重合)。
为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成α+k ·3600 (k ∈Z )的形式,特例,终边在x 轴上的角的集合为{α|α=k ·1800,k ∈Z},终边在y 轴上的角的集合为{α|α=900+k ·18000,k ∈Z},终边在坐标轴上的角的集合为{α|α=k ·900,k ∈Z}。
另外,角的终边落在第几象限,就说这个角是第几象限的角。
弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特殊角的弧度制。
在弧度制下,扇形弧长公式=|α|R ,扇形面积公式||R 21R 21S 2α== ,其中α为弧所对圆心角的弧度数。
2.任意角的三角函数利用直角坐标系,可以把直角三角形中的三角函数推广到任意角的三角函数。
设P(x ,y)是角α终边上任一点(与原点不重合),记22y x |OP |r +==,则r y s i n =α,r x cos =α,xy tan =α。
3.同角三角函数的基本关系式(1)平方关系:22sincos 1αα+= (2)商数关系:sin tan cos ααα= 4.三角函数的诱导公式利用三角函数定义,可以得到诱导公式:即πα2k+与α之间函数值的关系(k ∈Z ),其规律是“奇变偶不变,符号看象限”。
5.三角函数的图象与性质6.函数()ϕω+=x A y sin 的图象作函数y A x =+sin()ωϕ的图象主要有以下两种方法: (1)用“五点法”作图用“五点法”作y A x =+sin()ωϕ的简图,主要是通过变量代换,设ϕω+=x z ,由z 取0,2π,π,23π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象。
人教A版高一数学必修4 练习--第一章 三角函数1.2.1 第一课时--含解析
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.已知角α的终边经过点P (-1,2),则cos α的值为( )A .-55B .-5 C.255D.52 解析: cos α=-1(-1)2+22=-55. 答案: A2.若sin αcos α<0,则角α的终边在( )A .第二象限B .第四象限C .第二、四象限D .第三、四象限解析: 若sin α>0,cos α<0,则α是第二象限角;若sin α<0,cos α>0,则α是第四象限角.答案: C3.已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P (4,y )是角θ终边上一点,且sin θ=-255,则y =( )A .-8B .-4C .±8D .±4解析: sin θ=y 16+y 2=-255,∴y <0且y 2=64,从而y =-8. 答案: A4.已知角α的终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为( )A .-2<a <3B .-2<a ≤3C .-2≤a <3D .-3≤a <2解析: ∵sin α>0,cos α≤0,∴α位于第二象限或y 轴正半轴上.∴3a -9≤0且a +2>0.∴-2<a ≤3.答案: B二、填空题(每小题5分,共15分)5.如果α的终边过点P (2sin 60°,-2cos 60°),则sin α=________.解析: ∵2sin 60°=3,-2cos 60°=-1, ∴P (3,-1),∴sin α=-1(3)2+(-1)2=-12. 答案: -12。
高一数学人教A版必修四练习第一章 三角函数1.1.2 Word版含解析
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题分,共分).将-°化为弧度数为( ).-π.-π.-π.-π解析:-°=-×=-π.答案:.下列与的终边相同的角的表达式中,正确的是( ).·°+.π+°.·°-°(∈).π+(∈)解析:与的终边相同的角可以写成π+(∈),但是角度制与弧度制不能混用,所以只有答案正确.答案:.已知α=-,则角α的终边所在的象限是( ).第二象限.第一象限.第四象限.第三象限解析:因为-π<-<-,所以α在第三象限.答案:.一扇形的面积是,半径为,则该扇形的圆心角是( )解析:∵=θ,=,∴=×=π,∴θ=.答案:二、填空题(每小题分,共分).在扇形中,已知半径为,弧长为,则圆心角是弧度,扇形面积是.解析:α===,=·=××=.答案:.若角α的终边与角π的终边相同,则在[,π)上,终边与角的终边相同的角是.解析:由题意,得α=π+π(∈),所以=π+(∈).令=,,,,得=π,π,π,π.答案:π,π,π,π.如果一扇形的弧长变为原来的倍,半径变为原来的一半,则该扇形的面积为原扇形面积的.解析:由于=,若′=,′=,则′=′′=××=.答案:三、解答题(每小题分,共分).已知α=-°.()把α改写成β+π(∈,≤β<π)的形式,并指出α是第几象限角;()求γ,使γ与α的终边相同,且γ∈.解析:()∵-°=-×°+°,°=π,∴α=-°=π+(-)×π.∵α与角终边相同,∴α是第四象限角.()∵与α终边相同的角可写为π+,∈的形式,而γ与α的终边相同,∴γ=π+,∈.又γ∈,∴-<π+<,∈,解得=-,∴γ=-π+=-..如图,已知扇形的圆心角为°,半径长为,求弓形的面积.解析:∵°=π=π,∴=×π=π,∴的长为π.∵扇形==×π×=π,如图所示,有△=××(为中点)=××°×=.∴弓形=扇形-△=π-.∴弓形的面积为π-.。
最新新人教A版高中数学必修四 第一章三角函数测试题(含答案解析)
第二学期高一数学三月月考试卷(第一章三角函数)一、选择题.(每小题5分,共50分)1. ⎪⎭⎫⎝⎛-π 623sin 地值等于 A. 21 B. 21- C. 23 D. 23- 2. 下列角中终边与 330° 相同地角是 A. 30° B. - 30° C. 630° D . -630°3. 函数y =||x x sin sin +x x cos cos ||+||x x tan tan 地值域是 A. {1} B. {1,3} C. {- 1} D. {- 1,3}4. 如果 α α α α cos 5sin 3cos 2sin +-= - 5,那么tan α地值为 A.-2 B. 2 C. 1623D.-16235. 如果 sin α + cos α =43,那么 sin 3 α – cos 3α 地值为A. 2312825B. -2312825C. 2312825或-2312825D. 以上全错6. 若 a 为常数,且a >1,0≤x ≤2π,则函数f (x )= cos 2x + 2a sin x - 1地最大值为A. 12+aB. 12-aC. 12--aD. 2a7. 函数y = sin ⎪⎭⎫ ⎝⎛-x 2 4π地单调增区间是 A. ⎥⎦⎤⎢⎣⎡+-8π3π 8π3πk k ,,k ∈Z B. ⎥⎦⎤⎢⎣⎡++8π5π 8ππk k ,,k ∈Z C. ⎥⎦⎤⎢⎣⎡+-83ππ 8ππk k ,,k ∈Z D. ⎥⎦⎤⎢⎣⎡++87ππ 83ππk k ,,k ∈Z8. 若函数y = f (x )地图象上每一点地纵坐标保持不变,横坐标伸长到原来地2倍;再将整个图象沿x 轴向左平移2π个单位;沿y 轴向下平移1个单位,得到函数y =21sin x 地图象;则函数 y = f (x )是 A.y =12π2sin 21+⎪⎭⎫⎝⎛+xB. y =12π2sin 21+⎪⎭⎫ ⎝⎛-x C. y =14π2sin 21+⎪⎭⎫⎝⎛+xD. y =14π2sin 21+⎪⎭⎫ ⎝⎛-x 9. 如图是函数y = 2sin(ωx + φ),φ<2π地图象,那么A. ω = 1110,φ =6πB. ω = 1011,φ = -6πC. ω = 2,φ = 6π D. ω = 2,φ =10. 如果函数 f (x )是定义在(-3,3)上地奇函数,当0<x <3时,函数 f (x )地图象如图所示,那么不等式f (x )cos x <0地解集是A. 2π 3⎪⎭⎫ ⎝⎛--,∪(0,1)∪ 3 2π⎪⎭⎫⎝⎛, B. 1 2π⎪⎭⎫ ⎝⎛--,∪(0,1)∪ 3 2π⎪⎭⎫⎝⎛, C.(- 3,- 1)∪(0,1)∪(1,3)D. 2π 3⎪⎭⎫⎝⎛--,∪(0,1)∪(1,3) (第9题)(第10题)二、填空题. (每小题5分,共30分) 11. 若(cos )cos3f x x =,那么(sin30)f ︒地值为 . 12. 若扇形地半径为R ,所对圆心角为α,扇形地周长为定值c ,则这个扇形地最大面积为___.13. 若 sin θ =53+-m m ,cos θ =524+-m m,则m =___. 14. 若 cos(75° + α)=31,其中α为第三象限角,则cos(105° - α)+ sin(α - 105°)= ___.15. 函数y = lg (sin x ) +216x -地定义域为 .16. 关于函数f (x )= 4 sin ⎪⎭⎫ ⎝⎛+3π2x (x ∈R),有下列命题:①函数 y = f (x )地表达式可改写为y = 4cos(2x - π6); ②函数 y = f (x )是以2π为最小正周期地周期函数;③函数 y = f (x )地图象关于点⎪⎭⎫ ⎝⎛-0 6π,对称;④函数y = f(x)地图象关于直线x = - π6对称.其中正确地是___.答题卷一、选择题.二、填空题.11、12、13、14、15、16、三、解答题.(共70分)17. (12分)已知角α是第三象限角,求:(1)角α是第几象限地角;(2)角2α终2边地位置.18.(16分)(1)已知角α地终边经过点P(4,- 3),求2sin α+ cos α地值;(2)已知角α地终边经过点P(4a,- 3a)(a≠0),求 2sin α+ cos α地值;(3)已知角α终边上一点P与x轴地距离和与y 轴地距离之比为3 : 4,求2sin α+ cos α地值.19. (12分)已知tan α,1是关于x地方程tanx2 - kx + k2 - 3 = 0地两实根,且3π<α<7π,求cos(3π+ α)- sin(π+ α)2地值.20. (14分)已知0≤x≤π,求函数y= cos2x2- 2a cos x地最大值M(a)与最小值m(a).21. (16分)某商品一年内出厂价格在6元地基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元. 该商品在商店内地销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元.(1)试分别建立出厂价格、销售价格地模型,并分别求出函数解析式;(2)假设商店每月购进这种商品m 件,且当月销完,试写出该商品地月利润函数;(3) 求该商店月利润地最大值.参考答案一、选择题. 1. A【解析】⎪⎭⎫ ⎝⎛-π623sin =216πsin 2π2π623sin =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⨯+-. 2. B【解析】与 330° 终边相同地角为{α|α = 330° +k ∙ 360°,k ∈Z}.当 k = - 1时,α = - 30°.3. D【解析】将x 分为第Ⅰ、Ⅱ、Ⅲ、Ⅳ象限四种情况分别讨论,可知值域为{- 1,3}.4. D【解析】∵ sin α - 2cos α = - 5(3sin α + 5cos α),∴ 16sin α = - 23cos α,∴ tan α = -1623.5. C【解析】由已知易得 sin α cos α = -327.∴ |sin 3 α - cos 3 α| = |(sin α- cos α)(sin 2α + cos 2α + sin α cos α)|=ααcos sin 21- ∙ |1 + sin α cosα| = 1282325. ∴ sin 3 α - cos 3α = ±1282325. 6. B【解析】f (x )= 1 - sin 2x + 2a sin x - 1= - sin 2x + 2a sin x .令sin x = t ,∴ t ∈[-1,1].∴ f (t )= - t 2+ 2at = -(t - a )2+ a 2,t ∈[-1,1].∴ 当t = 1时,函数 f (t )取最大值为2a - 1. 7. D【解析】∵ y = sin(4π- 2x )= - sin(2x -4π),∴ 2π+ 2k π ≤ 2x -4π≤23π+ 2k π, ∴ 83π+ k π ≤ x ≤87π+ k π. 8. B 9. C 10. B 二、填空题. 11. -1【解析】(sin30)f ︒=()1180cos 603cos 60cos -==⨯=οοοf12. 162c .【解析】设扇形面积为S ,弧长为l . ∴ S = 21lR = 21(c -2R )· R = -R 2+21cR .c - 2R >0, R >0,∵∴ 0<R <2c.当 R = 4c时,S max =162c .13. 0或8;【解析】sin 2θ +cos 2θ = 1, ∴ (m - 3)2+(4 - 2m )2=(m + 5)2,m = 0,或m = 8.14. 3122-.【解析】cos(105º - α)+ sin(α - 105º) = - cos(75º + α)- sin(α + 75º). ∵ 180º<α<270º,∴ 255º<α + 75º<345º.又 cos(α + 75º)=31,∴ sin(α + 75º)= -232. ∴ 原式 =312223231-=+-.15. [- 4,- π)∪(0,π). 【解析】由已知得∴ x ∈[- 4,- π)∪(0,π).16. ①③.【解析】① f (x )= 4sin ⎪⎭⎫ ⎝⎛+3π2x = 4cos ⎪⎭⎫ ⎝⎛--3π22πx = 4cos ⎪⎭⎫ ⎝⎛+-6π2x = 4cos ⎪⎭⎫⎝⎛-6π2x . ② T =22π= π,最小正周期为π.③ ∵ 2x +3π= k π,当 k = 0时,x =6π-, ∴ 函数 f (x )关于点⎪⎭⎫⎝⎛-0 6π,对称. ④ 2x +3π= k π +2π,当 x = -6π时,k =21-,与 k ∈Z 矛盾.∴ ①③正确. 三、解答题.17.【解】(1)由2k π + π<α<2k π +23π,k ∈Z , 得k π +2π<2α<k π +43π,k ∈Z. 将整数 k 分奇数和偶数进行讨论,易得角2α为第二象限或第四象限地角.(2)由2k π + π<α<2k π +23π,k ∈Z ,得4k π + 2π<2α<4k π + 3π,k ∈Z. ∴ 2α终边位置可能在第一象限、第二象限或y 轴地非负半轴.18.【解】(1)∵ 22y x r +== 5,∴ sin α =53-=r y ,cos α =54=r x , ∴ 2sin α + cos α =525456-=+-. (2)∵ ay x r 522=+=,∴ 当 α>0时,∴ r = 5a ,sin α =5353-=-a a ,cos α =54∴ 2sin α + cos α =52-;当 a <0时,∴ r = -5a ,sin α =5353=--a a ,cos α = -54,∴ 2sin α + cos α =52.(3)当点P 在第一象限时, sin α =53,cos α =54,2sin α + cos α = 2;当点P 在第二象限时, sin α =53,cos α =54-,2sin α + cos α =52;当点P 在第三象限时,sin α =53-,cos α =54-,2sin α + cos α = - 2;当点P 在第四象限时,sin α =53-,cos α =54,2sin α + cos α =52-.19.【解】由已知得 tan α αtan 1= k 2- 3=1, ∴ k =±2.又 ∵ 3π<α<27π,∴ tan α>0,αtan 1>0. ∴ tan α +αtan 1= k = 2>0 (k = -2舍去), ∴ tan α =αtan 1= 1, ∴ sin α = cos α = -22,∴ cos(3π +α) - sin(π +α) = sin α - cos α = 0.20.【解】y = cos 2x - 2a cos x = (cos x -a )2- a 2,令 cos x = t ,∵ 0≤x ≤2π, ∴ t ∈[0,1].∴ 原函数可化为f (t ) = (t - a )2- a 2,t ∈[0,1].①当 a <0 时,M (a ) = f (1) = 1 – 2a ,m (a ) =f (0) = 0.②当 0≤a <21 时,M (a ) = f (1) = 1 – 2a ,m (a ) = f (a ) = –a 2.③当 21≤a ≤1 时,M (a ) = f (0) = 0,m (a ) = f (a ) = –a 2.④当 a >1 时,M (a ) = f (0) = 0,m (a ) = f (1) = 1–2a .21. 【解】分别令厂价格、销售价格地函数解析式为 厂价格函数: ()11111sin b x A y ++=ϕω, 销售价格函数:()22222sin b x A y ++=ϕω, 由题意得:22281=-=A;226102=-=A,61=b;82=b()83721=-⨯=T ;()85922=-⨯=T482221111πππϖϖπ===⇒=T T ;482222222πππϖϖπ===⇒=T T∴64sin 211+⎪⎭⎫⎝⎛+=ϕπx y;84sin 222+⎪⎭⎫⎝⎛+=ϕπx y把x=3,y=8代入64sin 211+⎪⎭⎫⎝⎛+=ϕπx y得41πϕ-= 把x=5,y=10代入84sin 222+⎪⎭⎫ ⎝⎛+=ϕπx y 得432πϕ-=∴644sin 21+⎪⎭⎫ ⎝⎛-=ππx y;8434sin 22+⎪⎭⎫ ⎝⎛-=ππx y(2)、()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-=•-=m x m m x m m y yy 644sin 28434sin 212ππππ=m x m 244sin 4+⎪⎭⎫⎝⎛--ππ (3)、当144sin -=⎪⎭⎫⎝⎛-ππx 时y 取到最大值,()mm m y 6214max=+-⨯-=。
(完整版)人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)
B .y=sin| x|
C. y= -sin|x|
D .y= - |sinx|
7.函数 y=cos2x –3cosx+2 的最小值是(
)
A.2
B.0
1 C.
4
D.6
π
8.函数 y= 3sin -2x- 6 ( x∈[0 ,π ]) 的单调递增区间是 (
)
5π A. 0, 12
π 2π B. 6 , 3
2
2
即
2k 2 x
2k , k Z
2
62
得
kx
k ,k Z ,
3
6
从而所求单增区间为 [
k , k ], k Z
3
6
( 2 )由 y sin x 的图象向左平移 个单位,得到函数 y sin( x 6
各点的横坐标不变,纵坐标变为原来的
1 倍得到函数 y
1 sin( x
2
2
各点的纵坐标不变, 横坐标变为原来的
.
6
63
16.函数 f(x)=sin x+2|sinx|,x∈ [0,2 π的]图象与直线 y=k 有且仅有两个不同的交点
围是 __________.
,则 k 的取值范
三、解答题
17.已知 是第二象限角, f ( )
sin( ) tan(
)
.
sin(
)cos(2
) tan( )
( 1)化简 f ( ) ; ( 2)若 sin(
26
3
3
23
π
5.已知函数 f ( x) =sin ωx+ 3 ( ω>0) 的最小正周期为 π,则该函数图像 (
)
π A.关于直线 x= 对称
高中数学习题必修4及答案
高中数学习题必修4及答案篇一:人教版高一数学必修四测试题(含详细答案)高一数学考试(必修4)(特别适合按14523顺序的省份)必修4第1章三角函数(1)一、选择题:1.如果a={第一象限角},B={锐角},C={角度小于90°},那么a,B和C之间的关系是()a.b=a∩cb.b∪c=cc.acd.a=b=c2sin21200等于()?133c?d22223.已知sin??2cos?3sin??5cos5,那么tan?的值为b.2c.()16164.在下列函数中,最小正周期为π的偶数函数为()A.-223D.-23x1?tan2xa.y=sin2xb.y=cosc.sin2x+cos2xd.y=21?tan2x5.转角600的端边是否有点??4,a那么a的值是()04b?43c?43d6.得到函数y=cos(a.向左平移x?x?)的图象,只需将y=sin的图象()242??个单位b.同右平移个单位22c、将装置向左移动D.将装置向右移动447.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移?1个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象22Y=f(x)是()a.y=1?1?sin(2x?)?1b.y=sin(2x?)?122221.1.c、 y=sin(2x?)?1d。
罪(2x?)?一万二千四百二十四8.函数y=sin(2x+5?)的图像的一条对轴方程是()25.a、 x=-b.x=-c.x=d.x=42481,则下列结论中一定成立的是229.如果罪??余弦??()罪恶??2b.罪22罪??余弦??1d.罪??余弦??0c。
()10.函数y?2sin(2x??3)形象a.关于原点对称b.关于点(-11.功能y?罪(x?a.[,0)对称c.关于y轴对称d.关于直线x=对称66?2x?r是()??,]上是增函数b.[0,?]上是减函数22c、 [?,0]是减法函数D.[?,?]上限是一个减法函数12.功能y?()3,2k??a、 2k b、 2k??,2k??(k?z)(k?z)3.66??2??3.c、 2k3,2k(k?Z)d?2k23,2k2(kz)3二、填空:13.函数y?cos(x2)(x?[,?])的最小值是.863和2002年相同端边的最小正角度为_________015.已知sin??cos??1??,且,则cos??sin??.842如果设置一个??x | kx?k???,k?z?,b??x|?2?x?2?,3?然后是a?b=_______________________________________三、解答题:17.认识辛克斯吗?Coxx?1和0?x??。
高中数学 第一章 三角函数综合测试题(含解析)新人教A版必修4(2021年整理)
高中数学第一章三角函数综合测试题(含解析)新人教A版必修4 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数综合测试题(含解析)新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数综合测试题(含解析)新人教A版必修4的全部内容。
三角函数 综合测试题(时间:120分钟 满分:150分)学号:______ 班级:______ 姓名:______ 得分:______一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.sin780︒的值为( ) A .23-B .23 C .21- D .212。
下列说法中正确的是( ) A .第一象限角都是锐角B .三角形的内角必是第一、二象限的角C .不相等的角终边一定不相同D .},90180|{},90360|{Z k k Z k k ∈︒+︒•==∈︒±︒•=ββαα 3.已知角3π的终边上有一点P (1,a ),则a 的值是 ( ) A .3- B .3± C .33D .34.已知21tan -=α,则αααα22cos sin cos sin 2-的值是( ) A .34- B .3 C .34 D .3-5.已知53)2cos(=+απ,且,2(πα∈)23π,则=αtan ( ) A .34 B .43 C .43- D .43±6.若函数x y 2sin =的图象向左平移4π个单位得到)(x f y =的图象,则( )A .x x f 2cos )(=B .x x f 2sin )(=C .x x f 2cos )(-=D .x x f 2sin )(-=7.设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:t 0 3 6 9 12 15 18 21 24y1215。
高中数学人教A版必修4习题:第一章三角函数1.1.1
01第一章三角函数1.1任意角和弧度制1.1.1任意角课时过关·能力提升基础巩固1-215°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.答案:B2下列与150°角终边相同的角是()A.30°B.-150°C.390°D.-210°答案:D3与-457°角终边相同的角的集合是()A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}答案:C4已知α是第二象限角,则2α的终边在()A.第一、二象限B.第二象限C.第三、四象限D.以上都不对解析:∵α是第二象限角,∴k·360°+90°<α<k·360°+180°,k∈Z,∴2k·360°+180°<2α<2k·360°+360°,k∈Z,∴2α角的终边在第三或第四象限或在y轴的非正半轴上.答案:D5若手表的时针走了2 h,则该时针转过的度数为()A.60°B.-60°C.30°D.-30°答案:B6在-360°~720°之间,与-367°角终边相同的角是.解析:与-367°角终边相同的角可表示为α=k·360°-367°,k∈Z.当k=1,2,3时,α=-7°,353°,713°,这三个角都是符合条件的角.答案:-7°,353°,713°7终边落在图中阴影部分(不包括边界)的角的集合为.解析:在0°~360°内,终边在阴影部分的角的范围是120°<α<225°,所以终边落在阴影部分的角的集合为{β|k·360°+120°<β<k·360°+225°,k∈Z}.答案:{β|k·360°+120°<β<k·360°+225°,k∈Z}8在坐标系中画出下列各角:(1)-180°;(2)1 070°.解在坐标系中画出各角如图.9在-720°~720°范围内,用列举法写出与60°角终边相同的角的集合S.解与60°角终边相同的角的集合为{α|α=60°+k·360°,k∈Z},令-720°≤60°+k·360°<720°(k∈Z),得k=-2,-1,0,1,相应的角为-660°,-300°,60°,420°,从而S={-660°,-300°,60°,420°}.10已知α=-1 910°.(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求角θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)∵-1910°=-6×360°+250°,∴β=250°,即α=250°-6×360°.又250°是第三象限角,∴α是第三象限角.(2)θ=250°+k·360°(k∈Z).∵-720°≤θ<0°,∴-720°≤250°+k·360°<0°,解得−9736≤k<−2536.又k∈Z,∴k=-1或k=-2.∴θ=250°-360°=-110°或θ=250°-2×360°=-470°.能力提升1下列说法中,正确的是()A.钝角必是第二象限角,第二象限角必是钝角B.第三象限的角必大于第二象限的角C.小于90°的角是锐角D.-95°20',984°40',264°40'是终边相同的角答案:D2若A={α|α=k·360°,k∈Z},B={α|α=k·180°,k∈Z},C={α|α=k·90°,k∈Z},则下列关系正确的是()A.A=B=CB.A=B∩CC.A∪B=CD.A⊆B⊆C答案:D3若角θ是第四象限角,则90°+θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:如图,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.答案:A是第象限角.4已知α为第三象限角,则α3<解析:∵α是第三象限角,∴k·360°+180°<α<k·360°+270°,k∈Z,∴k·120°+60°<α3k·120°+90°,k∈Z.∵k·120°+60°角的终边在第一象限、x轴非正半轴、第四象限,k·120°+90°角的终边在y轴是第一、三或四象限角.非负半轴、第三象限、第四象限,∴α3答案:一、三或四5已知角α的终边在图中阴影所表示的范围内(不包括边界),则角α组成的集合为.解析:由图知,将x轴绕原点分别旋转30°与150°得边界,∴终边在阴影内的角的集合为{α|k·180°+30°<α<k·180°+150°,k∈Z}.答案:{α|k·180°+30°<α<k·180°+150°,k∈Z}★6角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,则角α=.解析:∵5α与α的始边和终边分别相同,∴这两角的差应是360°的整数倍,即5α-α=4α=k·360°.∴α=k·90°.又180°<α<360°,令180°<k·90°<360°,则2<k<4,∴k=3,α=270°.答案:270°7已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,指出它们是第几象限角,并指出在0°~360°范围内与其终边相同的角.(1)780°;(2)-435°;(3)1 215°;(4)-870°.解(1)如图①,780°是第一象限角;在0°~360°范围内,60°角与其终边相同.(2)如图②,-435°是第四象限角;在0°~360°范围内,285°角与其终边相同.(3)如图③,1215°是第二象限角;在0°~360°范围内,135°角与其终边相同.(4)如图④,-870°是第三象限角;在0°~360°范围内,210°角与其终边相同.★8已知集合M={α|k·180°+30°<α<k·180°+120°,k∈Z},N={β|k·360°+90°<β<k·360°+270°,k∈Z},求M∩N.解∵M={α|k·180°+30°<α<k·180°+120°,k∈Z},∴当k=2n(n∈Z)时,M={α|n·360°+30°<α<n·360°+120°,n∈Z}.又N={β|k·360°+90°<β<k·360°+270°,k∈Z},∴M∩N={x|k·360°+90°<x<k·360°+120°,k∈Z}.当k=2n+1(n∈Z)时,M={α|n·360°+210°<α<n·360°+300°,n∈Z},又N={β|k·360°+90°<β<k·360°+270°,k∈Z},∴M∩N={x|k·360°+210°<x<k·360°+270°,k∈Z},∴M∩N={x|k·360°+90°<x<k·360°+120°或k·360°+210°<x<k·360°+270°,k∈Z}.。
【专业资料】新版高中数学人教A版必修4习题:第一章三角函数 1.2.1.1 含解析
1.2任意角的三角函数1.2.1任意角的三角函数第1课时三角函数的定义课时过关·能力提升基础巩固1sin 390°等于()A.12B.√22C.√32D.1解析:sin390°=sin(30°+360°)=sin30°=12.答案:A2若cos α<0,且tan α>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限解析:由于cosα<0,则α的终边在第二或第三象限,又tanα>0,则α的终边在第一或第三象限,所以α的终边在第三象限.答案:C3cos 1 110°的值为()A.1B.√3C.−1D.−√3解析:cos1110°=cos(3×360°+30°)=cos30°=√3.答案:B4√cos2201.2°可化为()A.cos 201.2°B.-cos 201.2°C.sin 201.2°D.tan 201.2°解析:∵201.2°是第三象限角,∴cos201.2°<0,∴√cos2201.2°=|cos201.2°|=-cos201.2°.答案:B5已知点P (1,y )是角α终边上一点,且cos α=√36,则y = . 解析:∵P (1,y )是角α终边上一点,且cos α=√36,∴r =√1+y 2,1r =√1+y =√36,∴y =±√11. 答案:±√116已知点P (−√3,−1)是角α终边上的一点,则cos α+tan α= .解析:∵x=−√3,y =−1,∴r =OP =√(-√3)2+(-1)2=2.∴cos α=−√32,tanα=√3=√33. ∴cos α+tan α=−√32+√33=−√36.答案:−√367已知α的终边经过点(3a-9,a+2),且sin α>0,cos α<0,则a 的取值范围是 .解析:∵sin α>0,cos α<0,∴α是第二象限角.∴点(3a-9,a+2)在第二象限.∴{3a -9<0,a +2>0,解得-2<a<3. 答案:(-2,3)8判断下列各式的符号.(1)tan 250°cos(-350°); (2)sin 105°cos 230°.解(1)∵250°是第三象限角,-350°=-360°+10°是第一象限角,∴tan250°>0,cos(-350°)>0,∴tan250°cos(-350°)>0.(2)∵105°是第二象限角,230°是第三象限角,∴sin105°>0,cos230°<0,∴sin105°cos230°<0.9利用定义求si n 5π4,cos 5π4,tan 5π4的值.解如图,在平面直角坐标系中画出角5π4的终边.设角5π4的终边与单位圆的交点为P ,则有P (-√22,-√22).故si n 5π4=−√22,cos 5π4=−√22,tan 5π4=-√22-√22=1.能力提升1已知角α的终边经过点P (m ,-3),且cos α=−45,则m 等于( )A.−114B.114C.−4D.4解析:由题意得cos α=2=−45,两边平方可解得m=±4.又cos α=−45<0,则α的终边在第二或三象限,则点P 在第二或三象限,所以m<0,则m=-4.答案:C2已知P (2,-3)是角θ终边上一点,则tan(2π+θ)等于( ) A .32B.23C.−32D.−23解析:tan(2π+θ)=tan θ=-32=−32. 答案:C3如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ的终边所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限 解析:由于点P (sin θ+cos θ,sin θcos θ)位于第二象限,则{sinθ+cosθ<0,sinθcosθ>0,所以有sin θ<0,cos θ<0,所以角θ的终边在第三象限.答案:C4已知角α的终边不在坐标轴上,则sinα|sinα|+cosα|cosα|+tanα|tanα|的取值集合是( )A.{1,2}B.{-1,3}C.{1,3}D.{2,3}解析:当α是第一象限角时,sinα|sinα|+cosα|cosα|+tanα|tanα|=3,当α是第二、三、四象限角时,其值为-1.所以sinα|sinα|+cosα|cosα|+tanα|tanα|的取值集合是{-1,3}.答案:B5已知角θ的顶点为坐标原点,始边为x轴的非负半轴,若P(4,y)是角θ终边上一点,且sinθ=−2√55,则y=.解析:|OP|=√42+y2,根据任意角的三角函数的定义知,sinθ=√4+y2=−2√55,∴y<0,解得y=-8.答案:-8★6已知θ=−11π6,P为角θ终边上一点,|OP|=2√3,则点P的坐标为.解析:sinθ=si n(-11π6)=sin(-2π+π6)=sinπ6=12,cosθ=co s(-11π6)=cos(-2π+π6)=cosπ6=√32.设P(x,y),则sinθ=y|OP|,cosθ=x|OP|,∴y=|OP|·sinθ=2√3×1=√3,x=|OP|·cosθ=2√3×√3=3,∴P(3,√3).答案:(3,√3)★7已知角α的终边经过点P(-3cos θ,4cos θ),其中θ∈(2kπ+π2,2kπ+π)(k∈Z),求角α的各个三角函数值.分析本题中的点P的坐标是用θ的三角函数表示的,在求点P到原点的距离时,应特别注意角θ的范围对r值的影响.解∵θ∈(2kπ+π2,2kπ+π)(k∈Z),∴cosθ<0.∴点P在第四象限.∵x=-3cosθ,y=4cosθ,∴r=√x2+y2=√(-3cosθ)2+(4cosθ)2=|5cosθ|=-5cosθ.∴sinα=−45,cosα=35,tanα=−43.★8已知1|sinα|=-1sinα,且lg cos α有意义. (1)试判断角α所在的象限.(2)若角α的终边上一点是M (35,m),且|OM|=1(O 为坐标原点),求m 的值及sin α的值. 解(1)由1|sinα|=−1sinα可知sin α<0,所以α是第三或第四象限角或终边在y 轴的负半轴上的角. 由lgcos α有意义可知cos α>0,所以α是第一或第四象限角或终边在x 轴的正半轴上的角. 综上可知角α是第四象限的角.(2)因为|OM|=1,所以(35)2+m2=1,解得m=±45.又α是第四象限角,所以m<0,从而m=−45.由正弦函数的定义可知sin α=y r =m |OM |=-451=−45.。
高中数学人教A版必修4习题:第一章三角函数1.1.1含解析
01第一章三角函数1.1任意角和弧度制1.1.1任意角课时过关·能力提升基础巩固1-215°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.答案:B2下列与150°角终边相同的角是()A.30°B.-150°C.390°D.-210°答案:D3与-457°角终边相同的角的集合是()A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}答案:C4已知α是第二象限角,则2α的终边在()A.第一、二象限B.第二象限C.第三、四象限D.以上都不对解析:∵α是第二象限角,∴k·360°+90°<α<k·360°+180°,k∈Z,∴2k·360°+180°<2α<2k·360°+360°,k∈Z,∴2α角的终边在第三或第四象限或在y轴的非正半轴上.答案:D5若手表的时针走了2 h,则该时针转过的度数为()A.60°B.-60°C.30°D.-30°答案:B6在-360°~720°之间,与-367°角终边相同的角是.解析:与-367°角终边相同的角可表示为α=k·360°-367°,k∈Z.当k=1,2,3时,α=-7°,353°,713°,这三个角都是符合条件的角.答案:-7°,353°,713°7终边落在图中阴影部分(不包括边界)的角的集合为.解析:在0°~360°内,终边在阴影部分的角的范围是120°<α<225°,所以终边落在阴影部分的角的集合为{β|k·360°+120°<β<k·360°+225°,k∈Z}.答案:{β|k·360°+120°<β<k·360°+225°,k∈Z}8在坐标系中画出下列各角:(1)-180°;(2)1 070°.解在坐标系中画出各角如图.9在-720°~720°范围内,用列举法写出与60°角终边相同的角的集合S.解与60°角终边相同的角的集合为{α|α=60°+k·360°,k∈Z},令-720°≤60°+k·360°<720°(k∈Z),得k=-2,-1,0,1,相应的角为-660°,-300°,60°,420°,从而S={-660°,-300°,60°,420°}.10已知α=-1 910°.(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求角θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)∵-1910°=-6×360°+250°,∴β=250°,即α=250°-6×360°.又250°是第三象限角,∴α是第三象限角.(2)θ=250°+k·360°(k∈Z).∵-720°≤θ<0°,∴-720°≤250°+k·360°<0°,解得−9736≤k<−2536.又k∈Z,∴k=-1或k=-2.∴θ=250°-360°=-110°或θ=250°-2×360°=-470°.能力提升1下列说法中,正确的是()A.钝角必是第二象限角,第二象限角必是钝角B.第三象限的角必大于第二象限的角C.小于90°的角是锐角D.-95°20',984°40',264°40'是终边相同的角答案:D2若A={α|α=k·360°,k∈Z},B={α|α=k·180°,k∈Z},C={α|α=k·90°,k∈Z},则下列关系正确的是() A.A=B=C B.A=B∩CC.A∪B=CD.A⊆B⊆C答案:D3若角θ是第四象限角,则90°+θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:如图,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.答案:A4已知α为第三象限角,则α3是第象限角.解析:∵α是第三象限角,∴k·360°+180°<α<k·360°+270°,k∈Z,∴k·120°+60°<α3<k·120°+90°,k∈Z.∵k·120°+60°角的终边在第一象限、x轴非正半轴、第四象限,k·120°+90°角的终边在y轴非负半轴、第三象限、第四象限,∴α3是第一、三或四象限角.答案:一、三或四5已知角α的终边在图中阴影所表示的范围内(不包括边界),则角α组成的集合为.解析:由图知,将x轴绕原点分别旋转30°与150°得边界,∴终边在阴影内的角的集合为{α|k·180°+30°<α<k·180°+150°,k∈Z}.答案:{α|k·180°+30°<α<k·180°+150°,k∈Z}★6角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,则角α=.解析:∵5α与α的始边和终边分别相同,∴这两角的差应是360°的整数倍,即5α-α=4α=k·360°.∴α=k·90°.又180°<α<360°,令180°<k·90°<360°,则2<k<4,∴k=3,α=270°.答案:270°7已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,指出它们是第几象限角,并指出在0°~360°范围内与其终边相同的角.(1)780°;(2)-435°;(3)1 215°;(4)-870°.解(1)如图①,780°是第一象限角;在0°~360°范围内,60°角与其终边相同.(2)如图②,-435°是第四象限角;在0°~360°范围内,285°角与其终边相同.(3)如图③,1215°是第二象限角;在0°~360°范围内,135°角与其终边相同.(4)如图④,-870°是第三象限角;在0°~360°范围内,210°角与其终边相同.★8已知集合M={α|k·180°+30°<α<k·180°+120°,k∈Z},N={β|k·360°+90°<β<k·360°+270°,k∈Z},求M∩N.解∵M={α|k·180°+30°<α<k·180°+120°,k∈Z},∴当k=2n(n∈Z)时,M={α|n·360°+30°<α<n·360°+120°,n∈Z}.又N={β|k·360°+90°<β<k·360°+270°,k∈Z},∴M∩N={x|k·360°+90°<x<k·360°+120°,k∈Z}.当k=2n+1(n∈Z)时,M={α|n·360°+210°<α<n·360°+300°,n∈Z},又N={β|k·360°+90°<β<k·360°+270°,k∈Z},∴M∩N={x|k·360°+210°<x<k·360°+270°,k∈Z},∴M∩N={x|k·360°+90°<x<k·360°+120°或k·360°+210°<x<k·360°+270°,k∈Z}.。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。
高中数学必修四 第一章三角函数 1.1.1 任意角
2.角α,β的终边相同,α与β不一定相等 剖析因为角α,β的终边相同,所以将角α终边旋转(逆时针或顺时 针)k(k∈Z)周可得角β,所以角α,β的数量关系为β=k·360°+α(k∈Z), 即角α,β的大小相差360°的k(k∈Z)倍,因此α与β不一定相等.
3.锐角、0°~90°的角、小于90°的角、第一象限的角的区别 剖析:受初中所学角的影响,往往在解决问题时,考虑的角仅仅停 留在锐角、直角、钝角上.将角扩展到任意角后,可用集合的观点 来区别上述各类角. 锐角的集合可表示为{α|0°<α<90°}; 0°~90°的角的集合可表示为{α|0°≤α<90°}; 小于90°的角的集合可表示为{α|α<90°},其中包括锐角和零角 以及所有的负角; 第一象限的角的集合可表示为 {α|k·360°<α<k·360°+90°,k∈Z},其中有正角,也有负角.
0°<α<90°
第一象限
90°
y 轴非负半轴
90°<α<180°
第二象限
180°
x 轴非正半轴
α 的范围 180°<α<270°
α 终边的位置 第三象限
270°
y 轴非正半轴
270°<α<360°
第四象限
(2)当α<0°或α≥360°时,将α化为 k·360°+β(k∈Z,0°≤β<360°),转化为判断角β的终边所在的位置.
名师点拨要正确区分易混的概念,如锐角一定是第一象限的角,而 第一象限的角不全是锐角,如-350°,730°都是第一象限角,但它们 都不是锐角.
典型例题
题型一
判断象限角
【例1】 在0°~360°之间,求出一个与下列各角终边相同的角,
高中数学人教A版必修4第一章三角函数1.1.1角的概念的推广 答案和解析
高中数学人教A 版必修4第一章三角函数1.1.1角的概念的推广学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A∩CB .B ∪C=CC .A ⫋CD .A=B=C2.若角α的终边经过点M (0,-3),则角α( ) A .是第三象限角 B .是第四象限角C .既是第三象限角,又是第四象限角D .不是任何象限的角3.若α是第四象限角,则-α一定在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限4.终边与坐标轴重合的角α的集合是( ) A .{α|α=k ·360°,k ∈Z } B .{α|α=k ·180°+90°,k ∈Z } C .{α|α=k ·180°,k ∈Z } D .{α|α=k ·90°,k ∈Z }5.下面说法正确的个数为( ) (1)第二象限角大于第一象限角;(2)三角形的内角是第一象限角或第二象限角; (3)钝角是第二象限角. A .0B .1C .2D .36.已知集合{}|9036,A a a k k Z ︒︒==⨯-∈,{}|180180B ββ︒︒=-<<,则A B等于( ) A .{}36,54︒︒-B .{}126,144︒︒-C .{}126,36,54,144︒︒︒︒-- D .{}126,54︒︒-二、填空题7.50°角的始边与x轴的非负半轴重合,把其终边按顺时针方向旋转3周,所得的角是________.8.若α为锐角,则角-α+k·360°(k∈Z)是第________象限角.9.在0°~360°范围内,与角-60°的终边在同一条直线上的角为________.三、解答题10.如图所示,写出阴影部分(包括边界)的角的集合,并指出-950°12′是否是该集合中的角.11.已知角β-y=0上.(1)写出角β的集合S;(2)写出S中适合不等式-360°<β<720°的元素.12.已知角α的集合M={α|α=30°+k·90°,k∈Z},回答下列问题:(1)集合M有几类终边不相同的角?(2)集合M中大于-360°且小于360°的角是哪几个?(3)写出集合M中的第二象限角β的一般表达式.四、双空题13.如图,终边落在OA的位置上的角的集合是________;终边落在OB的位置上,且在-360°~360°内的角的集合是________.参考答案1.B【解析】【分析】由集合A,B,C,求出B与C的并集,判断A与C的包含关系,以及A,B,C三者之间的关系即可.【详解】由题B⊆A,∵A={第一象限角},B={锐角},C={小于90°的角},∴B∪C={小于90°的角}=C,即B⊆C,则B不一定等于A∩C,A不一定是C的真子集,三集合不一定相等,故选B.【点睛】此题考查了集合间的基本关系及运算,熟练掌握象限角,锐角,以及小于90°的角表示的意义是解本题的关键,是易错题2.D【解析】因为点M(0,-3)在y轴负半轴上,所以角α的终边不在任何象限,故选D.3.A【解析】试题分析:由角α的表示法,确定-α的表示法,然后得出-α所在的范围.k·360°+180°<α<k·360°+270°,k∈Z⇒-k·360°-270°<-α<-k·360°-180°,k∈Z⇒k·360°+90°<-α<k·360°+180°,k∈Z⇒-α为第二象限角.考点:本题主要考查象限角的概念及表示.点评:简单题,涉及不等式的性质,能准确表示某象限的角是关键.4.D【解析】终边在坐标轴上的角为90°或90°的倍数角,所以终边与坐标轴重合的角的集合为{α|α=k·90°,k∈Z},故选D.5.B【解析】第二象限角如120°比第一象限角390°要小,故(1)错;三角形的内角可能为直角,直角既不是第一象限角,也不是第二象限角,故(2)错;(3)中钝角是第二象限角是对的.所以正确的只有1个,故选B.6.C【解析】由-180°<k·90°-36°<180°(k∈Z)得-144°<k·90°<216°(k∈Z),所以-14490<k<21690(k∈Z),所以k=-1,0,1,2,所以A∩B={-126°,-36°,54°,144°},故选C.7.-1 030°【解析】顺时针方向旋转3周转了-(3×360°)=-1 080°.又50°+(-1 080°)=-1 030°,故所得的角为-1 030°,故填-1 030°.8.四【解析】α为锐角,则角α是第一象限角,所以角-α是第四象限角,又因为角-α+k·360°(k∈Z)与-α的终边相同,所以角-α+k·360°(k∈Z)是第四象限角,故填四.9.120°300°【解析】根据终边相同角定义知,与-60°终边相同角可表示为β=-60°+k·360°(k∈Z),当k=1时β=300°与-60°终边相同,终边在其反向延长线上且在0°~360°范围内角为120°,故填120° ,300°.10.{α|k·360°≤α≤k·360°+125°,k∈Z},-950°12′不是该集合中的角.【解析】试题分析:题图阴影部分(包括边界)的角的范围是k·360°≤α≤k·360°+125°,k∈Z,而-950°12′=-3×360°+129°48′,不是集合中的角.试题解析:题图阴影部分(包括边界)的角的范围是k·360°≤α≤k·360°+125°,k∈Z,所求集合为{α|k·360°≤α≤k·360°+125°,k∈Z},因为-950°12′=-3×360°+129°48′,所以-950°12′不是该集合中的角.11.(1)S={β|β=60°+k·180°,k∈Z};(2)-300°,-120°,60°,240°,420°,600°.【分析】(1)角βx-y=0-y=0的倾斜角为60°,所以角β的集合S={β|β=60°+k·180°,k∈Z};(2)在S={β|β=60°+k·180°,k∈Z}中,对整数k赋值,找出S 中适合不等式-360°<β<720°的元素即可.【详解】(1)因为角βx-y=0x-y=0的倾斜角为60°,所以角β的集合S={β|β=60°+k·180°,k∈Z}.(2)在S={β|β=60°+k·180°,k∈Z}中,取k=-2,得β=-300°,取k=-1,得β=-120°,取k=0,得β=60°,取k=1,得β=240°,取k=2,得β=420°,取k=3,得β=600°.所以S中适合不等式-360°<β<720°的元素分别是-300°,-120°,60°,240°,420°,600°.12.(1)四类;(2)-330,-240°,-150,-60°,30°,120°,210°,300;(3)β=120°+k·360°,k∈Z. 【解析】试题分析:(1)集合M的角可以分成四类,即终边分别与-150°,-60°,30°,120°的终边相同的角;(2) 令-360°<30°+k·90°<360°,根据k的取值范围以及k∈Z,所以k=-4,-3,-2,-1,0,1,2,3,分别代入求出角度即可;(3)集合M中的第二象限角与120°角的终边相同,所以β=120°+k·360°,k∈Z.试题解析:(1)集合M的角可以分成四类,即终边分别与-150°,-60°,30°,120°的终边相同的角.(2)令-360°<30°+k·90°<360°,则-<k<,又因为k∈Z,所以k=-4,-3,-2,-1,0,1,2,3,所以集合M中大于-360°且小于360°的角共有8个,分别是-330,-240°,-150,-60°,30°,120°,210°,300.(3)集合M中的第二象限角与120°角的终边相同,所以β=120°+k·360°,k∈Z.13.{α|α=120°+k·360°,k∈Z} {-45°,315°}【解析】终边落在OA的位置上的角的集合是{α|α=120°+k·360°,k∈Z};终边落在OB的位置上的角的集合是{α|α=315°+k·360°,k∈Z}(或{α|α=-45°+k·360°,k∈Z}),取k=0,1,得α=315°,-45°,所求的集合是{-45°,315°},故填(1). {α|α=120°+k·360°,k∈Z}; (2). {-45°,315°}.。
高一数学人教a版必修四练习:第一章_三角函数1.3_第一课时_word版含解析
高一数学人教a 版必修四练习:第一章_三角函数1.3_第一课时_word 版含解析(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.sin 600°的值是( )A.12 B .-12 C.32 D .-32解析: sin 600°=sin(360°+240°)=sin 240°=sin(180°+60°)=-sin 60°=-32.答案: D2.若sin(π+α)=-12,则sin(4π-α)的值是( ) A.12 B .-12C .-32 D.32解析: sin α=12,sin(4π-α)=-sin α=-12. 答案: B3.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为() A .-255 B .-55 C.55 D.255解析: ∵r =1,∴cos θ=-55,∴cos(π-θ)=-cos θ=55. 答案: C 4.已知tan ⎝⎛⎭⎫π3-α=13,则tan ⎝⎛⎭⎫2π3+α=( ) A.13B .-13 C.233D .-233 解析: ∵tan ⎝⎛⎭⎪⎫2π3+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-α=-tan ⎝ ⎛⎭⎪⎫π3-α,∴tan ⎝ ⎛⎭⎪⎫2π3+α=-13. 答案: B二、填空题(每小题5分,共15分) 5.求值:(1)cos 29π6=________;(2)tan(-225°)=________. 解析: (1)cos 29π6=cos ⎝⎛⎭⎪⎫4π+5π6=cos 5π6 =cos ⎝⎛⎭⎪⎫π-π6=-cos π6=-32. (2)tan(-225°)=tan(360°-225°)=tan 135°=tan(180°-45°)=-tan 45°=-1. 答案: (1)-32 (2)-16.1-2sin (π+2)cos (π-2)=________.解析:1-2sin (π+2)cos (π-2) =1-2sin 2cos 2=|sin 2-cos 2|.又∵π2<2<π, ∴sin 2>0,cos 2<0,∴原式=sin 2-cos 2.答案: sin 2-cos 27.已知a =tan ⎝⎛⎭⎫-76π,b =cos 234π,c =sin ⎝⎛⎭⎫-334π,则a ,b ,c 的大小关系是________. 解析: a =-tan ⎝⎛⎭⎪⎫π+ π6=-tan π6=-33,b =cos 234π=cos π4=22, c =sin ⎝ ⎛⎭⎪⎫-π4=-22,∴c <a <b . 答案: b >a >c三、解答题(每小题10分,共20分)8.求下列各三角函数值:(1)sin ⎝⎛⎭⎫-8π3;(2)cos 19π6;(3)tan(-855°). 解析: (1)sin ⎝ ⎛⎭⎪⎫-8π3=sin ⎝⎛⎭⎫-4π+43π=sin 43π =sin ⎝⎛⎭⎪⎫π+π3=-sin π3=-32. (2)cos 19π6=cos ⎝⎛⎭⎫2π+76π=cos 76π=cos ⎝⎛⎭⎪⎫π+π6 =-cos π6=-32. (3)tan (-855°)=tan(-3×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1.9.若cos α=23,α是第四象限角,求 sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值. 解析: 由已知cos α=23,α是第四象限角得sin α=-53, 故sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)= sin α-sin αcos α-cos α+cos 2α=52.。
高一数学人教A版必修四练习:第一章 三角函数1 阶段质量评估 Word版含解析
(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.1弧度的圆心角所对的弧长为6,则这个圆心角所夹的扇形的面积是( ) A .3 B .6 C .18D .36解析: ∵l =αr ,∴6=1×r .∴r =6. ∴S =12lr =12×6×6=18.答案: C2.设α是第三象限角,且⎪⎪⎪⎪cosα2=-cos α2,则α2的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限解析: ∵α是第三象限角, ∴π+2k π<α<3π2+2k π,k ∈Z .∴π2+k π<α2<3π4+k π,k ∈Z . ∴α2在第二或第四象限. 又∵⎪⎪⎪⎪cosα2=-cosα2,∴cosα2<0.∴α2是第二象限角. 答案: B3.已知角θ的终边过点(4,-3),则cos(π-θ)=( ) A.45 B .-45C.35D .-35解析: ∵角θ的终边过(4,-3), ∴cos θ=45.∴cos(π-θ)=-cos θ=-45.答案: B4.tan ⎝⎛⎭⎫-353π的值是( ) A .-33B. 3 C .- 3D.33解析: tan ⎝⎛⎭⎫-353π =-tan ⎝⎛⎭⎫12π-π3=tanπ3= 3. 答案: B5.如果cos(π+A )=-12,那么sin ⎝⎛⎭⎫π2+A =( )A .-12B.12 C .-32D.32解析: ∵cos(π+A )=-cos A =-12,∴cos A =12,∴sin ⎝⎛⎭⎫π2+A =cos A =12.答案: B6.设α为第二象限角,则sin αcos α·1sin 2α-1=( ) A .1 B .tan 2α C .-tan 2α D .-1解析: sin αcos α·1sin 2α-1=sin αcos α·cos 2αsin 2α=sin αcos α·⎪⎪⎪⎪⎪⎪cos αsin α, ∵α为第二象限角,∴cos α<0,sin α>0. ∴原式=sin αcos α·⎪⎪⎪⎪⎪⎪cos αsin α=sin αcos α·-cos αsin α=-1. 答案: D7.函数y =sin x2是( )A .周期为4π的奇函数B .周期为π2的奇函数C .周期为π的偶函数D .周期为2π的偶函数解析; ∵y =sin x2,∴T =2π12=4π.∵sin ⎝⎛⎭⎫-x 2=-sin x 2, ∴y =sin x2是奇函数.答案: A8.若tan α=2,则13sin 2α+cos 2α的值是( )A .-59B.59 C .5D .-5解析: 13sin 2α+cos 2α=13sin 2α+cos 2αsin 2α+cos 2α=13tan 2α+1tan 2α+1=13×2+12+1=59.答案: B9.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A.3π4B.π4 C .0D .-π4解析: y =sin(2x +φ)――→向左平移π8个单位y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ. ∵函数为偶函数,∴π4+φ=k π+π2,k ∈Z ,∴φ=k π+π4,k ∈Z ,令k =0,得φ=π4.答案:B10.已知函数y =A sin(ωx +φ)+B (A >0,ω>0,|φ|<π2)的周期为T ,在一个周期内的图象如图所示,则正确的结论是( )A .A =3,T =2πB .B =-1,ω=2C .T =4π,φ=-π6D .A =3,φ=π6解析: 由题图可知T =2⎝⎛⎭⎫4π3+2π3=4π,A =12(2+4)=3,B =-1. ∵T =4π,∴ω=12.令12×43π+φ=π2,得φ=-π6. 答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.化简1-2sin 4cos 4=________. 解析: 原式=sin 24+cos 24-2sin 4cos 4=(sin 4-cos 4)2= |sin 4-cos 4|.而sin 4<cos 4,所以原式=cos 4-sin 4. 答案: cos 4-sin 412.若f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值为2,则ω=________.解析: ∵0<ω<1,x ∈⎣⎡⎦⎤0,π3,∴ωx ∈⎣⎡⎦⎤0,ωπ3⎣⎡⎦⎤0,π2,∴f (x )max =2sin ωπ3=2,∴sinωπ3=22,∴ωπ3=π4,ω=34. 答案: 3413.函数f (x )=3sin(ωx +φ)对任意实数x 都有f ⎝⎛⎭⎫π3+x =f ⎝⎛⎭⎫π3-x 恒成立,设g (x )=3cos(ωx +φ)+1,则g ⎝⎛⎭⎫π3=________.解析: ∵f ⎝⎛⎭⎫π3+x =f ⎝⎛⎭⎫π3-x ,∴函数f (x )=3sin(ωx +φ)关于直线x =π3对称,即f ⎝⎛⎭⎫π3=±3.∴h (x )=3cos(ωx +φ)关于⎝⎛⎭⎫π3,0对称,即h ⎝⎛⎭⎫π3=0.∴g ⎝⎛⎭⎫π3=h ⎝⎛⎭⎫π3+1=1. 答案: 114.某时钟的秒针端点A 到中心点O 的距离为5 cm ,秒针均匀地绕点O 旋转,当时间t =0时,点A 与钟面上标12的点B 重合,若将A ,B 两点的距离d (cm)表示成时间t (s)的函数,则d =________,其中t ∈[0,60].解析: 秒针1 s 转π30弧度,t s 后秒针转了π30t 弧度,如图所示sin πt 60=d25,所以d =10sinπt60. 答案: 10sinπt 60三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)已知tan(π-α)=2,计算3sin 2(π-α)-2cos 2(π-α)+sin (2π-α)cos (π+α)1+2sin 2α+cos 2α.解析: 原式=3sin 2α-2cos 2α+sin αcos α1+2sin 2α+cos 2α=3sin 2α-2cos 2α+sin αcos α3sin 2α+2cos 2α=3tan 2α-2+tan α3tan 2α+2.∵tan(π-α)=-tan α=2,∴tan α=-2,代入上式,得原式=47.16.(本小题满分12分)作出下列函数在[-2π,2π]上的图象: (1)y =1-13cos x ;(2)y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +3π2.解析: (1)描点⎝⎛⎭⎫0,23,⎝⎛⎭⎫π2,1,⎝⎛⎭⎫π,43,⎝⎛⎭⎫3π2,1,⎝⎛⎭⎫2π,23,连线可得函数在[0,2π]上的图象,关于y 轴作对称图形即得函数在[-2π,2π]上的图象,所得图象如图所示.(2)由于y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +3π2=|cos x |,所以只需作出函数y =|cos x |,x ∈[-2π,2π]的图象即可.而函数y =|cos x |,x ∈[-2π,2π]的图象可采用将函数y =cos x ,x ∈[-2π,2π]的图象在x 轴下方的部分翻折到x 轴上方的方法得到,所得图象如图实线所示.17.(本小题满分12分)函数f (x )=3sin ⎝⎛⎭⎫2x +π6的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值.解析: (1)f (x )的最小正周期为π,x 0=7π6,y 0=3.(2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0,于是当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.18.(本小题满分14分)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|⎭⎫<π2的一段图象如图所示. (1)求f (x )的解析式;(2)把f (x )的图象向左至少平移多少个单位长度,才能使得到的图象对应的函数为偶函数?解析: (1)A =3,2πω=43⎝⎛⎭⎫4π-π4=5π,ω=25.由f (x )=3sin ⎝⎛⎭⎫25x +φ过⎝⎛⎭⎫π4,0, 得sin ⎝⎛⎭⎫π10+φ=0,又|φ|<π2,故φ=-π10,∴f (x )=3sin ⎝⎛⎭⎫25x -π10.(2)由f (x +m )=3sin ⎣⎡⎦⎤25(x +m )-π10=3sin ⎝⎛⎭⎫25x +2m 5-π10为偶函数(m >0),知2m 5-π10=k π+π2,即m =52k π+3π2,k ∈Z . ∵m >0,∴m min =3π2. 故把f (x )的图象向左至少平移3π2个单位长度,才能使得到的图象对应的函数是偶函数.。
(典型题)高中数学必修四第一章《三角函数》测试(有答案解析)(1)
一、选择题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图像如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=- ⎪⎝⎭B .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C .()3sin 26f x x π⎛⎫=-⎪⎝⎭D .1()3sin 26f x x π⎛⎫=-⎪⎝⎭ 2.已知关于x 的方程2cos ||2sin ||20(0)+-+=≠a x x a a 在(2,2)x ππ∈-有四个不同的实数解,则实数a 的取值范围为( ) A .(,0)(2,)-∞+∞B .(4,)+∞C .(0,2)D .(0,4)3.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .454.已知函数f (x )=2sinxsin (x+3φ)是奇函数,其中(0,)2πϕ∈ ,则函数g (x )=cos (2x-φ)的图象( ) A .关于点(,0)12π对称 B .关于轴512x π=-对称 C .可由函数f (x )的图象向右平移6π个单位得到 D .可由函数f (x )的图象向左平移3π个单位得到5.已知函数()()cos f x x ωϕ=+(0>ω,0πϕ-<<)的图象关于点,08π⎛⎫⎪⎝⎭对称,且其相邻对称轴间的距离为23π,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象,则下列说法中正确的是( )A .()f x 的最小正周期23T π= B .58πϕ=-C .()317cos 248πx g x ⎛⎫=- ⎪⎝⎭D .()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦6.如图,一个摩天轮的半径为10m ,轮子的最低处距离地面2m .如果此摩天轮按逆时针匀速转动,每30分钟转一圈,且当摩天轮上某人经过点P (点P 与摩天轮天轮中心O 的高度相同)时开始计时,在摩天轮转动的一圈内,此人相对于地面的高度不小于17m 的时间大约是( )A .8分钟B .10分钟C .12分钟D .14分钟7.设函数()32sin cos f x x x x +,给出下列结论: ①()f x 的最小正周期为π ②()y f x =的图像关于直线12x π=对称③()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减 ④把函数2cos2y x =的图象上所有点向右平移12π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的编号是( ). A .①④B .②④C .①②④D .①②③8.下列结论正确的是( )A .sin1cos1<B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭9.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x10.有以下四种变换方式: ①向左平移12π个单位长度,再将每个点的横坐标伸长为原来的2倍;②向左平移6π个单位长度,再将每个点的横坐标伸长为原来的2倍; ③再将每个点的横坐标伸长为原来的2倍,再向左平移6π个单位长度; ④再将每个点的横坐标伸长为原来的2倍,再向右平移6π个单位长度; 其中能将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象变为函数sin y x =图象的是( ) A .①③B .②③C .①④D .②④11.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .112.已知函数()sin cos f x x x =+,则下列说法正确的是( ) A .()f x 的最小值为0 B .()f x 的最大值为2 C .()()2f x f x π-=D .1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上有解 二、填空题13.函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值,则ω的范围__________.14.已知函数()()π5sin 24f x x x ⎛⎫=-∈ ⎪⎝⎭R ,对于下列说法:①要得到()5sin 2g x x =的图象,只需将()f x 的图象向左平移4π个单位长度即可;②()y f x =的图象关于直线3π8x =对称:③()y f x =在[]π,π-内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦;④5π8y f x ⎛⎫=+⎪⎝⎭为奇函数.则上述说法正确的是________(填入所有正确说法的序号). 15.设函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图象为C ,给出下列命题:①图象C 关于直线1112π=x 对称;②函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是减函数;③函数()f x 是奇函数;④图象C 关于点,03π⎛⎫⎪⎝⎭对称.其中,错误命题的是______.16.已知函数()sin()f x A x ωϕ=+(其中0A >,0,0ωϕπ><<)的图象关于点M 5(,0)12π成中心对称,且与点M 相邻的一个最低点为2(,3)3π-,则对于下列判断: ①直线2x π=是函数()f x 图象的一条对称轴;②函数()3y f x π=-为偶函数;③函数1y =与35()()1212y f x x ππ=-≤≤的图象的所有交点的横坐标之和为7π.其中正确的判断是__________________.(写出所有正确判断的序号)17.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60和30,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上,若国歌长度约为50秒,升旗手应以__________(米 /秒)的速度匀速升旗.18.关于函数()()4sin 23f x x x π⎛⎫=-∈ ⎪⎝⎭R ,有下列命题: ①43y f x π⎛⎫=+⎪⎝⎭为偶函数; ②方程()2f x =的解集为,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭; ③()y f x =的图象关于点,03π⎛-⎫⎪⎝⎭对称;④()y f x =在[]0,2π内的增区间为50,12π⎡⎤⎢⎥⎣⎦和11,212ππ⎡⎤⎢⎥⎣⎦; ⑤()y f x =的振幅为4,频率为1π,初相为3π-. 其中真命题的序号为______. 19.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________.20.已知定义在R 上的函数()f x 满足3()2f x f x ⎛⎫=-+⎪⎝⎭,且(2)3f -=,则(2020)f =________.三、解答题21.已知函数()()1sin 226f x x x R π⎛⎫=+∈ ⎪⎝⎭.(1)填写下表,并用“五点法”画出()f x 在[0,]π上的图象;26x π+6π 136πxπ ()f x(2)将()y f x =的图象向上平移1个单位,横坐标缩短为原来的2,再将得到的图象上所有点向右平移4π个单位后,得到()g x 的图象,求()g x 的对称轴方程.22.已知函数()12sin 26x f x π⎛⎫=+⎪⎝⎭,x ∈R . (1)用“五点法”画出函数()f x 一个周期内的图象; (2)求函数()f x 在[],ππ-内的值域; (3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象,求函数()g x 在[],ππ-内的单调增区间.23.已知函数()sin 2sin 2233f x x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭, (1)求函数()f x 的最小正周期; (2)当π[0,]2x ∈时,(i )求函数()f x 的单调递减区间;(ii )求函数()f x 的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量x 的值.24.已知函数()()()f x g x h x =,其()g x x =,()h x =_____. (1)写出函数()f x 的一个周期(不用说明理由);(2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值. 从①cos 4x π⎛⎫+⎪⎝⎭,②2sin 24x π⎛⎫- ⎪⎝⎭这两个条件中任选一个,补充在上面问题中并作答, 注:如果选择多个条件分别解答.按第一个解答计分. 25.已知sin(3)(),cos x f x x R xπ-=∈(1)若α为第三象限角,且3sin 5α=-,求()f α的值. (2)若,34x ππ⎡⎤∈-⎢⎥⎣⎦,且21()2()1cos g x f x x =++,求函数()g x 的最小值,并求出此时对应的x 的值.26.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:(1)这个港口的水深与时间的关系可用函数(,)近似描述,试求出这个函数解析式;(2)一条货船的吃水深度(船底与水面的距离)为5米,安全条例规定至少要有1.25米的安全间隙(船底与洋底的距离),利用(1)中的函数计算,该船何时能进入港口?在港口最多能呆多久?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 本题首先可根据33π44T求出ω,然后根据当43x π=时函数()f x 取最大值求出ϕ,最后代入30,2⎛⎫- ⎪⎝⎭,即可求出A 的值.【详解】因为4π7π3π3124,所以33π44T ,T π=,因为2T πω=,所以2ω=,()sin(2)f x A x ϕ=+,因为当43x π=时函数()sin(2)f x A x ϕ=+取最大值, 所以()42232k k Z ππϕπ⨯+=+∈,()26k k Z πϕπ=-+∈,因为2πϕ<,所以6πϕ=-,()sin 26f x A x π⎛⎫=-⎪⎝⎭, 代入30,2⎛⎫- ⎪⎝⎭,3sin 26A π⎛⎫-=- ⎪⎝⎭,解得3A =,()3sin 26f x x π⎛⎫=- ⎪⎝⎭,【点睛】关键点点睛:本题考查根据函数图像求函数解析式,对于()sin()f x A x ωϕ=+,可通过周期求出ω,通过最值求出A ,通过代入点坐标求出ϕ,考查数形结合思想,是中档题.2.D解析:D 【分析】令2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,易知函数()f x 是偶函数,将问题转化为研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,令sin t x =,则转化为2()22(0)=--≠h t at t a 有一个根(1,1)t ∈-求解.【详解】当(2,2)x ππ∈-,2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,则()()f x f x -=,函数()f x 是偶函数,由偶函数的对称性,只需研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,设sin t x =,则2()22(0)=--≠h t at t a 有一个根(1,1)t ∈- ①当0a <时,2()22=--h t at t 是开口向下,对称轴为10t a=<的二次函数, (0)20h =-<则(1)0->=h a ,这与0a <矛盾,舍去;②当0a >时,2()22=--h t at t 是开口向上,对称轴为10t a=>的二次函数, 因为(0)20h =-<,(1)220-=+->=h a a , 则存在(1,0)t ∈-,只需(1)220=--<h a ,解得4a <, 所以04a <<.综上,非零实数a 的取值范围为04a <<. 故选:D . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解3.B解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值.因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 4.B解析:B 【分析】利用三角函数的奇偶性求得φ,再利用三角函数的图象对称性、函数y=Asin (ωx+φ)的图象变换规律,判断各个选项是否正确,从而得出结论. 【详解】函数f (x )=2sinxsin (x+3φ)是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭, ∴y=2sinxsin (x+3φ)是奇函数,∴3φ=2π,φ=6π,则函数g (x )=cos (2x ﹣φ)=cos (2x ﹣6π). 当12x π=时,206x π-=,112g π⎛⎫= ⎪⎝⎭,则函数不关于点,012π⎛⎫⎪⎝⎭对称,选项A 错误; 当512x π=-时,26x ππ-=-,则函数关于直线512x π=-对称,选项B 正确;函数()2sin sin 2sin cos sin 22f x x x x x x π⎛⎫=+== ⎪⎝⎭, 其图像向右平移6π个单位的解析式为sin 2sin 2sin 263y x x x ππ⎡⎤⎛⎫⎛⎫==-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项C 错误; 其图像向左平移3π个单位的解析式为2sin 2sin 2sin 233y x x x ππ⎡⎤⎛⎫⎛⎫==+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项D 错误; 故选B. 【点睛】本题主要考查三角函数的奇偶性、对称性,函数y=Asin (ωx+φ)的图象变换规律,属于中档题.函数()sin y A x ωϕ=+(A >0,ω>0)的性质:(1)奇偶性:=k ϕπ ,k Z ∈时,函数()sin y A x ωϕ=+为奇函数;=2k πϕπ+,k Z ∈时,函数()sin y A x ωϕ=+为偶函数.;(2)周期性:()sin y A x ωϕ=+存在周期性,其最小正周期为T =2πω;(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k Z πππωϕπ-≤+≤+∈得单调增区间;由3+22,22k x k k Z πππωϕπ≤+≤+∈得单调减区间;(4)对称性:利用y =sin x 的对称中心为()(),0k k Z π∈求解,令()x k k ωϕπ+=∈Z ,求得x ;利用y =sin x 的对称轴为()2x k k Z ππ=+∈求解,令()+2x k k πωϕπ+=∈Z ,得其对称轴.5.D解析:D 【分析】首先根据三角函数的性质,可知相邻对称轴间的距离是半个周期,判断A ;再求函数的解析式,判断B ;根据平移规律得到函数()g x ,判断C ;最后根据函数()g x 的解析式,利用整体代入的方法求函数的单调递减区间. 【详解】相邻对称轴间的距离是半个周期,所以周期是43π,故A 不正确; 243T ππω==,解得:32ω=,()f x 的图象关于点,08π⎛⎫⎪⎝⎭对称,3,282k k Z ππϕπ∴⨯+=+∈,解得:5,16k k Z πϕπ=+∈ 0πϕ-<<, 1116πϕ∴=-,故B 不正确; ()311cos 216f x x π⎛⎫=-⎪⎝⎭,向左平移3π个单位长度后得()31133cos cos 2316216g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故C 不正确; 当02x π≤≤时,3339,2161616x πππ⎡⎤-∈-⎢⎥⎣⎦,当3390,21616x ππ⎡⎤-∈⎢⎥⎣⎦时,函数单调递减,即,82x ππ⎡⎤∈⎢⎥⎣⎦,故D 正确. 故选:D 【点睛】关键点点睛:本题的关键是根据三角函数的性质求得函数()f x 的解析式,第四个选项是关键,需根据整体代入的方法,先求33216x π-的范围,再确定函数的单调递减区间. 6.B解析:B 【分析】由题可得此人相对于地面的高度h 与时间t 的关系是()10sin1203015h t t π=+≤≤,再令10sin121715t π+≥求出t 的范围即可得出. 【详解】设时间为t 时,此人相对于地面的高度为h , 则由题可得当0t =时,12h =, 在时间t 时,此人转过的角为23015t t ππ=, 此时此人相对于地面的高度()10sin 1203015h t t π=+≤≤,令10sin 121715t π+≥,则1sin 152t π≥, 所以56156t πππ≤≤,解得52522t ≤≤, 故在摩天轮转动的一圈内,此人相对于地面的高度不小于17m 的时间大约是()25510min 22-=. 故选:B. 【点睛】本题考查三角函数的实际应用,解题的关键是得出高度与时间的关系()10sin1203015h t t π=+≤≤,再解三角函数不等式即可.7.C解析:C 【分析】根据题意,利用辅助角公式和两角和的正弦公式化简得()2sin(2)3f x x π=+,根据2T ωπ=求出最小正周期即可判断①;利用整体代入法求出()y f x =的对称轴,即可判断②;利用整体代入法求出()y f x =的单调减区间,从而可得在区间2,63ππ⎡⎤⎢⎥⎣⎦上先减后增,即可判断③;根据三角函数的平移伸缩的性质和诱导公式化简,即可求出平移后函数,从而可判断④. 【详解】解:函数()2sin cos sin 22sin(2)3f x x x x x x x π++=+, 即:()2sin(2)3f x x π=+,所以()f x 的最小正周期为222T πππω===,故①正确; 令2,32πππ+=+∈x k k Z ,解得:,122k x k Z ππ=+∈, 当0k =时,则直线12x π=为()y f x =的对称轴,故②正确;令3222,232k x k k Z πππππ+≤+≤+∈,解得:7,1212ππππ+≤≤+∈k x k k Z , 所以()f x 的单调递减区间为:7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当0k =时,()f x 的一个单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦, 则区间7,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故在区间2121,3228,6ππππ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦上先减后增,故③错误; 把函数2cos2y x =的图象上所有点向右平移12π个单位长度,得到s 2)2cos 22co 22cos 2126332sin(2y x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-=-=+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎦⎣⎦+⎝⎭⎣即平移后得到函数()y f x =的图象,故④正确. 所以所有正确结论的编号是:①②④. 故选:C. 【点睛】关键点点睛:本题考查三角函数的图象和性质,熟练掌握正弦型函数的周期、对称轴、单调区间的求法,以及三角函数的平移伸缩是解题的关键,还考查辅助角公式、两角和的正弦公式以及诱导公式的应用,考查学生化简运算能力.8.D解析:D【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.9.C解析:C 【分析】利用奇偶性的定义判断函数奇偶性,判断AD 错误,结合常见基本初等函数的单调性判断B 错误,C 正确即可. 【详解】选项A 中,()22xxf x -=-,定义域R ,()()()2222xx x x f x f x ---=-=--=-,则()f x 是奇函数,不符合题意;选项D 中,()cos3=f x x x ,定义域R ,()()()cos 3cos3f x x x x x f x -=--=-=-,则()f x 是奇函数,不符合题意;选项B 中,()23f x x =-,定义域R ,()()()2233x x f x f x -=--=-=,则()f x 是偶函数,但二次函数()23f x x =-在在(),0-∞上是减函数,在()0,∞+上是增函数,故不符合题意;选项C 中,()2ln =-f x x ,定义域为(),0-∞()0,+∞,()()2ln 2ln f x x x f x -=--=-=,则()f x 是偶函数.当()0,x ∈+∞时,()2ln f x x =-是减函数,所以由偶函数图象关于y 轴对称可知,()f x 在(),0-∞上是增函数,故符合题意. 故选:C. 【点睛】 方法点睛:定义法判断函数()f x 奇偶性的方法: (1)确定定义域关于原点对称; (2)计算()f x -;(3)判断()f x -与()f x 的关系,若()()f x f x -=,则()f x 是偶函数;若()()f x f x -=-,则()f x 是奇函数;若两者均不成立,则()f x 是非奇非偶函数.10.A解析:A 【分析】直接利用三角函数图像的平移变换和伸缩变换求出结果. 【详解】对于①:sin 26y x π⎛⎫=-⎪⎝⎭向左平移12π个单位长度得到sin 2+=sin2126y x x ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin y x =;故①正确;对于②:sin 26y x π⎛⎫=-⎪⎝⎭向左平移6π个单位长度得到sin 2+=sin 2+666y x x πππ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=+ ⎪⎝⎭;故②错误;对于③:sin 26y x π⎛⎫=- ⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=-⎪⎝⎭,再向左平移6π个单位长度,得到sin sin 66y x x ππ⎛⎫=+-= ⎪⎝⎭;故③正确; 对于③:sin 26y x π⎛⎫=- ⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=- ⎪⎝⎭,再向右平移6π个单位长度,得到sin sin()663y x x πππ⎛⎫=--=- ⎪⎝⎭;故④错误; 故选:A 【点睛】关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a .11.A解析:A 【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+, 故()f x 是周期函数且周期为π,故③正确.又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 12.C解析:C【分析】 可得()()2f x f x π+=,得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可. 【详解】()()sin cos cos sin 222f x x x x x f x πππ⎛⎫⎛⎫+=+++=+= ⎪ ⎪⎝⎭⎝⎭,()f x ∴是以2π为周期的函数,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()sin cos sin cos 4f x x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,则3,444x πππ⎡⎤+∈⎢⎥⎣⎦,41x π⎛⎫+ ⎝∴≤⎪⎭≤根据函数的周期性可得()f x 的最小值为1,故AB 错误,∴1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上无解,故D 错误, ()()sin cos cos sin222f x x x x x f x πππ⎛⎫⎛⎫-=-+-=+= ⎪ ⎪⎝⎭⎝⎭,故C 正确. 故选:C. 【点睛】本题考查三角函数的应用,解题的关键是得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可. 二、填空题13.【分析】根据函数在区间上有50个最大值由第50个和第51个最大值满足求解【详解】因为函数在区间上有50个最大值第一个最大值为:第二个最大值为:第三个最大值为:…第50个最大值为:第51个最大值为:所解析:589601,120120ππ⎡⎫⎪⎢⎣⎭【分析】根据函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值,由第50个和第51个最大值满足49220502232ππππωπ+⨯≤+<+⨯求解.【详解】因为函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值, 第一个最大值为: 32x ππω+=,第二个最大值为: 232x ππωπ+=+, 第三个最大值为: 432x ππωπ+=+,…第50个最大值为: 49232x ππωπ+=+⨯, 第51个最大值为: 50232x ππωπ+=+⨯, 所以 49220502232ππππωπ+⨯≤+<+⨯,解得49512010120πππωπ+≤<+, 综上:ω的范围是589601,120120ππ⎡⎫⎪⎢⎣⎭.故答案为:589601,120120ππ⎡⎫⎪⎢⎣⎭【点睛】易错点点睛:本题容易忽视第50个和第51个最大值要满足49220502232ππππωπ+⨯≤+<+⨯.14.②④【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案【详解】①要得到的图象应将的图象向左平移个单位长度所以①错误;②令解得所以直线是的一条对称轴故②正确;③令解得因为所以在定义域内的单解析:②④ 【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案. 【详解】①要得到()5sin 2g x x =的图象,应将()ππ5sin 25sin 248f x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象向左平移π8个单位长度,所以①错误;②令ππ2π42x k -=+,k ∈Z ,解得3ππ82k x =+,k ∈Z ,所以直线3π8x =是()y f x =的一条对称轴,故②正确;③令ππ3π22π42π22k k x ≤+≤-+,k ∈Z ,解得3π7πππ88k x k +≤≤+,k ∈Z ,因为[]π,πx ∈-,所以()f x 在定义域内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦和5ππ,88⎡⎤--⎢⎥⎣⎦,所以③错误;④5π5ππ5sin 25sin 2884y f x x x ⎡⎤⎛⎫⎛⎫=+=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦是奇函数,所以该说法正确. 【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对()sin y A ωx φ=+的图象与性质的掌握,属于中档题.15.②③④【分析】根据函数的图象与性质分析函数的对称性奇偶性与单调性即可得出结论【详解】解:①由得令直线为函数图象的对称轴故图象C 关于直线对称故①正确;由得令得函数在区间内是增函数故②错误;故函数不是奇解析:②③④ 【分析】根据函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象与性质,分析函数的对称性,奇偶性与单调性,即可得出结论. 【详解】 解:①由232x k πππ-=+,Z k ∈,得25121x k ππ=+,Z k ∈, 令1k =,直线1112π=x 为函数图象的对称轴, 故图象C 关于直线1112π=x 对称,故①正确; 由222232k x k πππππ-+≤-≤+,k Z ∈,得5,1212x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈, 令0k =,得函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是增函数,故②错误;()00f ≠,故函数()f x 不是奇函数,故③错误;由23x k ππ-=,k Z ∈,得612x k ππ=+,k Z ∈,图象C 不关于点,03π⎛⎫ ⎪⎝⎭对称,故④错误.故答案为:②③④.【点睛】本题考查正弦函数的图象与性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.16.②③【分析】根据已知条件确定函数的解析式进一步利用整体思想确定函数的对称轴方程对称中心及各个交点的特点进一步确定答案【详解】函数(其中)的图象关于点成中心对称且与点相邻的一个最低点为则:所以进一步解解析:②③ 【分析】根据已知条件确定函数的解析式,进一步利用整体思想确定函数的对称轴方程,对称中心及各个交点的特点,进一步确定答案. 【详解】函数()()sin f x A x ωϕ=+(其中0A >,0,0ωϕπ><<)的图象关于点M 5,012π⎛⎫⎪⎝⎭成中心对称,且与点M 相邻的一个最低点为2,33π⎛⎫- ⎪⎝⎭,, 则:2543124T πππ-== , 所以T π=: ,326f x sin x π⎛⎫=+ ⎪⎝⎭(). 进一步解得:223A πωπ===, 由于()()sin f x A x ωϕ=+(其中0A >,0,0ωϕπ><<)的图象关于点M 5,012π⎛⎫⎪⎝⎭成中心对称,,所以:5212k k Z πϕπ⋅+∈=(), 解得:5,6k k Z πϕπ-∈= ,由于0ϕπ<<, 所以:当1k = 时,6πϕ=.所以: ①当2x π=时,33262f sin πππ⎛⎫=+=- ⎪⎝⎭().故错误. ②3232633f x sin x cos x πππ⎡⎤⎛⎫⎛⎫--+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=.则3y f x π⎛⎫=- ⎪⎝⎭为偶函数,故正确. ③由于:351212x ππ-≤≤,则:0266x ππ≤+≤,所以函数()f x 的图象与1y =有6个交点. 根据函数的交点设横坐标为123456x x x x x x 、、、、、, 根据函数的图象所有交点的横标和为7π.故正确. 故答案为②③ 【点睛】本题考查的知识要点:正弦型函数的解析式的求法,主要确定A ,ω、φ的值,三角函数诱导公式的变换,及相关性质得应用,属于基础题型.17.6【分析】根据题意可求得然后利用正弦定理求得最后在中利用求得答案【详解】在中由正弦定理得;在中(米)所以升旗速度(米/秒)故答案为06【点睛】本题主要考查了解三角形的实际应用此类问题的解决关键是建立解析:6 【分析】根据题意可求得,45BDC ∠=︒,30CBD ∠=︒,CD =BC ,最后在Rt ABC 中利用sin60AB BC =︒求得答案.【详解】在BCD 中,45BDC ∠=︒,30CBD ∠=︒,CD =由正弦定理,得sin 45sin 30CD BC ︒==︒在Rt ABC 中,sin?6030AB BC =︒==(米). 所以升旗速度300.650t AB v ===(米/秒). 故答案为0.6. 【点睛】本题主要考查了解三角形的实际应用.此类问题的解决关键是建立数学模型,把实际问题转化成数学问题,利用所学知识解决,属于中档题.18.③⑤【分析】①利用三角函数的奇偶性判断真假;②解三角方程来判断真假;③利用代入法判断真假;④利用单调性的知识判断真假;⑤根据的有关概念判断真假【详解】①依题意令则所以①错误②由得当即时但所以②错误③解析:③⑤ 【分析】①利用三角函数的奇偶性判断真假;②解三角方程来判断真假;③利用代入法判断真假;④利用单调性的知识判断真假;⑤根据()sin y A ωx φ=+的有关概念判断真假. 【详解】①,依题意4474sin 24sin 24sin 233333y f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,令()4sin 23g x x π⎛⎫+ ⎝=⎪⎭,则()4sin 24sin 233g x x x ππ⎛⎫⎛⎫-=-+≠+ ⎪ ⎪⎝⎭⎝⎭,所以①错误.②,由()4sin 223f x x π⎛⎫=-= ⎪⎝⎭得1sin 232x π⎛⎫-= ⎪⎝⎭.当5236x ππ-=,即712x π=时,1sin 232x π⎛⎫-= ⎪⎝⎭,但7,124x x x k k Z πππ⎧⎫=∉=+∈⎨⎬⎩⎭,所以②错误.③,()24sin 4sin 0333f ππππ⎛⎫⎛⎫-=--=-= ⎪ ⎪⎝⎭⎝⎭,所以()y f x =的图象关于点,03π⎛-⎫⎪⎝⎭对称,即③正确. ④,由于5104sin 4sin 30333f ππππ⎛⎫⎛⎫=-==⎪⎪⎝⎭⎝⎭,()24sin 44sin 4332f ππππ⎛⎛⎫⎛⎫=-=-=⨯-=- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭所以11,212ππ⎡⎤⎢⎥⎣⎦不是()f x 的增区间,所以④错误. ⑤,()y f x =的振幅为4,周期22T ππ==,频率为11T π=,初相为3π-,所以⑤正确. 故答案为:③⑤ 【点睛】本小题主要考查三角函数的奇偶性、对称性、单调性、和三角函数的概念,属于中档题.19.②③【分析】根据三角函数的零点性质三角函数对称和三角函数诱导公式依次判断每个选项得到答案【详解】①中是的两个零点即是的整数倍①错误;②中②正确;故④错误;③中③正确;所以正确命题序号是②③故答案为:解析:②③ 【分析】根据三角函数的零点性质,三角函数对称和三角函数诱导公式依次判断每个选项得到答案. 【详解】①中12,x x 是()f x 的两个零点,即12x x -是2π的整数倍,①错误; ②中06f π⎛⎫-= ⎪⎝⎭,②正确;故④错误;③中4sin 24cos 2cos 23236y x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,③正确; 所以正确命题序号是②③. 故答案为:②③. 【点睛】本题考查了三角函数的对称,零点,诱导公式,意在考查学生对于三角函数知识的综合应用.20.3【分析】由已知可得是函数的一个周期所以再由可求得可得答案【详解】由已知可得则有则是函数的一个周期所以又所以所以故答案为:3【点睛】本题考查了函数的周期性及其应用准确理解周期性的定义是解题的关键属于解析:3 【分析】由已知可得,3是函数()f x 的一个周期,所以(2020)(1)f f =,再由(2)3f -=, 可求得()13f =,可得答案. 【详解】由已知可得,3()2f x f x ⎛⎫+=- ⎪⎝⎭,则有333(3)++()222f x f x f x f x ⎛⎫⎛⎫+==-+= ⎪ ⎪⎝⎭⎝⎭,则3是函数()f x 的一个周期, 所以(2020)(67331)(1)f f f =⨯+=, 又(2)3f -=,所以()()123f f =-=, 所以(2020)3f =, 故答案为:3. 【点睛】本题考查了函数的周期性及其应用,准确理解周期性的定义是解题的关键,属于中档题.三、解答题21.(1)答案见解析;(2)34k x ππ=+,k Z ∈. 【分析】(1)分别令x 等于0、6π、512π、23π、1112π、π,求得对应的纵坐标,确定点的坐标,列表、描点、作图即可;(2)利用放缩变换与平移变换法则可得到()15sin 4126g x x π⎛⎫=-+ ⎪⎝⎭,再令5462x k k Z πππ-=+∈,可得答案. 【详解】(1)由题意可得表格如下:26x π+6π 2π π32π 2π136πx6π 512π 23π 1112ππ()f x141212- 014(2)将()y f x =的图象向上平移1个单位得到1sin 2126y x π⎛⎫=++ ⎪⎝⎭的图象,再横坐标缩短为原来的12可得到1sin 4126y x π⎛⎫=++ ⎪⎝⎭的图象,再向右平移4π个单位可得115sin 41sin 412626y x x πππ⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎝⎭⎝⎭的图象, 即()15sin 4126g x x π⎛⎫=-+ ⎪⎝⎭, 令5462x k πππ-=+,解得34k x k Z ππ=+∈,, 所以()g x 的对称轴方程是34k x ππ=+,k Z ∈. 【点睛】方法点睛:“五点法”作一个周期上的图象,主要把握三处主要位置点:1、区间端点;2、最值点;3、零点.22.(1)答案见解析;(2)3,2⎡⎤⎣⎦;(3)5,6ππ⎡⎤-⎢⎥⎣⎦ 【分析】(1)利用五点法作图,按照列表、描点、连线的步骤作图即可; (2)根据x ππ-≤≤求出126x π+的范围,再利用正弦函数的性质求出1sin 26x π⎛⎫+ ⎪⎝⎭的范围即可求值域; (3)先求出()12sin 6212g x f x x ππ⎛⎫=+⎛⎫=-⎪⎝⎭ ⎪⎝⎭,再令12222122k x k πππππ-+≤+≤+, ()k Z ∈,不等式的解集与[],ππ-求交集即可.【详解】(1)利用五点法作图列表如下:126x π+ 02ππ32π 2πx3π-23π 53π 83π 113π()f x0 2 02-(2)因为x ππ-≤≤,所以123263x πππ-≤+≤, 所以31sin 1226x π⎛⎫-≤+≤ ⎪⎝⎭, 所以()12sin 2263x f x π⎛⎫=+≤⎪⎝⎭-≤, 函数()f x 在[],ππ-内的值域为3,2⎡⎤-⎣⎦(3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象, 则()112sin 2sin 6266212g x x x x f ππππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎛⎫=-⎪⎝⎝⎦⎭⎭⎣,令12222122k x k πππππ-+≤+≤+()k Z ∈,解得:754466k x k ππππ-+≤≤+()k Z ∈, 当0k =时,7566x ππ-≤≤,当1k =时172966x ππ≤≤, 又因为[],x ππ∈-,所以56x ππ-≤≤, ()g x 在[],ππ-内的单调增区间为5,6ππ⎡⎤-⎢⎥⎣⎦,【点睛】关键点点睛:在求三角函数单调区间时,要把x ωϕ+看成一个整体让其满足正弦的单调区间,解出的x 的范围即为所求三角函数的单调区间. 23.(1)最小正周期为π;(2)(i )ππ[,]122;(ii )当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【分析】(1)利用和差公式展开合并,再利用辅助角公式计算可得()2sin (2+)3f x x π=,可得最小正周期为π;(2)(i )通过换元法令π23t x =+,求出sin y t =的范围,然后再根据sin y t =的单调递减区间求解即可;(ii )根据函数单调性求得最大值,然后计算端点值,比较大小之后可得函数的最小值. 【详解】 解:(1)πππ()=sin(2+)sin(2)2=sin 22=2sin(2+)333f x x x x x x x +-.2π==π2T ,∴()f x 的最小正周期为π. (2)(i )π[0,]2x ∈,∴ππ4π2[,]333t x =+∈,sin y t =,π4π[,]33t ∈的单调递减区间是π4π[,]23t ∈,且由ππ4π2233x ≤+≤,得ππ122x ≤≤, 所以函数()f x 的单调递减区间为ππ[,]122.(ii )由(i )知,()f x 在ππ[,]122上单调递减,在π[0,]12上单调递增.且π(0)=2sin 3f =ππ()=2sin 2122f =,π4π()=2sin 23f =所以,当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【点睛】思路点睛:(1)关于三角函数解析式化简问题,首先利用和差公式或者诱导公式展开合并化为同角,然后再利用降幂公式进行降次,最后需要运用辅助角公式进行合一化简运算;(2)三角函数的单调区间以及最值求解,需要利用整体法计算,可通过换元利用sin y t =的单调区间以及最值求解.24.若选①(1)T π=;(2)最小值2-1;若选②(1)2T π=,(2,最小值1--. 【分析】(1)结合所选选项,然后结合二倍角公式及辅助角公式进行化简,然后结合周期公式可求;(2)由已知角x 的范围,然后结合正弦函数的性质即可求解. 【详解】解:选①,(1)因为()()cos 2sin cos sin 4f x x x x x x π⎛⎫=+=- ⎪⎝⎭, 22sin cos 2sin sin 2cos 21x x x x x =-=+-214x π⎛⎫=+- ⎪⎝⎭,故函数的周期T π=; (2)因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,当244x ππ+=-即4πx =-时,函数取得最小值2-,当242x ππ+=即8x π=时,函数取得1,选②,(1)()2sin 24x f x x π⎛⎫=-⎪⎝⎭1cos 2x x π⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦,)2sin sin x x =-,故函数的一个周期2T π=,(2)由,44x ππ⎡⎤∈-⎢⎥⎣⎦可得sin 22x ⎡∈-⎢⎣⎦,1sin 2x =时即6x π=时,函数取得最大值4,当sin x =时即4πx =-时,函数取得最小值1-. 【点睛】此题考查二倍角公式及辅助角公式的应用,考查正弦函数性质的应用,考查计算能力,属于中档题 25.(1) 34- (2) 函数()g x 的最小值为1,此时4x π= 【分析】(1)先化简函数解析式得()tan f x x =-,则由条件可得3tan 4α=,得出答案.(2)由条件可得()2tan 2tan 2g x x x =-+,则由,34x ππ⎡⎤∈-⎢⎥⎣⎦,设tan t x ⎡⎤=∈⎣⎦,根据二次函数()222211y t t t =-+=-+即可得出答案. 【详解】 由已知有sin(3)sin(3)sin ()tan cos cos cos x x xf x x x x xππ---===-=-(1)若α为第三象限角,且3sin 5α=-,则4cos 5α=-,则3tan 4α= ()3tan 4f αα=-=-(2)()()2222cos sin 21tan 2tan 2cos x xg x f x x x x +=++=-+,34x ππ⎡⎤∈-⎢⎥⎣⎦,设tan t x ⎡⎤=∈⎣⎦即()222211y t t t =-+=-+,当1t =,即4x π= 时,有最小值1所以当4x π=时,函数()g x 有最小值1.【点睛】关键点睛:本题考查根据三角函数求值和将函数化为tan α的二次式求最值,解答本题的关键是由()()2222cos sin 21tan 2tan 2cos x x g x f x x x x +=++=-+将函数化为二次式,根据tan α⎡⎤⎣⎦∈求最小值,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(本栏目内容,在学生用书中以独立形式分册装订!)
一、选择题(每小题5分,共20分)
1.-215°是()
A.第一象限角B.第二象限角
C.第三象限角D.第四象限角
解析:由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.答案: B
2.下面各组角中,终边相同的是()
A.390°,690°B.-330°,750°
C.480°,-420°D.3 000°,-840°
解析:∵-330°=-360°+30°,750°=720°+30°,
∴-330°与750°终边相同.
答案: B
3.已知下列各角:①-120°;②-240°;③180°;④495°,其中是第二象限角的是() A.①②B.①③
C.②③D.②④
解析:-120°是第三象限角;-240°是第二象限角;180°角不在任何一个象限内;495°=360°+135°,所以495°是第二象限角.
答案: D
4.终边在第二象限的角的集合可以表示为()
A.{α|90°<α<180°}
B.{α|90°+k·180°<α<180°+k·180°,k∈Z}
C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}
D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}
解析:终边在第二象限的角的集合可表示为{α|90°+k·360°<α<180°+k·360°,k∈Z},而选项D是从顺时针方向来看的,故选项D正确.
答案: D
二、填空题(每小题5分,共15分)
5.在下列说法中:
①时钟经过两个小时,时针转过的角是60°;
②钝角一定大于锐角;
③射线OA绕端点O按逆时针旋转一周所成的角是0°;
④小于90°的角都是锐角.
其中错误说法的序号为________(错误说法的序号都写上).
解析:①时钟经过两个小时,时针按顺时针方向旋转60°,因而转过的角为-60°,所以①不正确.
②钝角α的取值范围为90°<α<180°,锐角θ的取值范围为0°<θ<90°,因此钝角一定大于锐角,所以②正确.
③射线OA按逆时针旋转一周所成的角是360°,所以③不正确.
④锐角θ的取值范围是0°<θ<90°,小于90°的角也可以是零角或负角,所以④不正确.
答案:①③④
6.α满足180°<α<360°,5α与α有相同的始边,且又有相同的终边,那么α=________.解析:5α=α+k·360°,k∈Z,∴α=k·90°,k∈Z.
又∵180°<α<360°,∴α=270°.
答案:270°
7.若角α=2 016°,则与角α具有相同终边的最小正角为________,最大负角为________.
解析:∵2 016°=5×360°+216°,∴与角α终边相同的角的集合为{α|α=216°+k·360°,k∈Z},∴最小正角是216°,最大负角是-144°.
答案:216°-144°
三、解答题(每小题10分,共20分)
8.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:
(1)549°;(2)-60°;(3)-503°36′.
解析:(1)549°=189°+360°,而180°<189°<270°,因此,549°角为第三象限角,且在0°~360°范围内,与189°角有相同的终边.
(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角为第四象限角,且在0°~360°范围内,与300°角有相同的终边.
(3)-503°36′=216°24′-2×360°,而180°<216°24′<270°,因此,-503°36′角是第三象限角,且在0°~360°范围内,与216°24′角有相同的终边.
9.已知α与240°角的终边相同,判断α2是第几象限角.
解析: 由α=240°+k ·360°,k ∈Z ,
得α2=120°+k ·180°,k ∈Z .
若k 为偶数,设k =2n ,n ∈Z ,
则α2=120°+n ·360°,n ∈Z ,α2与120°角的终边相同,是第二象限角;
若k 为奇数,设k =2n +1,n ∈Z ,
则α2=300°+n ·360°,n ∈Z ,α2与300°角的终边相同,
是第四象限角.
所以,α2是第二象限角或第四象限角.。