10.实数测试卷
浙教版七年级数学上册《第三章实数》单元测试卷(含答案)
第一学期七年级上数学第三章一.选择题1. 16的平方根是 ( C )A. 4B. -4C. 4±D. 162. 到原点距离为310个单位的点表示的数是 ( C )A. 310B. -310C.±310D.±103. 下列各式正确的是 ( D )A. 525±=B. 416=±C. 6-6-2=)(D. 18-93=4. 已知正数m 满足条件392=m ,则m 的整数部分 (D )A. 9B. 8C. 7D. 65. 如图,在数轴上表示实数10的点可能是 ( C )A. 点PB. 点QC.点MD.点N6. 下列说法错误的有 ( C )①任何实数的平方根有两个,且它们互为相反数②无理数就是带根号的数③数轴上所有的点都表示实数④负数没有立方根A. 1个B. 2个C. 3个D. 4个7. 如图,将一刻度尺放置在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“5cm ”分别对应数轴上的2-和x ,则x 的值是( B )A.5+2 B. 5-2 C. 2 D. 5B.10<x<11C.11<x<12D.12<x<138.如图所示的方格中,每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是(D )A.2B. 3C. 5D. 6二.填空题9.37-的绝对值是____37___10.已知一个数的一个平方根是-10,则另一个平方根是__10____11.64的立方根是___2____12.比较大小:3_<_ 2 , 5--__>__613.写出一个大于3,且小于4的无理数____10(答案不唯一)______14.立方根是本身的数有_-1,1,0_______15.已知a是20的整数部分,b是11的整数部分,则ba 的值__7__16.按如图所示的程序计算:若开始输入的x值为64时,输出的y值是__2_____三.解答题17. 计算(1)1691- 45- (2)22125+± 13±(3)3448-04.01-1-⨯++)( -0.4(4))()(23323-25-33+⨯⨯+⨯ -3.808 (取3≈1.732,5≈2.236,精确到0.01)18. 已知实数:中),之间一次多一个(两个,,,,,∙3.012.121121112.2,2-16-2202,37222 π(1)是整数的有:__22-16-0,,______(2)是分数的有:__∙3.0,722____ (3)是有理数的有:_______∙3.0,2-16-0,7222,,_______ (4)是无理数的有:_______________)之间依次多一个(两个,,12121121112.2,2223 π_________19. 请把下列各实数分别表示在数轴上,并比较它们的大小(用“<”连接):2,03.0-221-,,,20. 一个大正方体木块的体积是643cm ,其棱长的数值与另一各小正方体木块的一个侧面积的数值相等,求小正方体木块的体积。
2023年七年级下学期第6章《实数》测试卷及答案解析
位长度沿数轴向右运动,当点 A 运动到﹣6 所在的点处时,求 A,B 两点间距离.
(3)在(2)的条件下,现 A 点静止不动,B 点沿数轴向左运动时,经过多长时间 A,B
两点相距 4 个单位长度.
30.不用计算器,比较下列各个数的大小: t和 .
第 4 页 共 14 页
2023 年七年级下学期第 6 章《实数》测试卷
参考答案与试题解析
一.选择题(共 10 小题) 1.已知(a﹣3)2+|b﹣4|=0,则 的平方根是( )
A.
B.﹣2
C.
解:∵(a﹣3)2+|b﹣4|=0, 而(a﹣3)2≥0,|b﹣4|≥0 ∴(a﹣3)2=0,|b﹣4|=0,
∴a=3 且 b=4.
∴,
D.﹣4
∴ 的平方根为 ,
故选:A. 2.下列运算正确的是( )
故选:D.
3.若|3﹣a|
h 0,则 a+b 的值是( )
A.﹣9
B.﹣3
C.3
解:∵|3﹣a|
h 0,
∴3=a,b=﹣6,
则 a+b=﹣3.
故选:B.
4.下列各式中,正确的是( )
25.用计算器探索.已知按一定规律排列的一组数:1, , ,…, 中选择出若干个数,使它们的和大于 3,那么至少要选几个数?
26.已知实数 x,y 满足关系式 t |y2﹣1|=0.
, ,如果从 t
(1)求 x,y 的值;
(2)判断 t 是有理数还是无理数?并说明理由.
27.给出定义如下:若一对实数(a,b)满足 a﹣b=ab+4,则称它们为一对“相关数”,如:
t
,故 , 是一对“相关数”.
(1)数对(1,1),(﹣2,﹣6),(0,﹣4)中是“相关数”的是
【3套打包】福州市人教版初中数学七年级下册第六章《实数》测试卷(解析版)
人教版七年级下册第六章实数尖子生培优测试试卷一、单选题(共10题;共30分)1.如图,在数轴上表示无理数的点落在( )A. 线段AB上B. 线段BC上C. 线段CD上D. 线段DE 上2.在- ,,,了11,2.101101110...(每个0之间多1个1)中,无理数的个数是( )A. 2个B. 3个C. 4个 D 5个3.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A. x+1B. x2+1C. +1D.4.下列命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;④如果一个数的立方根等于它本身,那么它一定是1或0.其中正确有()个.A. 1B. 2C. 3D. 45.下列说法中,不正确的是( ).A. 3是(﹣3)2的算术平方根B. ±3是(﹣3)2的平方根C. ﹣3是(﹣3)2的算术平方根D. ﹣3是(﹣3)3的立方根6.的算术平方根是()A. 4B.C. 2D.7.如图,数轴上A,B两点分别对应实数a、b,则下列结论中正确的是()A. a+b>0B. ab>0C.D. a+ab-b<08.已知一个正数的两个平方根分别是a+3和2a-15,则这个正数为()A. 4B.C. -7D. 499.晓影设计了一个关于实数运算的程序:输入一个数后,输出的数总是比该数的平方小1,晓影按照此程序输入后,输出的结果应为()A. 2016B. 2017C. 2019D. 202010.,则a与b的关系是()A. B. a与b相等 C. a与b互为相反数 D. 无法判定二、填空题(共6题;共24分)11.的平方根是________,的算术平方根是________,-216的立方根是________.12.是9的算术平方根,而的算术平方根是4,则= ________.13.已知:(x2+y2+1)2﹣4=0,则x2+y2=________.14.实数a在数轴上的位置如图,则|a﹣3|=________.15.若四个有理数同时满足:,,,则这四个数从小到大的顺序是________.16.若用初中数学课本上使用的科学计算器进行计算,则以下按键的结果为________.三、计算题(共1题;共6分)17.计算:四、解答题(共6题;共40分)18.一个数的算术平方根为2M-6,平方根为±(M-2),求这个数.19.某公路规定行驶汽车速度不得超过80千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中v表示车速(单位:千米/时),d表示刹车后车轮滑过的距离(单位:米),f表示摩擦系数.在一次交通事故中,经测量d=32米,f=2.请你判断一下,肇事汽车当时是否超出了规定的速度?20.a,b,c在数轴上的对应点如图所示,化简+|c﹣b|﹣()3.21.阅读下列材料:∵,即,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为a,的小数部分为b,求的值.22.规定一种新的运算a△b=ab﹣a+1,如3△4=3×4﹣3+1,请比较与的大小.23.求下列x的值.(1)2x3=﹣16 (2)(x﹣1)2=4.答案一、单选题1. C2. B3. D4.A5.C6.C7.C8. D9. B 10. C二、填空题11.±;;-6 12.19 13.1 14.3﹣a 15.16.﹣5三、计算题17. 解:原式=5+3-6=2四、解答题18.解:应分两种情况:①2M-6=M-2,解得M=4,∴2M-6=8-6=2,22=4,② 2M-6=-(M-2),解得M=,∴2M-6=-6=(不合题意,舍去),故这个数是4.19.解:把d=32,f=2代入v=16 ,v=16 =128(km/h)∵128>80,∴肇事汽车当时的速度超出了规定的速度20.解:根据数轴上点的位置得:a<b<0<c,且|a|>|b|>|c|,∴a﹣b<0,c﹣b>0,a+c<0,则原式=|a﹣b|+|c﹣b|﹣(a+c)=b﹣a+c﹣b﹣a﹣c=﹣2a21.解:∵<,<,∴a= ﹣2,b= ﹣3,∴= ﹣2+ ﹣3﹣= ﹣522.解:∵a△b=a×b﹣a+b+1,∴(﹣3)△=(﹣3)×﹣(﹣3)++1=4﹣2,△(﹣3)=×(﹣3)﹣+(﹣3)+1=﹣4﹣2,∵4﹣2>﹣4﹣2,∴﹣3△>△(﹣3).23.解:(1)∵2x3=﹣16,∴x2=﹣8,∴x=﹣2.(2)∵(x﹣1)2=4,∴x﹣1=±2,∴x=﹣1或3.人教版七年级数学下册第六章实数单元检测题一、选择题。
实数运算测试9 、10
1、
2、3、
1、2、3、
一只螳螂在松树树干的A点处,发现它的正上方B点处有一只小虫子,螳螂想捕到这只虫子,但又怕被发现,于是按如图所示的路线,绕到虫子后面吃掉它.已知树干的半径为10cm,A、B两点的距离为40cm.(其中π取3)(1)若螳螂想吃掉在B点的小虫子,求螳螂绕行的最短距离.(要求画图)(2)螳螂得知又有一只虫子在点C处被松树油粘住不能动弹,这时螳螂还在A点,螳螂想吃掉虫子,求螳螂爬行的最短距离.(要求画图)(3)如果螳螂在点A处时,虫子在点E处不动,其中点E是CD的中点那么螳螂吃掉虫子的最短距离是多少cm?(要求画图)。
人教七年级下册数学第六章实数测试卷(含答案)
第六章 实数 测试卷满分:120分 考试时间:120分钟一、选择题(每小题3分,共30分)1.给出四个数0,3,2,-1,其中最大的数是( )A.0B.3C.2D.-1 2.若n 是有理数,则n 的值可以是( ) A.-1 B.2.5 C.8 D.9 3.下列各组数中,互为相反数的是( )A.-3与3B.3-与-31C.3-与-3D.3与()23-4.下列运算正确的是( )A.473=- B.()552-=-C.77-2-= D.39±=5.已知一个数的平方是16,则这个数的立方是( ) A.8 B.64 C.8或-8 D.64或-646.已知(x-4)2=19,x 的值为a 或b ,且a >b ,则下列结论中正确的是( ) A.a 是19的算术平方根 B.b 是19的平方根 C.a-4是19的算术平方根 D.b+4是19的平方根7.若a =3,b =2--,c =()332--,则a 、b 、c 的大小关系是( ) A.a<b<c B.b<a<c C.b<c<a D. c<b<a8.在如图所示的数轴上,表示无理数m 的点在A ,B 之间,则数m 不可能是( )A.10B.7C.6D.59.如图,一块“Z”字形的铁片,每个角都是直角,且AB =BC =EF =GF =1,CD =DE =GH =AH =3.现将铁片裁剪并拼接成一个和它面积相等的正方形,则正方形的边长是A.3B.4C.8D.10 10如图,某计算器中有三个按键,以下是这三个按键的功能:①:将荧幕显示的数变成它的算术平方根 ②:将荧幕显示的数变成它的倒数 ③:将荧幕显示的数变成它的平方小明输入一个数据后,按照以下步骤操作,依次按照从第1步到第3步循环按键 输入若一开始输入的数据为10.则第2019步之后,显示的结果是( ) A.10 B.100 C.0.01 D.0.1 二、填空题(每小题3分,共24分)11.3的算术平方根是 ,-64的立方根为 。
(压轴题)初中数学八年级数学上册第二单元《实数》测试卷(答案解析)(3)
一、选择题1.下面是一个按某种规律排列的数表,那么第7行的第2个数是:( ) 第1行 1第2行 2 3 2第3行 5 6 7 22 3 第4行 10 11 23 13 14 15 4……A .37B .38C .39D .2102.若表示a ,b 两个实数的点在数轴上的位置如图所示,则化简()2a b a b -++的结果等于( )A .2b -B .2bC .2a -D .2a 3.一个数的相反数是最大的负整数,则这个数的平方根是( ) A .1- B .1 C .±1 D .0 481 ) A .3B .﹣3C .±3D .65.下列计算正确的是( )A 235+=B 623=C 23(3)86-=-D 321-=6.下列运算中正确的是( ) A 623=B .233363+= C 826=D .221)3-=7.计算))202020203232⨯的结果为( )A .-1B .0C .1D .±18.如x 为实数,在“31)□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( ) A 31B 31C .33D .13-9.下列说法正确的是( )A .4的平方根是2B .16的平方根是±4C .-36的算术平方根是6D .25的平方根是±5 10.下列说法正确的是( ) A .5是有理数 B .5的平方根是5 C .2<5<3D .数轴上不存在表示5的点11.在下列数中,是无理数的是( )A .2.1313313331…(两个1之间依次多一个3)B .0.101001-C .227D .364-12.如图,在数轴上作长、宽分别为2和1的长方形,以原点为圆心,长方形对角线的长为半径画弧,与数轴相交于点A .若点A 对应的数字为a ,则下列说法正确的是( )A .a>-2.3B .a<-2.3C .a=-2.3D .无法判断二、填空题13.若202120212a b -++=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______. 14.计算:12466-的结果是_____.15.如果2|3|0a b ++-=,那么b a =________. 16.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 17.已知10+3的整数部分是x ,小数部分是y ,求x ﹣y 的相反数_____. 18.已知a 、b 满足2|3|0a b -++=,则(a +b )2021的值为________. 19.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________.20.如图所示,在数轴上点A 所表示的数为a ,则a 的值为____________________.三、解答题21.(1)计算:()2325205125-+⨯-÷;(2)先化简,再求值:2111xy y x y x y ⎛⎫÷+ ⎪++-⎝⎭,其中2x =,3y =.22.计算:2775(25)(25)3--+-. 23.计算:()316215362272-⨯--⨯-24.计算:231()8|19|2-+--25.已知某正数的两个平方根是314a -和2a +,14b -的立方根为-2,求+a b 的算术平方根. 26.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方. 例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n aa a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________; A .任何非零数的圈2次方都等于1; B .对于任何大于等于2的整数c ,;C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式(1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________; (3)将(m 为大于等于2的整数)写成幂的形式为_________.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据观察,可得规律(n-1)最后一个数是(n-1),可得第n行的第二个数的算术平方根【详解】……第n第7行的第2故答案为:B.【点睛】本题是通过算术平方根的变化探究数字变化规律,观察得出规律是解题关键.2.C解析:C【分析】由数轴可判断出a<0<b,|a|>|b|,得出a−b<0,a+b<0,然后再根据这两个条件对式子化简.【详解】解:∵由数轴可得a<0<b,|a|>|b|,∴a−b<0,a+b<0,∴a b-|a−b|+|a+b|=b- a −(a+b)=b- a –a-b=−2a.故选:C.【点睛】此题考查数轴,二次根式的化简,绝对值的化简,先利用条件判断出绝对值符号里代数式的正负性,掌握求绝对值的法则以及二次根式的性质,是解题的关键.3.C解析:C【分析】由于最大的负整数是-1,本题即求-1的相反数,进而求其平方根.【详解】解:最大的负整数是-1,根据概念,(-1的相反数)+(-1)=0,则-1的相反数是1,则这个数是1,1的平方根是±1,故选:C.【点睛】本题考查了相反数、负整数的概念及求一个数的平方根,正确掌握相关定义是解题的关键.4.A解析:A【分析】9,再利用算术平方根的定义求出答案.【详解】∵9,∴3,故选:A.【点睛】.5.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A选项错误;===B选项正确;321=-=,所以C选项错误;与D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.6.A解析:A 【分析】根据二次根式的除法法则对A 进行判断;根据二次根式的加减法对B 、C 进行判断;利用二次根式的乘法法则对D 进行判断. 【详解】A =B 、=C ==D 、221)11=-=,原计算错误,不符合题意; 故选:A . 【点睛】本题考查了二次根式的加减乘除运算,解题的关键是熟悉二次根式的四则运算方法.7.C解析:C 【分析】利用二次根式的运算法则进行计算,即可得出结论. 【详解】解:))2020202022⨯202022)⎡⎤⎦⎣=2020222⎡⎤=-⎣⎦2020(1)=-1=.故选:C . 【点睛】本题考查了二次根式的运算,熟练掌握二次根式的运算法则,并能结合乘法公式进行简便运算是解答此题的关键.8.C解析:C 【分析】根据题意,添上一种运算符号后逐一判断即可. 【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C1与C符合题意;+-=,故选项D不符合题意.D、1)(10故选:C.【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.9.D解析:D【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A. 4的平方根是±2,故错误,不符合题意;±2,故错误,不符合题意;C. -36没有算术平方根,故错误,不符合题意;D. 25的平方根是±5,故正确,符合题意;故选:D.【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.10.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A错误;B、5的平方根是B错误;C∴23,故C正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.11.A解析:A【分析】根据无理数的定义判断即可.【详解】解:A. 2.1313313331…(两个1之间依次多一个3)是无理数,符合题意; B. 0.101001-是有限小数,不是无理数,不符合题意; C.227是分数,不是无理数,不符合题意; D. 3644-=-,是整数,不是无理数,不符合题意; 故选:A . 【点睛】本题考查了无理数的定义,解题关键是熟记无理数是无限不循环小数.12.A解析:A 【分析】先利用勾股定理求出长方形对角线OB 的长,即为OA 的长,然后根据A 在原点的左边求出数轴上的点A 所对应的实数为5-,再根据22.3 5.295=>判断出5 2.3->-即可得答案. 【详解】解:如图,连接OB ,长方形对角线的长OB 22215+= 5OA OB ∴==,点A 在原点的左边,∴点A 所对应的实数为5a =又∵22.3 5.295=>, ∴5 2.3,∴5 2.3>-,即 2.3a >-. 故选A . 【点睛】本题考查实数与数轴上的点的对应关系,勾股定理、比较无理数大小,求出5OA =题的关键.二、填空题13.5【分析】由绝对值和算术平方根的非负性求出ab 所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【解析:5 【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案. 【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥, ∴可分为以下几种情况:①20210a -=2=, 解得:2021a =,2017b =-;②20211a -=1=, 解得:2020a =或2022a =,2020b =-;③20212a -=0= 解得:2019a =或2023a =,2021b =-; ∴符合题意的有序数对(),a b 共由5组; 故答案为:5. 【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.14.【分析】化简成最简二次根式后合并同类二次根式即可【详解】==2-=故答案为:【点睛】本题考查了最简二次根式同类二次根式熟练进行最简二次根式的化简是解题的关键. 【分析】化简成最简二次根式,后合并同类二次根式即可. 【详解】=66⨯,故答案为. 【点睛】本题考查了最简二次根式,同类二次根式,熟练进行最简二次根式的化简是解题的关键.15.【分析】因为一个数的算术平方根为非负数一个数的绝对值为非负数由几个非负数的和为零要求每一项都为零即=0∣b-3∣=0由此求出ab 即可解答【详解】解:∵∴=0∣b-3∣=0∴∴故答案为:-8【点睛】本 解析:8-【分析】因为一个数的算术平方根为非负数,一个数的绝对值为非负数,由几个非负数的和为零,=0,∣b -3∣=0,由此求出a 、b 即可解答. 【详解】解:∵|3|0b -=,∴=0,∣b -3∣=0,∴2a =-,3b =, ∴()328b a =-=-. 故答案为:-8. 【点睛】本题考查了算术平方根和绝对值的非负性,整数指数幂,求出a ,b 的值是解题关键.16.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果. 【详解】解:(1)由题意可知:239=, 则2log 93=, (2)由题意可知:4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.17.【分析】先判断在那两个整数之间用小于的整数与10相加得出整数部分再用10+减去整数部分即可求出小数部分【详解】解:∵∴的整数部分是1∴10+的整数部分是10+1=11即x =11∴10+的小数部分是112【分析】10相加,得出整数部分,再用10+减去整数部分即可求出小数部分.【详解】解:∵12<, ∴1,∴1010+1=11,即x =11,∴101011﹣1,即y 1,∴x﹣y =111)=111=12∴x﹣y 的相反数为﹣(1212.12.【点睛】在1~2之间. 18.-1【分析】要使只有当和时成立即此时解出a 和b 代入中求出结果即可【详解】由题意可知∴∴故答案为:-1【点睛】本题考查非负数的性质几个非负数的和为0时那么这几个非负数都为0解析:-1【分析】30b +=0=和30b +=时成立.即此时20a -=,30b +=,解出a 和b ,代入2021()a b +中求出结果即可.【详解】由题意可知20a -=,30b +=,∴23a b ==-,.∴20212021()(23)1a b +=-=-.故答案为:-1.【点睛】本题考查非负数的性质,几个非负数的和为0时,那么这几个非负数都为0. 19.12或【分析】根据平方和立方的意义求出a 与b 的值然后代入原式即可求出答案【详解】解:∵a2=64b3=64∴a=±8b=4∴当a=8b=4时∴a+b=8+4=12当a=-8b=4时∴a+b=-8+4解析:12或4-【分析】根据平方和立方的意义求出a 与b 的值,然后代入原式即可求出答案.【详解】解:∵a 2=64,b 3=64,∴a=±8,b=4,∴当a=8,b=4时,∴a+b=8+4=12,当a=-8,b=4时,∴a+b=-8+4=-4,故答案为:12或-4【点睛】本题考查有理数,解题的关键是熟练运用有理数的运算法则,本题属于基础题型. 20.【分析】根据图示得到圆的半径为所以A 点表示的数为【详解】∵圆的半径为∴A 点表示的数为故答案为【点睛】此题主要考查了实数与数轴之间的对应关系关键是要判断出圆的半径然后根据实数计算法则求解即可解析:1-【分析】A 点表示的数为1--【详解】∵圆的半径为,∴A 点表示的数为1-故答案为1-【点睛】此题主要考查了实数与数轴之间的对应关系,关键是要判断出圆的半径,然后根据实数计算法则求解即可.三、解答题21.(1)2;(2【分析】(1)先去绝对值,再利用二次根式的性质及立方根化简得出结果;(2)先将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】解:(1)原式)12525=+⨯=; (2)原式()()()122x y x y x y y x y x xy+--=⨯=+;将x ,y =原式. 【点睛】本题考查了实数的运算及分式的化简求值,正确掌握相关运算法则是解题的关键. 22.1-.【分析】二次根式的混合运算,先算乘除,然后算加减.【详解】(2-+(45)=-3545=--+1=-.【点睛】本题考查二次根式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.【分析】根据二次根式的性值计算即可;【详解】原式66=--⨯+,+6,;【点睛】本题主要考查了二次根式的混合运算,准确计算是解题的关键. 24.14【分析】先计算平方、立方根、绝对值,再加减即可.【详解】解:21()|12-+ =12|13|4+-- =1224+-=14 【点睛】 本题考查了实数的计算,解题关键是准确的计算立方根、算术平方根和乘方,明确绝对值的意义. 25.3【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据算术平方根的定义求出a+b 的算术平方根.【详解】解:由题意得,31420a a -++=,148b -=-,解得:3a =,6b =,∴9a b +=,∴+a b 的算术平方根是3.【点睛】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.26.【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫ ⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③; 111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤; 故答案为:17;64-; (2)由题意: A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确;C 、7188888888888=÷÷÷÷÷÷÷÷=⑨, 619999999999=÷÷÷÷÷÷÷=⑧, ∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥; 71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.。
浙教版七年级数学上册第三单元测试卷(附答案)
部编七年级上册数学第三单元实数测试卷温馨提示:本卷满分120分,考试时间120分钟.一.选择题(共10小题,满分30分,每小题3分)1.下列对实数的说法其中错误的是()A. 实数与数轴上的点一一对应B. 两个无理数的和不一定是无理数C. 负数没有平方根也没有立方根D. 算术平方根等于它本身的数只有0或12.若某数的立方根等于这个数的算术平方根,则这个数等于( )A. 0B. ±1C. -1或0D. 0或13.所有和数轴上的点组成一一对应的数组成()A. 整数B. 有理数C. 无理数D. 实数4.比较2, , 的大小,正确的是()A. 2< <B. 2< <C. <2<D. < <25.下列说法正确的是()A. 的算术平方根是2B. 互为相反数的两数的立方根也互为相反数C. 平方根是它本身的数有0和1D. 的立方根是±6.若5x+19的立方根是4,则2x+7的平方根是( )A. 25B. -5C. 5D. ±57.如图,表示的点在数轴上表示时,应在哪两个字母之间()A. C与DB. A与BC. A与CD. B与C8.以下是小明的计算过程,请你仔细观察,错误的步骤是()解:原式= ①= ②=3﹣4﹣③=3﹣4﹣﹣1+2④=﹣.A. ①B. ②C. ③D. ④9.估计8- 的整数部分是()A. 3B. 4C. 5D. 610.下列说法:①;②数轴上的点与实数成一一对应关系;③-2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A. 2个B. 3个C. 4个D. 5个二.填空题(共6小题,满分24分,每小题4分)11.,3.141 592 65, 0.222 2…,π-3,- ,- ,- ,0.101 001 000 1…(每两个1之间依次增加一个0)中,其中是有理数的有________个.12.的平方根=________.13.比较大小:- ________-14.如果=3.873,=1.225,那么= ________15.在两个连续整除a和b之间,a<<b,,那么a+b的值是________.16.观察下列各式:=2 ,=3 ,=4 ,…请你找出其中规律,并将第n(n≥1)个等式写出来________.三.解答题(共8小题,满分66分)17.(6分)计算下列各题:(1)-32×1-(-3)2÷(-1)29(2)18.(6分)已知一个正数的平方根是3a+1和a+11,求这个数的立方根.19.(8分)我家客厅的面积为21.6m2,要想用240块相同的正方形地砖铺设,问每块地砖的边长应为多少?20.(8分)已知2a-1的算术平方根是3,3a+b+4的立方根是2,求3a+b的平方根.21.(8分)一块正方体形状的橡皮泥的体积是343 cm3,现将它分割成27块同样大小的小正方体,求每块小正方体的表面积.22.(10分)已知:﹣是a的一个平方根,b是平方根等于本身的数,c是的整数部分,求的平方根.23.(10分)阅读下列材料:∵,即,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为a,的整数部分为b,求的值.24.(10分)如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为________.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列对实数的说法其中错误的是()A. 实数与数轴上的点一一对应B. 两个无理数的和不一定是无理数C. 负数没有平方根也没有立方根D. 算术平方根等于它本身的数只有0或1 解:A. 实数与数轴上的点一一对应,故A不符合题意;B. =2,故B不符合题意;C. 负数立方根是负数,故C符合题意;D. 算术平方根等于它本身的数只有0或1,故D不符合题意;故答案为:C.2.若某数的立方根等于这个数的算术平方根,则这个数等于( )A. 0B. ±1C. -1或0D. 0或1 解:∵算术平方根与立方根都等于它本身的数是0和1.故答案为:D3.所有和数轴上的点组成一一对应的数组成()A. 整数B. 有理数C. 无理数D. 实数解:∵实数与数轴上的点成一一对应。
人教版2021-2022学年度第二学期七年级数学第6章实数 期末复习测试卷附答案教师版
人教版2021-2022学年度第二学期七年级数学第6章实数期末复习测试卷附答案教师版一、单选题(共10题;共30分)1.(3分)(−3)2的平方根为()A.±3B.3C.±3D.3【答案】C2.(3分)以下代数式的值可以为负数的是()A.|3-x|B.x2+x C.D.x2-2x+1【答案】B3.(3分)下列算式与所计算出的结果相同的是()A B C D【答案】A4.(3分)下列等式正确的是().A=13B=113C.3−9=−3D=±34【答案】A5.(3分)下列说法错误的是()A.27的立方根是3B.−12是14的平方根C.平方根等于它本身的数只有0D.2的算术平方根是a【答案】D6.(3分)下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)38的平方根是±2;(4= 2+12=212.共有()个是错误的.A.1B.2C.3D.4【答案】C7.(3分)下列各数是无理数的是()A.-2.5B.227C.D.4【答案】C8.(3分)实数2,0,-2,2中,最大的数是()A.2B.0C.-2D.2【答案】A9.(3分)设a,b,c为互不相等的实数,且23+13=,则下列结论正确的是()A.>>B.>>C.−=2(−p D.−=3(−p 【答案】D10.(3分)实数a,b在数轴上对应的点的位置如图所示,下列结论中正确的是()A.+>0B.B>0C.−>0D.|U>|U【答案】D二、填空题(共5题;共15分)11.(3分)若2≈1.414,则200≈.【答案】14.1412.(3分)一个正数的两个平方根分别是2+5和−1,则这个正数是.【答案】49913.(3分)若30.3=0.6694,33=1.442,则3300=.【答案】6.69414.(3分)若3=-7,则a=【答案】34315.(3分)计算:18−6cos45°+(12)−2=.【答案】4三、解答题(共8题;共55分)16.(7分)如图,一根细线上端固定,下端系一个小球,让这个小球来回自由摆动,来回摆动一次所用的时间(单位:)与细线的长度(单位:)之间满足关系=,当细线的长度为0.4时,小球来回摆动一次所用的时间是多少?(结果保留小数点后一位)【答案】解:把l=0.4m代入关系式=得,∴===2×15=0.4=1.3(秒).17.(6分)小明想用一块面积为400平方厘米的正方形纸片,沿着边的方向,裁出一块面积为360平方厘米的长方形纸片,使它的长宽之比为4:3,他不知道能否裁得出来,聪明的你帮他想想,他能裁得出来吗?(通过计算说明)【答案】解:设设所裁长方形的长、宽分别为4x厘米,3x厘米,由题意得,4×3=360,即2=30,∵>0∴=30∴长方形的长为430,∵正方形纸片的面积为400平方厘米,∴正方形的边长为400=20厘米,∵30>5,∴430>20,∴不能裁出符合要求的长方形.18.(7分)已知一个正数的平方根是3+1与3−,求和的值.【答案】解:∵一个正数a的两个平方根分别为3x+1和3﹣x,∴3x+1+3﹣x=0,解得x=﹣2,∴3﹣x=3﹣(﹣2)=5,∴a=52=25.∴x和a的值分别是﹣2,25.19.(7分)实数a,b互为相反数,c,d互为倒数,x的绝对值为3,求代数式2+++4−327n 的值.【答案】由题意知a+b=0,cd=1,x=±3,则原式=(±3)2+0+4−=3+2−3=2.20.(7分)已知一个正数的平方根是2−3和5−,求7−−1的立方根.【答案】解:∵正数b的平方根是2−3和5−∴(2−3)+(5−p=0∴=−2∴=(2−3)2=(−7)2=49∴7−−1=7×(−2)−49−1=−64而−64的立方根为−4故7−−1的立方根为−421.(7分)已知某正数的两个平方根分别是2m-3和5-m,n-1的算术平方根为2,求3m+n-7的立方根。
第3 章实数综合测试卷 2024-2025学年浙教版数学七年级上册
第3 章综合测试卷 实数班级 学号 得分 姓名一、选择题(本大题有10 小题,每小题3分,共30分) 1.数轴上的点表示的一定是( )A. 整数B. 有理数C. 无理数D. 实数 2.下列各式正确的是( )A.√16=±4B.√−273=−3 C.√−9=−3 D.√2519=513 3.下列说法正确的是( )A. 无限小数都是无理数B.−1125没有立方根 C. 正数的两个平方根互为相反数 D. -(-13)没有平方根4. 已知一个数的立方根是 −12,那么这个数是( )A.−32 B 14 c 18 D.−18 5.√81的平方根是( )A. ±3B. 3C. ±9D. 9 6.如图,数轴上点P 表示的数可能是( )A √7 B.−√7 C. —3.2 D.−√107.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有( )A. 0个B. 1个C. 2个D. 3个 8.|√6−3|+|2−√6|的值为( )A. 5B.5−2√6C. 1D.2√6−19. 若 a 2=9,√b 3=−2,则a+b=( )A. -5B. —11C. -5或-11D. ±5或±1110. 如图,面积为5 的正方形 ABCD 的顶点A 在数轴上,且表示的数为1,若 AD=AE ,则数轴上点 E 所表示的数为( )A.−√5B.1−√5C.−1−√52D.32−√5 二、填空题(本大题有6 小题,每小题4分,共24分) 11.1−√6的相反数是 ,绝对值是 . 12. 如果 √x +3=2,那么 (x +3)²= .13. 已知m 与n 互为相反数,c 与d 互为倒数,a 是 √5的整数部分,则 √cd +2(m +n)—a 的值是 .14. 如图,数轴上的点A 和点B 之间的整数.点表示的数分别为 .15. 如图所示,化简 |a −√3|−|b +√3|的结果是 .16. 有四个实数分别是| |−3|,π2,√9,4π,请你计算其中有理数的和与无理数的积的差,其计算结果是 . 三、解答题(本大题有8小题,共66分) 17.(6分)计算.(1)√2+3√2−5√2; (2)|2−√3|+2(√3−1);(3)√16−√9+√−273.18. (6分)把下列各数分别填在相应的括号内. −12,0,0.16,312,√3,−23√5,π3,√16,−√22,−3.14. 有理数:{ }; 无理数:{ }; 负实数:{ }.19.(6分)如图,一只蚂蚁从点 A 沿数轴向右爬行2个单位长度到达点 B,再爬行到C点停止.已知点 A 表示−√2,点 C 表示 2,设点 B 所表示的数为m.(1)求m的值;(2)求 BC的长.20.(8分)一段圆钢,长2分米,体积为10π立方分米,已知1立方分米钢的质量是7.8千克,那么这段圆钢横截面的半径是多少分米? 这段圆钢重多少千克(保留π)?21.(8分)已知实数a,b,c在数轴上对应点的位置如图所示,化简:√a2−|a+b|+√(c−a)2+|b−c|.22. (10分)大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部写出来,但是由于1<√2<2,所以√2的整数部分为1,将√2减去其整数部分1,所得的差√2−1就是其小数部分.根据以上内容,解答下面的问题:(1)√5的整数部分是,小数部分是;(2)1+√2的整数部分是,小数部分是;(3)若设2+√3的整数部分是x,小数部分是y,求x−√3y的值.23. (10分)如图是4×4的方格图,每个小正方形的边长都为1,利用这个4×4的方格图作出面积为5的正方形,然后在数轴上表示实数√5和−√5.24. (12分)a0.0000010.00010.011100100001000000(1)被开方数a的小数点位置移动和它的算术平方根的小数点位置移动有无规律? 若有规律,请写出它的移动规律;(2)已知:√a=1800,−√3.24=−1.8,你能求出a的值吗?第3 章综合测试卷实数1.D2. B3. C4. D5. A6. B7. C8.C 解析:原式=3−√6+√6−2=1.故选 C.9. C 10. B 11 .√6—1√6—1 12. 16 13. -1 14. -1,0,1,15. -a-b 16. 4 17. 解:(1)原式=(1+3−5)√2=−√2.(2)原式=2-√3+2√3−2=√3.(3)原式:=4-3-3=-2.18.−12,0,0.16,312,√16,−3.14√3,−23√5,π3,−√22−12,−23√5,−√22,−3.1419. 解:(1)m−2=−√2,m=2−√2. (2)BC=|2-(2-√2)|=|2−2+√2|=√2.20. 解:设这段圆钢半径为r分米,则2πr²=10π,r²=5,r=√5(分米),10π×7.8=78π(千克).21. 解:由题图,得c<b<0<a,且|a|=|b|,则a+b=0,c-a<0,b-c>0,故原式=a-0+a-c+b-c=2a+b-2c.22. 解:(1)2√5−2解析:∵2<√5<3,:√5的整数部分是2,小数部分是√5−2.(2)2√2−1解析:∵1<√2<2,∴2<1+√2<3.∴1+√2的整数部分是2,小数部分若1+√2−2 =√2−1.(3)∵1<√3<2,∴3<2+√3<4.∴x=3,y=2+√3−3=√3−1.∴x−√3y=3−√3(√3−1)=√3.23. 解:面积为5的正方形如图所示(所画图形合理即可).这个正方形的边长为√5,,可用圆规截得长为√5的线段,找到表示√5和−√5的点,并画到数轴上(如图).24. 解:依次填:0.0010.01 0.1 1 10 100 1000(1)有规律,当被开方数的小数点每向左(或向右)移动2位时,算术平方根的小数点向左(或向右)移动 1 位.(2)观察1.8和1800,小数点向右移动了3位,则a 的值为3.24的小数点向右移动6位后的数,即a =3240000.。
安徽省黄山市屯溪第一中学七年级数学下册第六章【实数】经典测试卷(培优练)
一、选择题1.在实数﹣34,0,9,215中,是无理数的是( ) A .﹣34B .0C .9D .2152.下列实数:32233.14640.010*******-;;;; (相邻两个1之依次多一个0);52-,其中无理数有( ) A .2个B .3个C .4个D .5个3.下列说法中,正确的是( ) A .正数的算术平方根一定是正数 B .如果a 表示一个实数,那么-a 一定是负数 C .和数轴上的点一一对应的数是有理数D .1的平方根是14.如果32.37≈1.333,323.7≈2.872,那么32370约等于( ) A .287.2B .28.72C .13.33D .133.35.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★ab b;若a b <,则a ★bba.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b+<★ A .①B .②C .①②D .①②③6.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 137.下列选项中,属于无理数的是( ) A .πB .227-C 4D .08. 5.713457.134,则571.34的平方根约为( ) A .239.03B .±75.587C .23.903D .±23.9039.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个B .6个C .5个D .4个10.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n11.下列各组数中都是无理数的为( ) A .0.07,23,π; B .0.7•,π,2; C .2,6,π;D .0.1010101……101,π,3二、填空题12.计算:(1)(23)(41)----; (2)1111115()13()3()555-⨯-+⨯--⨯-; (3)23(2)|21|27-+--;(4)311()()(2)424-⨯-÷-.13.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-14.对于有理数a ,b ,定义一种新运算“”,规定ab a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简a b ;②当ab ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.15.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.16.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.17.计算:2(3)2-- 18.计算:(1)⎛- ⎝;(2|1-- 19.已知290x ,310y +=,求x y +的值.20.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x ) –x 有最大值是0;③[x )–x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).21.+(y +2)2=0,那么xy 的值为___________.三、解答题22.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+=()4344313-=⨯-=(1)请你想一想:a b = ;(2)若ab ,那么ab ba (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.23.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------24.(1)小明解方程2x 1x a332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x ,y 是有理数,且x ,y 满足等式2x 2y 2y 1742++=-x-y 的值. 25.把下列各数填在相应的横线上 1.4,2020,2-,32-,0.31,038-π-,1.3030030003…(每相邻两个3之间0的个数依次加1) (1)整数:______ (2)分数:______ (3)无理数:______一、选择题1.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 2.下列各数中,无理数有( )3.14125,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个3.在00.536227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是( )A .3B .4C .5D .64.下列说法中,正确的是 ( )A .64的平方根是8B 4和-4C .()23-没有平方根D .4的平方根是2和-25.在0.010010001,3.14,π,1.51,27中无理数的个数是( ).A .5个B .4个C .3D .2个6.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12-B .12C .2-D .27.已知实数a 的一个平方根是2-,则此实数的算术平方根是( ) A .2±B .2-C .2D .48.下列各式中,正确的是( )A B .C 3=-D 4=-9.下列计算正确的是( )A 1=-B 3=-C 2=±D 12=-10.设,A B 均为实数,且A B ==,A B 的大小关系是( )A .AB >B .A B =C .A B <D .A B ≥11.下列等式成立的是( )A .1±=±1B .4=±2C .3216-=6D .39=3二、填空题12.计算下列各题(1)38-+16﹣3﹣2; (2)23+52﹣100.04(结果保留2位有效数字). 13.已知211a -=,31a b +-的平方根是±2,C 是70的整数部分,求-+b a c 的平方根.14.把下列各数填在相应的横线里:3,0,10%,﹣112,﹣|﹣12|,﹣(﹣5),2π,0.6,127,0.101001000… 整数集合:{_____________…}; 分数集合:{_____________…}; 无理数集合:{_____________…}; 非负有理数集合{_____________…}. 15.把下列各数填入相应的集合里:﹣3,|﹣5|,+(13-),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|45-|,3π正数集合:{_____________…}; 整数集合:{_____________…}; 负分数集合:{_____________…}; 无理数集合:{_____________…}.16.如图,数轴上表示1和2的对应点分别为A B 、,点B 是AC 的中点,O 为原点.则线段长度:AB =__________,AC =__________,OC =____________17.定义一种新运算“”规则如下:对于两个有理数a ,b ,ab ab b =-,若()()521x -=-,则x =______18.若已知()21230a b c -++-=,则a b c -+=_____. 19.在下列各数中,无理数有_______个.13,62π--(相邻两个5之间的7的个数逐次加1).20.一个正数的两个平方根分别是21a -与2a -+,则这个正数是______. 21.观察下面两行数: 2,4,8,16,32,64…① 5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-0,4-23.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+=()4344313-=⨯-=(1)请你想一想:a b = ;(2)若ab ,那么ab ba (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.24.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.25.设2+x 、y ,试求x 、y 的值与1x -的立方根.一、选择题1.下列各式计算正确的是()A B= ±2 C= ±2 D.2.在实数,-3.14,0,π中,无理数有()A.1个B.2个C.3个D.4个3.下列说法中,正确的是()A.无理数包括正无理数、零和负无理数B.无限小数都是无理数C.无理数都是无限不循环小数D.无理数加上无理数一定还是无理数4.下列命题是真命题的是()A.两个无理数的和仍是无理数B.有理数与数轴上的点一一对应C.垂线段最短D.如果两个实数的绝对值相等,那么这两个实数相等5.下列说法正确的是()A.2B.(﹣4)2的算术平方根是4C.近似数35万精确到个位D56.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015! 2014!正确的是()A.2015 B.2014 C.20152014D.2015×20147.)A.287.2 B.28.72 C.13.33 D.133.38.8)A.4 B.5 C.6 D.79.在下列实数3,0.31,3π,27-,9,12-,38,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .410.一个正方体的体积为16,那么它的棱长在( )之间 A .1和2B .2和3C .3和4D .4和511.在0,3π,5,227,9-,6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ). A .1个B .2个C .3个D .4个二、填空题12.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9. 问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, . (2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.13.对于有理数a ,b ,定义一种新运算“”,规定ab a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简a b ;②当a b a c =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明. 14.计算:(1)20193(1)816|22|-(2)[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x15.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.16.27-的立方根是___________81___________;| 3.14|π-的绝对值是___________.17.将1、2、3、6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(15,7)表示的数是____.18.3189124- 19.定义运算“@”的运算法则为:xy 4+,则2@6 =____. 20.3x -+(y +2)2=0,那么xy 的值为___________.21.一个正数的两个平方根分别是21a -与2a -+,则这个正数是______.三、解答题22.计算:(1)37|2|27---(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭23.计算:(1)﹣12327-﹣(﹣2)9(2331)+32|24.213a -=,31a b -+的平方根是4±,c 433a b c ++的平方根.25.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、2等,而常用“……”或者“≈”212的小数部分,你同意小刚的表示方法吗?事实上,小刚的表示方法是有道理的,2的整数部分是1,将这个数减去其整数部分,差就是小数部分.<<,即23<<,22也就是说,任何一个无理数,都可以夹在两个相邻的整数之间.根据上述信息,请回答下列问题:(1______,小数部分是_______;(2)10+10a b <+<,则a b +=_____;(34x y =+,其中x 是整数,且01y <<.求:x y -的相反数.。
第四章 实数 单元测试卷 2022-2023学年苏科版八年级数学上册
第四章 实数 单元测试卷一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1. √116的平方根是( ) A. 14 B. −14 C. ±14 D. ±12 2. 实数5的平方根是( )A. 2.5B. −2.5C. √5D. ±√53. 实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. a >bB. |b|<|c|C. a +c <0D. ab >c4. 下列说法正确的是( )A. 0的算术平方根是0B. 9是3的算术平方根C. ±3是9的算术平方根D. −3是9的算术平方根5. 下列等式成立的是( ) A. √25=±5B. √(−3)33=3C. √(−4)2=−4D. ±√0.36=±0.6 6. 已知−1<x <0,那么在−x,−1x ,√−x,x 2中,最大的数是( )A. −xB. −1xC. √−xD. x 27. 下列说法中,正确的有( )①只有正数才有平方根;②a 一定有立方根;③√−a 没有意义;④√−a 3=−√a 3;⑤只有正数才有立方根.A. 1个B. 2个C. 3个D. 4个8. 下列说法: ①−0.25的平方根是±0.5; ②任何数的平方都是非负数,因而任何数的平方根也是非负数; ③任何一个非负数的平方根都不大于这个数; ④平方根等于本身的数是0.其中正确的是( )A. ④B. ① ②C. ② ③D. ③9. 已知等腰三角形的两边长分別为a 、b ,且a 、b 满足√2a −3b +5+(2a +3b −13)2=0,则此等腰三角形的周长为( )A. 7或8B. 6或10C. 6或7D. 7或103=−2,则a+b的值是( )10.若a2=16,√−bA. 12B. 12或4C. 12或±4D. −12或4二、填空题(本大题共8小题,共24分)11.64的立方根为.12.写出一个比3大且比4小的无理数:.13.写出一个大于1且小于2的无理数.3=.14.计算:√25=;√|−9|=;√276415.若一个数的算术平方根是8,则这个数的立方根是.16.若√m+1=3,则7−m的立方根是.3=−2,则√b−a=.17.已知a2=81,√b18.已知√x+2y+|x2−9|=0,则3x−12y的立方根是.三、解答题(本大题共8小题,共66分。
人教新版 七年级(下)第二学期 第6章 实数章节 单元测试A卷 含答案
七年级(下)第二学期 第6章 实数章节 单元测试卷一.选择题(共10小题)1.下列四个实数中,最小的是( )A .2B .2-C .0D .1-2.立方根是3-的数是( )A .9B .27-C .9-D .273.下列各数:3.1415926,117-,327,12π,4.217,2,2.1010010001⋯(相邻两个1之间依次增加1个0)中,无理数有( )A .4个B .3个C .2个D .1个4.下列四个式子:9,327-,|3|-,(3)--,化简后结果为3-的是( )A .9B .327-C .|3|-D .(3)--5.若x 的算术平方根有意义,则x 的取值范围是( )A .一切数B .正数C .非负数D .非零数6.在数轴上,表示实数52-的点落在( )A .①B .②C .③D .④7.估计5624-( )A .8和9之间B .7和8之间C .6和7之间D .5和6之间8.下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③22;④无理数是带根号的数.正确的有( )A .1个B .2个C .3个D .4个 9.在数轴上,点A 表示实数3,以点A 为圆心,25+的长为半径画弧,交数轴于点C ,则点C 表示的实数是( )A .5B .1C 1-或5+D .1-或5+10( )A .3和4B .4和5C .5和6D .6和7二.填空题11的算术平方根是 .12.如果某数的一个平方根是2-,那么这个数是 .13;-.14.若6a b -+的算术平方根是2,21a b +-的平方根是4±,则53a b -+的立方根是 .15与b a = .16.已知a 的整数部分,b 22(4)b a +-的值是 .17.观察下列表格:3.32=a =b =,则a b +的值(保留一位小数)是 .18.对于实数a ,b ,给出以下判断:①若||||a b ==;②若||||a b <,则a b <;③若a b =-,则22()a b -=;④若33()a b -=-,则a b =,其中正确的判断的序号是 .三.解答题19|.20.计算:2019311|(2)10|(0.5)3-+--⨯+ 21.求下列各式中x 的值:(1)2(1)64x -=;(2)3(8)270x ++=.22.已知21a -的算术平方根是3,39a b +-的立方根是2,c 是的整数部分,求722a b c --的平方根.23.观察下列等式:①133⨯=:②3515⨯=:③5735⨯=;④7963⨯=;⋯(1)写出第n 个等式(n 为正整数)(2)是否存在正整数n ,使等式右边等于2499,如果存在,求出n ;若不存在,请说明理由.24.定义一种新运算“*”满足下列条件:①对于任意的实数a ,b ,*a b 总有意义;②对于任意的实数a ,均有*0a a =;③对于任意的实数a ,b ,c ,均有*(*)*a b c a b c =+.(1)填空:1*(1*1)= ,2*(2*2)= ,3*0= ;(2)猜想*0a = ,并说明理由;(3)*a b = (用含a 、b 的式子直接表示).25.[阅读材料]Q <<23<<,112∴<<.∴1-的整数部分为1∴1-2-[解决问题](1的小数部分是 ;(2)已知a b 的小数部分,求代数式1(a b -的平方根为 .26.对于实数a ,我们规定:用符号称为a 的根整数,例如:3=,3=.(1)仿照以上方法计算:= ;= .(2)若1=,写出满足题意的x 的整数值 .如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次=→=,这时候结果为1.31(3)对120连续求根整数,次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是.参考答案一.选择题1.下列四个实数中,最小的是( )A .2B .C .0D .1- 解:根据实数大小比较的方法,可得102<-<<,所以四个实数中,最小的数是.故选:B .2.立方根是3-的数是( )A .9B .27-C .9-D .27解:Q 3=-, ∴立方根是3-的数是27-.故选:B .3.下列各数:3.1415926,117-12π,4.217,2.1010010001⋯(相邻两个1之间依次增加1个0)中,无理数有( )A .4个B .3个C .2个D .1个解:无理数有12π 2.1010010001⋯(相邻两个1之间依次增加1个0),共3个, 故选:B .4|3|-,(3)--,化简后结果为3-的是( )AB C .|3|- D .(3)--解:Q3=,3=-,|3|3-=,(3)3--=,-,∴化简后结果为3-的是327故选:B.5.若x的算术平方根有意义,则x的取值范围是()A.一切数B.正数C.非负数D.非零数解:xQ的算术平方根有意义,∴的取值范围是:0xx….故选:C.6.在数轴上,表示实数52-的点落在()A.①B.②C.③D.④解:Q459<<<<,∴253<-<,∴0521-的点落在②处.∴52故选:B.7.估计5624-()A.8和9之间B.7和8之间C.6和7之间D.5和6之间解:562456263654===,Q495464<<∴-7和8之间.624故选:B.8.下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③22;④无理数是带根号的数.正确的有()A.1个B.2个C.3个D.4个解:①一个数的平方根等于它本身,这个数是0,错误;②实数包括无理数和有理数,正确;③2,正确;④故选:B.9.在数轴上,点A表示实数3,以点A为圆心,2+的长为半径画弧,交数轴于点C,则点C表示的实数是()A.5B.1C1-或5+D.1-或5+解:根据题意得:325-+=-,++=+3(21则点C表示的实数是5+1-,故选:D.10() A.3和4B.4和5C.5和6D.6和7解:Q<<∴的值在两个连续整数之间,这两个连续整数是:4和5.故选:B.二.填空题(共8小题)11的算术平方根是2.解:Q4=,=.∴2故答案为:2.12.如果某数的一个平方根是2-,那么这个数是4.解:Q某数的一个平方根是2-,∴这个数为4.故答案为:4.13 2;-.解:2=Q <∴2<;-=Q -=,∴->-,故答案为:<;>.14.若6a b -+的算术平方根是2,21a b +-的平方根是4±,则53a b -+的立方根是 3- . 解:6a b -+Q 的算术平方根是2,21a b +-的平方根是4±, 64a b ∴-+=,2116a b +-=,解得5a =,7b =,53535327a b ∴-+=-+=-,53a b ∴-+的立方根3-.故答案为:3-15与b a 2 .解:Q 互为相反数,(31)(12)0a b ∴-+-=,32a b ∴=,∴32b a =. 故答案为:32.16.已知a 的整数部分,b 22(4)b a +-的值是 1 .解:a Q 的整数部分,b4a ∴=,4b -,22(4)b a ∴+-2244)4=-+-1716=-1=,故答案为:1.17.观察下列表格:3.32=a =b =,则a b +的值(保留一位小数)是 33.5 .3.32=a =b =,则0.33233.233.53233.5a b +=+=≈, 故答案为:33.5.18.对于实数a ,b ,给出以下判断:①若||||a b ==;②若||||a b <,则a b <;③若a b =-,则22()a b -=;④若33()a b -=-,则a b =,其中正确的判断的序号是 ③④ .解:a Q 、b 有一个小于0或都小于0,但是它们的绝对值相等时,||||a b =不一定有意义,∴若||||a b ==不一定成立,∴选项①不符合题意;Q 若||||a b <,0a <,0b <时,a b >,∴选项②不符合题意;Q 若a b =-,则22()a b -=,∴选项③符合题意;Q 若33()a b -=-,则a b =,∴选项④符合题意,∴其中正确的判断的序号是③④.故答案为:③④.三.解答题(共8小题)19|.|22=+-=.20.计算:2019311|(2)10|(0.5)3-+--⨯+解:2019311|(2)10|(0.5)3-+--⨯+-511856=-+⨯- 1155=-+-9=21.求下列各式中x 的值:(1)2(1)64x -=;(2)3(8)270x ++=.解:(1)2(1)64x -=,18x -==±,解得9x =或7-;(2)3(8)270x ++=,3(8)27x +=-,83x +==-,解得11x =-.22.已知21a -的算术平方根是3,39a b +-的立方根是2,c 是的整数部分,求722a b c --的平方根.解:21a -Q 的算术平方根是3,219a ∴-=,5a ∴=,39a b +-Q 的立方根是2,398a b ∴+-=,2b ∴=,c Q 的整数部分,34<<,3c ∴=,722354625a b c ∴--=--=,722a b c ∴--的平方根是5±.23.观察下列等式:①133⨯=:②3515⨯=:③5735⨯=;④7963⨯=;⋯(1)写出第n 个等式(n 为正整数) 2(21)(21)(2)1n n n -+=-(2)是否存在正整数n ,使等式右边等于2499,如果存在,求出n ;若不存在,请说明理由解:(1)21321⨯=-Q ;2351541⨯==-;2573561⨯==-;2796381⨯==- ∴第n 个等式(n 为正整数)应为:2(21)(21)(2)1n n n -+=-.(2)2(2)12499n -=,解得:25n =.故答案为:2(21)(21)(2)1n n n -+=-.24.定义一种新运算“*”满足下列条件:①对于任意的实数a ,b ,*a b 总有意义;②对于任意的实数a ,均有*0a a =;③对于任意的实数a ,b ,c ,均有*(*)*a b c a b c =+.(1)填空:1*(1*1)= 1 ,2*(2*2)= ,3*0= ;(2)猜想*0a = ,并说明理由;(3)*a b = (用含a 、b 的式子直接表示).解:(1)1*(1*1)1*111=+=,2*(2*2)2*222=+=,3*03*(3*3)3*333==+=故答案为:1,2,3;(2)*0(*)*a a a a a a a a ==+=,故答案为a ;(3)*(*)*a b b a b b =+,即*0*a a b b =+,而*0a a =,故*a b a b =-.25.[阅读材料]Q <<23<<,112∴<<.∴1-的整数部分为1∴1-2-[解决问题](12- ;(2)已知a b 的小数部分,求代数式1(a b -的平方根为 . 解:(1)479<<Q ,∴的整数部分是2,∴2-;(2)a Q b 的小数部分,91016<<,3a ∴=,3b -,∴1(9a b --=,9的平方根为3±.2;3±.26.对于实数a ,我们规定:用符号称为a 的根整数,例如:3=,3=.(1)仿照以上方法计算:= 2 ;= .(2)若1=,写出满足题意的x 的整数值 .如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次31=→=,这时候结果为1.(3)对120连续求根整数, 次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是 . 解:(1)224=Q ,2636=,2749=,67∴<<,2∴=;6=,故答案为:2,6;(2)211=Q ,224=,且1=,1x ∴=,2,3,故答案为:1,2,3;(3)第一次:10=,第二次:3=,第三次:1=,故答案为:3;(4)最大的正整数是255,理由是:15=Q ,3=,1=,∴对255只需进行3次操作后变为1,=,1=,=,2Q,416=∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.。
2024-2025学年北师大版数学八年级上册《第2章 实数》单元测试试卷附答案解析
第1页(共11页)2024-2025学年北师大版数学八年级上册《第2章实数》单元试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在下列实数中:0,2.5,﹣3.1415,4,227,0.343343334…无理数有()A .1个B .2个C .3个D .4个2.(3分)下列x 的值能使−6有意义的是()A .x =1B .x =3C .x =5D .x =73.(3分)将33×2化简,正确的结果是()A .32B .±32C .36D .±364.(3分)下列判断中,你认为正确的是()A .0的倒数是0B .5大于2C .π是有理数D .9的值是±35.(3分)下列计算正确的是()A .310−25=5B11=11C .(75−15)÷3=25D −=26.(3分)若a <5<b ,且a 、b 是两个连续整数,则a +b 的值是()A .2B .3C .4D .57.(3分)点A 在数轴上,点A 所对应的数用2a +1表示,且点A 到原点的距离等于3,则a 的值为()A .﹣2或1B .﹣2或2C .﹣2D .18.(3分)下列说法:①﹣7是49的平方根;②49的平方根是﹣7;③16的算术平方根是4;④(−4)2=(−4)2;⑤(3−8)3=3(−8)3.其中错误的有()A .1个B .2个C .3个D .4个9.(3)A .26B .62C .66D .1210.(3分)实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是()A .|a |<1B .ab >0C .a +b >0D .1﹣a >1二、填空题(本大题7小题,每小题4分,共28分)。
八年级上册《第4章实数》单元测试卷(有答案)
八年级上学期第4章《实数》单元测试卷一.选择题(共10小题)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=BC.a=﹣B D.以上结论都不对2.下列说法正确的是()A.近似数3.6与3.60精确度相同B.数2.9954精确到百分位为3.00C.近似数1.3x104精确到十分位D.近似数3.61万精确到百分位3.﹣27的立方根与4的平方根的和是()A.﹣1B.﹣5C.﹣1或﹣5D.±5或±1 4.﹣2的绝对值是()A.2B.C.D.15.在3,0,﹣2,﹣四个数中,最小的数是()A.3B.0C.﹣2D.﹣6.下列各式成立的是()A.=±5B.±=4C.=5D.=±1 7.如图,正方形的周长为8个单位.在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表示﹣3的点重合,再将数轴按顺时方向环绕在该正方形上,则数轴上表示2019的点与正方形上的数字对应的是()A.0B.2C.4D.68.化简(6﹣π)0+()﹣1+|1﹣|+的结果为()A.B.C.D.9.﹣1的相反数是()A.1B.C.D.10.用“&”定义新运算:对于任意实数a,b都有a&b=2a﹣b,如果x&(1&3)=2,那么x等于()A.1B.C.D.2二.填空题(共7小题)11.9的平方根是,9的算术平方根是.12.设a、b、c都是实数,且满足,ax2+bx+c=0;则代数式x2+2x+1的值为.13.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.14.的整数部分是x,小数部分是y,则y(x+)的值为.15.的小数部分我们记作m,则m2+m+=.16.据统计:我国微信用户数量已突破8.87亿人,近似数8.87亿精确到位.17.借助计算器探索:=,=,猜想:=.三.解答题(共6小题)18.计算:(﹣)﹣2﹣23×0.125+20040+|﹣1|19.当+|b+2|+c2=0时,求ax2+bx+c=0的解.20.已知3x+1的算术平方根是4,x+y﹣17的立方根是﹣2,求x+y的平方根.21.实数a,b,c在数轴上的位置如图(1)求++的值(2)化简|b+c|﹣|b+a|+|a+c|22.观察与猜想:===2===3(1)与分别等于什么?并通过计算验证你的猜想(2)计算(n为正整数)等于什么?23.求出下列x的值:(1)4x2﹣81=0;(2)64(x+1)3=27;(3)在实数的原有运算法则中,我们补充定义关于正实数的新运算“⊕”如下:当a≥b>0时,a⊕b=b2;当0<a<b时,.根据这个规则,求方程(3⊕2)x+(4⊕5)=0的解.参考答案一.选择题1.A.2.B.3.C.4.A.5.C.6.C.7.C.8.A.9.A.10.C.二.填空题11.±3;312.5.13.3.14.1.15.2.16.百万.17.555,55555,.三.解答题18.解:原式=4﹣1+1+1=5.19.解;当+|b+2|+c2=0时,则,∴,∴4x2﹣2x=0,2x2﹣x=0,x(2x﹣1)=0,x1=0,x2=20.解:根据题意得:3x+1=16,x+y﹣17=﹣8,解得:x=5,y=4,则x+y=4+5=9,9的平方根为±3.所以x+y的平方根为±3.21.解:(1)由图可知a>0,b<0,c<0,所以ab<0,所以++=++,=1+(﹣1)+(﹣1),=﹣1;(2)由图可知a>0,b<0,c<0且|c|<a<|b|,所以|b+c|﹣|b+a|+|a+c|,=﹣(b+c)﹣(﹣b﹣a)+(a+c),=﹣b﹣c+b+a+a+c,=2a.22.解:(1)=4,验证:===4,=5验证:===5;(2)===n.23.解:(1)4x2﹣81=04x2=81,.(2)64(x+1)3=27,.(3)(3⊕2)x+(4⊕5)=0可化为22x+=0,即4x+2=0,4x=﹣2,∴x=﹣.。
北师大版数学八年级上册 第2章 实数 单元测试卷(含答案)
第2 章测试卷(满分120分,时间90分钟)题号一二三总分得分合要求的)1.9的平方根是( )A.±3B.±1C.3D. -332.在-1.414,√2,π,2+√3,3.212212221…,3.14这些数中,无理数的个数为( )A.5个B.2个C.3个D.4个3.下列说法错误的是( )A.5是25的算术平方根B.1是1的一个平方根C.(-4)²的平方根是-4D.0的平方根与算术平方根都是04.下列各式中不是二次根式的是( )A.√x2+1B.√−4C.√0D.√(a−b)25.已知实数x,y满足√x−2+(y+1)2=0,,则x-y等于( )A.3B.-3C.1D.-16.估算√76−3的值在( )A.4与5之间B.5 与6 之间C.6 与 7 之间D.7 与8之间7.下列计算正确的是( )A.√18−√2=2√2B.√2+√3=√5C.√12÷√3=4D.√5×√6=√118.爸爸为颖颖买了一个密码箱,并告诉其密码(密码为自然数)是1、2、4、6、8、9六个数中的三个数的算术平方根,则这个密码箱的密码可能是( )A.123B.189C.169D.2489.将1、√2√3、√6、按如图所示的方式排列,若规定(m,n)表示第m排从左到右第n个数,则(4,2)与(21,2)表示的两数的积是( )A.1B.2C.2√3D.610.若6−√13的整数部分为x,小数部分为y,则((2x+√13)y的值是( )A.5−3√13B.3C.3√13−5D. -3二、填空题(本大题共8小题,每小题4分,共32分.本题要求把正确结果填在规定的横线上,不需要解答过程)11.写出一个比4 小的正无理数: .有意义,则实数x 的取值范围是 .12.若代数式√xx−113.a 是9的算术平方根,b的算术平方根是9,则a+b=. .14.若√x−2+(y+3)2=0,则x+y=. .15.若最简二次根式√5m−4与√2m+5可以合并,则m的值可以为 .16.若4<√a<10,,则满足条件的整数a有个.17.如果一个正数的平方根是a+3和2a-15,,则这个数为 .18.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=√1 4[a2b2−(a2+b2−c22)2].现已知△ABC的三边长分别为2,3,4,则△ABC的面积为 .三、解答题(本大题共6小题,满分58分.解答应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)(√12+√20)+(√3−√5)(2)(√7−√2)(√7+√2)20.(8分)求下列各式中x的值:(1)(x−2)²+1=17;(2)(x+2)³+27=0.21.(10分)如图,已知A,B,C三点分别对应数轴上的数a,b,c.(1)化简:|a−b|+|c−b|+|c−a|;,b=−z2,c=−4mn,且满足x与y互为相反数,z是绝对值最小的负整数,m,n互(2)若a=x+y4为倒数,试求98a+99b+100c的值;22.(10分)已知x=√5+2,y=√5−2,求下列各式的值.(1) xy;(2)x²−y².23.(10分)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=√ℎ5(不考虑风速的影响).(1)从50m高空抛物到落地所需时间l₁₁是 s,从100m高空抛物到落地所需时间l₂是 s;(2)t₂是t₁的多少倍?(3)经过1.5s,高空抛物下落的高度是多少?24.(12 分)观察下列一组等式,解答后面的问题:√2(+1)(√2−1)=1,(√3+√2)(√3−√2)=1,(√4+√3)(√4−√3)=1,(√5+√4)(√5−√4) =1,…(1)根据上面的规律,计算下列式子的值:(√2+1+√3+√2+√4+√3+⋯+√2020+√2019)(√2020+1);(2)利用上面的规律,比较√12−√11与√13−√12的大小.第2 章测试卷1. A2. D3. C4. B5. A6. B7. A8. A9. D10. B11.答案不唯一,如√212. x≥0且x≠1 13.84 14. --115.3 16.83 17.49 18.3√154 19.解(1)(√12+√20)+(√3−√5)=2√3+2√5+√3−√5=3√3+√5(2)(√7−√2)(√7+√2)=7−2=5.20.解(1)(x−2)²=16,x−2=±4,x=6或--2,(2)(x+2)³=−27,x+2=−3,x=-5.21.解(1)由数轴,知(a−b>0,c−b<0,c−a<0,所以|a−b|+|c−b|+|c−a|=(a−b)−(c−b)−(c−a)=a−b−c+b−c+a=2a−2c.(2)由题意,知:x+y=0,z=−1,mn=1,所以a=0,b=−(−1)²=−1,c=−4.所以98a+99b+100c=−99−400=−499.22.解(1)原式=(√5+2)(√5−2)=5−4=1.(2)原式=(√5+2)2−(√5−2)2=5+4+4√5−5−4+4√5=8√5.23.解(1)√102√5(2)∵t2t1=√5√10=√2,∴t2是t₁的√2倍.(3)由题意得√ℎ5=1.5,即ℎ5=2.25,∴ℎ=11.25.答:经过1.5s,高空抛物下落的高度是11.25 m.24.解(1)根据规律,可得√n+1+√n =√n−1−√n(n≥1).(√2+1+√3+√2√4+√3+⋯+√2020+√2019)(√2020+1).=[(√2−1)+(√3−√2)+(√4−√3)+⋯+(√2020−√2019)](√2020+1) =(√2020−1)(√2020+1)=2019.(2)因为√12−√11=√12+√11,√13−√12=√13+√12,又0<√12+√11<√13+√12,所以√12−√11<√13−√12所以√12−√11>√13−√12.。
【数学】人教版七年级数学下册第六章实数章末综合测试卷
人教版七年级数学下册第六章实数章末综合测试卷一.选择题(共10小题)1.下列式子,表示4的平方根的是( ) A . 4B .42C .-4D .±42.若a 是无理数,则a 的值可以是( )A .14B .1C .2D .93.已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是( ) A .-a<-b B .a+b<0 C .|a|<|b| D .a-b>04.实数3的大小在下列哪两个整数之间,正确的是( ) A .0和1 B .1和2 C .2和3 D .3和45.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是( ) A .9,10 B .10,11 C .11,12 D .12,13 6.在-3、0、6、4这四个数中,最大的数是( ) A .-3 B .0 C . 6 D .47.下列说法正确的是( )A .立方根等于它本身的实数只有0和1B .平方根等于它本身的实数是0C .1的算术平方根是±1D .绝对值等于它本身的实数是正数8.已知a ,b 为两个连续整数,且a< 13<b,则a+b 的值为( ) A .9 B .8 C .7 D .6 9.如果一个实数的平方根与它的立方根相等,则这个数是( ) A .0 B .正实数 C .0和1 D .1 10.有下列说法:①实数与数轴上的点一一对应; ②2- 7的相反数是7-2;③在1和3之间的无理数有且只有2, 3,5,7这4个;④2+3x-4x 2是三次三项式;⑤绝对值等于本身的数是正数; 其中错误的个数为( ) A .1 B .2 C .3 D .4二.填空题(共6小题)11.4的算术平方根是 ,-64的立方根是 .12.若m 为整数,且5<m< 10,则m=13.某个正数的平方根是x 与y,3x-y 的立方根是2,则这个正数是 .14.已知实数a 、b 都是比2小的数,其中a 是整数,b 是无理数,请根据要求,分别写出一个a 、b 的值:a= ,b= . 15.如图,在数轴上点A ,B 表示的数分别是1,- 2,若点B ,C 到点A 的距离相等,则点C所表示的数是 .16.如图,长方形内有两个相邻的正方形,面积分别为4和3,那么阴影部分的面积为 .三.解答题(共7小题)17.求x 的值: (1)2x 2-32=0; (2)(x-1)3=2718.计算:49-| 3-64|+(-3)2-31252719.已知2的平方等于a,2b-1是27的立方根,± c-2表示3的平方根. (1)求a,b,c 的值;(2)化简关于x 的多项式:|x-a|-2(x+b)-c,其中x <4.20.正数x 的两个平方根分别为3-a 和2a+7. (1)求a 的值;(2)求44-x 这个数的立方根.21.定义新运算:对任意实数a 、b ,都有a △b=a 2-b 2,例如:(3△2)=32-22=5,求(1△2)△4的值.22.如图甲,这是由8个同样大小的立方体组成的魔方,总体积为64cm 3. (1)这个魔方的棱长为cm;(2)图甲中阴影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形ABCD 放置在数轴上,如图乙所示,使得点A 与数1重合,则D 在数轴上表示的数为.23.有两个大小完全一样的长方形OABC 和EFGH 重合放在一起,边OA 、EF 在数轴上,O 为数轴原点(如图1),长方形OABC 的边长OA 的长为6个坐标单位. (1)数轴上点A 表示的数为.(2)将长方形EFGH 沿数轴所在直线水平移动①若移动后的长方形EFGH 与长方形OABC 重叠部分的面积恰好等于长方形OABC 面积的13,则移动后点F 在数轴上表示的数为.②若出行EFGH 向左水平移动后,D 为线段AF 的中点,求当长方形EFGH 移动距离x 为何值时,D 、E 两点在数轴上表示的数是互为相反数?答案: 1.D 2.C 3.C 4.B 5.B 6.D 7.B 8.C 9.A 10.C 11.2,-4 12.3 13.4 14.1,15.2+ 16.2-3 17. 解:(1)∵2x 2-32=0, ∴2x 2=32, 则x 2=16, 所以x=±4;(2)∵(x-1)3=27, ∴x-1=3, 则x=4. 18.解:原式=23-4+3- 53=-2.19. 解:(1)由题意知a=22=4, 2b-1=3,b=2; c-2=3,c=5; (2)∵x <4, ∴|x-a|-2(x+b )-c =|x-4|-2(x+2)-5 =4-x-2x-4-5 =-3x-5. 20. 解:(1)∵正数x 的两个平方根是3-a 和2a+7, ∴3-a+(2a+7)=0, 解得:a=-10(2)∵a=-10,∴3-a=13,2a+7=-13.∴这个正数的两个平方根是±13, ∴这个正数是169. 44-x=44-169=-125, -125的立方根是-5. 21. 解:(1△2)△4 =(12-22)△4 =(-3)人教版七年级数学下册第六章 实数 单元巩固测试题一、选择题1.下列说法不正确的是(C ) A .251的平方根是51B .﹣9是81的一个平方根C .0.2的算术平方根是0.04D .﹣27的立方根是﹣3 2.下列说法正确的是( C ) A .立方根是它本身的数只能是0和1 B .立方根与平方根相等的数只能是0和1 C .算术平方根是它本身的数只能是0和1 D .平方根是它本身的数只能是0和1 3.估计20的算术平方根的大小在( C )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 4.16的算术平方根和25的平方根的和是( C ) A .9 B .﹣1 C .9或﹣1 D .﹣9或1 5. 下列选项中正确的是( C ) A .27的立方根是±3 B .的平方根是±4C .9的算术平方根是3D .立方根等于平方根的数是16.若 与 的整数部分分别为 , ,则 的立方根是(A ) A.B.C. 3D.7.若a 2=25,|b|=3,则a+b 的值是(D ) A .﹣8 B .±8 C .±2 D .±8或±28. 比较2, , 的大小,正确的是(C )A. 2< <B. 2< <C. <2<D. < <29. 如图,以数轴的单位长度为边长画正方形,以正方形的对角线为半径,-1所在的点为圆心画弧,交数轴于点A,则点A表示的数为( C)A. B.1- C. -1 D. +110.下列说法中:①每个正数都有两个立方根;②平方根是它本身的数有1,0;③立方根是它本身的数有±1,0;④如果一个数的平方根等于它的立方根,那么这个数是1或0;⑤没有平方根的数也没有立方根;⑥算术平方根是它本身的数有1,0.其中正确的有( A ) A.2个 B.3个 C.4个 D.5个二、填空题11的算术平方根是 2 ;12. 表示_______9_____的立方根;13.如图是一个简单的数值运算程序,若输入x的值为,则输出的数值为_____2_______;14.下列各数:0,﹣4,(﹣3)2,﹣32,﹣(﹣2),有平方根的数有 3 个.15.(1)若的值为最大的负整数,则a的值是______±4______.(2)若x2=64,则=_____±2_______.16. 已知下列实数:①;②-;③;④3.14;⑤;⑥;⑦3.1415926;⑧1.23;⑨2.020020002…(相邻两个2之间依次多一个0).属于有理数的有:___①②④⑥⑦⑧_________; 属于无理数的有:______③⑤⑨______.(填序号) 三、解答题17.解方程4(x ﹣1)2=9 解:把系数化为1,得 (x ﹣1)2=49 开方得x ﹣1=23 解得x 1=25,x 2=﹣21.18.求下列各式的值: (1)-3729+3512; 解:原式=-9+8=-1.(2)30.027-31-124125+3-0.001. 解:原式=0.3-31125+(-0.1) =0.3-15-0.1=0. 18.计算:(1)(1)-(2)(2) 2.19.已知2a ﹣1的平方根是±3,3a+b ﹣1的算术平方根是4,求a+2b 的值. 解:∵2a ﹣1的平方根是±3, ∴2a ﹣1=9, ∴a=5,∵3a+b ﹣1的算术平方根是4, ∴3a+b ﹣1=16, ∴3×5+b ﹣1=16, ∴b=2,∴a+2b=5+2×2=9.20.现有一个体积为125cm 3的木块,将它锯成同样大小的8块小正方体,求每个小正方体木块的表面积.=cm ,6×()2=37.5cm 2.21.小明买了一箱苹果,装苹果的纸箱的尺寸为2×3×9(长度单位为分米),现小明要将这箱苹果分装在两个大小一样的正方体纸箱内,要求两个人教七年级上册数学第7章《平面直角坐标系》练习题 (A B 卷)人教版七年级数学下册第七章平面直角坐标系 单元测试题班级 姓名 得分一、选择题(4分×6=24分) 1.点A (4,3-)所在象限为( )A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限 2.点B (0,3-)在()上A 、 在x 轴的正半轴上B 、 在x 轴的负半轴上C 、 在y 轴的正半轴上D 、 在y 轴的负半轴上3.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为() A 、(3,2) B 、 (3,2--) C 、 (2,3-) D 、(2,3-) 4. 若点P (x,y )的坐标满足xy =0,则点P 的位置是()A 、 在x 轴上B 、 在y 轴上C 、 是坐标原点D 、在x 轴上或在y 轴上 5.某同学的座位号为(4,2),那么该同学的所座位置是()A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定6.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为()A 、 A 1(0,5-),B 1(3,8--) B 、 A 1(7,3), B 1(0,5)C 、 A 1(4,5-) B 1(-8,1)D 、 A 1(4,3) B 1(1,0) 二、填空题( 1分×50=50分 ) 7.分别写出数轴上点的坐标:A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-F9. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限 点)0,2(-E 在第 象限,点)3,0(F 在第 象限10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点 是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。
实数同步测试题
第六章实数6.3实数一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是有理数的是A.0.9B.–3C.πD.1 3【答案】D【解析】A、0.9=910=31010,是无理数,故此选项错误;B、–3是无理数,故此选项错误;C、π是无理数,故此选项错误;D、13是有理数,故此选项正确.故选D.2.下列说法中错误的是A.数轴上的点与实数一一对应B.实数中没有最小的数C.a、b为实数,若a<b,则a<bD.a、b为实数,若a<b,则3a<3b【答案】C3.实数a、b在数轴上的位置如图所示,则下列各式表示正确的是A.b–a<0 B.1–a>0C.b–1>0 D.–1–b<0【答案】A【解析】由题意,可得b<–1<1<a,则b–a<0,1–a<0,b–1<0,–1–b>0.故选A.4.如图,数轴上点P表示的数可能是A2B5C10D15【答案】B24591015 251015B.5.在实数0,–2,15A.0 B.–2C.1 D5【答案】B【解析】∵0,–2,15–5–2;故选B.6.若m14n,且m、n为连续正整数,则n2–m2的值为A.5 B.7C.9 D.11【答案】B【解析】∵m14n,且m、n为连续正整数,∴m=3,n=4,则原式=7,故选B.+的值为7.|63||26A.5 B.526-C.1 D.61【答案】C【解析】原式=3–6+6–2=1.故选C.8.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1,现对72进行如下操作:72[72]=8[8]=2[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是A.82 B.182C.255 D.282【答案】C二、填空题:请将答案填在题中横线上.95__________16__________.【答案】5 25516,4的平方根是±2162.故答案为:5;±2.10.已知:n24n n的最小值为__________.【答案】624n6n,则6n是完全平方数,∴正整数n的最小值是6,故答案为:6.11.比较大小–2__________–3>”、“<”或“=”填空).【答案】<【解析】–2=50–348,5048,∴–2<–3,故答案为:<.12.用“※”定义新运算:对于任意实数a 、b ,都有a ※b =2a 2+B .例如3※4=2×32+4=22※2=__________. 【答案】8※2=2×3+2=6+2=8.故答案为:8.13.计算:|+.【解析】|+14.计算:|2.【答案】3【解析】|2–2+5. 故答案为:3.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.计算:(1)–14–2|(2)4(x +1)2=25【解析】(1)原式=–1–2–3+2=–4 (2)方程整理得:(x +1)2=254, 开方得:x +1=±52, 解得:x =1.5或x =–3.5.16.把下列各数填在相应的大括号内:20%,0,3π,3.14,–23,–0.55,8,–2,–0.5252252225…(每两个5之间依次增加1个2). (1)正数集合:{__________…}; (2)非负整数集合:{__________…}; (3)无理数集合:{__________…}; (4)负分数集合:{__________…}. 【解析】(1)正数集合:{20%,3π,3.14,8…};(2)非负整数集合:{8,0…};(3)无理数集合:{3π,–0.525225……}; (4)负分数集合:{–23,–0.55…}.故答案为:(1)20%,3π,3.14,8;(2)8,0;(3)3π,–0.525225…;(4)–23,–0.55.17.如图:观察实数a 、b 在数轴上的位置,(1)a __________0,b __________0,a –b __________0(请选择<,>,=填写). (2)化简:2a –2b –2()a b -.18.(1)计算并化简(结果保留根号)①|1–2|=__________; ②23|=__________; ③34|=__________; ④45(2)计算(结果保留根号):233445……20172018|.【解析】(1)①|12|=2–1;②2332;③3443④4554; 21324354.(2)原式324354+……2018201720182.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( ) A .-3℃B .8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD =n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b>0. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个. 16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF 是∠AOE 的平分线,所以∠AOE =2∠EOF =2(90°-α)=180°-2α.所以∠BOE =180°-∠AOE =180°-(180°-2α)=2α.所以∠BOE =2∠COF .(2)∠BOE =2∠COF 仍成立.理由:设∠AOC =β,则∠AOE =90°-β,又因为OF 是∠AOE 的平分线,所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
湘教版数学八年级上第三章《实数》单元测试含答案
实数测试卷一.选择题(每小题3分,共30分)1.下列各式中无意义的是( )A. 61- B. 21-)( C.12+a D.222-+-x x 2.在下列说法中:①10的平方根是±10;②-2是4的一个平方根;③94的平方根是32 ④0.01的算术平方根是0.1;⑤ 24a a ±=,其中正确的有( )A.1个B.2个C.3个D.4个2.下列说法中正确的是( )A.立方根是它本身的数只有1和0B.算数平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和04.641的立方根是( ) A.21± B.41± C.41 D.21 5.现有四个无理数5,6,7,8,其中在实数2+1 与3+1 之间的有( ) A.1个 B.2个 C.3个 D.4个6.实数7- ,-2,-3的大小关系是( )A. 237---B. 273---C. 372---D.723---7.已知351.1 =1.147,31.15 =2.472,3151.0 =0.532 5,则31510的值是( )A.24.72B.53.25C.11.47D.114.78.若33)2(,2,3--=--=-=c b a ,则 c b a ,,的大小关系是( )A.c b aB.b a cC.c a bD.a b c9.已知x 是169的平方根,且232x y x =+,则y 的值是( )A.11 B .±11 C. ±15 D.65或3143 10.大于52-且小于23的整数有( )A.9个B.8个 C .7个 D.5个二、填空题(每小题3分,共30分)11. 3-绝对值是 ,3- 的相反数是 .12. 81的平方根是 ,364 的平方根是 ,-343的立方根是 ,256的平方根是 .13. 比较大小:(1)10 π;(2) 33 2;(3)101 101;(42 2. 14.当 时,3345223+-+++-x x x 有意义。
2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数专题测试试卷(含答案解析)
沪教版(上海)七年级数学第二学期第十二章实数专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数中相等的是( )A .π和3.14B .25%和14C .38和0.625 D .13.2%和1.322、下列运算正确的是( )A 2=±B 2=-C .224-=D .22--=3、在下列四个实数中,最大的数是( )A .0B .﹣2C .2D 4、若(3)(3)55x x +-=,则x 的值为( )A .8B .8-C .8±D .6或85、已知a =21()2-,b =-|-12|,c =(-2)3,则a ,b ,c 的大小关系是( ) A .b <a <c B .b <c <a C .c <b <a D .a <c <b6、16的平方根是( )A .±8B .8C .4D .±47、规定一种新运算:b a b a a *=-,如2424412*=-=-.则()2*3-的值是( ).A .10-B .6-C .6D .88、3的算术平方根为( )A B .9 C .±9 D 9、如果一个正数a 的两个不同平方根是2x -2和6-3x ,则这个正数a 的值为( )A .4B .6C .12D .3610-1最接近的是( )A .2B .3C .4D .5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用“*”定义一种新运算:对于任意有理数a 和b ,规定a *b =ab 2+2a ,则3*(-2)=_____________.2______=______.3_____,127的立方根是__________.4=_______.5、若实数,a b 满足20a -=,则2a b=_____________. 三、解答题(10小题,每小题5分,共计50分)1、如图是一个无理数筛选器的工作流程图.(1)当x为16时,y值为______;(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?(4)当输出的y x值是否唯一?如果不唯一,请写出其中的三个.2、求下列各式中的x:(1)2210x=;(2)()3118x+=-.3、做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm?4、已知一个正数x的平方根是a+3和2a-15,求a和x的值5、计算:()0226π-++6、已知正数a的两个不同平方根分别是2x﹣2和6﹣3x,a﹣4b的算术平方根是4.(1)求这个正数a以及b的值;(2)求b 2+3a ﹣8的立方根.7、如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为8,则称数M 为“风雨数”,并把数M 分解成M A B =⨯的过程,称为“同行分解”.例如:5722226=⨯,22和26的十位数字相同,个位数字之和为8,572∴是“风雨数”.又如:2341813=⨯,18和13的十位数字相同,但个位数字之和不等于8,234∴不是“风雨数”.(1)判断195,621是否是“风雨数”?并说明理由;(2)把一个“风雨数”M 进行“同行分解”,即M A B =⨯,A 与B 之和记为()P M ,A 与B 差的绝对值记为()Q M ,令()()()P M G M Q M =,当()G M 能被8整除时,求出所有满足条件的M .8、有理数a ,b 如果满足a b a b +=⋅,那么我们定义a ,b 为一组团结数对,记为<a ,b >.例如:1-和12,因为1111112222-+=--⨯=-,,所以111122-+=-⨯,则称1-和12为一组团结数对,记为<112-,>.根据以上定义完成下列各题:(1)找出2和2,1和3,-2和23这三组数中的团结数对,记为 ;(2)若<5,x >成立,则x 的值为 ;(3)若<a ,b >成立,b 为按一定规律排列成1,-3,9,-27,81,-243,……这列数中的一个,且b 与b 左右两个相邻数的和是567,求a 的值.9、(1)计算:3;(2)求x 的值:239x = .10、计算:0321()2()|12π---+-+-参考答案-一、单选题1、B【分析】π是一个无限不循环小数,约等于3.142,3.142>3.14,即π>3.14;14=1÷4=0.25,把0.25的小数点向右移动两位添上百分号就是25%;即25%=14;38=3÷8=0.375,0.375<0.625,即38<0.625;把13.2%小数点向左移动两位去掉百分号就是0.132,0.132<1.32,即13.2%<1.32.【详解】解:A、π≈3.142,3.142>3.14,即π>3.14;B、14=1÷4=0.25=25%=14;C、38=3÷8=0.375,0.375<0.625,即38<0.625;D、13.2%=0.132,0.132<1.32,即13.2%<1.32.故选:B.【点睛】此题主要是考查小数、分数、百分数的互化及圆周率π的限值.小数、分数、百分数、无限小数(循环小数)的大小比较,通常都化成保留一定位数的小数,再根据小数的大小比较方法进行比较,这样可以省去通分的麻烦.2、B【分析】依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可.【详解】A2,故A错误;B2-,故B正确;C.224-=-,故C错误;D.−|-2|=-2,故D错误.故选:B.【点睛】本题主要考查的是算术平方根的性质、立方根的性质、乘方运算法则、绝对值的性质,熟练掌握相关知识是解题的关键.3、C【分析】先根据正数大于0,0大于负数,排除A,B,然后再用平方法比较2【详解】解:正数0>,0>负数,∴排除A,B,=,224=,23∴>,43∴>2∴最大的数是2,故选:C.【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.4、C【分析】化简后利用平方根的定义求解即可.【详解】解:∵(3)(3)55x x +-=,∴x 2-9=55,∴x 2=64,∴x =±8,故选C .【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.5、C【分析】本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运算是根据:“底倒指反”,进行转化之后再化简,即:a =2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b =12;乘方运算中,负数的奇次幂还是负数,即:c =-8,据此进行数据的比较.【详解】解:由题意得:a =21()2-=22=4,b =12--=12-,c =()3-2=-8, ∴c <b <a .故选:C .【点睛】本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键.6、D【分析】根据平方根可直接进行求解.【详解】解:∵(±4)2=16,∴16的平方根是±4.故选:D .【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.7、C【分析】根据新定义计算法则把()2*3-转化为常规下运算得出()()()32*322-=---,然后按有理数运算法则计算即可.【详解】解:∵b a b a a *=-,∴()()()32*322286-=---=-+=.故选择C .【点睛】本题考查新定义运算,掌握新定义运算的要点,含乘方的有理数混合运算是解题关键.8、A【分析】利用算术平方根的定义求解即可.【详解】3故选:A.【点睛】本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.9、D【分析】根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.【详解】解:∵一个正数a的两个不同平方根是2x-2和6-3x,∴2x-2+6-3x=0,解得:x=4,∴2x-2=2×4-2=8-2=6,∴正数a=62=36.故选择D.【点睛】本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.10、A【分析】先由无理数估算,得到34<接近3,即可得到答案.【详解】解:由题意,∵34<<3,1最接近的是整数2;故选:A.【点睛】3.二、填空题1、18【分析】根据a*b=ab2+2a,可得:3*(−2)=3×(−2)2+2×3,据此求出算式的值是多少即可.【详解】解:∵a*b=ab2+2a,∴3*(−2),=3×(−2)2+2×3,=3×4+6,=12+6,=18.故答案为:18.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.2、±2 -8【分析】根据平方根的定义:如果对于一个数a 和非负数b ,有2a b =,那么a 就叫做b 的平方根;立方根的定义:对于c 、d 两个数,如果3c d =,那么c 就叫做d 的立方根,进行求解即可.【详解】4=,4的平方根为±2,8=-,故答案为:±2;-8.【点睛】本题主要考查了算术平方根,平方根和立方根,熟知相关定义是解题的关键.3、9【分析】根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可.【详解】的算术平方根是9,127=31()3的立方根是13故答案为:-9,13 【点睛】 本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.4、1【分析】根据算术平方根的计算方法求解即可.【详解】211-=.故答案为:1.【点睛】此题考查了求解算术平方根,解题的关键是熟练掌握算术平方根的计算方法.5、1【分析】根据绝对值与二次根式的非负性求出a,b的值,故可求解.【详解】解:∵20a-=∴a-2=0,b-4=0∴a=2,b=4∴2ab=2214=故答案为:1.【点睛】此题主要考查代数式求值,解题的关键是熟知非负性的运用.三、解答题1、(1(2)0,1(3)x<0(4)x=3或x=9或x=81.【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据二次根式有意义的条件,被开方数是非负数即可求解;(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.(1)解:当x=162,则y;.(2)解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)解:当x<0时,导致开平方运算无法进行;(4)解:x的值不唯一.x=3或x=9或x=81.【点睛】本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.2、(1)x=(2)32 x=-【分析】(1)方程整理后,开方即可求出x的值;(2)方程开立方即可求出x的值.【详解】(1)等式两边同时除以2得:25x=,两边开平方得:x=(2)两边开立方得:112x+=-,等式两边同时减去1得:32x=-.【点睛】本题考查了立方根以及平方根,熟练掌握各自的定义是解本题的关键.3、这个长方体的长、宽、高分别为、【分析】根据题意设这个长方体的长、宽、高分别为4x、2x、x,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可.【详解】解:设这个长方体的长、宽、高分别为4x、2x、x.根据题意得:4x•2x=24,解得:x x.则4x=2x=所以这个长方体的长、宽、高分别为、.【点睛】本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.4、4,49【分析】根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.【详解】解:∵正数有2个平方根,它们互为相反数,∴32150a a ++-=,解得4a =,所以2(3)49x a =+=.【点睛】本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.5、3【分析】利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.【详解】解:原式=1243++=【点睛】此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.6、(1)36a =,5b =;(2)b 2+3a ﹣8的立方根是5【分析】(1)根据题意可得,2x ﹣2+6﹣3x =0,即可求出a =36,再根据a ﹣4b 的算术平方根是4,求出b 的值即可;(2)将(1)中所求a、b的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.【详解】解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x,∴2x﹣2+6﹣3x=0,∴x=4,∴2x﹣2=6,∴a=36,∵a﹣4b的算术平方根是4,∴a﹣4b=16,∴36-4b=16∴b=5;(2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,∴b2+3a﹣85.【点睛】本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.7、(1)195是“风雨数”,621不是“风雨数”,理由见解析;;(2)567或575或4092或4095【分析】()1根据新定义的“风雨数”即可得出答案;()2设A的十位数为a,个位数为b,则B为108G M能被8整除求出a的可能的值,再+-,根据()a b由a的值求出b的值即可得出答案.【详解】解:()11951315=⨯,且358+=,195∴是“风雨数”,6212327=⨯,378+≠,621∴不是“风雨数”;()2设10A a b =+,则108B a b =+-,208A B a ∴+=+,28A B b -=-, A B A B+-能被8整除, 208828a kb +∴=-,k 为整数, ()5244a b k ∴+=-,52a ∴+是4的倍数,∴满足条件的a 有2,6,若2a =,则48828k b =-,k 为整数, 34k b ∴=-, 4b ∴-是3的因数,43b ∴-=-,1-,1,3,∴满足条件的b 有1,3,5,7,21A ∴=,27B =或23A =,25B =或25A =,23B =或27A =,21B =,567A B ∴⨯=或575,若6a =,则128828k b =-,k 为整数,84k b ∴=-, 4b ∴-是8的因数,48b ∴-=-,4-,2-,1-,1,2,4,8,∴满足条件的b 有2,3,5,6,62A ∴=,66B =或63A =,65B =或65A =,63B =或66A =,62B =,62664092A B ∴⨯=⨯=或4095,综上,M 的值为567或575或4092或4095.【点睛】本题是新定义题,主要考查了列代数式,一元一次方程的应用,关键是准确理解“风雨数”含义,能把A 和B 用含a 和b 的式子表示出来.8、(1)<2,2>,<-2,23>(2)54(3)243244a =【解析】(1)2+2=422=4⨯,2+2=22∴⨯2∴和2是一组团结数,即为<22,>, 1+3=413=334⨯≠,,1∴和3不是一组团结数,24242+=2=3333---⨯-, 222+=233∴--⨯ 2∴-和23是一组团结数,即为<223-,>, 故答案为:<22,>,<223-,>; (2)若<5,x >成立,则55x x +=45x ∴=54x ∴= 故答案为:54;(3)设b 左面相邻的数为x ,b 为-3x ,b 右面相邻的数为9x .由题意可得 39567x x x -+=解得 x =81 所以 b =-243由于<a ,b >成立,则a -243=-243a ,解得243244a =. 【点睛】 本题考查新定义计算,实际有理数的混合运算、一元一次方程等知识,是基础考点,掌握相关知识是解题关键.9、(1)0;(2)x =【分析】(1)根据立方根和平方根的性质化简,再计算加法,即可求解;(2)先将系数化为1,再利用平方根的性质,即可求解.【详解】解:(1)3.原式=-2+20=;(2)239x =∴23x =解得: x =.【点睛】本题主要考查了立方根和平方根的性质,熟练掌握()230,a a a >== 是解题的关键.10、4-【分析】先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.【详解】解:原式1=4-【点睛】本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》测试卷
姓名 ________
一、选择题
1、下列各式中正确的是( )
A . B. C. D. 2、若a 的算术平方根有意义,则a 的取值范围是( )
A 、一切数
B 、正数
C 、非负数
D 、非零数
3、在下列各式中正确的是( )
A 、2)2(-=-2
B 、=3
C 、16=8
D 、22=2
4、估计76的值在哪两个整数之间( )
A 、75和77
B 、6和7
C 、7和8
D 、8和9
5、下列说法中正确的是( )
A 、的平方根是±3
B 、1的立方根是±1
C 、=±1
D 、是5的平方根的相反数
6.若2m-4与3m-1是同一个数的平方根,则m 的值是( )
A .-3
B .1
C .-3或1
D .-1
7、下列各组数中,互为相反数的是( )
A .-2与 B.∣-∣与 C. 与 D. 与
8.有个数值转换器,原理如下,当输入x 为64时,输出y 的值为( )
A.4
B.34
C.3
D.32
9.如图,已知正方形的面积为1,其内部有一个以它的边长为直径的圆,则阴影部分的面积与下列各数最
接近的是( )
A.0.1
B.04.0
C.308.0
D.0.3
10.如图,数轴上A,B 两点表示的数分别是1和2,点A 关于点B 的对称点C 表示的数为( )
A.12-
B.21+
C.222-
D.122-
二、填空题
11、 的算术平方根是_______; 1.44的平方根是__________。
12、____的平方根等于它本身,____的立方根等于它本身,____的算术平方根等于它本身。
13、一个正方体的体积变为原来的27倍,则它的棱长变为原来的__________倍。
14、大于 小于 的整数有______个。
15、若
=5.036, =15.906,则 =__________。
16、若 的整数部分为a ,小数部分为b ,则a =________,b =_______。
17、若∣2a-5∣与 互为相反数,则a=______,b=_____。
18、一个正数x 的两个平方根分别是a+2和a-4,则a=_____,x=_____。
三、解答题
19、计算
(1)、327-+2)3(--31- ( 2)
(3)
20、已知2a -1的平方根是±3 , 3a +b -1的算术平方根是4, 求a +2b 的值。
21、若5a +1和a -19是数m 的平方根,求m 的值。
22、已知m 是313的整数部分,n 是13的小数部分,求m -n 的值。
33364
63
1125.041
027-++---36.252536006.25310
23.实数a ,b ,c 在数轴上的对应点如图所示,其中 ,化简
24.李奶奶新买了一套两室一厅的住房,将原边长为1m 的方桌换成边长是1.3m 的方桌,为使新方桌有块桌布,且能利用原边长为1m 的桌布,既节约又美观,问在读七年级的孙子小刚有什么办法,聪明的小刚想了想说:“奶奶,你再去买一块和原来一样的桌布,按照如图①,图②所示的方法做就行了。
”
(1)小刚 的做法对吗?为什么?
(2)你还有其他方法吗?请画出图形。
25.某市在招商引资期间,把倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来400平方米的正方形场地改建成300平方米 的长方形场地,且长、宽的比为5:3,
(1)如果把原来的正方形场地 的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?
(2)按照上述改建方法,原场地的 400平方米是否够用?
26.观察右图,每个小正方形的边长均为1,
⑴图中阴影部分的面积是多少?边长是多少?
⑵估计边长的值在哪两个整数之间。
⑶把边长在数轴上表示出来。
2c 2-c 2-a 3b ++++c a =。