新能源汽车电池热管理系统培训课件
新能源汽车能源管理系统 ppt课件
图8-5 燃料电池汽车能源管理系统结构
• 2.混合动力汽车的能源管理系统 • (1)长安混合动力汽车的系统结构 • 该车的能源传递路线有四条: • 第1条路线为从四缸电喷发动机到轮胎; • 第2条路线为动力电池组到轮胎; • 第3条为从发电装置ISG到动力电池组; • 第4条路线为轮胎到动力电池组,在汽车下坡或制
• 能源管理策略主要包括功率分配策略、速比控
制和制动能量回馈策略三个组成部分。功率分配 是核心问题。只有三者紧密结合,才能降低燃料 消耗、延长燃料电池和蓄电池的使用寿命。
• 对于采用蓄电池的燃料电池汽车来说,能源管理 策略的主要任务为:
• ① 在不损害蓄电池的情况下,满足汽车动力性的 设计要求,保证统采集从纯电动汽车各子系统通过
传感器收集到的运行数据,完成下列功能:选择 电池的充电方案、显示蓄电池的荷电状态 (SOC)、监控蓄电池的动作、预测剩余行驶里 程、调节车灯亮度、调节车内温度以及回收再生 制动能量为蓄电池充电等。其中,电池管理系统 (BMS)是能量管理系统(EMS)中的一个主要 子系统,它处理蓄电池的显示、测量、预测和全 面管理等问题。
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
• 教学目的和要求: • 了解电动汽车能源管理系统与辅助装置分类,
掌握组成、构造和工作原理、特点、应用。 • 本章重点: • 电动汽车的能源管理系统 、充电器、电源变换
2.电池管理系统的功能
• 显示荷电状态 (SOC)、提供电 池温度信息、电池高 温报警、电池性能异 常早期警报、显示电 解液状态、提供电池 老化信息、记录电池 关键数据。
新能源汽车电池热管理系统 ppt课件
9
2. 重大前期电池热管理研究工作基础
A样电池包优化方案二(电池位置不动,添加挡板)
24个 电 池 模 块 的 温 度 ( K)
24
长安杰勋
1
长安志翔
13
360
350
12
340
330
第 1-24组 电 池 升 温 情 况 第 9组 电 池
第 18组 电 池
320
恒通客车
310
300 0
100
200
15
2. 重大前期电池热管理研究工作基础
优化方案一CFD分析结果
第三腔 第二腔 第一腔
5
2. 重大前期电池热管理研究工作基础
长安杰勋
热管理系统原始方案整车实验验证 原始模型的CFD仿真分析 A样电池包优化方案 B样电池包优化方案
长安志翔
恒通客车
6
2. 重大前期电池热管理研究工作基础
热管理系统原始方案整车实验验证
长安杰勋
长安志翔
恒通客车
试验在长安公司试验环境 舱中进行,按双方设定循环工 况试验,试验发现电池组温度 分布严重不均衡。
7
2. 重大前期电池热管理研究工作基础
原始模型的CFD仿真分析
长安杰勋
长安志翔 恒通客车
在极限工况发热功率为1750W时 ,最高温度和最低温度温差 约33℃,变工况最大温差为17.2℃,远大于温差在5℃内的要求。
8
2. 重大前期电池热管理研究工作基础
A样电池包优化方案一(改变倾斜角度和电池的间距)
急加速急减速工况充放电电流(二)图
90
急加速急减速工况(二)
70
50
30
10
新能源汽车动力电池及电源管理 ppt课件
ppt课件
22
车辆使用注意事项
• 每天出车前先检查电量是否正常(纯电动汽车是否充足 电),仪表显示是否正常,刹车性能是否良好,螺钉是否 松动等,有故障应及时修理排除,检查完成确定没有故障 时才能出车。
• 经常在凹凸不平的道路上行驶或经常负载运输,应每天检 查车身受力部位和重要焊接点,发现异常情况,应及时进 行修理。
ppt课件
26
维护内容
• 检查动力电源系统的状态
• 检查管理系统的功能是否正常、
• 对电池进行充放维护
• 外观维护:
• 对电源系统的外观进行检查,如果有问题应及时排除,如果无法排除,请及 时与厂家联系。
• 检查电池包箱体是否完好,有无损坏或腐蚀
• 检查各紧固件螺栓、螺母是否松动
• 检查电池包之间的连接线是否松动
• 每次停车都必须关闭电源开关,拔下钥匙,将档位开关扳 至空挡位置,并将手刹拉起。
• 儿童在车内玩耍时要拔掉钥匙开关,以免造成危险。 • 充电应在儿童无法接触到的地方进行 • 因事故或其他原因造成起火时应立即关闭总电源开关
ppt课件
23
电源系统的常规维护
• 常规维护时对影响电源使用过程中的安全隐患进行检查和 排除,避免发生危险性事故,通过制定常规的预防性维护 计划,可以更好地了解所使用电池的健康状况和终止寿命, 确定电池的更换或重点维护计划。常规维护一般每月进行 一次。
• 严格按照维修手册要 求进行维护和维修操 作。
• 拆检动力电池系统时 必须佩带绝缘手套。
• 所使用的工具必须具 有绝缘功能,如绝缘 扳手、绝缘旋具等。
• 维护和拆检前必定要 熟悉电路图
ppt课件
13
能源汽车电池热管理系统
目前电池热管理系统的标准化程度较低,不同厂商之间的系统差异较大,不利于行业的发展。解决方案 是推动电池热管理系统的标准化工作,制定统一的标准和规范,促
04
在保证性能和安全性的前提下,尽可能降低热 管理系统的成本。
电池热管理系统的设计方法
01
02
03
液体冷却
通过液体(如冷却液、制 冷剂等)循环流动,将电 池产生的热量带走并散发 到环境中。
空气冷却
利用空气流动将电池产生 的热量带走,常见于自然 对流和强制对流两种方式。
相变材料冷却
利用相变材料在相变过程 中吸收大量热量,并通过 材料的特性将热量散发到 环境中。
能源汽车电池热管理系统
$number {01}
目 录
• 能源汽车电池热管理概述 • 能源汽车电池热管理系统的工作
原理 • 能源汽车电池热管理系统的设计 • 能源汽车电池热管理系统的优化
与改进 • 能源汽车电池热管理系统的发展
趋势与展望
01
能源汽车电池热管理概述
电池热管理的定义
1 2
3
电池热管理
包括水泵、散热器、管道等,用于冷却液的循 环流动,将热量带走并散发到空气中。
电池组
能源汽车的动力来源,通过电池热管理系统进 行温度控制,保证电池的正常运行。
电池热管理系统的功能
温度控制
通过散热器和冷却液循环系统,将电 池组温度维持在适宜的工作范围内, 保证电池性能和寿命。
节能减排
适宜的温度环境有助于提高电池的充 放电性能、容量和寿命。
电池热管理系统在新能源汽车领域的应用前景
01
纯电动汽车
纯电动汽车是未来新能源汽车的主要发展方向,电池热管理系统在纯电
新能源汽车电池热管理系统PPT课件
探讨基于电池能量状态的控制策略,如SOC、 SOH等,用于优化电池的能量利用和延长电池寿 命。
关键部件设计与选型
传感器设计与选型
阐述适用于电池热管理系统的温 度传感器、电流传感器、电压传 感器等的设计与选型原则。
控制器设计与选型
探讨电池热管理系统控制器的设 计原则,包括控制算法、硬件电 路、软件编程等,以及控制器的 选型建议。
电池热管理系统重要性
电池性能与热环境关系 热管理系统对电池寿命和安全性的影响 提高新能源汽车整体性能的意义
课件目的与结构
课件目的
介绍新能源汽车电池热管理系统 的原理、设计及应用
课件结构
概述、热管理系统原理、设计方 法与实例、应用与展望
02
电池热管理系统基本原理
Chapter
电池工作原理及热特性
引入先进制造技术
采用先进的制造技术,如3D打印、精密铸造等,优化电池热管理 系统的结构设计和生产工艺,降低成本并提高生产效率。
加强产学研合作
通过产学研合作,整合各方资源,共同推看
新能源汽车电池热管理系统PPT课 件
目录
• 引言 • 电池热管理系统基本原理 • 电池热管理系统关键技术 • 电池热管理系统性能评价 • 新能源汽车电池热管理系统应用案例 • 电池热管理系统未来发展趋势与挑战
01
引言
Chapter
新能源汽车现状及发展趋势
新能源汽车市场规模及增长趋势 新能源汽车种类及技术特点 政策支持与市场驱动因素
衡量热管理系统在运行过程中的 能量消耗,通过功率计等设备测 量。
实验设计与实施
实验对象
选择具有代表性的新能源汽车电池组进行实验。
实验条件
设定不同的环境温度、充放电倍率等实验条件。
电池管理系统PPT培训课件
引入
电动汽车自燃事件频出,究其原因主要与电池管 理系统的热管理有关。
由于过高或过低的温度都将直接影响动力电池的 使用寿命和性能,并有可能导致电池系统的安全 问题,并且电池箱内温度场的长久不均匀分布将 造成各电池模块、单体间性能的不均衡,因此电 池热管理系统对于电动车辆动力电池系统而言是 必需的。可靠、高效的热管理系统对于电动车辆 的可靠安全应用意义重大。
动力电池热管理系统的功能
①电池温度的准确测量和监控; ②电池组温度过高时的有效散热和通风; ③低温条件下的快速加热; ④有害气体产生时的有效通风; ⑤保证电池组温度场的均匀分布。
电池内传热的基本方式
热传导
指物质与物体直接接触而产生的热传递。电池内部的 电极、电解液、集流体等都是热传导介质。
3
了解电池组绝缘检测方法
4
了解动力电池数据通信系统
引入
电动车辆动力电池系统电压常用的有288V、 336V、384V以及544V等,已经大大超过了 人体可以承受的安全电压
电动汽车动力电池系统电气绝缘性能是电安全管 理重要的内容,绝缘性能的好坏不仅关系到电气 设备和系统能否正常工作,更重要的是还关系到 人的生命财产安全。
动力电池电安全管理系统的功能
主要包括烟雾报警、绝缘检测、自动灭火、过电 压和过电流控制、过放电控制、防止温度过高、 在发生碰撞的情况下关闭电池等功能。
动力电池在电动车辆上安装应用,因此必须满足车辆 部件的耐振动、 耐冲击、耐跌落、耐盐雾等强度要求 ,保证可靠应用。
为满足防水、防尘要求,电池包应满足一定的IP防护等 级
均衡系统如何分类?
能量耗散型均衡和能量非耗散型。
均衡系统的分类
能量耗散型均衡
主要通过令电池组中能量较高的电池利用其旁路电阻 进行放电的方式损耗部分能量,以期达到电池组能量 状态的一致。如混合动力汽车。
第三章新能源汽车能量管理系统
(5)电池组热管理系统 汽车上使用的动力电池组在工作时都会有发热现象,不同电池的发热程度各不相同,因此为了 保证动力电池正常工作,动力电池组都会配有热管理系统,装有温度采集器和专门用于动力电池 冷却系统,才能保证电池组正常工作并延长电池的寿命。 (6)动力电池组的均衡管理 电池组(PACK)有别于单体电池,在目前的组电池制造水平下,单体之间的性能差异在其整个生 命周期里不可避免会存在,组合成多节串联PACK后若不采取技术措施,单体电池在充放电过程中 的不一致会导致单体电池由于过充、过放而提前失效,要想避免单体电池由于过充、过放导致提 前失效,使PACK的性能指标达到或者接近单体电池的水平,必须对电池组中单体电池进行均衡控 制,电池组均衡的作用是将多节串联后的PACK内部各电池单体充放电性能恶化减到最小或使其消 失。
2. 电池管理系统结构 电池管理系统基本的作用是进行电池组管理,完善的管理系统包括热(温度)管理和 电压平衡控制。蓄电池管理系统主要执行以下工作:测量电压、电流与温度;计算电 池SOC;计算电池放电深度DOD;计算最大允许放电电流;计算最大允许充电电流;预 测蓄电池寿命指数和SOH;故障诊断等。 其结构主要由以下3个系统构成。
并联式混合动力汽车的能源管理系统
并联式混合动力汽车主要有两种基本工作模式,分别是内燃机辅助混合动力模 式和电动机辅助混合动力模式。
1.内燃机辅助混合动力模式 该模式主要利用电池、电动机系统来驱动车辆,仅当以较高的巡航速度行驶、爬 坡和急加速时才能使内燃机开机。这种控制模式的优点是:大多数情况下车辆都 是用电池的电能来工作的,车辆的排放和燃油的消耗减少,同时启动电动机可以 取消而利用车辆的运动来启动内燃机。这种策略的缺点是:由于内燃机每次关机 后重新启动时,内燃机和催化转换装置的温度达到正常温度需要一定的时间,这 段时间内发动机的效率降低,尾气排放增加。
电动汽车动力电池及电源管理PPT(共 67张)
理、热管理等的实现方法
第7章 电动汽车电源管理系统 7.1动力电池管理系统功能及参数采集方法 7.2 动力电池电量管理系统 7.3 动力电池的均衡管理 7.4 动力电池的热管理 7.5 动力电池的电安全管理及数据通讯
7.1 动力电池管理系统功能及参数采集方法
组成:端电压传感器、继电器阵列、A/D转换芯片、光 耦、多路模拟开关
应用特点:所需要测量的电池单体电压较高而且对精 度要求也高的场合使用
单体电压采集方法
(2)恒流源法
组成:运放和场效应管组合构成减法运算恒流源电路 应用特点:结构较简单,共模抑制能力强,采集精度
高,具有很好的实用性。
使用场合 价格
普及程度
分流器
有
需插入主电路
直流、交流、 脉冲 无隔离
小信号放大、 需控制处理 小电流、控制
测量 较低
普及
互感器
无 开孔、导线传
入 交流
隔离
使用较简单 交流测量、电
网监控 低 普及
霍尔元件电流 传感器 无
开孔、导线传 入
直流、交流、 脉冲 隔离
使用简单
控制测量
较高 较普及
光纤传感器 无 -
单体电压采集方法
(5)线性光耦合放大电路采集法
应用特点:线性光耦合放大电路不仅具有很强的隔离 能力和抗干扰能力,还使模拟信号在传输过程中保持 较好线性度,电路相对较复杂,精度影响因素较多
基于线性光耦合元件TIL300的电池单体电压采集电路原理图
电池温度采集方法
(1)热敏电阻采集法
原理:利用热敏电阻的阻值随温度的变化而变化的特 性,用一个定值电阻和热敏电阻串联起来构成一个分 压器,从而把温度的高低转化为电压信号,再通过模 数转换得到温度的数字信息。
新能源汽车电池热管理系统
2. 重大前期电池热管理研究工作基础
原始模型的CFD仿真分析
长安杰勋
长安志翔 恒通客车
90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 45.00 40.00 1 3 5 7 9 11 13 15 17 19
第一层 第二层 第三层
CFD分析时取入口空气的初始温度35℃,电池发热功率为 650W,入口空气流量为140m3/h。仿真结果为:最高温度76.08℃, 最低温度51.48℃,温差为24.6℃,出口空气温度49.5℃。
1.电池热管理系统研究的意义及现状
美国NREL与开发商、制造商、DOE以及USABC合作,一直在 进行蓄电池热管理系统的研究,在世界此方面的研究中处于领 先水平。
1.电池热管理系统研究的意义及现状
我国春兰、长安、重庆大学、清华大学、上海交通大学在国家 863等专项的支持下,开展了电池热管理系统的研究。
中混圆形电池瞬态仿真分析及实验验证
60
充放电电流/A
30 20 10 0 -10 0 -20 -30 -40 时间/min 50 100 150 200 250
发热功率/W
300
长安杰勋
长安志翔 恒通客车
50 40
1500 1200 900 600 300 0 0 50 100 150 时间/min 200 250 300
由于此项目将于年底验收,故分析 结果及优化结构不能给出。
2. 重大前期电池热管理研究工作基础
长安杰勋
长安志翔 恒通客车
原始方案CFD仿真分析 优化方案一 优化方案二 优化方案三
2. 重大前期电池热管理研究工作基础
原始方案CFD仿真分析
《新能源汽车电池及管理系统检修》 课件 项目三 动力电池热管理系统检修
一、动力电池热管理系统部件拆装
(二)拆装比亚迪E5电池包三通水阀总成 1.使用套筒扳手拆卸三通水阀的固定螺栓。如图 3-2-8 所示。
一、动力电池热管理系统部件拆装
2.拔下三通水阀的低压插接头,取下三通水阀。如图 3-2-10所示。
一、动力电池热管理系统部件拆装
3.安装电池包三通水阀总成。放置三通水阀,安装三通水阀的低压插接头。 4.使用鲤鱼钳把三通水阀水管卡扣拔到能锁紧三通水管的位置,如图 3-2-11 所示。 5.使用套筒扳手安装三通水阀的固定螺栓,如图3-2-12所示,安装完成。
一、动力电池热管理系统部件拆装
3.打开冷却液膨胀罐盖子,如图3-2-13所示;拆卸加热器PTC总成和水泵连接的水 管,排放冷却液至回收容器内,如图3-2-14所示。
一、动力电池热管理系统部件拆装
4.断开加热器PTC总成高压线束插接器,如图3-2-15所示,断开加热器PTC总成低 压线束插接器,如图3-2-16所示,拆除加热器PTC总成搭铁线。
三、电池热管理系统的结构及工作原理
三、电池热管理系统的结构及工作原理
3.风冷与液冷的比较 动力电池冷却系统的风冷与液冷各有其特点,如表 3-1-1 所示。
项目 优点 缺点
风冷
1.结构简单,重量相对较轻。 2.没有发生漏液的可能。
3.有害气体产生时能有效通风。 4.成本较低。
5.空气在电池组内的分布复杂。
三、电池热管理系统的结构及工作原理
以丰田普锐斯的动力电池冷却为例,其动力电池布置于汽车后备箱中,风冷系统如 图3-1-4所示。其工作原理是:散热风扇将车厢内部的空气吸入,通过位于后窗台装 饰板上的进气管流入风道,向下流经动力电池,为动力电池降温,然后再流经BMS 电池管理器、总继电器等电器元件,对其进行散热后,空气汽车后备箱内的排风管输 送至排风口,排出车外。该车动力电池的风冷系统的进风口位置如图3-1-5所示。
新能源汽车电池热管理技术
新能源汽车电池热管理技术随着环境保护意识的增强和能源危机的威胁,新能源汽车正逐渐成为人们关注的焦点。
而作为新能源汽车的关键部件之一,电池的性能和寿命受到了广泛关注。
特别是在温度管理方面,电池的热失控可能会导致火灾和性能下降。
电池热管理技术成为了新能源汽车领域的重要研究方向之一。
1. 电池热管理技术的重要性电池是新能源汽车的动力源,而电池在充放电过程中会产生热量。
如果不能有效地控制电池的温度,会导致以下问题:- 电池寿命缩短:在高温环境下,电池的寿命会急剧下降,导致车辆续航里程减少。
- 安全隐患:过高的温度会导致电池发生热失控,甚至引发火灾,对车辆及乘客造成安全威胁。
为了提高电池的工作效率和延长电池寿命,热管理技术变得至关重要。
2. 电池热管理技术的原理和方法(1)主动热管理技术:主动热管理技术通过外部设备主动控制电池的温度,常用的方法包括风扇散热、制冷剂循环、液冷板等。
这些方法可以在电池温度升高时及时排除热量,保持电池在安全温度范围内工作。
(2)被动热管理技术:被动热管理技术通过改善电池内部结构和材料,提高其耐高温的能力。
比如采用高导热的散热材料和优化电池排列结构,以提高散热效率。
(3)智能热管理技术:智能热管理技术结合了传感器和控制系统,能够实时监测电池的温度状态,并根据实际情况调整散热或制冷系统的工作方式,以保持电池在最佳工作温度范围内。
3. 电池热管理技术的发展趋势随着新能源汽车产业的不断发展,电池热管理技术也在不断创新和演进。
未来的发展趋势主要包括以下几个方面:(1)综合热管理技术:将主动、被动和智能热管理技术进行综合应用,以实现更高效的电池温度控制。
(2)新材料应用:研发高导热、耐高温的新材料,用于提升电池的热管理性能。
(3)智能化控制:引入人工智能和大数据技术,实现电池温度状态的智能监测和精准控制。
(4)能源回收利用:利用电池排放的热能进行能量回收,提高电池系统能量利用率。
电池热管理技术是新能源汽车关键技术之一,对电池寿命和安全性有着重要影响。