2017年秋季学期新版新人教版八年级数学上学期13.1、轴对称导学案4

合集下载

新人教版八年级数学上册《13.1轴对称》导学案

新人教版八年级数学上册《13.1轴对称》导学案

新人教版八年级数学上册《13.1轴对称》导学案学习目标:1、理解线段垂直平分线的性质和判定,初步体会线段垂直平分线的集合定义。

2、会作轴对称图形的对称轴。

3、通过实践探究图形轴对称的性质和线段垂直平分线的性质,培养作图能力和解决实际问题的能力4、通过小组合作交流,培养团队协作的精神和集体意识。

教学重点:理解轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;理解线段垂直平分线的性质和判定;会作线段的垂直平分线和轴对称图形的对称轴。

教学难点:线段垂直平分线的集合定义一、自学与导学:(一).问题导学(教师提出学习任务)第34页思考(二).自主学习1、回顾旧知学生回顾上节课的内容,强调轴对称的数学本质以及垂直平分线的相关概念和性质。

(1)、线段垂直平分线的性质探究:教材P32学生分小组讨论,教师巡视班级。

一段时间后请各小组代表发言,解释本小组的讨论情况,师生共同分析讨论。

教师作总结,肯定学生的积极表现。

归纳:线段垂直平分线的性质:线段垂直平分线上的与这条线段的距离(2)、思考:反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上?探究:教材P33归纳:与一条线段两个端点距离相等的点,在这条线段的上.2、引入新知思考:教材P34思考教、学反思学生相互讨论,教师巡视班级,观察监督学生的活动情况。

看学生动手操作,肯定学生的积极表现,总结归纳:作轴对称图形的对称轴的方法是:找到一对,作出连接它们的,就可以得到这两个图形的对称轴.二、说学与讲学1.合作学习(小组内部交流合作)(1)对于思考交流一下,那里有疑惑,又该怎样解决.(2)学生发言2、教师巡回点拨三、演学与议学(一)学生展示学习成果1、如图,点A和点B关于某条直线成轴对称,你能作出这条直线吗?2、已知线段AB,作出它的垂直平分线CD,并拼出线段的中点O.3、如图,在五角星上作出一条对称轴4、练习:教材P37第6题、第7题、第8题(二)教师矫正、补充完善四、扩学与评学(一)拓展提升(延伸课外知识、强化训练)1、画出下列图形的一条对称轴,和同学比较一下,你们画的对称轴一样吗?2、如图,角是轴对称图形吗?如果是,画出它的对称轴3、如图,与图形A成轴对称的是哪个图形?画出它们的对称轴4、如图所示在方格纸上画出的一棵树的一半,请你以树干为对称轴画出树的另一半5、第37页第9题、第11题(二)、评价归纳(学生归纳学习内容并说出本节课的得失)(三)、作业:《导学方案》。

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计 (新版)新人教版

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计 (新版)新人教版

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第13.1节介绍了轴对称的概念和性质。

本节内容是学生对几何图形变换的一次重要学习,它不仅巩固了学生对平面几何图形的认识,而且为后续学习其他几何变换打下基础。

教材通过丰富的实例,引导学生认识轴对称,探索轴对称的性质,提高学生的空间想象能力和抽象思维能力。

二. 学情分析八年级的学生已经掌握了基本的几何知识,具备一定的观察、分析和推理能力。

但轴对称概念较为抽象,学生可能难以理解。

因此,在教学过程中,教师应注重引导学生通过具体实例去发现和探索轴对称的性质,让学生在实践中掌握知识。

三. 教学目标1.让学生了解轴对称的概念,理解轴对称的性质。

2.培养学生观察、分析和推理的能力。

3.引导学生运用轴对称的性质解决实际问题。

四. 教学重难点1.轴对称的概念及性质。

2.如何运用轴对称的性质解决实际问题。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过生动有趣的实例,引导学生发现轴对称的性质,激发学生的学习兴趣。

在小组合作学习中,培养学生团队合作精神和沟通能力。

六. 教学准备1.准备与轴对称相关的实例图片和练习题。

2.准备课件,展示轴对称的性质和应用。

3.准备黑板,用于板书重要知识点。

七. 教学过程1. 导入(5分钟)利用生活中常见的实例,如剪纸、折纸等,引导学生发现这些实例中存在一种对称现象。

提问:“这种现象叫做什么?”让学生回答,引出本节课的主题——轴对称。

2. 呈现(10分钟)展示轴对称的定义和性质。

通过PPT呈现轴对称的图片,让学生观察并总结轴对称的性质。

同时,教师在黑板上画出轴对称的图形,标注出对称轴,让学生更直观地理解轴对称。

3. 操练(15分钟)让学生分组讨论,每组找出生活中的一个实例,运用轴对称的性质进行解释。

讨论结束后,每组选代表进行分享。

教师对每组的分享进行点评,指出优点和需要改进的地方。

新人教版八年级数学上册:13.1轴对称 导学案

新人教版八年级数学上册:13.1轴对称 导学案

新人教版八年级数学上册:13.1轴对称 导学案教学目标:1通过观察实物图形 及折纸游戏,得到轴对称图形的概念。

2掌握图形轴对称的性质。

3掌握线段垂直平分线的性质。

重点:上面的两条性质。

难点:性质的应用。

教学过程: 一. 知识频道1观察并填空:请同学们欣赏图片4阅读课本并填空:经过线段 并且 这条线段的直线,叫做这条线段的垂直平分线。

轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对 ______所连线段的。

轴对称图形的 ,是任何一对对应点所连 的 。

2这些图形有什么共同特点? 请你利用手中的工具制作一个具有轴对称特征的图形 。

轴对称图形:如果 沿一条直线折叠,直线两旁的部分能够互相 ,那么这个图形就叫做轴对称图形,这条直线叫做这个图形的对称轴。

练习:下面的图形是轴对称图形吗?如果是,你能指出它的对称轴吗? 请大家仔细观察两个图形是否也有这样的特征呢? 你观察到了什么? 3、试一试:标出图中点A 、B 、C 的对称点A 1、B 1、C 1。

NA B CCB二:方法频道:先自学课本例题,再小组讨论疑难问题。

三:习题频道:1.找出下列图形的所有的对称轴,并一一画出来。

2.以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形:3.如图,一个算式在镜中所成的像构成的算式是正确的,但是在实际中是正确的吗?实际中这个算式是什么?(写出即可)4复习巩固:课本124页练习,125页1至8题5拓展延伸:课本9至12题6中考链接:⑴如图,△ABC与△A1B1C1关于直线L对称,将△A1B1C1向右平移得到△A2B2C2。

由此得出下列判断:①AB∥A2B2;②∠A=∠A2;③AB=A2B2;其中正确的是()。

A①② B②③ C①③ D①②③⑵如图,已知直线L及同旁的两点A、B,在直线L取一点C,使AC+BC最小。

••••⑶如图,两条公路交汇于点O,公路旁有两个小镇C、D,现修建一个加油站到两条公路的距离相等,到两个小镇C、D的距离也相等,请你找出符合条件的加油站位置。

八年级数学上册13.1轴对称教案(新版)新人教版

八年级数学上册13.1轴对称教案(新版)新人教版

《轴对称》一、教材分析1、地位与作用《轴对称》是第一节,本节立足于学生已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时与图形的三种运动(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,既可以让学生感受图形的三种基本运动中“翻折”在几何知识中的作用,将为学生以后学习“空间与图形”奠定基础;同时这一节也是联系数学与生活的桥梁。

2、教学目标根据上述教材分析,考虑到学生已有的认知心理特征,制定如下教学法目标:(一)知识与技能认识生活中的轴对称图形,初步理解轴对称的概念,并能深刻体会轴对称图形和两面三刀个图形成轴对称的区别与联系。

(二)过程与方法通过大量的现实生活右的图形来认识轴对称图形及轴对称的概念,让学生体验轴对称在现实生活中的广泛应用,在具体教学过程中,可在教材的基础上适当拓展,使内容更为丰富。

(三)情感与价值观通过本节学习,应达到培养学生体会数学美感的价值观。

3、重点、难点本着课程标准,在吃透教材的基础上,确立如下教学重点与难点:重点:掌握轴对称图形和成轴对称这二个概念的实质。

难点:轴对称图形和轴对称的区别与联系。

二、教法与学法分析1、教学方法的设计新课程理念强调“经历过程与获得结论同样重要”,但我觉得有时过程比结论更有意义,教学时我采用了探究式教学方法,整个探究的过程充满了师生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、学法指导本节课针对学生的认知规律,根据学法指导自主性和差异性原则,教学时指导他们动手操作、合作交流,体验发现问题、探索问题和解决问题的学习过程,参与知识的发生、发展、形成的过程,使学生掌握知识。

三、教学流程探究活动(一)(一)轴对称图形1、视图激趣,设疑导入(课件)今天,春光明媚,蝴蝶和蜜蜂来到花丛中游玩,这时蝴蝶对蜜蜂说:“咱们长得真象”,蜜蜂百思不得其解。

新人教八年级数学上册13.1轴对称导学案

新人教八年级数学上册13.1轴对称导学案

新人教八年级数学上册13.1轴对称导学案【学习目标】1、(知识与技能):通过实例认识轴对称,掌握轴对称图形和关于直线成轴对称这两个概念。

2、(过程与方法):通过独立思考、小组合作、展示质疑发展学生的观察、归纳、想象能力3、(情感、态度与价值观):激情投入,快乐学习,感受对称美,培养良好的动手试验能力、归纳能力和语言表述能力【重点难点】重点:对轴对称图形与轴对称概念的理解。

难点:轴对称图形与轴对称的联系与区别。

【学法指导】采用“观察——实践——自主探究——合作探究”的方法.指导学生学会观察事物,善于把握事物规律与本质的学习方法.通过自主探究、合作探究导学过程方法导引课前导学案【自主学习,基础过关】一、课前准备每小组准备若干张干净整洁能折叠的纸,剪刀,墨水。

二、动手、观察实验,探究结论观察、讨论、交流,尝试用自己的语言描述这些实物、图片的共同特征共同特征:___________________________________________________________<一> 轴对称图形1、做一做把一张纸对折,剪出一个图案(折痕处不要完全剪断),想一想,展开后会是一个什么样的图形?位于折痕两侧图案有什么关系?2、想一想日常生活中常见的动物图片如:蝴蝶、蜻蜓、对称简笔画等,能发现它们有什么共同特征?3、轴对称图形定义:如果一个图形沿一条折叠,直线两旁的部分能够这个图形就叫做轴对称图形。

就是它的对称轴。

鼓励学生独立自主解决问题,让学生初步感受通过动手操作来掌握掌握轴对称图形和关于直线成轴对称这两个概念,引导学生由观察得到的感性认识。

由学生通过作图,通过实例认识轴对称,掌握轴对称图形和关于直线<二> 轴对称1、做一做: 折纸印墨迹问题1:你发现折痕两边的墨迹形状一样吗?问题2:两边墨迹的位置与折痕有什么关系?2、想一想: 教材P59-----思考1(最上面一个)3、轴对称定义把一个图形沿着某一条直线折叠,如果它能够与重合,那么就说这两个图形关于这条直线成轴对称。

新人教八年级数学上册导学案:13.1.1 轴对称

新人教八年级数学上册导学案:13.1.1 轴对称

新人教八年级数学上册导学案:13.1.1 轴对称【学习目标】1.初步认识轴对称图形;2. 理解轴对称图形和两个图形成轴对称这两个概念的区别与联系,能用概念判断一个图形是否是轴对称图形;3.通过动手实验,掌握关于某条直线成轴对称的两个图形是全等的。

重点:轴对称图形的性质难点:两个图形成轴对称与轴对称图形两个概念的区别与联系。

一、【预习导学】【问题探究一】轴对称图形1、观察课本P58图13.1-1中的6幅图,你能找出它们的共同特征吗?2、你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、动手做一做:把一张纸对折,然后从折叠处随意剪出一个图形,展开后得到的图形是的,即能够沿完全重合。

【归纳总结】如果一个平面图形沿一条_____折叠,_____两旁的部分能够互相_____,这个图形就叫做轴对称图形,这条____就是它的对称轴,这时,我们也说这个图形关于这条____(成轴) 对称.【探究一自测】下面的图形是轴对称图形吗?如果是,指出对称轴。

【问题探究二】轴对称观察课本P59的图13.1-3中的3幅图形,并沿虚线折叠,虚线两旁的部分能。

【归纳总结】一个图形沿着某条直线折叠,如果他能够与________重合,那么就说这两个图形关于这条直线对称,这条直线叫做_______,折叠后________叫做对称点.【讨论】1、成轴对称的两个图形全等吗?为什么?班级姓名第小组2、全等的两个图形成轴对称吗?试举例说明。

(可以画图说明)【问题探究三】轴对称的性质阅读课本P59最后一个“思考”及P60“练习”前面的内容,解决下列……………………………………1.(1)设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN折叠后,点A与A′重合吗?(PA =,∠MPA==度)(2)对于其他的对应点,如点B,B′;C,C′也有类似的情况吗?(3)那么MN与线段AA′,BB′,CC′的连线有什么关系呢?2、垂直平分线的定义:经过线段并且这条线段的直线,叫做这条线段的垂直平分线 .【归纳总结】如果两个图形关于某条直线对称,那么是任何一对对应点所连线段的。

秋八年级数学上册 13.1 轴对称教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案

秋八年级数学上册 13.1 轴对称教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案

13.1 轴对称第1课时轴对称教学目标1.理解轴对称图形轴对称及线段垂直平分线的概念,并能作出它们的对称轴.2.了解轴对称图形和轴对称的区别和联系.3.掌握轴对称的性质.教学重点轴对称图形和轴对称的概念及轴对称的性质.教学难点轴对称图形和轴对称的区别和联系.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标我们生活在丰富多彩的图形世界里,许多美丽的事物往往与图形的对称联系在一起,如:中外各种风格的著名建筑、动植物、艺术作品、图标、日常生活用品等等,都和对称密不可分,我们可以根据自己的设想创造出对称的作品,装点和美化生活.就让我们一起走进轴对称的世界去感受它的奇妙和美丽吧!观察上图和教科书中的图片,你有什么感受?二、自主学习,指向目标1.自学教材第58至60页.2.请完成“《学生用书》”相应部分.三、合作探究,达成目标探究点一轴对称图形和轴对称的概念活动一:阅读教材P58~59展示点评:1.图13.1-1,有什么共同特点?什么叫轴对称图形?对称轴是什么?请举出轴对称图形的实例.2.图13.1-3有什么共同特点?什么叫两个图形关于一条直线对称?请举出成轴对称图形的实例.小组讨论:轴对称图形与两个图形成轴对称有什么区别和联系?,关键是抓住轴对称的本质,即图形是否有“存在直线——将其折叠——互相重合”的图形特征.2.判断两个图形是否成轴对称,关键是是否有“存在直线——将其折叠——互相重合”的图形特征.跟踪训练:见《学生用书》相应部分探究点二轴对称的性质活动二:观察教材图13.3-4.展示点评:1.完成“思考”中的问题;2.一对对称点所连线段与对称轴在位置上有什么关系?3.什么叫线段的垂直平分线?请用符号语言表示.小组讨论:图形轴对称有什么性质?它有什么作用?反思小结:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.它可以用来证明线段相等.跟踪训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.本节课学习了哪些主要内容?2.轴对称图形和轴对称的区别与联系是什么?3.成轴对称的两个图形有什么性质?轴对称图形有什么性质?我们是怎么探究这些性质的?实际问题―→⎩⎪⎨⎪⎧轴对称图形―→轴对称图形的性质轴对称 ―→ 轴对称的性质 五、达标检测,反思目标1.下列图形中是常见的安全标记,其中是轴对称图形的是( A )2.下列说法错误的是( D )A .关于某直线对称的两个三角形一定全等B .轴对称图形至少有一条对称轴C .正方形的一条对角线把它所分成的两个三角形成轴对称D .角的对称轴是角的平分线3.如图,△ABC 与△DEF 关于直线l 对称,若AB =2 cm ,∠C =55°,则DE =__2_cm __,∠F =__55°__.4.判断下列各种图形是不是轴对称图形?若是,画出它的对称轴.答:(1)(2)(3)(5)是轴对称图形.5.图中任意一个正方形与哪些正方形成轴对称?整个图形是轴对称图形吗?它有几条对称轴?答:整个图形是轴对称图形,有4条对称轴.●布置作业,巩固目标教学难点1.上交作业教科书习题13.1第1、3、4题.2.课后作业见《学生用书》.第2课时线段的垂直平分线的性质(一)教学目标1.掌握线段垂直平分线的性质和判定.2.能运用线段垂直平分线的性质和判定解决实际问题.教学重点线段垂直平分线的性质.教学难点线段垂直平分的性质的运用.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标如图,直线l垂直平分线段AB,P1,P2,P3…是直线l上的点,请猜想并验证点P1,P2,P3…到点A与点B的距离之间的数量关系?二、自主学习,指向目标1.自学教材第61页至62页.2.请完成“《学生用书》”相应部分.三、合作探究,达成目标探究点一线段垂直平分线的性质P61探究栏目中的问题.2.线段垂直平分线的性质是什么?展示点评:请用推理的方法证明线段垂直平分的性质.(根据右图,写出已知,求证和证明)小组讨论:线段垂直平分线的性质在解题中有哪些应用?反思小结:线段垂直平分线的性质是证明线段相等的简捷的方法,运用它解题能省时省力.探究点二 线段垂直平分线的判定,如果PA =PB ,那么P 是否在线段AB 的垂直平分线上?2.由此,我们可以得到什么结论? 3.请写出以上结论的证明过程.展示点评:你能再找一些到线段两端的距离相等的点吗?能找多少个这样的点?这些点能组成什么几何图形?由此我们可以得以什么结论.小组讨论:线段垂直平分线的性质与判定之间有何联系与区别?反思小结:线段垂直平分线的性质与判定之间题设和结论正好相反,是互逆定理. 跟踪训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.本节课学习了哪些内容?2.线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系? 3.如何判断一条直线是否是线段的垂直平分线?实际问题―→⎩⎪⎨⎪⎧线段垂直平分线的性质线段垂直平分线的判定实际应用五、达标检测,反思目标1.如图,CD 垂直平分AB ,若AC =1.6 cm ,BD =2.3 cm ,则四边形ACBD 的周长为( B ).,第1题图),第2题图)A .3.9 cmB .7.8 cmC .3.2 cmD .4.6 cm2.如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( C ).A.在边AC、BC两条高的交点处B.在边AC、BC两条中线的交点处C.在边AC、BC两条垂直平分线的交点处 D.在∠ABC、∠ACB两条角平分线的交点处3.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别为C,D,下列结论不一定成立的是( D ).,第3题图) ,第4题图),第5题图)A.PC=PD B.PO平分∠CPDC.OC=OD D.CD垂直平分OP4.如图,在△ABC中,边BC的垂直平分线交AB于点E,若△ABC的周长为10 cm,BC =4 cm,求△ACE的周长.解:△ACE的周长6 cm.5.如图,AB=AC,DB=DC,E是AD延长线上的一点,BE是否与CE相等?试说明理由.解:BE=CE∵AB=AC,DB=DC.∴AD是BC的垂直平分线.∴点E是AD上一点.∴BE=CE.●布置作业,巩固目标教学难点1.上交作业教科书习题13.1第6、9题.2.课后作业见《学生用书》.第3课时线段的垂直平分线的性质(二)教学目标1.能用尺规过直线外一点作已知直线的垂线和线段的垂直平分线.2.了解作图的一般步骤和作图语言,理解作图的依据.3.运用尺规作图的方法解决简单的作图问题.教学重点用尺规作过直线外一点作已知直线的垂线和作线段的垂直平分线.教学难点理解作图的依据和用数学语言描述作图过程.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标教师用多媒体显示几幅轴对称的图形.问题轴对称的性质是什么?追问:说一说线段垂直平分线的性质,如何判断一条直线是否是线段的垂直平分线?有时我们感觉两个平面图形是轴对称的,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、自主学习,指向目标1.自学教材第62至63页.2.请完成“《学生用书》”相应部分.●合作探究达成目标探究点一尺规作图:经过直线外一点作已知直线的垂线活动一:已知:直线和直线外一点C.求作:AB的垂线,使它经过点C.展示点评:作法:小组讨论:为什么直线CF就是所求作的直线.变式:尺规作图,已知:直线AB和AB上一点C,求作AB的垂线,使它经过点C.反思小结:过已知直线外一点作已知直线的垂线的依据是线段垂直平分线的性质的逆定理.跟踪训练:见《学生用书》相应部分探究点二作线段的垂直平分线P62页“思考”栏目中的问题.例2如图,点A和点B关于某条直线成轴对称,你能作出这条直线吗?展示点评:求作的这条直线与线段AB之间有什么关系?变式练习:作出五角星的一条对称轴,和同学比较一下,所作出的对称轴一样吗?小组讨论:用尺规作图的方法怎样作出线段的中点?这种作法的依据什么?反思小结:用尺规作线段垂直平分线的依据是线段垂直平分线的性质和两点确定一条直线,用尺规作图的方法作线段的垂直平分线,它与线段的交点就是线段的中点.五角星有5条对称轴,作轴对称图形的对称轴的方法是:找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.跟踪训练:见《学生用书》相应部分四、总结梳理,内化目标1.本节课学习了哪些内容?2.作线段的垂直平分线的依据是什么?举例说明这种作法有哪些运用? 3.如何用尺规作轴对称图形的对称轴?过直线外一点作已知直线的垂线―→作线段的垂直平分线――→应用画轴对称图形的对称轴 五、达标检测,反思目标1.如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD.若△ADC 的周长为10,AB =7,则△ABC 的周长为( C )A .7B .14C .17D .202.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P ,使P 到该镇所属A 村、B 村、C 村的村委会所在地的距离都相等(A 、B 、C 不在同一直线上,地理位置如下图),请你用尺规作图的方法确定点P 的位置.要求:不写作法,保留作图痕迹.提示:连接直线AB 、BC ,作AB ,BC 的垂直平分线交点即为所求.。

新人教版八年级数学上册导学案:13.1 轴对称

新人教版八年级数学上册导学案:13.1  轴对称

新人教版八年级数学上册导学案:13.1 轴对称教学目标知识技能:1、理解轴对称图形和两个图形关于某条直线对称的概念。

2、了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴,对应点。

3、掌握线段的垂直平分线的概念。

4、理解和掌握轴对称的性质。

过程与方法:经历观察、操作、实践的过程,发现轴对称图形与两个图形对称轴的性质和特点。

情感态度与价值观:通过对轴对称图形和两个图形成轴对称的学习,激发学生学习的欲望,主动参与数学学习活动。

教学重难点重点:轴对称图形和两个图形关于某直线对称的概念。

难点:轴对称图形与两个图形关于某直线对称的区别于联系。

教学准备:三角板、剪刀、多媒体课件。

教学过程:一、情境导入展示章前图以及图13.1-1,多媒体课件展示收集到的生活中的图片,让学生欣赏,并初步感知对称图形,请学生列举所见到的类似图形。

(过程中,师需明确轴对称的重要性及本节的探究内容为轴对称的性质)二、探究新知活动一:1、把一张长方形纸对折,剪出一个图案,再打开就能剪出美丽的窗花,你能剪出什么样的窗花呢?2、观察剪出的窗花和图13.1-1中的图形,你能发现它们有什么共同特征吗?3、联系实际,你能举出一个轴对称图形的例子吗?(师可先示范剪纸,生再动手操作,观察交流后,归纳轴对称图形及对称轴的概念,并板书概念)活动二、思考:1、教材图13.1-3中,每对图形有什么共同特征?2、联系实际,你能举出一些生活中两个图形成轴对称的例子吗?你能正确地完成教材第60页的练习吗?(学生观察交流,师引导得出两个图形关于某直线堆成及对称轴,对称点的概念,并板书概念)活动三、1、结合教材图13.1-2和13.1-3进行比较,轴对称图形与两个图形成轴对称有什么区别?2、如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?成轴对称的两个图形全等吗?如果把一两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?(学生观察比较,教师引导得出区别)活动四:1、成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?2、在教材图13.1-3中,你能标出A、B、C的对称点吗?活动五:1、观察教材图13.1-4中,线段AA’,BB’,CC’与直线MN有什么关系?(师引导从位置上进行观察,并用课件动态演示,归纳得出线段垂直平分线段的定义)1、揭示线段与对称轴MN的关系:(1)垂直(2)平分归纳轴对称的性质:2、在图13.1-5中,你能测量出线段AA’,BB’,CC’与直线l的夹角吗?它们与直线l垂直吗?你能用刻度尺测量出点A与A’到直线l的距离吗?B与B’到直线l呢?类比归纳轴对称图形的性质:。

新人教八年级数学上册:13.1.1轴对称导学案

新人教八年级数学上册:13.1.1轴对称导学案

新人教八年级数学上册:13.1.1轴对称导学案审核时间:使用人流程具体内容方法指导一、目标导学学习目标:1.认识轴对称图形,找出轴对称图形的对称轴。

能判断一个图形是否是轴对称图形。

2.了解轴对称图形和两个图形成轴对称这两个概念的联系和区别。

二、自主学习一、对称现象无处不在:二、轴对称图形定义:如果________沿一条直线折叠,直线两旁的部分能够_________,这个图形就叫做____________.这条直线就是它的__________.这时我们也说这个图形关于这条直线(成轴)对称。

轴对称图形对称轴画出下面每个轴对称图形的对称轴方法指导温馨提示:(用时分钟)三、问题图形形状是否轴对称图形对称轴的数量(条)长方形正方形方法指导温馨提示:(用时探究接下来我们来探讨有关对称轴条数的问题?小结:1)有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。

(2)对称轴通常画成虚线,是直线,不能画成线段。

观察下面的图形有什么共同特点?两个图形成轴对称的定义:把_______沿着某一条直线折叠,如果它能够与_____图形____,那么就说这两个图形______________或者说这两个图形成轴对称。

这条直线叫做_____.折叠后重合的点是对应点,叫做______.平行四边形等腰三角形圆形分钟)四、反馈提升1.成轴对称的两个图形全等吗?( )2.如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?( )这两个图形对称吗?( )方法指导温馨提示:(用时分——钟)五、达标运用总结与反思:1.如图,△ABC与△DEF关于直线a对称,若AB=2cm,∠BCA=55°,则DE= ___∠DFE=方法指导温馨提示:限时分钟aABCFED。

八年级数学上册13.1.1轴对称导学案(新人教版)

八年级数学上册13.1.1轴对称导学案(新人教版)

八年级数学上册13.1.1轴对称导学案(新人教版)13、1、1FF轴对称学习目标:1、通过实例认识轴对称,掌握轴对称图形和关于直线成轴对称这两个概念;2、探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察,培养学生认真探究、积极思考的能力。

学习重点:轴对称图形和两个图形关于某直线对称的概念及轴对称的性质学习难点:轴对称图形和两个图形关于某直线对称的区别和联系及轴对称的性质一、自主学习问题导读:1、什么是轴对称图形?什么是对称轴?关于这条直线成轴对称?什么是对称点?2、轴对称图形和成轴对称的两个图形有什么区别和联系?什么是垂直平分线?3、轴对称的性质是什么?预习自测:1、下列图案是轴对称图形的有()A、1个B、2个C、3个D、4个2、等腰三角形的对称轴有()A、1条B、3条C、1条或3条D、无数条3、下面不是轴对称图形的是()。

① 长方形② 平行四边形③ 圆④ 半圆4、要使大小两个圆有无数条对称轴,应采用第()种画法。

我的疑惑:1: ① ② ③2:二、合作探究与展示探究一:轴对称图形与成轴对称的两个图形的区别与联系观察上面两幅图片,议一议:轴对称图形与成轴对称的两个图形的区别与联系?区别: 轴对称是说个图形的位置关系,轴对称图形是说个具有特殊形状的图形。

联系:都能沿着某条直线。

这条直线是_________。

跟踪训练1:1、标出右面图形中的对称点探究二:轴对称的性质如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,线段AA′、BB′、CC′与直线MN有什么关系?(1)设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN折叠后,点A与A′重合吗?于是有PA=,∠M PA=∠ =度(2)对于其他的对应点,如点B、B′,C、C′也有类似的情况吗?(3)那么MN与线段AA′,BB′,CC′的连线有什么关系呢?归纳:1、垂直平分线的定义:__________________________________,叫做这条线段的垂直平分线2、轴对称的性质:①如果两个图形关于某条直线对称,那么是任何一对对应点所连线段的②类似地,轴对称图形的对称轴,是__________________的垂直平分线。

八年级数学上册 13.1.1 轴对称导学案(含解析)(新版)新人教版

八年级数学上册 13.1.1 轴对称导学案(含解析)(新版)新人教版

轴对称一、新课导入1、轴对称图形是我们经常见到的图形,你能列举出日常生活中见到过的轴对称图形吗?2、对于轴对称图形,你了解了哪些方面的知识?你能画一个轴对称图形吗?二、学习目标1、掌握关于轴对称的概念;2、掌握掌握轴对称的性质,利用轴对称的性质解决问题。

三、研读课本认真阅读课本的内容,完成以下练习。

(一)划出你认为重点的语句。

(二)完成下面练习,并体验知识点的形成过程。

研读一、认真阅读课本要求:知道轴对称的定义;能说出关于某直线轴对称的两个图形的对应点、对应边、对应角。

一边阅读一边完成检测一。

检测练习一、1、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,折叠后重合的两点叫对应点也叫对称点,重合的两个角叫对应角,重合的两条边叫对应边。

2、如图,把△ABC沿直线MN折叠后,可以与△A′B′C′重合,则△ABC与△A′B′C′关于直线MN轴对称,直线MN是对称轴,点A′、B′、C′分别是点A、B、C 的对称点,线段AB、AC、BC分别是线段A′B′、A′C′、B′C′的对应边,∠A、∠B、∠C分别是∠A′、∠B′、∠C′的对应角。

3、轴对称是两个图形的位置关系,对称轴是一条直线。

4、如下图所示,把左边的五边形沿虚线折叠后可以与右边的五边形重合,这两个五边形关于这条直线轴对称,这条直线是这两个五边形的对称轴,点A的对称点是点B,点C的对称点是点D。

研读二、认真阅读课本要求:理解轴对称与轴对称图形的联系与区别;下图中蝴蝶左边的翅膀与右边的翅膀关于直线轴对称,这个蝴蝶是轴对称图形;6、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于对称轴轴对称。

7、轴对称图形是具有特殊性质的一个图形;轴对称是两个图形的位置关系。

结论:轴对称图形只涉及到一个图形,轴对称涉及到两个图形.检测练习二、8、等腰三角形是轴对称图形,等腰三角形有1条对称轴,等腰三角形的对称轴是底边上的高所在的直线;9、圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线。

中学八年级数学上册(13.1 轴对称)教案 (新版)新人教版 教案

中学八年级数学上册(13.1 轴对称)教案 (新版)新人教版 教案
[教学说明:创设情景将生活中的对称图案和标志展示出来,引导学生将生活中的对称美牵引到数学中来]
二、活动探究,探索新知
活动1
出示课本的图片,观察它们都有些什么共同特征.
这些图形都是对称的.这些图形从中间分开后,左右两部分能够完全重合.
小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.
三、练习巩固,体验收获
1.成轴对称的两个图形重合吗?( )
2.如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?( )这两个图形对称吗?( )
3、归纳轴对称图形和图形的轴对称的区别和联系
提高练习
4、想一想:一辆汽车的车牌在水中的倒影如图所示,你能确定该车车牌的号码吗?
课后延伸
把一圆形纸片两次对折后,得到右图,然后沿虚线剪开,得到两部分,其中一部分展开后的平面图形是( )
结论:如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.
活动2
了解轴对称图形及其对称轴的概念后,我们来做一做练习
数字游戏:0-9十个数字中,哪些是轴对正方形

平行四边形
小结:(1)有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。
(2)对称轴通常画成虚线,是直线,不能画成线段。
活动4
出示下列投影,大家想一想,你发现了什么?
像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.

新人教版八年级数学上册《13.1——13.2轴对称复习》导学案

新人教版八年级数学上册《13.1——13.2轴对称复习》导学案

新人教版八年级数学上册《13.1——13.2轴对称复习》导学案班级小组姓名一、学习目标:目标:对轴对称的概念、性质、判定及画法的进一步巩固和应用二、知识点回顾三、考点透视考点1:轴对称的概念及性质:1、下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..与其他三个..不同?请指出这个图形,并说明理由.答:这个图形是(写出序号即可),理由是.2、已知△ABC与△A1B1C1关于直线MN对称,且BC与B1C1交于直线MN上一点O,则() A.点O是BC的中点; B.点O是B1C1的中点; C.线段OA与OA1关于直线MN对称; D.以上都不对.3、已知平面上的两点A、B,下列说法不正确的是()A.点A、B关于AB的中垂线对称B.点A、B可以看作以直线AB为轴的轴对称图形C.点A、B是轴对称图形,有且只有一条对称轴D.点A、B是轴对称图形,有两条对称轴4、如图,若两个三角形关于某条直线对称,∠1=110°,∠2=46°,则x= .5、如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于 .6、在平面镜里看到背后墙上的电子钟示数如图所示,这时的实际时间应是()A. 21:02B. 21:05C. 20:15D. 20:05考点2:线段垂直平分线的性质7、 如图,有A 、B 、C 三个村庄,现要建一个车站,到三个村庄的距离相等,这样的车站选址有( ) A.1处 B. 2处 C. 3处 D. 4处8、如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D , ① 若△BCD 的周长为8,求BC 的长;② 若BC=4,求△BCD 的周长.9、如图,已知AB 比AC 长3cm ,BC 的垂直平分线交AB 于D ,交BC 于E ,△ACD•的周长是15cm ,求AB 和AC 的长.考点3:线段垂直平分线的判定:10、点P 是△ABC 中边AB 的垂直平分线上的点,则一定有( ) A .PB=PC B.PA=PC C.PA=PB D.点P 到∠ABC 的两边距离相等(7题)(8题)∶(4题)(5题)(6题)(9题)11、下列说法错误的是()A.D、E是线段AB的垂直平分线上的两点,则 AD=BD,AE=BEB.若AD=BD,AE=BE,则线段DE是线段AB的垂直平分线C.若PA=PB,则点P在线段AB的垂直平分线上D.若PA=PB,则过点P的直线是线段AB的垂直平分线12、已知E是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB 垂足分别为C、D.求证:OE是CD的垂直平分线.考点4:轴对称的作图13、如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形。

人教版八年级上册数学 13.1.1轴对称《轴对称》优秀导学案

人教版八年级上册数学   13.1.1轴对称《轴对称》优秀导学案
《轴对称》导学案ቤተ መጻሕፍቲ ባይዱ
学 习
目标
1.在生活实例 中认识轴对称图.
2.分析轴对称图形,理解轴对称的概念.
3 .掌握轴对称图形和关于直线成轴对称这两个概念
重难点
分析
1.准确掌握轴对称图形和关于直线成轴对称这两个概念的实质。
2.轴对称图形和关于直线成轴对称的区别和联系。




阅读课本,完成下面填空题
1、如果图形沿一条直线折叠,直线两旁的部分能够互相,这个图形就叫做。这条直线就是它的 。
(2)指图形的相互关系
(1)对个图 形而言
(2)指 图 形的特殊形状
联系
(1)沿某条直线对折后都能够重合
(2)把关于一条直线对称的两个图形看做一个整 体,也就是一个图形;
反过来一个轴对称图形也可以分为关于对称的两个图形。
探究三:




1、找出下列图形的对称轴
知识整理
反思提升
2、把图形沿一条直线折叠,如果它 能够与另一个图形重合,那么 就说这0图形关于 。
学法指导




探究一:下面的图形是轴对称图形吗?如果是,画出它们的对称轴
探究二:下面给出的两个图形是轴对称的吗?如果是找出它们的对称轴,并找出一对对称点.
赏识重 点




两个图形关于一条直线对称
轴对称 图形
区别
(1)对个图形而言

人教版八年级数学上册导学案:13.1轴对称4

人教版八年级数学上册导学案:13.1轴对称4

一、课前准备
如图,在Rt △ABC 中,∠C=90°,∠B=15°,DE 是AB 的中垂线,垂足为D ,交BC 于E ,BE=5,则AE=__________,∠AEC=__________,AC=__________ .
二、课堂学习
【自主学习】
1、尺规作图:经过已知直线外一点作这条直线的垂线。

(保留作图痕迹)
2、尺规作图:作已知线段AB 的垂直平分线。

(保留作图痕迹)
【合作交流】
思考:作轴对称图形的对称轴的方法?
归纳:找到一对 ,作出连接它们的 的 线,就可以得到这两个图形的对称轴.
三、随堂检测 科目
数学 班级: 学生姓名 课题
13.1轴对称3 课 型 新授 课时 一课时 主备教师 备课组长签字
学习目标: 1、了解线段垂直平分线的画法.
2、会画两个成轴对称的图形(或一个轴对称图形)的对称轴.
学习重点
画轴对称图形的对称轴。

学习难点 归纳总结画轴对称图形对称轴的方法。

1、△ABC 和△A'B'C'是两个成轴对称的图形,请画出它的对称轴.
2
、角是轴对称图形吗?如果是,作出它的对称轴 (保留作图痕迹)
3、如图所示,线段AB 与线段CD 关于某条直线对称,利用尺规作出这条直线(保留作图痕迹)
选做题、如图,某地由于居民增多,要在公路边增加一个公共汽车站,A ,B 是路边两个新建小区,这个公共汽车站建在什么位置,能使两个小区到车站的路程一样长?
四、小结反思
A B C D B A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.1 轴对称13.1.1轴对称(1)学习目标1、通过展示轴对称图形的图片,初步认识轴对称图形;2、通过试验,归纳出轴对称图形概念,能用概念判断一个图形是否是轴对称图形;3、培养良好的动手试验能力、归纳能力和语言表述能力。

学习重点:理解轴对称图形的概念学习难点:判断图形是否是轴对称图形课前预习1、观察课本中的7副图片,你能找出它们的共同特征吗?2、你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、动手做一做:把一张纸对折,然后从折叠处剪出一个图形,展开后会是一个什么样的图形?它有什么特征?4、如果一个图形沿一条__________折叠,________两旁的部分能够完全________.这个图形就叫做轴对称图形,这条________就是它的对称轴,这时,我们也说这个图形关于这条_________(成轴) 对称.做下面的题,检验你预习的结果5、轴对称图形的对称轴是一条___________A直线 B射线 C线段6、课本P30练习题。

7、下面的图形是轴对称图形吗?如果是,指出对称轴。

第4题(A )(B )(C )(D )课内探究:例1、我国的文字非常讲究对称美,分析图中的四个图案,图案( )有别于其余三个图案.思路分析:所用知识点:例2、如图是我国几家银行的标志,在这几个图案中是轴对称图形的有哪些?它们各有几条对称轴,你能画出来吗?(小组讨论完成)思路分析:所用知识点:当堂检测:A 组:1、要求同学们找出所剪的图案的对称轴,并且用直尺把它画出来。

2、课本P36习题1,3、课本P63复习题1B 组:1、找出英文26个大写字母中哪些是轴对称图形?2、你能举出三个是轴对称图形的汉字吗3、练习册习题C 组:1、用两个圆、两个三角形、两条平行线构造轴对称图形,别忘了要加上一两句贴切、诙谐的解说词。

课后反思:课后训练:一、选择题1图中的图形中是常见的安全标记,其中是轴对称图形是 ( )#2、下列轴对称图形中,对称轴的条数四条的有()个A.1B.2C.3D.43、下列各图中,是轴对称图案的是()※4 在下列各电视台的台标图案中,是轴对称图形的是()(A)(B)(C)(D)二、填空题5、观察下列图形:轴对称图形的有13.1.1轴对称(2)学习目标1、通过动手实验,掌握关于某条直线成轴对称的两个图形的对应线段相等、对应角相等;2、理解轴对称图形和两个图形成轴对称这两个概念的区别与联系。

3、能够判别两个图形是否成轴对称。

学习重点:轴对称图形的对应线段相等、对应角相等。

学习难点:两个图形成轴对称与轴对称图形两个概念的区别与联系。

课前预习1、试验:在纸上滴上墨水,把纸张对折,随后打开,看看形成的两块墨迹是不是关于折痕对称?它的对称轴是哪一条?把它画出来。

2、观察课本中的三幅图形,并试着沿虚线折叠,每对图形有什么共同特征?3、一个图形沿着某条直线折叠,如果他能够与________重合,那么就说_______关于这条直线对称,这条直线叫做__________,折叠后________叫做对称点.4、在课本中的第三幅图中,(1)标出A、B、C的对称点,∠A、∠B、∠C的对应角,(2)连接AA′,BB′,CC′,你发现这三条线段有什么关系?你找到规律了吗?5、成轴对称的两个图形全等吗?为什么?6、全等的两个图形成轴对称吗?试举例说明。

(可以画图说明)7、课本P31练习题(A ) (B ) (C ) (D ) 课内探究例1、李芳同学球衣上的号码是253,当他把镜子放在号码的正左边时,镜子中的号码是( )例2、观察规律并填空:例3、参照下图说明轴对称图形与两个图形成轴对称有什么区别与联系? (小组讨论回答)当堂检测:A 组1、下面哪些选项的右边图形与左边图形成轴对称?2、课本P36习题2,3 B 组1、课本P63复习题92、如图,若沿虚线对折,左边部分与右边部分重合,请找出图中A 、B 、C 的对称点,并说出图中有哪些角相等?哪些线段相等? C 组1、你能运用学过的知识把下面这个数学中不可能的式子变为可能吗?2、如图,四边形ABCD与四边形EFGH关于MN对称。

(1)A、B、C、D的对称点分别是,线段AC、AB的对应线段分别是,CD= ,∠CBA= ,∠ADC= .(2)AE与BF平行吗?为什么?(3)AE与BF平行,能说明轴对称图形对称点的连线一定互相平行吗?(4)延长线段BC、FG,交于点P,延长线段AB、EF,交于点Q,,你有什么发现吗?课后反思课后训练※7. 如图所示,它们都是对称图形,请观察并指出哪些是轴对称图形,哪些图形成轴对称.&8. 某居民小区稿绿化,要在一块菱形空地上建花坛.现征集设计方案,要求使用设计的图案中包括圆和正方形两种图形(圆和正方形的个数不限),同时又不改变空地原有的轴对称效果,请你画出一个设计方案,用一两句话表示你的设计思路.&9. 如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?13.1.3线段的垂直平分线的性质(1)学习目标:1、通过动手试验掌握线段的垂直平分线的定义2、理解线段垂直平分线与对称轴的关系3、掌握线段垂直平分线的性质学习重点:线段垂直平分线上的点到线段两端的距离相等。

学习难点:运用线段垂直平分线性质解决问题。

课前预习1、线段是轴对称图形吗?通过折叠的方法作出线段AB的对称轴l,交AB与O1)点A的对称点是_______2)量出AO与BO的长度,它们有什么关系?3)AB与直线l在位置上有什么关系?2、经过线段_________并且_______于这条线段的________,叫做这条线段的垂直平分线.3、观察课本P31思考中的图,线段AA′,BB′,CC′与直线MN的关系是________由上可得:对称轴与对应点所连线段的垂直平分线有什么关系?4、已知直线l垂直平分线段AB,交AB与O.点C是l上任意一点,连接AC,BC.1)量出AC,BC的长度,它们有什么关系?2)另在l上任找一点D,量出AD,DB的长度,它们有什么关系?3)由1),2),你得到什么猜想?4)用我们以前学过的只是证明你的猜想。

6、线段垂直平分线上的点与这条线段两个端点的__________。

7、由下面每个图所给条件,找出图中相等的线段,并说明理垂直平分BC 直线MN和DE分别是线段 AB、BC的垂直平分线8、.课本P34练习题1、课内探究线段垂直平分线性质的应用举例。

例1、已知互不平行的两条线段AB, A′B′关于直线l对称,AB, A′B′所在的直线交于点P,判断下列正误。

1)AB=A′B′() 2)点P在直线l上()3)若A, A′是对称点,则l垂直平分线段A A′()4)若B, B′是对称点,则PB=P B′( )例2、如右图所示,△ABC中,BC=10,边BC的垂直平分线分别交AB、BC于点E、D,BE=6,求△BCE的周长。

思路分析:所用知识点:当堂检测:A组:1、如右图所示,直线MN和DE分别是线段 AB、BC的垂直平分线,它们交于P点,请问PA和 PC相等吗?为什么?B组:1、如图,△ABC中,AB=AC=18cm,BC= 10cm,AB的垂直平分线ED交AC于D点,求:△BCD的周长。

C组:课本P63复习题5课后反思课后训练4、如图所示,直线MN是线段AB的对称轴,点C在MN外,CA与MN相交于点D,如果CA+CB=4 cm,那么△BCD的周长等于__________cm&5、 如图,△ABC 中,DE 是AC 的垂直平分线,AE=3cm,△ABD 的周长为13cm,则△ABC 的周长为____________.※6. 如图所示,AD 垂直平分BC ,点C 在AEAB+BD 与DE的关系是三、解答题※7.如图所示,AB=AC,BM=CM ,直线AM 是线段 BC 的垂直平分线吗?&8. 如图,△ABC 中,边AB 、BC 的垂直平分线交于点O, 求证:点P 是否也在边AC 的垂直平分线上#9. 如图所示,有一块三角形田地,AB=AC=10m , 作AB 的垂直平分线ED 交AC 于D ,交AB 于E ,量得△B DC 的周长为17m ,请你替测量人员计算BC 的长.C13.1.2 线段的垂直平分线的性质(2)学习目标:1、进一步理解线段垂直平分线的性质,并能灵活运用。

2、 掌握线段垂直平分线的判定3、 运用线段垂直平分线的判定解决问题 学习重点:探索并理解线段垂直平分线的判定 学习难点:运用线段垂直平分线的判定解决问题 课前预习1、用一根木棒和一根弹性均匀的橡皮筋,做一个简易的弓,箭通过木棒中央的孔射出去。

(1) (2)1)如图(1)要使CO 垂直于AB ,需要添加什么条件?为什么?那么点C 在_____________上。

2)如图(2),拉动C ,到达D 的位置,若AD=DB ,那么点D 在__________上。

3)由1),2),你得到什么猜想?4)用学过的知识证明你的猜想。

2、与一条线段两个端点距离________的点,在这条线段的______________上。

3、根据上面的结论,完成下面问题。

若AB=AC,则点A 在 若EB=EC,则点E 在线段 若PA=PB=PC,线段___的垂直平分线上。

_____的垂直平分线上,又 则点P 即在线段 BD=DC,则____是____的 _____,又在线段垂直平分线。

______的垂直平分B BDE线上。

3、课本P34练习题2 二、课堂展示例、如图所示,已知Rt △ABC 中,∠C =90°,沿过B 点的一条直线BE 折叠这个三角形,使C 点落在AB 边上的点D 、要使点D 恰为AB 的中点,问还要添加什么条件?根据你添加的条件,你能证明出D 为AB 的中点吗?思路分析:所用知识点: 当堂检测A 组1、如图:已知直线l 和l 异侧的两点A 、B ,在直线l 上求作一点P ,使PA=PB.2、 如图:已知,OD=OC,ED=EC,那么直线OE 是线段 CD 的______________,你能写出证明过程吗/DECBAOCOB 组1、如图所示,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超,使超市到三个小区的距离相等,则超市应建在( )A.在AC 、BC 两边高线的交点处B.在AC 、BC 两边中线的交点处C.在AC 、BC 两边垂直平分线的交点处D.在A 、B 两内角平分线的交点处2、已知:E 是∠A OB 的平分线上一点,EC⊥OA ,ED⊥OB ,垂足分别为C 、D 、 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线. C 组课本P38习题12 课后反思课后训练1、 下列图形中对称轴最少的是 ( )A.圆B.正方形C.角D.#2、下列图形与A 成轴对称图形的是C BA&3、如图所示,已知直线L和两点A、B,在直线L上求作一点P,使PA=PB、※4、画出下图甲中的各图的对称轴.#5、如图所示,一辆汽车在笔直的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄,当汽车行驶到哪个位置时,与村庄M,N的距离相等。

相关文档
最新文档