高考数学一轮复习第十二章平面向量学案理
新人教版高考数学大一轮复习《平面向量的基本定理及向量坐标运算》
2.在平行四边形ABCD中,E和F分别是CD和BC的中点.若 AC AE AF,其中λ ,μ ∈R,则λ +μ =________.
【解析】 选择 AB,AD 作为平面向量的一组基底,
则 AC AB AD,AE 1 AB AD,AF AB 1 AD,
2
2
又 AC AE AF (1 )AB ( 1 )AD, 于是得
C.- 1 a- 5 b
3 12
B. 1 a- 13 b
3 12
D.- 1 a+ 13 b
3 12
【解析】选C. DE DC CE
1 BC 3 CA 34
1 (AC AB) 3 AC
3
4
1 AB 5 AC 1 a 5 b.
3 12
3 12
【一题多解微课】 解决本题还可以采用以下方法: 选C.不妨设∠BAC=90°,取直角坐 标系xOy,设A(0,0),B(1,0),C(0,1), 则a=(1,0),b=(0,1),
【题组练透】 1.已知平面向量a=(1,1),b=(1,-1),则向量 1 a- 3 b
22
=()
A.(-2,-1) C.(-1,0)
B.(-2,1) D.(-1,2)
【解析】选D.因为a=(1,1),b=(1,-1),所以 1 a- 3 b
22
=
1 2
(1,1)-
3 (1,-1)=
2
(1 , 1) (3 , 3) =(-1,2).
3
3
【解析】选B.因为a∥b,所以-2x-3(y-1)=0,化简得
2x+3y=3,又因为x,y均为正数,
所以 3 2 = ( 3 2) 1(2x+3y)
高考数学一轮复习知识点大全-平面向量
特别提醒:①,sin()sin ,sincos 22A B C A B C A B C π++=-+==: ②锐角三角形⇒sin sin cos 2A B B π⎛⎫>-= ⎪⎝⎭⇒sin sin sin cos cos cos A B C A B C ++>++.(2)正弦定理:2sin sin sin a b c R A B C===(R 为三角形外接圆的半径). 注意:①正弦定理的一些变式: ()sin sin i a b A B :=:;()sin 2a ii A R =;()2sin iii a R A =; ②已知三角形两边及一边的对角,求解三角形时,若运用正弦定理,则务必注意可能有两解. (3)余弦定理:2222222cos ,cos 2b c a a b c bc A A bc +-=+-=等, 解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化.(4)面积公式:111sin ()222a S ah ab C r a bc ===++(其中r 为三角形内切圆半径). (5)大边对大角:当出现多个解时,常用于判断哪些是符合题意的解、哪些不是.在三角形中,sin sin A B A B >⇔>,这是“正弦定理+大边对大角”的应用.14. 致命易错点提示:(1)特殊角三角函数值、诱导公式和三角变换公式使用错误;(2)大题第一步化简错误(应在化简完后立刻检验);(3)已知三角函数值求角、同角三角函数之间的互化、三角函数值域和最值的研究经常会忽略角的范围.第五部分 平面向量1. 向量有关概念:(1)向量的概念:既有大小又有方向的量,叫向量. 向量常用有向线段来表示.注意向量和数量的区别.(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的.(3)单位向量:长度为一个单位长度的向量叫做单位向量.(与AB 共线的单位向量有两个:AB±,一个同向,一个反向).(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性.(5)相反向量:长度相等方向相反的向量叫做相反向量, a 的相反向量是-a .(6)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行.提醒:①两个向量平行与两条直线平行是不同的两个概念,两个向量平行包含基线平行与重合两种情况, 但两条直线平行不包含两条直线重合.②三点A B C 、、共线⇔AB ∥AC .2. 向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意前为起点,后为终点.(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等.(3)坐标表示法:在平面直角坐标系内,以与x 轴、y 轴正方向同向的两个单位向量i ,j 为基底,则平面内任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示.如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.3. 平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2.如:(1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =______(用,a b 表示)(答:1322a b -). (2)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是___(答:0).4. 实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:(1);a a λλ=(2)当λ0>时,λa 的方向与a 的方向相同;当λ0<时,λa 的方向与a 的方向相反;当λ=0时,0a λ=,注意:λa ≠0. 5. 平面向量的数量积:(1)两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量a ,b 的夹角.当θ=0时,a ,b 同向;当θ=π时,a ,b 反向;当θ=2π时,a ,b 垂直.(2)平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积,或点积),记作:b a ⋅,即b a ⋅=cos a b θ.规定:零向量与任一向量的数量积是0.注意数量积是一个实数,不再是一个向量.如:①2=5=,3-=⋅b a ,则a b +等于____.) ②已知非零向量,a b 满足a b a b ==-,则,a a b 〈+〉的大小为____.(答:30)(3)b 在a 上的投影为||cos b θ,它是一个实数,但不一定大于0. 如:已知3||=→a ,5||=→b ,且12=⋅→→b a ,则向量→a 在→b 上的投影为____.(答:512) (4)b a ⋅的几何意义:数量积b a ⋅等于a 的模||a 与b 在a 上的投影数量的积.(5)向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则:①0=⋅⇔⊥b a b a .②当a ,b 同向时,b a ⋅=a b ,特别地,22||a a a a =⋅=,||a = 当a 与b 反向时,b a ⋅=-a b .当θ为锐角时,b a ⋅>0,且 a b 、不同向,0a b ⋅>是θ为锐角的必要非充分条件.当θ为钝角时,b a ⋅<0,且 a b 、不反向,0a b ⋅<是θ为钝角的必要非充分条件.③非零向量a ,b 夹角θ的计算公式:||||cos b a b a =θ ④||||||b a b a ≤⋅.如 :已知)2,(λλ=→a ,)2,3(λ=→b ,如果→a 与→b 的夹角为锐角,则λ的取值范围是______.(答:43λ<-或0λ>且13λ≠) 6.向量的运算:(1)几何运算:①向量加法:利用“平行四边形法则”进行.向量加法还可利用“三角形法则”:设,AB a BC b ==,那么向量AC叫做a 与b 的和,即a b AB BC AC +=+=.②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=那么, 由减向量的终点指向被减向量的终点.注意:此处减向量与被减向量的起点相同.(2)坐标运算:设1122(,),(,)a x y b x y ==,则:①向量的加减法运算:12(a b x x ±=±,12)y y ±.②实数与向量的积:()()1111,,a x y x y λλλλ==.③若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.④平面向量数量积:2121y y x x b a +=⋅.⑤向量的模:222222||,||a x y a a x y =+==+.⑥两点间的距离:若()()1122,,,A x y B x y ,则||AB =.7. 向量的运算律: (1)交换律:a b b a +=+,()()a a λμλμ=,a b b a ⋅=⋅.( 2 ) 结合律:()(),a b c a b c a b c a b c ++=++--=-+,)()()(b a b a b a λλλ⋅=⋅=⋅.(3)分配律:()(),a a a a b a b λμλμλλλ+=++=+, c b c a c b a ⋅+⋅=⋅+)(.如:在下列命题中:① →→→→→→→⋅-⋅=-⋅c a b a c b a )(.② →→→→→→⋅⋅=⋅⋅c b a c b a )()(. ③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+. ④ 若0=⋅→→b a ,则0=→a 或0=→b . ⑤ 若,a b c b ⋅=⋅则a c =.⑥22a a =. ⑦2a bb a a ⋅=.⑧222()a b a b ⋅=⋅. ⑨222()2a b a a b b -=-⋅+.其中正确的是______.(答:①⑥⑨)提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约). (2)向量的“乘法”不满足结合律,即c b a c b a )()(⋅≠⋅.(为什么?)8. 向量平行(共线)的充要条件://a b a b λ⇔=22()(||||)a b a b ⇔⋅=1212x y y x ⇔-=0.如:(1)已知(1,1),(4,)a b x ==,2u a b =+,2v a b =+,且//u v ,则x =___.(答:4).(2)设(,12),(4,5),(10,)PA k PB PC k ===,则k =_____时,A,B,C 三点共线.(答:-2或11)9. 向量垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=.如:已知(1,2),(3,)OA OB m =-=,若OA OB ⊥,则m = .(答:32)10.向量中一些常用的结论:(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用.(2)||||||||||||a b a b a b -≤±≤+,特别地,当 a b 、同向或有0⇔||||||a b a b +=+≥||||||||a b a b -=-. 当 a b 、反向或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.当 a b 、不共线⇔||||||||||||a b a b a b -<±<+. (这些和实数比较类似)(3)在ABC ∆中,①若()()()112233,,,,,A x y B x y C x y ,则其重心坐标为123123,33x x x y y y G ++++⎛⎫ ⎪⎝⎭. 如 :若ABC ∆的三边的中点坐标分别为(2,1)、(-3,4)、(-1,-1),则ABC ∆的重心坐标为_______.(答:24(,)33-) ②1()3PG PA PB PC =++⇔G 为ABC ∆的重心, 特别地,0PA PB PC P ++=⇔为ABC ∆的重心.③PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心.④向量()(0)||||AC AB AB AC λλ+≠的基线经过ABC ∆的内心. (4)P 为12P P 的中点122MP MP MP +⇔=. (5)向量 PA PB PC 、、的终点A B C 、、共线⇔存在实数αβ、,使得PA PB PC αβ=+,且1αβ+=.如:平面直角坐标系中,O 为坐标原点,已知)1,3(A ,)3,1(-B ,若点C 满足=−→−OC −→−−→−+OB OA 21λλ,其中R ∈21,λλ且121=+λλ,则点C 的轨迹是____. (答:直线AB ) 第六部分 数列1.数列的定义:数列是一个定义域为正整数集*N (或它的有限子集{}n ,,3,2,1 )上 的特殊函数,数列的通项公式也就是相应函数的解析式.2. 一般数列的通项n a 与前n 项和n S 的关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n nn 3. 等差数列的概念:(1)等差数列的判断方法:定义法1(n n a a d d +-=为常数).(2)等差数列的通项公式:1(1)n a a n d =+-或()n m a a n m d =+-.(3)等差数列的前n 项和:1()2n n n a a S +=1(1)2n n na d -=+, 注意n S 与中间项的关系.(4)等差中项:若,,a A b 成等差数列,那么A 叫做a 与b 的等差中项,2a b A +=. 4.等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是。
高考数学(文)《平面向量》专题复习
第1节 平面向量的概念及线性运算、 平面向量基本定理
600分基础 考点&考法
❖考点29 平面向量的基本概念及线性运算 ❖考点30 平面向量的坐标运算
返回
考点29 平面向量的基本概念及线性运算
❖考法1 平面向量的有关概念 ❖考法2 平面向量的线性运算
返回
考点29 平面向量的基本概念及线性运算
【注意】①向量数乘的特殊情况:当λ=0时,λa=0;当a=0时,λa=0.②实数和向量可 以求积,但不能求和、求差.③正确区分向量数量积与向量数乘的运算律.
返回
考法2 平面向量的线性运算
返回
考点30 平面向量的坐标运算
❖考法3 平面向量基本定理的应用 ❖考法4 平面向量的共线问题 ❖考法5 平面向量的坐标表示与运算
1.向量的有关概念
2.向量的线性运算
考法1 平面向量的有关概念
解决平面向量的有关概念的问题时,应注意以下两点: 1.应正确理解向量的概念 ①向量既有大小,又有方向,任意两个向量不能比较大小,只可以 判断它们是否相等,但它们的模可以比较大小;②大小与方向是向 量的两个要素,分别是向量的代数特征与几何特征;③向量可以自 由平移,任一组平行向量都可以移到同一直线上. 2.正确理解共线向量与平行向量 共线向量就是平行向量,其要求是几个非零向量的方向相同或相反, 当然向量所在直线可以平行,也可以重合,其中“共线”的含义不 同于平面几何中“共线”的含义.
(2)b在a方向上的投影是 一个数量,当0°≤θ< 90°时为正;当90°<θ ≤180°时为负;当θ= 90°时为0.
考点31 平面向量的数量积
【注意】x1y2-x2y1=0与x1x2+y1y2=0不同,前者是两向量a=(x1,y1), b=(x2,y2)共线的充要条件,后者是它们垂直的充要条件.
2020年高考数学(理)总复习:平面向量(解析版)
2020年高考数学(理)总复习:平面向量题型一 平面向量的概念及线性运算 【题型要点】对于利用向量的线性运算、共线向量定理和平面向量基本定理解决“用已知向量(基向量)来表示一些未知向量”的问题.解决的关键是:①结合图形,合理运用平行四边形法则或三角形法则进行运算;②善于用待定系数法【例1】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .2 2 C. 5D .2【解析】 如图所示,建立平面直角坐标系:设A (0,1),B (0,0),C (2,0),D (2,1),P (x ,y ),根据等面积公式可得圆的半径r =25,即圆C 的方程是(x -2)2+y 2=45,AP →=(x ,y -1),AB →=(0,-1),AD →=(2,0),若满足AP →=λAB →+μAD →,即⎩⎪⎨⎪⎧x =2μy -1=-λ,μ=x 2,λ=1-y ,所以λ+μ=x 2-y +1,设z =x 2-y +1,即x 2-y +1-z =0,点P (x ,y )在圆(x -2)2+y 2=45上,所以圆心到直线的距离d ≤r ,即|2-z |14+1≤25,解得1≤z ≤3,所以z 的最大值是3,即λ+μ的最大值是3.【答案】 A【例2】.点O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,设△OBC 与△ABC 的面积分别为S 1、S 2,则S 1S 2=( )A.18B.16C.14D.12【解析】 延长OC 到D ,使OD =4OC ,延长CO 交AB 于E .∵O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,∴OD →+OA →+OB →=0,∴O 为△DAB 重心,E 为AB 中点,∴OD ∶OE =2∶1,∴OC ∶OE=1∶2,∴CE ∶OE =3∶2,∴S △AEC =S △BEC ,S △BOE =2S △BOC .∵△OBC 与△ABC 的面积分别为S 1、S 2,∴S 1S 2=16.故选B.【答案】 B .题组训练一 平面向量的概念及线性运算1.在梯形ABCD 中,AB →=3DC →,则BC →等于( ) A .-13AB →+23AD →B .-23AB →+43AD →C.23AB →-AD → D .-23AB →+AD →【解析】 在线段AB 上取点E ,使BE =DC ,连接DE ,则四边形BCDE 为平行四边形,则BC →=ED →=AD →-AE →=AD →-23AB →;故选D.【答案】 D2.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足:OP →=13⎪⎭⎫ ⎝⎛++C O B O A O22121,则P 一定为△ABC 的( )A .重心B .AB 边中线的三等分点(非重心)C .AB 边中线的中点D .AB 边的中点【解析】 如图所示:设AB 的中点是E ,∵O 是三角形ABC 的重心,OP →=13⎪⎭⎫ ⎝⎛++C O B O A O 22121=13()OE →+2OC →,∵2EO →=OC →, ∴OP →=13()4EO →+OE →=EO →,∴P 在AB 边的中线上,是中线的三等分点,不是重心,故选B.【答案】 B3.设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( )A.13B.12C.23D.34【解析】 因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P AB S △PBC =|P A →||CP →|=12.【答案】 B题型二 平面向量的平行与垂直 【题型要点】(1)设a =(x 1,y 1),b =(x 2,y 2): ①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.(2)设非零向量a =(x 1,y 1),b =(x 2,y 2):a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. (3)利用向量平行或垂直的充要条件可建立方程或函数是求参数的取值.【例3】已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( )A.9 B.3C.109 D.310【解析】向量a=(2,-4),b=(-3,x),c=(1,-1),∴2a+b=(1,x-8),由(2a+b)⊥c,可得1+8-x=0,解得x=9.则|b|=(-3)2+92=310.故选D.【答案】 B【例4】.已知a=(3,2),b=(2,-1),若λa+b与a+λb平行,则λ=________.【解析】∵a=(3,2),b=(2,-1),∴λa+b=(3λ+2,2λ-1),a+λb=(3+2λ,2-λ),∵λa+b∥a+λb,∴(3λ+2)(2-λ)=(2λ-1)(3+2λ),解得λ=±1【答案】±1题组训练二平面向量的平行与垂直1.设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=________.【解析】由|a+b|2=|a|2+|b|2,得a⊥b,所以m×1+1×2=0,解得m=-2.【答案】-22.已知向量a=(3,1),b=(1,3),c=(k,-2),若(a-c)∥b,则向量a与向量c的夹角的余弦值是()A.55 B.15C.-55D.-15【解析】∵a=(3,1),b=(1,3),c=(k,-2),∴a-c=(3-k,3),∵(a-c)∥b,∴(3-k)·3=3×1,∴k=2,∴a·c=3×2+1×(-2)=4,∴|a|=10,|c|=22,∴cos 〈a ,b 〉=a ·c |a |·|c |=410·22=55,故选A. 【答案】 A题型三 平面向量的数量积 【题型要点】(1)涉及数量积和模的计算问题,通常有两种求解思路: ①直接利用数量积的定义; ②建立坐标系,通过坐标运算求解.(2)在利用数量积的定义计算时,要善于将相关向量分解为图形中模和夹角已知的向量进行计算.求平面向量的模时,常把模的平方转化为向量的平方.【例5】在平行四边形ABCD 中,|AD →|=3,|AB →|=5,AE →=23AD →,BF →=13BC →,cos A =35,则|EF →|=( )A.14 B .2 5 C .4 2D .211【解析】如图,取AE 的中点G ,连接BG ∵AE →=23AD →,BF →=13BC →,∴AG →=12AE →=13AD →=13BC →=BF →,∴EF →=GB →,∴|GB →|2=|AB →-AG |2=AB →2-2AB →·AG →+AG →2=52-2×5×1×35+1=20,∴|EF →|=|GB →|=25,故选B. 【答案】 B【例6】.已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB →|=2,OC →=53OA →-23OB →.若M是线段AB 的中点,则OC →·OM →的值为( )A .3B .2 3C .2D .-3【解析】 因为点M 是线段AB 的中点,所以OM →=12()OA →+OB →,|OA =|OB |=|AB |=2,所以△ABC 是等边三角形,即〈OA →,OB →〉=60°,OA →·OB →=2×2×cos60°=2,OC →·OM →=⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛-B O A O B O A O21213235=56OA →2-13OB 2+12OA →·OB → =56×22-13×22+12×2=3,故选A. 【答案】 A题组训练三 平面向量的数量积1.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小是( )A .-2B .-32C .-43D .-1【解析】 以BC 为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立坐标,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),所以P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ) 所以PB →+PC →=(-2x ,-2y ),P A →·(PB →+PC →)=2x 2-2y (3-y )=2x 2+2223⎪⎪⎭⎫ ⎝⎛-y -32≥-32 当P ⎪⎪⎭⎫ ⎝⎛23,0时,所求的最小值为-32,故选B.【答案】 B2.已知向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,若OA →与OB 的夹角为60°,且OC →⊥AB →,则实数mn的值为( )A.16B.14 C .6D .4【解析】 OA →·OB →=3×2×cos60°=3, ∵OC →=mOA →+nOB →,OC →⊥AB →,∴(mOA →+nOB →)·AB →=(mOA →+nOB →)·(OB →-OA →)=(m -n )OA →·OB →-mOA →2+nOB →2=0,∴3(m -n )-9m +4n =0,∴m n =16,故选A.【答案】 A题型四 数与形相辅相成求解向量问题【例7】 在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1] 【解析】 法一:设出点D 的坐标,利用向量的坐标运算公式及向量模的运算公式求解.设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又∵OA →+OB →+OD →=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.∴|OA →+OB →+OD →|的几何意义为点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离,由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1.故选D.法二:根据向量OA →+OB →的平行四边形法则及减法法则的几何意义,模的几何意义求解. 如图,设M (-1,3),则OA →+OB →=OM →,取N (1,-3),∴OM →=-ON →.由|CD →|=1,可知点D 在以C 为圆心,半径r =1的圆上, ∴OA →+OB →+OD →=OD →-ON →=ND →,∴|OA →+OB →+OD →|=|ND →|,∴|ND →|max =|NC →|+1=7+1,|ND →|min =7-1. 【答案】 D题组训练四 数与形相辅相成求解向量问题已知|b |=1,非零向量a 满足〈a ,b -a 〉=120°,则|a |的取值范围是________. 【解析】如图,设CA →=b ,CB →=a ,则b -a =BA →,在△ABC 中,AC =1,∠ABC =60°. 根据圆的性质:同弧所对的圆周角相等.作△ABC 的外接圆,当BC 为圆的直径时,|a |最大,此时|a |=BC =1sin 60°=233; 当B ,C 无限接近时,|a |=BC →0.故|a |的取值范围是⎥⎦⎤⎝⎛332,0 【答案】 ⎥⎦⎤⎝⎛332,0 【专题训练】 一、选择题1.已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( ) A .9 B .3 C.109D .310【解析】 向量a =(2,-4),b =(-3,x ),c =(1,-1),∴2a +b =(1,x -8), 由(2a +b )⊥c ,可得1+8-x =0,解得x =9.则|b |=(-3)2+92=310.故选D. 【答案】 D2.已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,那么a ·b 的值为( ) A .1 B .2 C .3D .4【解析】 ∵向量a =(1,k ),b =(2,2), ∴a +b =(3,k +2),又a +b 与a 共线. ∴(k +2)-3k =0,解得k =1,∴a ·b =(1,1)·(2,2)=1×2+1×2=4,故选D. 【答案】 D3.设向量a ,b 满足|a |=1,|b |=2,且a ⊥(a +b ),则向量a 在向量a +2b 方向上的投影为( )A .-1313B.1313C .-113D.113【解析】∵a ⊥(a +b ),∴a ·(a +b )=1+a ·b =0,∴a ·b =-1,∴|a +2b |2=1+4a ·b +16=13,则|a +2b |=13,又a ·(a +2b )=a ·(a +b )+a ·b =-1,故向量a 在向量a +2b 方向上的投影为-113=-1313.选A.【答案】 A4.已知A ,B ,C 是圆O 上的不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1,2]D .(-1,0)【解析】 由题意可得OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线可得kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞),故选B.【答案】 B5.在梯形ABCD 中,AD ∥BC ,已知AD =4,BC =6,若CD →=mBA →+nBC →(m ,n ∈R ),则mn=( ) A .-3 B .-13C.13D .3【解析】 过点A 作AE ∥CD ,交BC 于点E ,则BE =2,CE =4,所以mBA →+nBC →=CD →=EA →=EB →+BA →=-26BC →+BA →=-13BC →+BA →,所以m n =1-13=-3.【答案】 A6.如图,正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=( )A .2 B.83 C.65D.85【解析】 法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1,AM →=⎪⎭⎫ ⎝⎛21,1,BN →=⎪⎭⎫ ⎝⎛-1,21,AC →=(1,1).∵AC →=λAM →+μBN →=λ⎪⎭⎫ ⎝⎛21,1+μ⎪⎭⎫ ⎝⎛-1,21=⎪⎭⎫⎝⎛+-μλμλ2,2,∴⎩⎨⎧λ-12μ=1,λ2+μ=1,解之得⎩⎨⎧λ=65,μ=25,故λ+μ=85.法二 以AB →,AD →作为基底,∵M ,N 分别为BC ,CD 的中点,∴AM →=AB →+BM →=AB →+12AD →,BN →=BC →+CN →=AD →-12AB →,因此AC →=λAM →+μBN →=⎪⎭⎫ ⎝⎛-2μλAB →+⎪⎭⎫ ⎝⎛+μλ2AD →,又AC →=AB →+AD →,因此⎩⎨⎧λ-μ2=1,λ2+μ=1,解得λ=65且μ=25.所以λ+μ=85【答案】 D7.如图所示,直线x =2与双曲线C :x 24-y 2=1的渐近线交于E 1,E 2两点.记OE 1→=e 1,OE 2→=e 2,任取双曲线C 上的点P ,若OP →=a e 1+b e 2(a ,b ∈R ),则ab 的值为( )A.14 B .1 C.12D.18【解析】由题意易知E 1(2,1),E 2(2,-1),∴e 1=(2,1),e 2=(2,-1),故OP →=a e 1+b e 2=(2a +2b ,a -b ),又点P 在双曲线上,∴(2a +2b )24-(a -b )2=1,整理可得4ab =1,∴ab=14. 【答案】 A8.在平面直角坐标系中,向量n =(2,0),将向量n 绕点O 按逆时针方向旋转π3后得向量m ,若向量a 满足|a -m -n |=1,则|a |的最大值是( )A .23-1B .23+1C .3D.6+2+1【解析】 由题意得m =(1,3).设a =(x ,y ),则a -m -n =(x -3,y -3),∴|a -m -n |2=(x -3)2+(y -3)2=1,而(x ,y )表示圆心为(3,3)的圆上的点,求|a |的最大值,即求该圆上点到原点的距离的最大值,最大值为23+1.【答案】 B9.已知锐角△ABC 的外接圆的半径为1,∠B =π6,则BA →·BC →的取值范围为__________.【解析】 如图,设|BA →|=c ,|BC →|=a ,△ABC 的外接圆的半径为1,∠B =π6.由正弦定理得a sin A =c sin C =2,∴a =2sin A ,c =2sin C ,C =5π6-A ,由⎩⎨⎧0<A <π20<5π6-A <π2,得π3<A <π2,∴BA →·BC →=ca cos π6=4×32sin A sin C =23sin A sin ⎪⎭⎫ ⎝⎛-A 65π =23sin A ⎪⎪⎭⎫ ⎝⎛+A A sin 23cos 21=3sin A cos A +3sin 2A =32sin2A +3(1-cos2A )2=32sin2A +32cos2A +32=3sin ⎪⎭⎫ ⎝⎛-32πA +32. ∵π3<A <π2,∴π3<2A -π3<2π3,∴32<sin ⎪⎭⎫ ⎝⎛-32πA ≤1,∴3<3sin ⎪⎭⎫ ⎝⎛-32πA +32≤3+32.∴BA →·BC →的取值范围为⎥⎦⎤⎝⎛+233,3. 【答案】 ⎥⎦⎤ ⎝⎛+233,310.已知点O ,N ,P 在△ABC 所在的平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心【解析】 因为|OA →|=|OB →|=|OC →|,所以点O 到三角形的三个顶点的距离相等,所以O 为△ABC 的外心;由NA →+NB →+NC →=0,得NA →+NB →=-NC →=CN →,由中线的性质可知点N 在三角形AB 边的中线上,同理可得点N 在其他边的中线上,所以点N 为△ABC 的重心;由P A →·PB →=PB →·PC →=PC →·P A →,得P A →·PB →-PB →·PC →=PB →·CA →=0,则点P 在AC 边的垂线上,同理可得点P 在其他边的垂线上,所以点P 为△ABC 的垂心.【答案】 C11.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎪⎭⎫ ⎝⎛4,21,n =⎪⎭⎫⎝⎛0,6π,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ上的最大值是( )A .4B .2C .2 2D .2 3【解析】 因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m ⊗OP →+n ⇒(x ,y )=⎪⎭⎫ ⎝⎛4,21⊗(x 0,cos x 0)+⎪⎭⎫ ⎝⎛0,6π⇒(x ,y )=⎪⎭⎫ ⎝⎛+00cos 4,621x x π⇒⎩⎪⎨⎪⎧x =12x 0+π6,y =4cos x 0,即⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-=00cos 462xy x x π⇒y =4cos ⎪⎭⎫ ⎝⎛-32πx , 即f (x )=4cos ⎪⎭⎫⎝⎛-32πx ,当x ∈⎥⎦⎤⎢⎣⎡3,6ππ时, 由π6≤x ≤π3⇒π3≤2x ≤2π3⇒0≤2x -π3≤π3, 所以12≤cos ⎪⎭⎫ ⎝⎛-32πx ≤1⇒2≤4cos ⎪⎭⎫ ⎝⎛-32πx ≤4,所以函数y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ的最大值是4,故选A. 【答案】 A 二、填空题12.如图,在平行四边形ABCD 中,E 和F 分别在边CD 和BC 上,且DC →=3 DE →,BC →=3 BF →,若AC →=mAE →+nAF →,其中m ,n ∈R ,则m +n =________.【解析】 由题设可得AE →=AD →+DE →=AD →+13DC →=AD →+13AB →,AF →=AB →+BF →=AB →+13AD →=AB→+13AD →,又AC →=mAE →+nAF →,故AC →=mAD →+13mAB →+nAB →+13nAD →=(13m +n )AB →+(m +13n )AD →,而AC →=12(AB →+AD →),故⎩⎨⎧13m +n =12m +13n =12⇒m +n =32.故应填答案32.【答案】 3213.若函数f (x )=2sin ⎪⎭⎫⎝⎛+48ππx (-2<x <14)的图象与x 轴交于点A ,过点A 的直线l与函数f (x )的图象交于B 、C 两点,O 为坐标原点,则(OB →+OC →)·OA →=________.【解析】 ∵-2<x <14,∴f (x )=0的解为x =6,即A (6,0),而A (6,0)恰为函数f (x )图象的一个对称中心,∴B 、C 关于A 对称,∴(OB →+OC →)·OA →=2OA →·OA →=2|OA |2=2×36=72. 【答案】 7214.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点, 则|P A →|2+|PB →|2|PC →|2=________.【解析】 建立如图所示的平面直角坐标系, 设|CA →|=a ,|CB →|=b ,则A (a,0),B (0,b ) ∵点D 是斜边AB 的中点,∴D ⎪⎭⎫⎝⎛2,2b a , ∵点P 为线段CD 的中点,∴P ⎪⎭⎫⎝⎛4,4b a ∴|PC →|2=24⎪⎭⎫ ⎝⎛a +24⎪⎭⎫ ⎝⎛b =a 216+b 216|PB →|2=24⎪⎭⎫ ⎝⎛a +24⎪⎭⎫ ⎝⎛-b b =a 216+9b 216|P A →|2=24⎪⎭⎫ ⎝⎛-a a +24⎪⎭⎫ ⎝⎛b =9a 216+b 216∴|P A →|2+|PB →|2=9a 216+b 216+a 216+9b 216=10⎪⎪⎭⎫ ⎝⎛+161622b a =10|PC →|2,∴|P A →|2+|PB →|2|PC →|2=10.【答案】 1015.在△ABC 中,AB ⊥AC ,AB =1t ,AC =t ,P 是△ABC 所在平面内一点,若AP →=4AB →|AB →|+AC →|AC →|,则△PBC 面积的最小值为________.【解析】 由题意建立如图所示的坐标系,可得A (0,0),B ⎪⎭⎫ ⎝⎛0,1t ,C (0,t ),∵AP →=4AB →|AB →|+AC →|AC →|=(4,0)+(0,1)=(4,1),∴P (4,1);又|BC |=221⎪⎭⎫⎝⎛+t t ,BC 的方程为tx +y t =1,∴点P 到直线BC 的距离为d =221114⎪⎭⎫ ⎝⎛+-+t t t t ,∴△PBC 的面积为S =12·|BC |·d=12·221⎪⎭⎫ ⎝⎛+t t ·221114⎪⎭⎫ ⎝⎛+-+t t t t=12|4t +1t -1|≥12·|24t ·1t -1|=32, 当且仅当4t =1t ,即t =12时取等号,∴△PBC 面积的最小值为32.【答案】 32。
2024届高考一轮复习数学教案(新人教B版):平面向量的综合应用
§5.4平面向量的综合应用题型一平面向量在几何中的应用例1(1)如图,在△ABC 中,cos ∠BAC =14,点D 在线段BC 上,且BD =3DC ,AD =152,则△ABC 的面积的最大值为________.答案15解析设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,因为BD =3DC ,AD →=14AB →+34AC →,又AD =152,cos ∠BAC =14,所以AD →214AB +34AC =116c 2+916b 2+38bc cos ∠BAC =116c 2+916b 2+332bc ,又154=116c 2+916b 2+332bc =14c 234b +332bc ≥2×14c ×34b +332bc =1532bc ,当且仅当c =3b 时,等号成立.所以bc ≤8,又sin ∠BAC =154,所以S △ABC =12bc sin ∠BAC ≤12×8×154=15.(2)(2022·天津)在△ABC 中,CA →=a ,CB →=b ,D 是AC 的中点,CB →=2BE →,试用a ,b 表示DE →为________,若AB →⊥DE →,则∠ACB 的最大值为________.答案32b -12a π6解析DE →=CE →-CD →=32b -12a ,AB →=CB →-CA →=b -a ,由AB →⊥DE →得(3b -a )·(b -a )=0,即3b 2+a 2=4a ·b ,所以cos ∠ACB =a ·b |a ||b |=3b 2+a 24|a ||b |≥23|a ||b |4|a ||b |=32,当且仅当|a |=3|b |时取等号,而0<∠ACB <π,所以∠ACB,π6.思维升华用向量方法解决平面几何问题的步骤平面几何问题――→设向量向量问题――→计算解决向量问题――→还原解决几何问题.跟踪训练1(1)在△ABCBC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为()A .等边三角形B .直角三角形C .等腰三角形D .三边均不相等的三角形答案A解析AB →|AB →|,AC →|AC →|分别表示AB →,AC →方向上的单位向量,AB →|AB →|+AC →|AC →|在∠A 的角平分线上,BC →=0,∴|AB →|=|AC →|,又AB →|AB →|·AC →|AC →|=12,∴cos 〈AB →,AC →〉=AB →|AB →|·AC →|AC →|=12,则AB →与AC →的夹角为60°,即∠BAC =60°,可得△ABC 是等边三角形.(2)在△ABC 中,AC =9,∠A =60°,D 点满足CD →=2DB →,AD =37,则BC 的长为()A .37B .36C .33D .6答案A解析因为CD →=2DB →,所以AD →=AB →+BD →=AB →+13BC→=AB →+13(AC →-AB →)=23AB →+13AC →,设AB =x ,则AD →2+13AC ,得37=49x 2+49×x ×9cos 60°+19×92,即2x 2+9x -126=0,因为x >0,故解得x =6,即AB =6,所以|BC →|=|AC →-AB →|=|AB →|2+|AC →|2-2|AB →|·|AC →|cos 60°=62+92-2×6×9×12=37.题型二和向量有关的最值(范围)问题命题点1与平面向量基本定理有关的最值(范围)问题例2如图,在△ABC 中,点P 满足2BP →=PC →,过点P 的直线与AB ,AC 所在的直线分别交于点M ,N ,若AM →=xAB →,AN →=yAC →(x >0,y >0),则2x +y 的最小值为()A .3B .32C .1 D.13答案A解析由题意知,AP →=AB →+BP →=AB →+BC →3=AB →+AC →-AB →3=2AB →3+AC →3,又AM →=xAB →,AN →=yAC →(x >0,y >0),∴AP →=2AM →3x +AN →3y,由M ,P ,N 三点共线,得23x +13y =1,∴2x +y =(2x +y =53+2x 3y +2y 3x ≥53+22x 3y ·2y3x=3,当且仅当x =y 时等号成立.故2x +y 的最小值为3.命题点2与数量积有关的最值(范围)问题例3已知在边长为2的正△ABC 中,M ,N 分别为边BC ,AC 上的动点,且CN =BM ,则AM →·MN→的最大值为________.答案-43解析建立如图所示的平面直角坐标系,则B (-1,0),C (1,0),A (0,3),则BC →=(2,0),CA →=(-1,3),设BM →=tBC →(0≤t ≤1),则CN →=tCA →(0≤t ≤1),则M (2t -1,0),N (1-t ,3t ),∴AM →=(2t -1,-3),MN →=(2-3t ,3t ),∴AM →·MN →=(2t -1)×(2-3t )+(-3)×(3t )=-6t 2+4t -2=--43,当t =13时,AM →·MN →取得最大值-43.命题点3与模有关的最值(范围)问题例4已知a ,b 是单位向量,a ·b =0,且向量c 满足|c -a -b |=1,则|c |的取值范围是()A .[2-1,2+1]B .[2-1,2]C .[2,2+1]D .[2-2,2+2]答案A解析a ,b 是单位向量,a ·b =0,设a =(1,0),b =(0,1),c =(x ,y ),|c -a -b |=|(x -1,y -1)|=(x -1)2+(y -1)2=1,∴(x -1)2+(y -1)2=1,|c |表示以(1,1)为圆心,1为半径的圆上的点到原点的距离,故12+12-1≤|c |≤12+12+1,∴2-1≤|c |≤2+1.思维升华向量求最值(范围)的常用方法(1)利用三角函数求最值(范围).(2)利用基本不等式求最值(范围).(3)建立坐标系,设变量构造函数求最值(范围).(4)数形结合,应用图形的几何性质求最值.跟踪训练2(1)已知平行四边形ABCD 的面积为93,∠BAD =2π3,E 为线段BC 的中点.若F 为线段DE 上的一点,且AF →=λAB →+56AD →,则|AF →|的最小值为()A.11B .3 C.7D.5答案D解析设|AB →|=x ,|AD →|=y ,则S =x ·y ·sin 2π3=32xy =93,∴xy =18.∵AF →=λAB →+56AD →=λ(AE →+EB →)+56AD →=λAE →,∵E ,F ,D 三点共线,∴λ+56-λ2=1⇒λ=13,∴AF →=13AB →+56AD →,∴|AF →|2=19|AB →|2+59AB →·AD →+2536|AD →|2=19x 2+59xy +2536y 2≥-5+219·2536·x 2·y 2=5,当且仅当x =52y 时,等号成立.∴|AF →|的最小值为5.(2)(2023·苏州模拟)已知△ABC 为等边三角形,AB =2,△ABC 所在平面内的点P 满足|AP →-AB →-AC →|=1,则|AP →|的最小值为()A.3-1B .22-1C .23-1D.7-1答案C解析因为|AB →+AC →|2=AB →2+AC →2+2AB →·AC→=|AB →|2+|AC →|2+2|AB →|·|AC →|cos π3=12,所以|AB →+AC →|=23,由平面向量模的三角不等式可得|AP →|=|(AP →-AB →-AC →)+(AB →+AC →)|≥||AP →-AB →-AC →|-|AB →+AC →||=23-1.当且仅当AP →-AB →-AC →与AB →+AC →方向相反时,等号成立.因此|AP →|的最小值为23-1.(3)(2022·北京)在△ABC 中,AC =3,BC =4,∠C =90°.P 为△ABC 所在平面内的动点,且PC =1,则PA →·PB →的取值范围是()A .[-5,3]B .[-3,5]C .[-6,4]D .[-4,6]答案D解析以C 为坐标原点,CA ,CB 所在直线分别为x 轴、y 轴建立平面直角坐标系(图略),则A (3,0),B (0,4).设P (x ,y ),则x 2+y 2=1,PA →=(3-x ,-y ),PB →=(-x ,4-y ),所以PA →·PB →=x 2-3x +y 2-4y+(y -2)2-254.又+(y -2)2表示圆x 2+y 2=1圆心(0,0)离为52,所以PA →·PB →-254,-254,即PA →·PB →∈[-4,6],故选D.课时精练1.四边形ABCD 中,AD →=BC →,(AB →+AD →)·(AB →-AD →)=0,则这个四边形是()A .菱形B .矩形C .正方形D .等腰梯形答案A解析由题意,AD →=BC →,即|AD |=|BC |且AD ∥BC ,故四边形ABCD 为平行四边形,又(AB →+AD →)·(AB →-AD →)=AC →·DB →=0,故AC ⊥BD 即四边形ABCD 为菱形.2.(多选)如图,点A ,B 在圆C 上,则AB →·AC →的值()A .与圆C 的半径有关B .与圆C 的半径无关C .与弦AB 的长度有关D .与点A ,B 的位置有关答案BC解析如图,连接AB ,过C 作CD ⊥AB 交AB 于D ,则D 是AB 的中点,故AB →·AC →=|AB →|·|AC →|·cos ∠CAD =|AB →|·|AC →|·12|AB →||AC →|=12|AB →|2,故AB →·AC →的值与圆C 的半径无关,只与弦AB 的长度有关.3.如图,在△ABC 中,BD →=23BC →,E 为线段AD 上的动点,且CE →=xCA →+yCB →,则1x +3y 的最小值为()A .8B .9C .12D .16答案D解析由已知得CB →=3CD →,∴CE →=xCA →+yCB →=xCA →+3yCD →,∵E 为线段AD 上的动点,∴A ,D ,E 三点共线,∴x +3y =1且x >0,y >0,∴1x +3y =1x +3y (x +3y )=10+3y x +3xy ≥10+23y x ·3xy=16,当且仅当x =y =14时,等号成立.故1x +3y的最小值为16.4.在△ABC 中,A =π3,G 为△ABC 的重心,若AG →·AB →=AG →·AC →=6,则△ABC 外接圆的半径为()A.3 B.433C .2D .23答案C解析由AG →·AB →=AG →·AC →,可得AG →·(AB →-AC →)=AG →·CB →=0,则有AG ⊥BC ,又在△ABC 中,A =π3,G 为△ABC 的重心,则△ABC 为等边三角形.则AG →·AB →=23×12(AB →+AC →)·AB→|2+|AB →|2cos =12|AB →|2=6,解得|AB →|=23,则△ABC 外接圆的半径为12×|AB →|sin π3=12×2332=2.5.在平行四边形ABCD 中,AB =1,AD =2,AB ⊥AD ,点P 为平行四边形ABCD 所在平面内一点,则(PA →+PC →)·PB →的最小值是()A .-58B .-12C .-38D .-14答案A解析建立如图所示的平面直角坐标系,设P (x ,y ),则A (0,0),B (1,0),C (1,2),所以PB →=(1-x ,-y ),PA →+PC →=(-x ,-y )+(1-x ,2-y )=(1-2x ,2-2y ),故(PA →+PC →)·PB →=(1-2x )(1-x )+(2-2y )(-y )=+-58,所以当x =34,y =12时,(PA →+PC →)·PB →取得最小值-58.6.设向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c ·(a +b -c )=0,则|c |的最大值等于()A .1B .2C .1+52D.5答案D解析向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,不妨设a =(1,0),b =(0,2),c =(x ,y ),∵c ·(a +b -c )=0,∴(x ,y )·(1-x ,2-y )=x (1-x )+y (2-y )=0,即x 2+y 2-x -2y =0,整理可得+(y -1)2=54,则|c |,半径为52的圆上的点到原点的距离,则|c |+52= 5.7.(多选)(2022·珠海模拟)已知点O 在△ABC 所在的平面内,则以下说法正确的有()A .若OA →+OB →+OC →=0,则点O 为△ABC 的重心B .若OA →OB →0,则点O 为△ABC 的垂心C .若(OA →+OB →)·AB →=(OB →+OC →)·BC →=0,则点O 为△ABC 的外心D .若OA →·OB →=OB →·OC →=OC →·OA →,则点O 为△ABC 的内心答案AC解析选项A ,设D 为BC 的中点,由于OA →=-(OB →+OC →)=-2OD →,所以O 为BC 边上中线的三等分点(靠近点D ),同理可证O 为AB ,AC 边上中线的三等分点,所以O 为△ABC 的重心,选项A 正确;选项B ,向量AC →|AC →|,AB →|AB →|分别表示在边AC 和AB 上的单位向量,设为AC ′—→和AB ′—→,则它们的差是向量B ′C ′———→,则当OA →0,即OA →⊥B ′C ′———→时,点O 在∠BAC 的角平分线上,同理由OB →0,知点O 在∠ABC 的角平分线上,故O 为△ABC 的内心,选项B 错误;选项C ,由(OA →+OB →)·AB →=0,得(OA →+OB →)·(OB →-OA →)=0,即OB →2=OA →2,故|OA →|=|OB →|,同理有|OB →|=|OC →|,于是O 为△ABC 的外心,选项C 正确;选项D ,由OA →·OB →=OB →·OC →,得OA →·OB →-OB →·OC →=0,所以OB →·(OA →-OC →)=0,即OB →·CA →=0,所以OB →⊥CA →,同理可证OA →⊥CB →,OC →⊥AB →,所以OB ⊥CA ,OA ⊥CB ,OC ⊥AB ,即点O 是△ABC 的垂心,选项D 错误.8.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,每逢新春佳节,我国许多地区的人们都有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望.图①是一张由卷曲纹和回纹构成的正六边形剪纸窗花,已知图②中正六边形ABCDEF 的边长为2,圆O 的圆心为正六边形的中心,半径为1,若点P 在正六边形的边上运动,MN 为圆的直径,则PM →·PN →的取值范围是()A .[1,2]B .[2,3]C.32,4 D.32,3答案B解析如图所示,取AF 的中点Q ,根据题意,△AOF 是边长为2的正三角形,易得|OQ |=3,又PM →·PN →=(PO →+OM →)·(PO →+ON →)=|PO →|2+PO →·ON →+PO →·OM →+OM →·ON →=|PO →|2+PO →·(ON →+OM →)-1=|PO →|2-1,根据图形可知,当点P 位于正六边形各边的中点时,|PO |有最小值为3,此时|PO →|2-1=2,当点P 位于正六边形的顶点时,|PO |有最大值为2,此时|PO →|2-1=3,故PM →·PN →的取值范围是[2,3].9.(2022·晋中模拟)已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|2PA →+3PB →|的最小值为________.答案7解析以D 为坐标原点,DA →,DC →分别为x ,y 轴的正方向建立平面直角坐标系,如图所示,设C (0,a ),P (0,b ),B (1,a ),A (2,0),0≤b ≤a ,则2PA →+3PB →=2(2,-b )+3(1,a -b )=(7,3a -5b ),|2PA →+3PB →|=49+(3a -5b )2≥7,当且仅当b =3a 5时取得最小值7.10.已知P 是边长为4的正△ABC 所在平面内一点,且AP →=λAB →+(2-2λ)AC →(λ∈R ),则PA →·PC→的最小值为________.答案5解析取BC 的中点O ,∵△ABC 为等边三角形,∴AO ⊥BC ,则以O 为坐标原点建立如图所示的平面直角坐标系,则B (-2,0),C (2,0),A (0,23),设P (x ,y ),∴AP →=(x ,y -23),AB →=(-2,-23),AC →=(2,-23),∴AP →=λAB →+(2-2λ)AC →=(4-6λ,23λ-43)x =4-6λ,y =23λ-23,∴P (4-6λ,23λ-23),∴PA →=(6λ-4,43-23λ),PC →=(6λ-2,23-23λ),∴PA →·PC →=(6λ-4)(6λ-2)+(43-23λ)(23-23λ)=48λ2-72λ+32,由二次函数性质知,当λ=34时,PA →·PC →取得最小值5.11.(2022·广州模拟)在△ABC 中,D 为AC 上一点且满足AD →=13DC →,若P 为BD 上一点,且满足AP →=λAB →+μAC →,λ,μ为正实数,则λμ的最大值为________.答案116解析∵λ,μ为正实数,AD →=13DC →,故AC →=4AD →,∴AP →=λAB →+4μAD →,又P ,B ,D 三点共线,∴λ+4μ=1,∴λμ=14·λ·4μ=116,当且仅当λ=12,μ=18时取等号,故λμ的最大值为116.12.(2022·浙江)设点P 在单位圆的内接正八边形A 1A 2…A 8的边A 1A 2上,则PA →21+P A →22+…+PA →28的取值范围是______________.答案[12+22,16]解析以圆心为原点,A 7A 3所在直线为x 轴,A 5A 1所在直线为y 轴建立平面直角坐标系,如图所示,则A 1(0,1),AA 3(1,0),AA 5(0,-1),A-22A 7(-1,0),A -22,设P (x ,y ),于是PA →21+PA →22+…+PA →28=8(x 2+y 2)+8,因为cos 22.5°≤|OP |≤1,所以1+cos 45°2≤x 2+y 2≤1,故PA →21+PA →22+…+PA →28的取值范围是[12+22,16].。
解密12 平面向量 (解析版)2025高考数学一轮二轮复习经典讲义分层训练同步习题含解析
解密12讲:平面向量【考点解密】考的一.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.考点二.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a +b =b +a ;结合律:(a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算a -b =a +(-b )数乘求实数λ与向量a 的积的运算|λa |=|λ||a |,当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0λ(μa )=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb考点三.向量共线定理向量b 与非零向量a 共线的充要条件是:有且只有一个实数λ,使得b =λa .考点四.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.考点五.平面向量的坐标表示(1)向量及向量的模的坐标表示①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2.(2)平面向量的坐标运算设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1).考点六.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ,b 共线⇔x 1y 2-x 2y 1=0.考点七.向量的夹角已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是向量a 与b 的夹角,向量夹角的范围是[0,π].考点八.平面向量的数量积定义设两个非零向量a ,b 的夹角为θ,则数量|a ||b |·cos θ叫做a 与b 的数量积,记作a ·b投影|a |cos θ叫做向量a 在b 方向上的投影|b |cos θ叫做向量b 在a 方向上的投影几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积考点九.向量数量积的运算律(1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ).(3)(a +b )·c =a ·c +b ·c .考点十.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.结论符号表示坐标表示模|a |=a ·a|a |=x 21+y 21夹角cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22a ⊥b 的充要条件a ·b =0x 1x 2+y 1y 2=0|a ·b |与|a ||b |的关系|a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤(x 21+y 21)(x 22+y 22)【方法技巧】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.【核心题型】题型一:平面向量的基础知识1.(2023·江苏南京·南京市秦淮中学校考模拟预测)下列说法中正确的是()A .单位向量都相等B .平行向量不一定是共线向量C .对于任意向量,a b ,必有||||||a b a b +≤+r r r rD .若,a b 满足||||a b > 且a 与b同向,则a b > 【答案】C【分析】对于A :根据单位向量的概念即可判断;对于B :根据共线向量的定义即可判断;对于C :分类讨论向量的方向,根据三角形法则即可判断;对于D :根据向量不能比较大小即可判断.【详解】依题意,对于A ,单位向量模都相等,方向不一定相同,故错误;对于B ,平行向量就是共线向量,故错误;对于C ,若,a b 同向共线,||||||a b a b +=+r r r r,若,a b 反向共线,||||||a b a b +<+r r r r ,若,a b不共线,根据向量加法的三角形法则及两边之和大于第三边知||||||a b a b +<+r rrr.综上可知对于任意向量,a b ,必有||||||a b a b +≤+r r r r,故正确;对于D ,两个向量不能比较大小,故错误.故选:C.2.(2023·全国·高三专题练习)已知平面向量a ,b 是单位向量,且1a b -=r r ,向量c 满足32c a b --= ,则c r 的最大值为()A .332B .23C .31+D .231+【答案】A【分析】根据向量模的定义可得21a b ⋅=,进而求得3a b +=r r ,利用向量的线性运算,结合向量模的定义即可求解.【详解】解:因为1a b -=r r ,所以21a b -= ,即2221a a b b -⋅+= ,又1a b ==r r ,所以21a b ⋅= .所以()22223+=+=+⋅+=a b a ba ab b r rr r r r r r .因为c c a b a b =--++ ,所以333322c c a b a b ≤--++=+=.故选:A .3.(2022·河南·校联考一模)下列关于平面向量的说法正确的是()A .若,C AB D共线,则点A ,B ,C ,D 必在同一直线上B .若//a b 且//b c,则//a cC .若G 为ABC 的外心,则0GA GB GC ++=D .若O 为ABC 的垂心,则OA OB OB OC OC OA ⋅=⋅=⋅【答案】D【分析】A 向量共线知向量所在直线平行或共线;B 由零向量与任意向量都平行;C 由向量相加不可能等于标量;D 利用向量减法的几何含义,结合垂心的性质,即可判断各选项的正误.【详解】A :若,C AB D共线,则A ,B ,C ,D 在同一直线上或//AB CD ,错误;B :若b为零向量,由任意向量都与零向量平行知,此时,a c 不一定平行,错误;C :若G 为ABC 的外心,有222GA GC GB == ,且GA GB GC ++ 不可能等于标量0,错误;D :O 为ABC 的垂心,由OA OC CA -=,又OB CA ⊥,所以()0OB OA OC OB CA ⋅-=⋅= ,同理有()0OC OB OA OC AB ⋅-=⋅= ,()0OA OB OC OA CB ⋅-=⋅= ,即有OA OB OB OC OC OA ⋅=⋅=⋅,正确.故选:D.题型二:平面向量的线性运算4.(2023·湖南永州·统考二模)设D 为ABC 所在平面内一点,3AD AB =,则()A .32CD CA CB =- B .32CD CA CB=+ C .23CD CA CB =-- D .23CD CA CB=-+ 【答案】D【分析】运用平面向量加法规则计算.【详解】依题意作上图,则()222323CD CB BD CB AB CB AC CB AC CB CA CB =+=+=++=+=-+;故选:D.5.(2023秋·广西河池·高三统考期末)如图,在△ABC 中,M 为线段BC 的中点,G 为线段AM 上一点且2AG GM=,过点G 的直线分别交直线AB 、AC 于P 、Q 两点,(0)AB x AP x => ,(0AC y AQ y => ),则111x y ++的最小值为()A .34B .1C .43D .4【答案】B【分析】由1122AM AB AC =+ 可得33x y AG AP AQ =+ ,根据三点共线向量性质可得133x y+=,再结合均值不等式即可求出结果.【详解】由于M 为线段BC 的中点,则1122AM AB AC=+又2AG GM =,所以32AM AG = ,又(0)AB x AP x => ,(0AC y AQ y => )所以3222x y AG AP AQ =+,则33x y AG AP AQ=+ 因为,,G P Q 三点共线,则133x y+=,化得()14x y ++=由()111111111122211414141x y x y x y x y x y y x y x ⎛⎫⎛⎫⎛⎫+++=+++=++≥⋅+=⎡⎤ ⎪ ⎪ ⎪⎣⎦ ⎪++++⎝⎭⎝⎭⎝⎭当且仅当11x y y x+=+时,即2,1x y ==时,等号成立,111x y ++的最小值为1故选:B6.(2022·河南·校联考模拟预测)如图,在ABC 中,BM BC λ= ,NC AC μ=,直线AM 交BN 于点Q ,23BQ BN =,则()A .1λμ+=B .14λμ=C .()()1231λμ--=D .()()2311λμ--=【答案】C【分析】把BQ 用,BA BM表示,然后由三点,,A Q M 共线可得.【详解】由题意得,222()(1)333BQ BN BA AN BA AC μ⎡⎤==+=+-⎣⎦ 2(1)()(231)3BA BC BA BA BC μμμ⎡⎡⎤+--=+-⎦⎤⎣=⎣⎦22(1)33BA BM μμλ-=+⋅,因为Q ,M ,A 三点共线,故221133μμλ-+⋅=,化简整理得(1)(23)1λμ--=.故选:C .题型三:平面向量的共线定理7.(2023·全国·高三专题练习)ABC 的外心O 满足20OA OB OC ++=,2AB =uuu r ,则ABC 的面积为()A .222+B .122+C .2D .2【答案】B【分析】从OA OB +这个条件可以考虑设AB 的中点为D ,从而得到,,O D C 三点共线可求.【详解】设AB 的中点为D ,则20OA OB OC ++=可化为202,OD OC += 即为2OC OD =-,∴,,O D C 三点共线且CD AB ⊥,ABC 为等腰三角形,由垂径定理得222OA OD AD =+ ,代入数据得222222R R ⎛⎫=+ ⎪ ⎪⎝⎭,解之:2=1=1+2R CD ,,1122+1==21+=2222ABC S AB CD ⎛⎫∴⨯⨯ ⎪ ⎪⎝⎭.故选:B.8.(2023·全国·高三专题练习)如图,在ABC 中,M ,N 分别是线段AB ,AC 上的点,且23AM AB =,13AN AC =,D ,E 是线段BC 上的两个动点,且(,)AD AE x AM y AN x y +=+∈R ,则12x y +的的最小值是()A .4B .43C .94D .2【答案】B【分析】根据平面向量共线定理可设AD mAB nAC =+uuu r uuu r uuu r,1m n +=,AE AB AC λμ=+ ,1λμ+=,再结合AD AE x AM y AN +=+得26x y +=,最后运用基本不等式可求解.【详解】设AD mAB nAC =+uuu r uuu r uuu r,1m n +=,AE AB AC λμ=+ ,1λμ+=,则AD AE m AB n AC AB AC λμ+=+++= 3()()()3()2m AB n AC m AM n AN λμλμ+++=+++ x AM y AN =+,3()2m x λ+=,3()n y m μλ+=⇒+=23x ,13n y μ+=,21222633m n x y x y λμ+++=⇒+=⇒+=.所以12112(2)6x y x y x y ⎛⎫+=++= ⎪⎝⎭1414422222663y x y x x y x y ⎛⎫⎛⎫+++≥++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当32x =,3y =时等号成立.所以12x y +的的最小值是43.故选:B9.(2023·全国·高三专题练习)已知直线l 与圆O :229x y +=相交于不同两点P ,Q ,点M 为线段PQ 的中点,若平面上一动点C 满足()0CP CQ λλ=> ,则OC OM ⋅的取值范围是()A .[)0,3B .(0,32⎤⎦C .[)0,9D .(0,62⎤⎦【答案】C【分析】由题意,判断得点C 在线段PQ 外,从而得COM V 是直角三角形,进而表示出cos OM COM OC∠=,可得2OC OM OM ⋅= ,由03OM ≤<,可得OC OM ⋅的取值范围.【详解】因为()0CP CQ λλ=>,所以P ,Q ,C 三点共线,且点C 在线段PQ 外,因为点M 为线段PQ 的中点,所以OM PQ ⊥,即COM V 是直角三角形,所以cos OM COM OC∠=,由数量积的定义可得:2cos OM OC OM OC OM COM OC OM OM OC⋅=⋅⋅∠=⋅⋅=,因为03OM ≤<,所以209OM ≤<,即09OC OM ≤⋅< ,故选:C.题型四:平面向量的基本定理10.(2023·江苏徐州·徐州市第七中学校考一模)在平行四边形ABCD 中,E 、F 分别在边AD 、CD 上,3AE ED =,,DF FC AF =与BE 相交于点G ,记,AB a AD b == ,则=AG ()A .341111a b + B .631111a b +C .451111a b+D .361111a b+【答案】D【分析】根据题意过点F 作FN 平行于BC ,交BE 于点M ,先利用三角形相似求出65AG FG =,然后利用向量的线性运算即可求解.【详解】过点F 作FN 平行于BC ,交BE 于点M ,因为DF FC =,则F 为DC 的中点,所以MN AE 且11332248MN AE AD AD ==⨯=,因为NF AD =,所以3588MF NF MN AD AD AD =-=-=,由AEG FMG 可得:AE AG FM FG=,所以364558ADAG AE FG FM AD ===,因为666136()()11111121111AG AF AD DF AD AB AB AD ==+=+=+ ,所以361111AG a b =+,故选:D .11.(2022秋·甘肃武威·高三统考阶段练习)如图,在ABC 中,1,2AN AC P =是BN 的中点,若AP mAB nAC =+,则m n +=()A .12B .1C .32D .34【答案】D【分析】利用向量的线性运算求得1124A AB A PC =+,由此求得,m n ,进而求得m n +.【详解】因为P 是BN 的中点,所以12BP BN =.所以11()22AP AB BP AB BN AB AN AB =+=+=+- 11112224AB AN AB AC =+=+ ,所以11,24m n ==,所以34m n +=.故选:D12.(2023秋·湖南长沙·高三长沙一中校考阶段练习)如图,在平行四边形ABCD 中,E 是BC 的中点,2CF FD=,DE 与BF 相交于O .若2AD =,(32)7AO AD AB ⋅-=- ,则AB 的长为()A .2B .3C .4D .5【答案】C【分析】先以AB AD uuu r uuu r、为基底表示AO ,再利用向量的数量积把(32)7AO AD AB ⋅-=- 转化为关于AB 的方程,即可求得AB 的长【详解】在平行四边形ABCD 中,E 是BC 的中点,2CF FD =,DE 与BF 相交于O .设(01)DO DE λλ=<< ,(01)BO BF μμ=<<则11++122AD DO AD DE AD AB AD AD ABλλλλ⎛⎫⎛⎫+==-=-+ ⎪ ⎪⎝⎭⎝⎭22(1)33AB BO AB BF AB AD AB AB ADμμμμ⎛⎫+=+=+-=-+ ⎪⎝⎭由AO AD DO AB BO =+=+ ,可得2(1)3AB AD μμ-+112AD AB λλ⎛⎫=-+ ⎪⎝⎭ 则112213λμμλ⎧-=⎪⎪⎨⎪-=⎪⎩,解之得1234λμ⎧=⎪⎪⎨⎪=⎪⎩,则3142AO AD DO AD AB =+=+ 则22(32)(33194242)7AO AD AB AD AB AD A AD AB B ⎛⎫+⋅-= ⎪⎝⋅-=⎭-=-又2AD =,则279AB -=- ,解之得4AB =uuu r ,即AB 的长为4故选:C题型五:平面向量的坐标运算13.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)已知点123,,,,,n A A A A 和数列{}{},n n a b 满足()()*111122π2πcos ,sin ,0,33n n n n n n n n n n n A A n a A A a A A b +++++⎛⎫=∈+= ⎪⎝⎭N uuuuur uuuuur uuuuuuu r ,若11,,n n a S T =分别为数列{}{},n n a b 的前n 项和,则60602S T +=()A .20-B .243C .48320-D .0【答案】D【分析】根据题意分析可得数列{}{},n n a b 均是周期为6的数列,运算求解即可得结果.【详解】由题意可得:()32313133311313,,,,1,02222k k k k k k A A A A A A ---+⎛⎫⎛⎫=-=--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,。
2020版高考数学一轮复习平面向量基本定理及坐标表示学案文含解析
第二节 平面向量基本定理及坐标表示2019考纲考题考情1.平面向量基本定理(1)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底。
(2)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2。
2.平面向量的坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,该平面内的任一向量a 可表示成a =x i +y j ,a 与数对(x ,y )是一一对应的,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ),其中a 在x 轴上的坐标是x ,a 在y 轴上的坐标是y 。
3.平面向量的坐标运算若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0。
1.平面内不共线向量都可以作为基底,反之亦然。
2.若a 与b 不共线,λa +μb =0,则λ=μ=0。
3.已知a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2。
一、走进教材1.(必修4P 99例8改编)若P 1(1,3),P 2(4,0)且P 是线段P 1P 2的一个三等分点,则点P 的坐标为( )A .(2,2)B .(3,-1)C .(2,2)或(3,-1)D .(2,2)或(3,1)解析 由题意得P 1P →=13P 1P 2→或P 1P →=23P 1P 2→,P 1P 2→=(3,-3)。
设P (x ,y ),则P 1P →=(x -1,y -3),当P 1P →=13P 1P 2→时,(x -1,y -3)=13(3,-3),所以x =2,y =2,即P (2,2);当P 1P →=23P 1P 2→时,(x -1,y -3)=23(3,-3),所以x =3,y =1,即P (3,1)。
高三数学一轮复习备考教学设计:平面向量的应用
《平面向量》一轮复习(文科)教学设计一.考纲要求平面向量是高中数学的新增内容是高考命题的基本素材和主要背景之一,也是近几年高考的热点。
向量有着极其丰富的实际背景,是近代数学中重要和基本的概念之一。
向量是沟通代数、几何与三角函数的一种工具,它同时具有代数的运算性和几何的直观性,是数形结合的典范。
向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,能与中学数学教学内容的许多主干知识综合,形成知识交汇。
(一)、2016考试说明及解读(二)近三年全国卷部分考题展示:平面向量与解三角形交汇的题目3个选择题和7个填空题,其中有3道题是平面向量与解三角形的交汇(四)考情分析1.考查题型主要是以选择、填空为主,分值为10分左右,基本属容易题,也可以为中档的解答题.2.考查内容主要是平面向量的共线与垂直的充要条件,平面向量的线性运算和数量积运算,平面向量的应用等.(五)高考预测1.预计本章在今后的高考中,还将以向量的线性运算、向量的夹角、模、数量积为命题热点,将更加注重向量与其他知识的交汇,以考查基础知识、基本技能为主.2.题型主要以选择、填空为主,因此训练题的难度多数应该控制在中档即可,要适当增加以向量为载体考查平面几何,三角函数,解析几何,数列,不等式等问题的综合训练.3.对于能力型高考题的准备,向量具有基础知识的特点,是一种工具性和方法性知识,更要立足基本知识,基本方法,基本技能。
二.复习目标1、通过平面向量的线性运算和数量积运算,强化对平面向量基本概念的理解及提高向量运算求解能力。
2、通过向量与其它知识交汇的题型,体会向量的工具性作用。
特别是要关注向量与三角函数、解三角形、解析几何的结合。
3、关注数学思想方法在本章中的渗透:思想方法:数形结合的思想、类比的思想、分类讨论的思想、化归的思想、函数与方程的思想等。
解题方法:基向量法、坐标法、待定系数法、几何作图法、函数法等。
三.专题知识体系构建的方法与总体构思(复习计划)(一)进度安排本专题共有四讲内容:第一讲平面向量的概念及其线性运算第二讲平面向量基本定理及坐标表示第三讲平面向量的数量积第四讲平面向量应用举例前三讲每讲3课时,第四讲4课时,包括作业评讲,测试及评讲,共需两周时间。
高考数学大一轮复习 第十二章 系列4选讲 12.1 矩阵与变换教案(含解析)
第十二章系列4选讲考试内容等级要求矩阵的概念 A二阶矩阵与平面向量 B常见的平面变换 A变换的复合与矩阵的乘法 B二阶逆矩阵 B二阶矩阵的特征值与特征向量 B二阶矩阵的简单应用 B坐标系的有关概念 A简单图形的极坐标方程 B极坐标方程与直角坐标方程的互化 B参数方程 B直线、圆及椭圆的参数方程 B参数方程与普通方程的互化 B参数方程的简单应用 B不等式的基本性质 B含有绝对值的不等式的求解 B不等式的证明(比较法、综合法、分析法) B算术—几何平均不等式与柯西不等式 A利用不等式求最大(小)值 B运用数学归纳法证明不等式 B§12.1矩阵与变换考情考向分析矩阵命题出自三个方向:一是变换的复合与矩阵的乘法,通过研究曲线上任意一点的变换可以得出曲线的变换.二是逆变换与逆矩阵,主要由点或曲线的变换用待定系数法求矩阵或逆矩阵.三是特征值与特征向量.属于低档题.1.乘法规则 (1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则:[a 11a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21].(2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 12a 21a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11 a 12a 21a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. (3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:⎣⎢⎢⎡⎦⎥⎥⎤a 11 a 12a 21a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11 b 12b 21 b 22 =⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21 a 11×b 12+a 12×b 22a 21×b 11+a 22×b 21 a 21×b 12+a 22×b 22. (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律. 即(AB )C =A (BC ),AB ≠BA ,由AB =AC 不一定能推出B =C .一般地,两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法运算. 2.常见的平面变换(1)恒等变换:如⎣⎢⎢⎡⎦⎥⎥⎤1 001; (2)伸压变换:如⎣⎢⎢⎡⎦⎥⎥⎤100 12;(3)反射变换:如⎣⎢⎢⎡⎦⎥⎥⎤100-1; (4)旋转变换:如⎣⎢⎢⎡⎦⎥⎥⎤cos θ-sin θsin θcos θ,其中θ为旋转角度;(5)投影变换:如⎣⎢⎢⎡⎦⎥⎥⎤1000,⎣⎢⎢⎡⎦⎥⎥⎤1 010; (6)切变变换:如⎣⎢⎢⎡⎦⎥⎥⎤1k 01(k ∈R ,且k ≠0). 3.逆变换与逆矩阵(1)对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵;(2)若二阶矩阵A ,B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.4.特征值与特征向量设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量. 5.特征多项式 设A =⎣⎢⎢⎡⎦⎥⎥⎤ab cd 是一个二阶矩阵,λ∈R ,我们把行列式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc ,称为A 的特征多项式.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)已知A ,B ,C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C .( √ )(2)⎣⎢⎢⎡⎦⎥⎥⎤1 -12 1⎝ ⎛⎭⎪⎪⎫⎣⎢⎢⎡⎦⎥⎥⎤1 02 1⎣⎢⎢⎡⎦⎥⎥⎤1 021=⎣⎢⎢⎡⎦⎥⎥⎤-3-1 61.( √ )(3)若二阶矩阵A ,B 均存在逆矩阵,则(AB )-1=B -1A -1.( × )(4)矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤3652的特征值为8和-3.( √ ) 题组二 教材改编 2.[P52例3]已知矩阵A =⎣⎢⎡⎦⎥⎤2 345,则A 的逆矩阵A -1=________. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤-52 32 2 -1解析 因为det(A )=2×5-3×4=-2,所以A-1=⎣⎢⎢⎡⎦⎥⎥⎤-52 3242-22=⎣⎢⎢⎡⎦⎥⎥⎤-52 32 2 -1.3.[P11习题T7]已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2 a 21,其中a ∈R .若点P (1,-2)在矩阵M 的变换下得到点P ′(-4,0),实数a 的值为________. 答案 3 解析由⎣⎢⎢⎡⎦⎥⎥⎤2 a 2 1 ⎣⎢⎢⎡⎦⎥⎥⎤ 1-2=⎣⎢⎢⎡⎦⎥⎥⎤-4 0,得2-2a =-4,解得a =3.4.[P39例1(1)]已知A =⎣⎢⎢⎡⎦⎥⎥⎤12 1212 12,B =⎣⎢⎢⎡⎦⎥⎥⎤12 -12-1212,求AB . 解AB =⎣⎢⎢⎡⎦⎥⎥⎤12 121212 ⎣⎢⎢⎡⎦⎥⎥⎤12 -12-1212 =⎣⎢⎢⎡⎦⎥⎥⎤12×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×1212×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×12 =⎣⎢⎢⎡⎦⎥⎥⎤0 00 0. 题组三 易错自纠5.A =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 01,B =⎣⎢⎢⎡⎦⎥⎥⎤0-110,则AB 的逆矩阵为________.答案⎣⎢⎢⎡⎦⎥⎥⎤0 11 0 解析 ∵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 1,B -1=⎣⎢⎢⎡⎦⎥⎥⎤ 0 1-1 0, ∴(AB )-1=B -1A-1=⎣⎢⎢⎡⎦⎥⎥⎤ 0 1-1 0⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 1=⎣⎢⎢⎡⎦⎥⎥⎤0 110. 6.设椭圆的方程为x 2+y 2a =1,若它在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1 0012对应的伸压变换下变为一个圆,则实数a =________. 答案 4解析 设P (x ,y )为椭圆上任意一点,变换后为P ′(x ′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤1 00 12⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x 12y,所以x =x ′,y =2y ′,代入椭圆的方程,得x ′2+4y ′2a=1.因为它表示圆,所以a =4.7.已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 02,B =⎣⎢⎢⎡⎦⎥⎥⎤120 6,求矩阵A -1B . 解 设矩阵A的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤ab cd , 则⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 2⎣⎢⎢⎡⎦⎥⎥⎤a b c d =⎣⎢⎢⎡⎦⎥⎥⎤1 00 1, 即⎣⎢⎢⎡⎦⎥⎥⎤-a -b 2c 2d =⎣⎢⎢⎡⎦⎥⎥⎤100 1, 故a =-1,b =0,c =0,d =12,从而A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12,所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12 ⎣⎢⎢⎡⎦⎥⎥⎤1 20 6=⎣⎢⎢⎡⎦⎥⎥⎤-1 -2 0 3. 题型一 矩阵与变换1.已知a ,b 是实数,如果矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2a b1所对应的变换将直线x-y =1变换成x +2y =1,求a ,b 的值.解 设点(x ,y )是直线x -y =1上任意一点,在矩阵M 的作用下变成点(x ′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤2a b1⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′,所以⎩⎪⎨⎪⎧x ′=2x +ay ,y ′=bx +y .因为点(x ′,y ′)在直线x +2y =1上,所以(2+2b )x +(a +2)y =1,即⎩⎪⎨⎪⎧2+2b =1,a +2=-1,所以⎩⎪⎨⎪⎧a =-3,b =-12.2.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在矩阵M 变换作用下得到了直线m :x -y =4,求直线l 的方程.解(1)设M =⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,则有⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1, ⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤-2 1=⎣⎢⎢⎡⎦⎥⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎢⎡⎦⎥⎥⎤1234. (2)设直线l 上任意一点P (x ,y ),在矩阵M 的变换作用下得到点P ′(x ′,y ′).因为⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤1234 ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y , 且m :x ′-y ′=4,所以(x +2y )-(3x +4y )=4, 整理得x +y +2=0,所以直线l 的方程为x +y +2=0.思维升华已知变换前后的坐标,求变换对应的矩阵时,通常用待定系数法求解. 题型二 求逆矩阵例1已知矩阵det(A )=⎣⎢⎡⎦⎥⎤2 14 3,B =⎣⎢⎡⎦⎥⎤1 10 -1. (1)求A 的逆矩阵A -1; (2)求矩阵C ,使得AC =B .解 (1)因为|A |=2×3-1×4=2,所以A-1=⎣⎢⎢⎡⎦⎥⎥⎤ 32 -12-4222=⎣⎢⎢⎡⎦⎥⎥⎤32 -12-2 1.(2)由AC =B 得(A -1A )C =A -1B ,故C =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤ 32 -12-2 1 ⎣⎢⎢⎡⎦⎥⎥⎤1 10 -1 =⎣⎢⎢⎡⎦⎥⎥⎤32 2-2 -3.思维升华求逆矩阵的方法 (1)待定系数法 设A是一个二阶可逆矩阵⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,AB =BA =E ;(2)公式法|A |=⎪⎪⎪⎪⎪⎪⎪⎪a b cd =ad -bc ≠0,有A -1=⎣⎢⎢⎡⎦⎥⎥⎤d |A | -b |A |-c |A | a |A |. 跟踪训练1已知矩阵A =⎣⎢⎡⎦⎥⎤10 2-2,矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2,求矩阵AB .解 B =(B -1)-1=⎣⎢⎢⎢⎡⎦⎥⎥⎥⎤22 1220212=⎣⎢⎢⎡⎦⎥⎥⎤114012.∴AB =⎣⎢⎢⎡⎦⎥⎥⎤1 20-2 ⎣⎢⎢⎡⎦⎥⎥⎤1 140 12=⎣⎢⎢⎡⎦⎥⎥⎤1 540-1.题型三 特征值与特征向量例2已知矩阵A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤2 11 2. (1)求矩阵A ;(2)求矩阵A -1的特征值以及属于每个特征值的一个特征向量. 解 (1)因为矩阵A 是矩阵A -1的逆矩阵,且|A -1|=2×2-1×1=3≠0,所以A =13⎣⎢⎢⎡⎦⎥⎥⎤ 2 -1-1 2=⎣⎢⎢⎡⎦⎥⎥⎤23 -13-1323. (2)矩阵A -1的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2 -1 -1 λ-2=λ2-4λ+3=(λ-1)(λ-3),令f (λ)=0,得矩阵A -1的特征值为λ1=1或λ2=3,所以ξ1=⎣⎢⎢⎡⎦⎥⎥⎤1 -1是矩阵A -1的属于特征值λ1=1的一个特征向量,ξ2=⎣⎢⎢⎡⎦⎥⎥⎤11是矩阵A -1的属于特征值λ2=3的一个特征向量.思维升华已知A =⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,求特征值和特征向量的步骤 (1)令f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =(λ-a )(λ-d )-bc =0,求出特征值λ;(2)列方程组⎩⎪⎨⎪⎧λ-ax -by =0,-cx +λ-d y =0;(3)赋值法求特征向量,一般取x =1或者y =1,写出相应特征的向量.跟踪训练2(2018·无锡期末)已知变换T 将平面内的点⎝ ⎛⎭⎪⎫1,12,(0,1)分别变换成点⎝ ⎛⎭⎪⎫94,-2,⎝ ⎛⎭⎪⎫-32,4.设变换T 对应的矩阵为M .(1)求矩阵M ;(2)求矩阵M 的特征值.解(1)设M =⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,则⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤112=⎣⎢⎢⎡⎦⎥⎥⎤ 94-2,⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤01=⎣⎢⎢⎡⎦⎥⎥⎤-324, 得a =3,b =-32,c =-4,d =4,∴M =⎣⎢⎢⎡⎦⎥⎥⎤3 -32-4 4. (2)设矩阵M 的特征多项式为f (λ),∴f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-3 32 4 λ-4=(λ-3)(λ-4)-6 =λ2-7λ+6.令f (λ)=0,则λ1=1,λ2=6.1.已知A =⎣⎢⎢⎡⎦⎥⎥⎤1562,求A 的特征值. 解 A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -5 -6 λ-2=(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A 的特征值为λ1=7,λ2=-4. 故A 的特征值为7和-4.2.(2018·南通、泰州模拟)设矩阵A 满足:A ⎣⎢⎢⎡⎦⎥⎥⎤1206=⎣⎢⎢⎡⎦⎥⎥⎤-1-2 03,求矩阵A 的逆矩阵A -1.解 方法一 设矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a b cd , 则⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤1 20 6=⎣⎢⎢⎡⎦⎥⎥⎤-1 -2 0 3, 所以a =-1,2a +6b =-2,c =0,2c +6d =3. 解得b =0,d =12,所以A =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 012. 根据逆矩阵公式得A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 2. 方法二在A ⎣⎢⎢⎡⎦⎥⎥⎤1 206=⎣⎢⎢⎡⎦⎥⎥⎤-1 -2 0 3两边同时左乘逆矩阵A -1, 得⎣⎢⎢⎡⎦⎥⎥⎤1 20 6=A -1⎣⎢⎢⎡⎦⎥⎥⎤-1 -2 0 3. 设A-1=⎣⎢⎢⎡⎦⎥⎥⎤a b c d ,则⎣⎢⎢⎡⎦⎥⎥⎤1 20 6=⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤-1 -2 0 3, 所以-a =1,-2a +3b =2,-c =0,-2c +3d =6. 解得a =-1,b =0,c =0,d =2,从而A-1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 2. 3.(2019·徐州模拟)已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤2101,向量b =⎣⎢⎢⎡⎦⎥⎥⎤10 2.求向量a ,使得A 2a =b . 解 A2=⎣⎢⎢⎡⎦⎥⎥⎤210 1⎣⎢⎢⎡⎦⎥⎥⎤210 1=⎣⎢⎢⎡⎦⎥⎥⎤4 30 1, 设a =⎣⎢⎢⎡⎦⎥⎥⎤x y ,由A2a =b ,得⎣⎢⎢⎡⎦⎥⎥⎤4301 ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤10 2, 即⎩⎪⎨⎪⎧4x +3y =10,y =2,解得⎩⎪⎨⎪⎧x =1,y =2,所以a =⎣⎢⎢⎡⎦⎥⎥⎤12.4.(2018·宿迁期中)已知变换T 把直角坐标平面上的点A (3,-4),B (0,5)分别变换成点A ′(2,-1),B ′(-1,2),求变换T 对应的二阶矩阵M . 解设矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,则⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤ 3-4=⎣⎢⎢⎡⎦⎥⎥⎤ 2-1, 且⎣⎢⎢⎡⎦⎥⎥⎤ab c d ⎣⎢⎢⎡⎦⎥⎥⎤05=⎣⎢⎢⎡⎦⎥⎥⎤-1 2. 所以⎩⎪⎨⎪⎧3a -4b =2,3c -4d =-1,且⎩⎪⎨⎪⎧5b =-1,5d =2.解得⎩⎪⎪⎨⎪⎪⎧a =25,b =-15,c =15,d =25,所以矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤25 -151525. 5.曲线C 1:x 2+2y 2=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1201的作用下变换为曲线C 2,求C 2的方程.解 设P (x ,y )为曲线C 2上任意一点,P ′(x ′,y ′)为曲线x 2+2y 2=1上与P 对应的点,则⎣⎢⎢⎡⎦⎥⎥⎤1 20 1⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤x y ,即⎩⎪⎨⎪⎧x =x ′+2y ′,y =y ′,即⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y .因为P ′是曲线C 1上的点,所以C 2的方程为(x -2y )2+2y 2=1. 6.(2015·江苏)已知x ,y ∈R ,向量α=⎣⎢⎢⎡⎦⎥⎥⎤1-1是矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤x1y0的属于特征值-2的一个特征向量,求矩阵A 以及它的另一个特征值. 解 由已知,得Aα=-2α,即⎣⎢⎢⎡⎦⎥⎥⎤x 1y 0⎣⎢⎢⎡⎦⎥⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤x -1 y =⎣⎢⎢⎡⎦⎥⎥⎤-2 2, 则⎩⎪⎨⎪⎧x -1=-2,y =2,即⎩⎪⎨⎪⎧x =-1,y =2,所以矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤-11 20. 从而矩阵A 的特征多项式f (λ)=(λ+2)(λ-1), 所以矩阵A 的另一个特征值为1.7.求曲线|x |+|y |=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤100 13对应的变换作用下得到的曲线所围成图形的面积.解 设点(x 0,y 0)为曲线|x |+|y |=1上的任一点,在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1 00 13对应的变换作用下得到的点为(x ′,y ′), 则由⎣⎢⎢⎡⎦⎥⎥⎤1 00 13⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′,得⎩⎪⎨⎪⎧x ′=x 0,y ′=13y 0,即⎩⎪⎨⎪⎧x 0=x ′,y 0=3y ′,所以曲线|x |+|y |=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤100 13对应的变换作用下得到的曲线为|x |+3|y |=1,所以围成的图形为菱形,其面积为12×2×23=23.8.(2018·江苏省丰县中学质检)在平面直角坐标系xOy 中,A (0,0),B (-2,0),C (-2,1),设k ≠0,k ∈R ,M =⎣⎢⎢⎡⎦⎥⎥⎤k001,N =⎣⎢⎢⎡⎦⎥⎥⎤0 11 0,点A ,B ,C 在矩阵MN 对应的变换下得到点A 1,B 1,C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求实数k 的值. 解由题设得MN =⎣⎢⎢⎡⎦⎥⎥⎤k001⎣⎢⎢⎡⎦⎥⎥⎤0 11 0=⎣⎢⎢⎡⎦⎥⎥⎤0 k 10, 由⎣⎢⎢⎡⎦⎥⎥⎤0 k 1 0⎣⎢⎢⎡⎦⎥⎥⎤0 -2 -20 0 1=⎣⎢⎢⎡⎦⎥⎥⎤0 0 k 0 -2 -2, 可知A 1(0,0),B 1(0,-2),C 1(k ,-2).计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k |,则由题设知|k |=2×1=2,即k =±2.9.(2018·高邮考试)已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤1-1a1,其中a ∈R ,若点P (1,1)在矩阵A 对应的变换作用下得到点P ′(0,-3). (1)求实数a 的值;(2)求矩阵A 的特征值及特征向量. 解(1)∵⎣⎢⎢⎡⎦⎥⎥⎤1 -1a1⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤0-3, ∴⎣⎢⎢⎡⎦⎥⎥⎤ 0a +1=⎣⎢⎢⎡⎦⎥⎥⎤0-3,∴a =-4. (2)∵A =⎣⎢⎢⎡⎦⎥⎥⎤ 1 -1-41,∴f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 1 4 λ-1=λ2-2λ-3. 令f (λ)=0,得λ1=-1,λ2=3, 对于特征值λ1=-1,解相应的线性方程组⎩⎪⎨⎪⎧-2x +y =0,4x -2y =0,得一个非零解⎩⎪⎨⎪⎧x =1,y =2,因此α1=⎣⎢⎢⎡⎦⎥⎥⎤12是矩阵A 的属于特征值λ1=-1的一个特征向量.对于特征值λ2=3,解相应的线性方程组⎩⎪⎨⎪⎧2x +y =0,4x +2y =0得一个非零解⎩⎪⎨⎪⎧x =1,y =-2,因此α2=⎣⎢⎢⎡⎦⎥⎥⎤ 1-2是矩阵A 的属于特征值λ2=3的一个特征向量.∴矩阵A 的特征值为λ1=-1,λ2=3, 属于特征值λ1=-1,λ2=3的特征向量分别为⎣⎢⎢⎡⎦⎥⎥⎤12,⎣⎢⎢⎡⎦⎥⎥⎤1-2.10.设a >0,b >0,若矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a00b 把圆C :x 2+y 2=1变换为椭圆E :x 24+y 23=1.(1)求a ,b 的值;(2)求矩阵A 的逆矩阵A -1.解 (1)设点P (x ,y )为圆C :x 2+y 2=1上任意一点, 经过矩阵A 变换后对应点为P ′(x ′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤a 00 b ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ax by =⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′,所以⎩⎪⎨⎪⎧x ′=ax ,y ′=by ,因为点P ′(x ′,y ′)在椭圆E :x 24+y 23=1上,所以a 2x 24+b 2y 23=1,这个方程即为圆C 方程,所以⎩⎪⎨⎪⎧a 2=4,b 2=3,又因为a >0,b >0,所以a =2,b = 3.(2)由(1)得A =⎣⎢⎢⎡⎦⎥⎥⎤2 003,所以A-1=⎣⎢⎢⎡⎦⎥⎥⎤1200 33. 11.(2017·江苏)已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤0110,B =⎣⎢⎢⎡⎦⎥⎥⎤1 00 2. (1)求AB ;(2)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程. 解(1)因为A =⎣⎢⎢⎡⎦⎥⎥⎤0110,B =⎣⎢⎢⎡⎦⎥⎥⎤100 2, 所以AB =⎣⎢⎢⎡⎦⎥⎥⎤0110 ⎣⎢⎢⎡⎦⎥⎥⎤100 2=⎣⎢⎢⎡⎦⎥⎥⎤021 0.(2)设Q (x 0,y 0)为曲线C 1上任意一点,它在矩阵AB 对应的变换作用下变为点P (x ,y ),则⎣⎢⎢⎡⎦⎥⎥⎤0 21 0⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤x y , 即⎩⎪⎨⎪⎧2y 0=x ,x 0=y ,所以⎩⎪⎨⎪⎧x 0=y ,y 0=x2.因为点Q (x 0,y 0)在曲线C 1上,所以x 208+y 202=1,从而y 28+x 28=1,即x 2+y 2=8.因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8.12.(2018·江苏省镇江中学质检)已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎢⎡⎦⎥⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4). (1)求矩阵M ;(2)求矩阵M 的另一个特征值及对应的一个特征向量e 2的坐标之间的关系;(3)求直线l :x -y +1=0在矩阵M 的作用下的直线l ′的方程. 解(1)设M =⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,则⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤11=8⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤88, 故⎩⎪⎨⎪⎧a +b =8,c +d =8.⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤-1 2=⎣⎢⎢⎡⎦⎥⎥⎤-2 4,故⎩⎪⎨⎪⎧-a +2b =-2,-c +2d =4.联立以上两个方程组,解得a =6,b =2,c =4,d =4,故M =⎣⎢⎢⎡⎦⎥⎥⎤6 244. (2)由(1)知,矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-6 -2 -4 λ-4=(λ-6)(λ-4)-8=λ2-10λ+16,故其另一个特征值为λ=2. 设矩阵M 的特征值λ=2对应的一个特征向量是e 2=⎣⎢⎢⎡⎦⎥⎥⎤x y ,则Me 2=⎣⎢⎢⎡⎦⎥⎥⎤6x +2y 4x +4y =2⎣⎢⎢⎡⎦⎥⎥⎤x y , 解得2x +y =0.(3)设点(x ,y )是直线l 上的任一点,其在矩阵M 的变换作用下对应的点的坐标为(x ′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤624 4⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′,所以⎩⎪⎨⎪⎧6x +2y =x ′,4x +4y =y ′,即x =14x ′-18y ′,y =-14x ′+38y ′,代入直线l 的方程化简,得x ′-y ′+2=0, 即x -y +2=0.。
2022届高考数学一轮复习-平面向量四心问题(最全)
不,平面向量四心问题近年来,对于三角形的“四心”问题的考察时有发生,尤其是和平面向量相结合来考察很普遍,难度上偏向中等,只要对于这方面的知识准备充分,就能应付自如.下面就平面向量和三角形的“四心”问题的类型题做一阐述:一、重心问题三角形“重心”是三角形三条中线的交点,所以“重心”就在中线上.例 1 已知 O 是平面上一 定点,A ,B ,C 是平面上共线的三个点,动点P 满足:则 P 的轨迹一定通过△ABC的 ( )A 外心 B 内心 C 重心 D 垂心解析:如图 1,以 AB ,AC 为邻边构造平行四边形 ABCD ,E 为对角线的交点,根据向量平行四边形法则,因为,所以,上式可化为, E 在直线 AP 上,因为 AE的中线,所以选C.点评:本题在解题的过程中将平面向量的有关运算与平行四边形的对角线互相平分及三角形重心性质等相关知识巧妙结合.二、垂心问题三角形“垂心”是三角形三条高的交点,所以“垂心”就在高线上.例 2 P 是△ABC所在平面上一点,若,则P 是△ABC的().A.外心B.内心C.重心D.垂心解析:由.即.则,所以P 的垂心. 故选D.点评:本题考查平面向量有关运算,及“数量积为零,则两向量所在直线垂直”、三角形垂心定义等相关知识.将三角形垂心的定义与平面向量有关运算及“数量积为零,则两向量所在直线垂直”等相关知识巧妙结合.三、内心问题三角形“内心”是三角形三条内角平分线的交点,所以“内心”就在内角平分线线上. 例3 已知P 是△ABC所在平面内的一动点,且点P 满足,则动点P 一定过△ABC的〔〕.A、重心B、垂心C、外心D、内心解析:如图2 所示,因为是向量的单位向量设与,又,则原式可化为,由菱形的基本性质知AP ,那么在中,AP ,则知选B.点评:这道题给人的印象当然是“新颖、陌生”,首先是什么?想想一个非零向量除以它的模不就是单位向量?此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,这道题就迎刃而解了.四、外心问题三角形“外心”是三角形三条边的垂直平分线的交点,所以“外心”就在垂直平分线线上.例 4 已知 O 是△ABC ,则 O 是△ABC 的〔〕. A.重心 B.垂心 C.外心 D.内心解析:,由向量模的定义知到的三顶点距离相等.故是的外心,选C.点评:本题将平面向量模的定义与三角形外心的定义及性质等相关知识巧妙结合三角形的“四心”与平面向量向量本身是一个几何概念,具有代数形式和几何形式两种表示方法,易于数形结合,而且向量问题在进行数形结合时具有新形式、新特点,因此可称为高中数学的一个交汇点。
高三数学大一轮复习 5.2平面向量基本定理及坐标表示教案 理 新人教A版
§5.2 平面向量基本定理及坐标表示2014高考会这样考 1.考查平面向量基本定理的应用;2.考查向量的坐标表示和向量共线的应用.复习备考要这样做 1.理解平面向量基本定理的意义、作用;2.运用定理表示向量,然后再进行向量运算. 1. 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2. 平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.3. 平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0. [难点正本 疑点清源] 1. 基底的不唯一性只要两个向量不共线,就可以作为平面的一组基底,对基底的选取不唯一,平面内任意向量a 都可被这个平面的一组基底e 1,e 2线性表示,且在基底确定后,这样的表示是唯一的.2. 向量坐标与点的坐标的区别在平面直角坐标系中,以原点为起点的向量OA →=a ,点A 的位置被向量a 唯一确定,此时点A 的坐标与a 的坐标统一为(x ,y ),但应注意其表示形式的区别,如点A (x ,y ),向量a =OA →=(x ,y ).当平面向量OA →平行移动到O 1A 1→时,向量不变即O 1A 1→=OA →=(x ,y ),但O 1A 1→的起点O 1和终点A 1的坐标都发生了变化.1. 在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.答案 43解析 因为AC →=AB →+AD →,又AE →=AD →+12AB →,AF →=AB →+12AD →,所以AC →=λAE →+μAF →=⎝ ⎛⎭⎪⎫λ+12μAD →+⎝ ⎛⎭⎪⎫12λ+μAB →,得到λ+12μ=1,12λ+μ=1,两式相加得λ+μ=43.2. 在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________.答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).3. 已知向量a =(1,2),b =(-3,2),若k a +b 与b 平行,则k =________.答案 0解析 由k a +b 与b 平行得-3(2k +2)=2(k -3),∴k =0. 4. 若向量a =(1,1),b =(-1,1),c =(4,2),则c 等于( ) A .3a +b B .3a -b C .-a +3bD .a +3b答案 B解析 由已知可设c =x a +y b ,则⎩⎪⎨⎪⎧4=x -y 2=x +y ,∴⎩⎪⎨⎪⎧x =3y =-1.5. (2011·广东)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于( )A.14B.12C .1D .2答案 B解析 a +λb =(1,2)+λ(1,0)=(1+λ,2),而c =(3,4),由(a +λb )∥c 得4(1+λ)-6=0,解得λ=12.题型一 平面向量基本定理的应用例1 已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM →=xAB →,AN →=yAC →,求1x +1y的值.思维启迪:以AB →,AC →为基底来表示向量,建立x ,y 的关系. 解 根据题意知G 为三角形的重心, 故AG →=13(AB →+AC →),MG →=AG →-AM →=13(AB →+AC →)-xAB →=⎝ ⎛⎭⎪⎫13-x AB →+13AC →,GN →=AN →-AG →=yAC →-AG →=yAC →-13(AB →+AC →)=⎝ ⎛⎭⎪⎫y -13AC →-13AB →,由于MG →与GN →共线,根据共线向量定理知 MG →=λGN →⇒⎝ ⎛⎭⎪⎫13-x AB →+13AC →=λ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫y -13AC →-13AB →,∵AB →,AC →不共线, ∴⎩⎪⎨⎪⎧13-x =-13λ13=λ⎝ ⎛⎭⎪⎫y -13⇒13-x -13=13y -13⇒x +y -3xy =0, 两边同除以xy 得1x +1y=3.探究提高 利用基底表示未知向量,实质就是利用向量的加、减法及数乘进行线性运算;向量的表示是向量应用的前提.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为_____.答案311解析 设|BP →|=y ,|PN →|=x ,则AP →=AN →+NP →=14AC →-x x +yBN →,①AP →=AB →+BP →=AB →+y x +yBN →,②①×y +②×x 得AP →=x x +y AB →+y 4x +yAC →,令y 4x +y =211,得y =83x ,代入得m =311.题型二 向量坐标的基本运算例2 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN→=-2b ,(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M 、N 的坐标及向量MN →的坐标.解 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM →=OM →-OC →=3c , ∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN →=ON →-OC →=-2b ,∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), ∴N (9,2).∴MN →=(9,-18).探究提高 向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.已知平行四边形的三个顶点分别是A (4,2),B (5,7),C (-3,4),则第四个顶点D 的坐标是__________________.答案 (-4,-1)或(12,5)或(-2,9) 解析 设顶点D (x ,y ).若平行四边形为ABCD ,则由AB →=(1,5), DC →=(-3-x,4-y ),得⎩⎪⎨⎪⎧-3-x =1,4-y =5,所以⎩⎪⎨⎪⎧x =-4,y =-1;若平行四边形为ACBD ,则由AC →=(-7,2), DB →=(5-x,7-y ),得⎩⎪⎨⎪⎧5-x =-7,7-y =2,所以⎩⎪⎨⎪⎧x =12,y =5;若平行四边形为ABDC ,则由AB →=(1,5), CD →=(x +3,y -4),得⎩⎪⎨⎪⎧x +3=1,y -4=5,所以⎩⎪⎨⎪⎧x =-2,y =9.综上所述,第四个顶点D 的坐标为(-4,-1)或(12,5)或(-2,9). 题型三 共线向量的坐标表示例3 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题:(1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k ;(3)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 思维启迪:(1)向量相等对应坐标相等,列方程解之. (2)由两向量平行的条件列方程解之.(3)设出d =(x ,y ),由平行关系列方程,由模为5列方程,联立方程组求解. 解 (1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎪⎨⎪⎧-m +4n =32m +n =2,得⎩⎪⎨⎪⎧m =59n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2), ∵(a +k c )∥(2b -a ),∴2×(3+4k )-(-5)(2+k )=0, ∴k =-1613.(3)设d =(x ,y ),d -c =(x -4,y -1),a +b =(2,4),由题意得⎩⎪⎨⎪⎧4x -4-2y -1=0x -42+y -12=5,解得⎩⎪⎨⎪⎧x =3y =-1或⎩⎪⎨⎪⎧x =5y =3,∴d =(3,-1)或d =(5,3).探究提高 (1)运用向量的坐标表示,使向量的运算完全代数化,将数与形有机的结合. (2)根据平行的条件建立方程求参数,是解决这类题目的常用方法,充分体现了方程思想在向量中的应用.(2011·北京)已知向量a =(3,1),b =(0,-1),c =(k ,3).若(a -2b )与c 共线,则k =________. 答案 1解析 a -2b =(3,1)-2(0,-1)=(3,3), 又∵(a -2b )与c 共线,∴(a -2b )∥c , ∴3×3-3×k =0,解得k =1.忽视平面向量基本定理的使用条件致误典例:(12分)已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,设t ∈R ,如果3a =c,2b =d ,e=t (a +b ),那么t 为何值时,C ,D ,E 三点在一条直线上?易错分析 本题可以根据向量共线的充要条件列出等式解决,但在得出等式后根据平面向量基本定理列式解决时,容易忽视平面向量基本定理的使用条件,出现漏解,漏掉了当a ,b 共线时,t 可为任意实数这个解. 规范解答解 由题设,知CD →=d -c =2b -3a ,CE →=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE →=kCD →,即(t -3)a +t b =-3k a +2k b , 整理得(t -3+3k )a =(2k -t )b .[4分] ①若a ,b 共线,则t 可为任意实数;[7分]②若a ,b 不共线,则有⎩⎪⎨⎪⎧t -3+3k =0,2k -t =0,解之得t =65.[10分]综上,可知a ,b 共线时,t 可为任意实数;a ,b 不共线时,t =65.[12分]温馨提醒 平面向量基本定理是平面向量知识体系的基石,在解题中有至关重要的作用,在使用时一定要注意两个基向量不共线这个条件. 方法与技巧1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 2.向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键,通过坐标运算可将一些几何问题转化为代数问题处理,从而向量可以解决平面解析几何中的许多相关问题.3.在向量的运算中要注意待定系数法、方程思想和数形结合思想的运用. 失误与防范1.要区分点的坐标和向量坐标的不同,向量的坐标等于表示向量的有向线段的终点坐标减始点坐标;向量坐标中既有大小的信息,又有方向的信息.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分) 1. 与向量a =(12,5)平行的单位向量为( )A.⎝⎛⎭⎪⎫1213,-513B.⎝ ⎛⎭⎪⎫-1213,-513C.⎝ ⎛⎭⎪⎫1213,513或⎝ ⎛⎭⎪⎫-1213,-513D.⎝ ⎛⎭⎪⎫±1213,±513答案 C解析 设e 为所求的单位向量, 则e =±a |a |=±⎝ ⎛⎭⎪⎫1213,513. 2. 如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14答案 A解析 由题意知OP →=OB →+BP →,又BP →=2PA →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x =23,y =13.3. 已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )A .-12a +32bB.12a -32b C .-32a -12bD .-32a +12b答案 B解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ2=λ-μ,∴⎩⎪⎨⎪⎧λ=12μ=-32,∴c =12a -32b .4. 在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)答案 B解析 BC →=3PC →=3(2PQ →-PA →)=6PQ →-3PA → =(6,30)-(12,9)=(-6,21). 二、填空题(每小题5分,共15分)5. 若三点A (2,2),B (a,0),C (0,b ) (ab ≠0)共线,则1a +1b的值为________.答案 12解析 AB →=(a -2,-2),AC →=(-2,b -2), 依题意,有(a -2)(b -2)-4=0, 即ab -2a -2b =0,所以1a +1b =12.6. 已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.答案 12解析 因为a =(1,2),b =(x,1),u =a +2b ,v =2a -b , 所以u =(1,2)+2(x,1)=(2x +1,4),v =2(1,2)-(x,1)=(2-x,3),又因为u ∥v ,所以3(2x +1)-4(2-x )=0, 即10x =5,解得x =12.7. 在平面直角坐标系中,O 为坐标原点,A 、B 、C 三点满足OC →=23OA →+13OB →,则|AC →||AB →|=________.答案 13解析 ∵OC =23OA →+13OB →,∴OC →-OA →=-13OA →+13OB →=13(OB →-OA →),∴AC →=13AB →,∴|AC →||AB →|=13.三、解答题(共22分)8. (10分)已知a =(1,2),b =(-3,2),是否存在实数k ,使得k a +b 与a -3b 共线,且方向相反? 解 若存在实数k ,则k a +b =k (1,2)+(-3,2)=(k -3,2k +2).a -3b =(1,2)-3(-3,2)=(10,-4).若向量k a +b 与向量a -3b 共线,则必有(k -3)×(-4)-(2k +2)×10=0,解得k =-13. 这时k a +b =⎝ ⎛⎭⎪⎫-103,43,所以k a +b =-13(a -3b ). 即两个向量恰好方向相反,故题设的实数k 存在.9. (12分)如图所示,M 是△ABC 内一点,且满足条件AM →+2BM →+3CM →=0,延长CM 交AB 于N ,令CM →=a ,试用a 表示CN →. 解 因为AM →=AN →+NM →,BM →=BN →+NM →, 所以由AM →+2BM →+3CM →=0,得 (AN →+NM →)+2(BN →+NM →)+3CM →=0, 所以AN →+3NM →+2BN →+3CM →=0.又因为A ,N ,B 三点共线,C ,M ,N 三点共线,由平面向量基本定理,设AN →=λBN →,CM →=μNM →, 所以λBN →+3NM →+2BN →+3μNM →=0. 所以(λ+2)BN →+(3+3μ)NM →=0.由于BN →和NM →不共线,由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2=0,3+3μ=0,所以⎩⎪⎨⎪⎧λ=-2,μ=-1.所以CM →=-NM →=MN →,CN →=CM →+MN →=2CM →=2a .B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于( ) A .(-3,6)B .(3,-6)C .(6,-3)D .(-6,3)答案 A解析 方法一 设b =(x ,y ),由已知条件⎩⎪⎨⎪⎧x 2+y 2=35,x -2y5 x 2+y2=-1,整理得⎩⎪⎨⎪⎧x 2+y 2=45,x -2y =-15.解得⎩⎪⎨⎪⎧x =-3,y =6,∴b =(-3,6).方法二 设b =(x ,y ),由已知条件⎩⎨⎧x 2+y 2=35,y +2x =0,解得⎩⎪⎨⎪⎧x =-3,y =6,或⎩⎪⎨⎪⎧x =3,y =-6,(舍去),∴b =(-3,6).方法三 ∵|a |=5,∴1|a |a =⎝ ⎛⎭⎪⎫15,-25,则b =-35⎝⎛⎭⎪⎫1|a |a =(-3,6). 2. 已知平面向量a =(1,2),b =(-2,m ),且a∥b ,则2a +3b 等于( )A .(-2,-4)B .(-3,-6)C .(-4,-8)D .(-5,-10)答案 C 解析 由a =(1,2),b =(-2,m ),且a∥b ,得1×m =2×(-2)⇒m =-4,从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8).3. 已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4,设OC →= λOA →+OB →(λ∈R ),则λ的值为( ) A .1B.13C.12D.23答案 D解析 过C 作CE ⊥x 轴于点E (图略).由∠AOC =π4,知|OE |=|CE |=2, 所以OC →=OE →+OB →=λOA →+OB →,即OE →=λOA →,所以(-2,0)=λ(-3,0),故λ=23. 二、填空题(每小题5分,共15分)4. △ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若p =(a +c ,b ),q =(b -a ,c -a ),且p∥q ,则角C =________.答案 60°解析 因为p∥q ,则(a +c )(c -a )-b (b -a )=0,所以a 2+b 2-c 2=ab ,a 2+b 2-c 22ab =12, 结合余弦定理知,cos C =12, 又0°<C <180°,∴C =60°.5. 已知A (7,1)、B (1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a =________. 答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=21-x y -1=24-y ,解得⎩⎪⎨⎪⎧ x =3y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2. 6. 设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A 、B 、C三点共线,则1a +2b的最小值是________. 答案 8解析 据已知得AB →∥AC →,又∵AB →=(a -1,1),AC →=(-b -1,2),∴2(a -1)-(-b -1)=0,∴2a +b =1,∴1a +2b=2a +b a +4a +2b b =4+b a +4a b ≥4+2b a ·4a b=8, 当且仅当b a =4a b ,即a =14,b =12时取等号, ∴1a +2b的最小值是8. 三、解答题7. (13分)已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A 、B 、M 三点都共线;(3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时a 的值.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧ 4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴A 、B 、M 三点共线.(3)解 当t 1=a 2时,OM →=(4t 2,4t 2+2a 2).又AB →=(4,4),OM →⊥AB →,∴4t 2×4+(4t 2+2a 2)×4=0,∴t 2=-14a 2,故OM →=(-a 2,a 2). 又|AB →|=42,点M 到直线AB :x -y +2=0的距离 d =|-a 2-a 2+2|2=2|a 2-1|.∵S △ABM =12, ∴12|AB |·d =12×42×2|a 2-1|=12, 解得a =±2,故所求a 的值为±2.。
平面向量的基本定理及坐标表示(重点)-备战2023年高考数学一轮复习考点微专题(原卷版)
考向24 平面向量的基本定理及坐标表示【2022·全国·高考真题(文)】已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【2021·全国·高考真题(理)】已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.1.应用平面向量基本定理的关键点(1)平面向量基本定理中的基底必须是两个不共线的向量.(2)选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来.(3)强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等.2.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系. 4.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.向量共线(平行)的坐标表示1.利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为a λ(λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入a λ即可得到所求的向量.2.利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,则利用“若11(),a x y =,22(),b x y =,则a b ∥的充要条件是1221x y x y =”解题比较方便.3.三点共线问题.A ,B ,C 三点共线等价于AB 与AC 共线.4.利用向量共线的坐标运算求三角函数值:利用向量共线的坐标运算转化为三角方程,再利用三角恒等变换求解.1.平面向量基本定理和性质 (1)共线向量基本定理如果()a b R λλ=∈,则//a b ;反之,如果//a b 且0b ≠,则一定存在唯一的实数λ,使a b λ=.(口诀:数乘即得平行,平行必有数乘).(2)平面向量基本定理如果1e 和2e 是同一个平面内的两个不共线向量,那么对于该平面内的任一向量a ,都存在唯一的一对实数12,λλ,使得1122a e e λλ=+,我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为{}12,e e ,1122e e λλ+叫做向量a 关于基底{}12,e e 的分解式.注意:由平面向量基本定理可知:只要向量1e 与2e 不共线,平面内的任一向量a 都可以分解成形如1122a e e λλ=+的形式,并且这样的分解是唯一的.1122e e λλ+叫做1e ,2e 的一个线性组合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理论依据,也是向量的坐标表示的基础.推论1:若11223142a e e e e λλλλ=+=+,则1324,λλλλ==. 推论2:若11220a e e λλ=+=,则120λλ==. (3)线段定比分点的向量表达式如图所示,在ABC △中,若点D 是边BC 上的点,且BD DC λ=(1λ≠-),则向量1AB ACAD λλ+=+.在向量线性表示(运算)有关的问题中,若能熟练利用此结论,往往能有“化腐朽为神奇”之功效,建议熟练掌握.(4)三点共线定理平面内三点A ,B ,C 共线的充要条件是:存在实数,λμ,使OC OA OB λμ=+,其中1λμ+=,O 为平面内一点.此定理在向量问题中经常用到,应熟练掌握.A 、B 、C 三点共线⇔存在唯一的实数λ,使得AC AB λ=; ⇔存在唯一的实数λ,使得OC OA AB λ=+; ⇔存在唯一的实数λ,使得(1)OC OA OB λλ=-+; ⇔存在1λμ+=,使得OC OA OB λμ=+.(5)中线向量定理如图所示,在ABC △中,若点D 是边BC 的中点,则中线向量1(2AD AB =+)AC ,反之亦正确.2.平面向量的坐标表示及坐标运算 (1)平面向量的坐标表示.在平面直角坐标中,分别取与x 轴,y 轴正半轴方向相同的两个单位向量,i j 作为基底,那么由平面向量基本定理可知,对于平面内的一个向量a ,有且只有一对实数,x y 使a xi yj =+,我们把有序实数对(,)x y 叫做向量a 的坐标,记作(,)a x y =.(2)向量的坐标表示和以坐标原点为起点的向量是一一对应的,即有 向量(,)x y 一一对应向量OA一一对应点(,)A x y .(3)设11(,)a x y =,22(,)b x y =,则1212(,)a b x x y y +=++,1212(,)a b x x y y -=--,即两个向量的和与差的坐标分别等于这两个向量相应坐标的和与差.若(,)a x y =,λ为实数,则(,)a x y λλλ=,即实数与向量的积的坐标,等于用该实数乘原来向量的相应坐标.(4)设11(,)A x y ,22(,)B x y ,则AB OB OA =-=12(,x x -12)y y -,即一个向量的坐标等于该向量的有向线段的终点的坐标减去始点坐标.DACBDACB3.平面向量的直角坐标运算①已知点11()A x y ,,22()B x y ,,则2121()AB x x y y =--,,222121||()()AB x x y y =-+- ②已知11(,)a x y =,22(,)b x y =,则a b ±1212()x x y y =±±,,11(,)a x y λλλ=, =a b ⋅1212x x y y +,2211||a x y =+.a b ∥⇔12210x y x y -=,a b ⊥⇔12120x x y y +=1.(2022·青海·海东市第一中学模拟预测(理))已知在ABC 中, 3AD BD =-,CD CE λ=,23AE AB AC μ=+,则μ=( ) A .14B .12C .34D .12.(2022·上海静安·二模)设(,)a x y =,(,)b m n =,且a ,b 均为非零向量,则“x ym n=”是“a b ∥”的( )条件 A .充分非必要B .必要非充分C .充要D .既非充分又非必要3.(2022·上海闵行·二模)已知、、A B C 是平面内不共线的三点,点O 满足20,OA OB OC λλ++=为实常数,现有下述两个命题:(1)当3λ≠-时,满足条件的点O 存在且是唯一的;(2)当3λ=-时,满足条件的点O 不存在.则说法正确的一项是( ) A .命题(1)和(2)均为真命题B .命题(1)为真命题,命题(2)为假命题C .命题(1)和(2)均为假命题D .命题(1)为假命题,命题(2)为真命题4.(2022·全国·高三专题练习)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( ) A .32m n -B .23m n -+C .32m n +D .23m n +5.(2022·全国·模拟预测)在平行四边形ABCD 中,设CB a =,CD b =,E 为AD 的中点,CE 与BD 交于F ,则AF =( )A .23a b+-B .23a b+-C .23a b--D .23a b--6.(2022·河南·平顶山市第一高级中学模拟预测(文))如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2EO AE =,则EB ( )A .1566AB AD -B .1566AB AD +C .5166AB AD -D .5166AB AD +1.(2022·云南师大附中模拟预测(理))已知向量()2,2a t =,()2,5b t =---,若向量a 与向量a b +的夹角为钝角,则t 的取值范围为( ) A .()3,1- B .()()3,11,1--- C .()1,3-D .111,,322⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭2.(2022·江西·上饶市第一中学模拟预测(文))已知向量()1,2a =,(),1=-b m ,若a b ∥,则⋅=a b ( )A .32-B .32C .52-D .523.(2022·山东烟台·三模)如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP xAB y AC =+,则22x y +的最大值为( )A .83B .2C .43D .14.(2022·全国·高三专题练习)△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量()()p a c b q b a c a =+=--,,,,若p q ∥,则角C 的大小为( ) A .π6B .π3C .π2D .2π35.(2022·四川·绵阳中学实验学校模拟预测(文))已知O 为坐标原点,122PP PP =-,若()11,2P 、()22,1P -,则与OP 共线的单位向量为( )A .()3,4-B .()3,4-或()3,4-C .34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭D .34,55⎛⎫- ⎪⎝⎭6.(2022·浙江省江山中学模拟预测)在ABC 中,E ,F 分别为,AC BC 的中点,点D 是线段AF (不含端点)内的任意一点,AD mAB nAE =+,则( ) A .(0,1)m ∈B .(0,2)n ∈C .2n m =D .1m n +=7.(2022·吉林长春·模拟预测(理))互相垂直且有公共原点的两条数轴构成平面直角坐标系,但如果平面坐标系中两条坐标轴不垂直,则这样的坐标系称为“斜坐标系”.如图,在斜坐标系中,过点P 作两坐标轴的平行线,其在x 轴和y 轴上的截距a ,b 分别作为点P 的x 坐标和y 坐标,记(),P a b ,则在x 轴正方向和y 轴正方向的夹角为θ的斜坐标系中,下列选项错误的是( )A .当60θ=︒时()1,2A 与()3,4B 距离为23B .点()1,2A 关于原点的对称点为()1,2A '--C .向量11,ax y 与22,bx y 平行的充要条件是1221y x y x =D .点()1,2A 到直线10x y +-=28.(2022·河南郑州·三模(理))在ABC 中,D 是BC 上一点,2BD DC =,M 是线段AD上一点,14BM tBA BC =+,则t =( )A .12B .23C .34D .589.(多选题)(2022·广东·深圳市光明区高级中学模拟预测)在ABC 中,D 为BC 中点,且2AE ED =,则( )A .2136CE CA CB =+B .1133CE CA CB =+C .CE ∥()CA CB +D .CE ⊥()CA CB -10.(多选题)(2022·湖南·长沙一中模拟预测)已知(cos ,sin )a αα=,(cos ,sin )b ββ=,其中,[0,2π)αβ∈,则以下结论正确的是( )A .若//a b ,则αβ=B .若a b ⊥,则π||2αβ-=或3π2 C .若12a b ⋅=-,则||1a b +=D .若a b a -=,则3()2a ab ⋅+=11.(多选题)(2022·江苏·模拟预测)已知向量(3,2)a =-,(2,1)b =,(,1)c λ=-,R λ∈,则( )A .若(2)a b c +⊥,则4λ=B .若a tb c =+,则6t λ+=-C .a b μ+的最小值为75D .若向量a b +与向量2b c +的夹角为锐角,则λ的取值范围是(,1)-∞-12.(多选题)(2022·全国·模拟预测)已知向量()2,3a m →=-,(),1b m →=,则下列说法正确的是( ) A .若a b →→∥,则12m =B .若a b →→⊥,则3m =C .2a b →→+的最小值为7D .若13m -<<,则a →与b →的夹角为钝角13.(多选题)(2022·全国·模拟预测)在边长为2正六边形ABCDEF 中,G 是线段AB 上一点,AG AB λ=,则下列说法正确的有( )A .若12λ=,则122EG AB AF =--B .若向量CD 在向量AB 上的投影向量是AB μ,则12μ=C .若P 为正六边形ABCDEF 内一点(包含端点),则AP AB ⋅的取值范围是[]2,6-D .若1CG CE ⋅=,则λ的值为2314.(2022·全国·模拟预测(文))在ABC 中,M 为AB 的中点,N 为线段CM 上一点(异于端点),AN xAB yAC =+,则11x y+的最小值为______.15.(2022·湖南·模拟预测)在三角形ABC 中,点D 在边BC 上,若2BD DC =,AD AB AC λμ=+(),λμ∈R ,则λμ-=______.16.(2022·浙江·模拟预测)在平行四边形ABCD 中,12,cos 2AB BAD =∠=,E 、F 是边BC ,CD 上的点,12BE BC =,23CF CD =,若8AE BF ⋅=,则平行四边形的面积为_________.17.(2022·江西·模拟预测(理))在ABC 中,1AB =,2AC =,60BAC ∠=︒,P 是ABC 的外接圆上的一点,若AP mAB =+nAC ,则m n +的最小值是________18.(2022·湖南岳阳·三模)设点P 在以A 为圆心,半径为1的圆弧BC 上运动(包含B ,C 两个端点),∠BAC =23π,且AP xAB y AC =+,x +y 的取值范围为________.19.(2022·上海徐汇·二模)在ABC 中,已知1AB =,2AC =,120A ∠=︒,若点P 是ABC 所在平面上一点,且满足AP AB AC λ=+,1BP CP ⋅=-,则实数λ的值为______________.20.(2022·江苏·阜宁县东沟中学模拟预测)已知0θπ<<,向量2sin ,2cos 2a θθ⎛⎫= ⎪⎝⎭,()1,sin θ=b ,且a b ∥,则θ=______________.1.(2022·全国·高考真题(文))已知向量(2,1)(2,4)a b ==-,,则a b -( )A .2B .3C .4D .52.(2020·全国·高考真题(文))已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .2a b +B .2a b +C .2a b -D .2a b -3.(2019·全国·高考真题(文))已知向量()()2332a b ==,,,,则|–|a b = A .2 B .2 C .52D .504.(2021·全国·高考真题(理))已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.5.(2021·全国·高考真题(文))已知向量()()2,5,,4a b λ==,若//a b ,则λ=_________. 6.(2021·全国·高考真题(文))若向量,a b 满足3,5,1a a b a b =-=⋅=,则b =_________. 7.(2021·全国·高考真题(理))已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.8.(2020·江苏·高考真题)在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.9.(2020·全国·高考真题(理))设,a b 为单位向量,且||1a b +=,则||a b -=______________. 10.(2020·全国·高考真题(文))设向量(1,1),(1,24)a b m m =-=+-,若a b ⊥,则m =______________.11.(2020·全国·高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.12.(2019·北京·高考真题(文))已知向量a =(-4,3),b =(6,m ),且a b ⊥,则m =__________.。
2020届高三文理科数学一轮复习《平面向量基本定理及坐标表示》专题汇编(学生版)
《平面向量基本定理及坐标表示》专题一、相关知识点1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,存在唯一一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,该平面内的任一向量a 可表示成a =xi +yj ,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ). 3.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ,b 共线⇔x 1y 2-x 2y 1=0. 5.常用结论(1)若a 与b 不共线,且λa +μb =0,则λ=μ=0.(2)设a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2.(3)已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22;已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33题型一 平面向量基本定理及其应用1.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________. 2.下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-343.在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,-2)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=(-2,3)4.已知向量e 1,e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则2x -y =_______.5.在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →等于( )A .b -12aB .b +12aC .a +12bD .a -12b6.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB →=a ,AC →=b ,则PQ →=( )A .13a +13bB .-13a +13bC .13a -13bD .-13a -13b7.如图,在△ABC 中,BE 是边AC 的中线,O 是边BE 的中点,若AB →=a ,AC →=b ,则AO →=( )A .12a +12bB .12a +13bC .14a +12bD .12a +14b8.在平行四边形ABCD 中,AC 与BD 交于点O ,F 是线段DC 上的点.若DC =3DF ,设AC ―→=a ,BD ―→=b ,则AF ―→=( )A.14a +12bB.23a +13bC.12a +14bD.13a +23b9.在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC ―→=3EC ―→,F 为AE 的中点,则BF ―→=( )A.23AB ―→-13AD ―→B.13AB ―→-23AD ―→ C .-23AB ―→+13AD ―→ D .-13AB ―→+23AD ―→10.在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB ―→=λAM ―→+μAN ―→,则λ+μ等于( )A.15B.25C.35D.4511.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=_______.12.在△ABC 中,点P 是AB 上一点,且CP ―→=23CA ―→+13CB ―→,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM―→=t CP ―→,则实数t 的值为________.13.在△ABC 所在平面上有三点P ,Q ,R ,满足PA ―→+PB ―→+PC ―→=AB ―→,QA ―→+QB ―→+QC ―→=BC ―→,RA ―→+RB ―→+RC ―→=CA ―→,则△PQR 的面积与△ABC 的面积之比是( )A .1∶2B .1∶3C .1∶4D .1∶514.已知G 是△ABC 的重心,过点G 作直线MN 与AB ,AC 分别交于点M ,N ,且AM ―→=x AB ―→,AN ―→=y AC ―→(x ,y >0),则3x +y 的最小值是( )A.83B.72C.52D.43+23315.在△ABC 中,点D 满足BD →=34BC →,当点E 在射线AD (不含点A )上移动时,若AE →=λAB →+μAC →,则λ+1μ的最小值为________.16.如图,已知△OCB 中,点C 是以A 为中点的点B 的对称点,D 是将OB →分为2∶1的一个内分点,DC 和OA 交于点E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →、DC →;(2)若OE →=λOA →,求实数λ的值.题型二 平面向量的坐标运算1.若a =(2,3),b =(-1,4),则2a -b =________.2.如果向量a =(1,2),b =(4,3),那么a -2b =3.已知平面向量a =(2,-1),b =(1,3),那么|a +b |等于4.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.5.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=6.若向量a =(1,1),b =(-1,1),c =(4,2),则c 等于( )A .3a +bB .3a -bC .-a +3bD .a +3b7.已知a =(1,2),b =(-1,1),c =2a -b ,则|c |=8.已知A (1,4),B (-3,2),向量BC ―→=(2,4),D 为AC 的中点,则BD ―→=________.9.已知在平行四边形ABCD 中,AD ―→=(3,7),AB ―→=(-2,3),对角线AC 与BD 交于点O ,则CO ―→的坐标为( )A.⎝⎛⎭⎫-12,5B.⎝⎛⎭⎫12,5C.⎝⎛⎭⎫-12,-5D.⎝⎛⎭⎫12,-510.已知点 A (1,3),B (4,-1),则与AB →同方向的单位向量是( )A .⎝⎛⎭⎫35,-45B .⎝⎛⎭⎫45,-35C .⎝⎛⎭⎫-35,45D .⎝⎛⎭⎫-45,3511.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,|OC ―→|=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=12.已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于13.已知向量a =(2,1),b =(1,-2).若ma +nb =(9,-8)(m ,n ∈R),则m -n 的值为________.14.平面直角坐标系xOy 中,已知A (1,0),B (0,1),C (-1,c ),(c >0),且|OC →|=2,若OC →=λOA →+μOB →,则实数λ+μ的值为________.题型三 平面向量共线的坐标表示1.已知向量a =(1,-1),则下列向量中与向量a 平行且同向的是( )A .b =(2,-2)B .b =(-2,2)C .b =(-1,2)D .b =(2,-1)2.已知向量a =(1,2),b =(-2,3),若m a -n b 与2a +b 共线(其中n ∈R ,且n ≠0),则mn =________.3.已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =________.4.已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.5.设向量a =(x,1),b =(4,x ),若a ,b 方向相反,则实数x 的值为________.6.已知A (-2,-3),B (2,1),C (1,4),D (-7,t ),若AB →与CD →共线,则t =________.7已知向量a =(1,2),a -b =(4,5),c =(x,3),若(2a +b )∥c ,则x =________.8.已知向量OA ―→=(k ,12),OB ―→=(4,5),OC ―→=(-k ,10),且A ,B ,C 三点共线,则k 的值是9.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为____.10.向量a =⎝⎛⎭⎫13,tan α,b =(cos α,1),且a ∥b ,则cos 2α=11.已知向量a =(1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角θ=12.已知点A (2,3),B (4,5),C (7,10),若AP ―→=AB ―→+λAC ―→(λ∈R),且点P 在直线x -2y =0上,则λ=13.已知平面向量a =(1,m ),b =(-3,1)且(2a +b )∥b ,则实数m 的值为14.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.15.已知平面直角坐标系内的两个向量a =(m ,3m -4),b =(1,2),且平面内的任意向量c 都可以唯一地表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A .(-∞,4)B .(4,+∞)C .(-∞,4)∪(4,+∞)D .(-∞,+∞)16.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.17.已知a =(1,0),b =(2,1).(1)当k 为何值时,ka -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +mb 且A ,B ,C 三点共线,求m 的值.18.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)求满足a =mb +nc 的实数m ,n ;(2)若(a +kc )∥(2b -a ),求实数k .19.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)若(a +kc )∥(2b -a ),求实数k ;(2)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d 的坐标.。
专题12 平面向量-2022高考数学(理)高频考点、热点题型归类强化
【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的
定义式,属于简单题目.
4、(2020
海南省新高考全国Ⅱ卷·T3)在
ABC
中,D
是
AB
边上的中点,则
CB
=(
)
A. 2CD CA
B. CD 2CA
C. 2CD CA
D. CD 2CA
【答案】C
k
a
b
a
0
,
2
即: k a a b k
2 0 ,解得: k
2.
2
2
故答案为: 2 . 2
【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学
生的转化能力和计算求解能力.
4、(2020
北京卷·T13)已知正方形
ABCD
的边长为
2,点
P
满足
AP
余弦值,再求出夹角,注意向量夹角范围为[0, ] .
6、(2019 年高考全国 II 卷理数)已知 AB =(2,3), AC =(3,t), BC =1,则 AB BC =( )
A.−3
B.−2
C.2
D.3
【答案】C
【 解 析 】 由 BC AC AB (1,t 3) , BC 12 (t 3)2 1 , 得 t 3 , 则 BC (1, 0) ,
专题 12 平面向量
—2021 高考数学(理)高频考点、热点题型归类强化
【高频考点及备考策略】
本部分内容在备考时应注意加强对向量加法、减法的平行四边形法则与三角形法则的理解、掌握两向
量共线与垂直的条件,熟记平面向量的相关公式,掌握求模、夹角的方法.
高三数学一轮复习平面向量复习教案和学案
1、向量的概念及运算 一、考纲要求:(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示;(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义; ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义;③了解向量的线性运算性质及其几何意义.(3)平面向量的基本定理及坐标表示了解平面向量的基本定理及其意义;二、知识梳理:1.向量的概念①向量既有大小又有方向的量。
向量一般用c b a ,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB .几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。
向量的大小即向量的模(长度),记作|AB |.即向量的大小,记作|a|。
向量不能比较大小,但向量的模可以比较大小.②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行.零向量a =0 ⇔|a|=0。
由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。
④平行向量(共线向量)方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b 。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.⑤相等向量长度相等且方向相同的向量.相等向量经过平移后总可以重合,记为b a =。
大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x 。
2019高考数学(理)一轮复习全套学案
2019高考数学(理)一轮复习全套学案目录第一章集合与常用逻辑用语第1节集合第2节命题及其关系、充分条件与必要条件第3节全称量词与存在量词、逻辑联结词“且”“或”“非”第二章函数、导数及其应用第1节函数及其表示第2节函数的单调性与最值第3节函数的奇偶性、周期性与对称性第4节二次函数与幂函数第5节指数与指数函数第6节对数与对数函数第7节函数的图像第8节函数与方程第9节函数模型及其应用第10节变化率与导数、计算导数第11节第1课时导数与函数的单调性第11节第2课时导数与函数的极值、最值学案第11节第3课时导数与函数的综合问题学案第12节定积分与微积分基本定理第三章三角函数、解三角形第1节任意角、弧度制及任意角的三角函数第2节同角三角函数的基本关系与诱导公式第3节三角函数的图像与性质第4节函数y=Asin(ωx+φ)的图像及应用学案第5节两角和与差及二倍角的三角函数第6节正弦定理和余弦定理第6节简单的三角恒等变换第7节正弦定理和余弦定理第8节解三角形实际应用举例第四章平面向量、数系的扩充与复数的引入第1节平面向量的概念及线性运算第2节平面向量的基本定理及坐标表示第3节平面向量的数量积与平面向量应用举例第4节数系的扩充与复数的引入第五章数列第1节数列的概念与简单表示法第2节等差数列及其前n项和第3节等比数列及其前n项和第4节数列求和第六章不等式、推理与证明第1节不等式的性质与一元二次不等式第2节基本不等式及其应用第3节二元一次不等式(组)与简单的线性规划问题第4节归纳与类比第5节综合法、分析法、反证法第6节数学归纳法第七章立体几何第1节简单几何体的结构及其三视图和直观图第2节空间图形的基本关系与公理第3节平行关系第4节垂直关系第5节简单几何体的表面积与体积第6节空间向量及其运算第7节第1课时利用空间向量证明平行与垂直第7节第2课时利用空间向量求空间角第八章平面解析几何第1节直线的倾斜角与斜率、直线的方程第2节两条直线的位置关系第3节圆的方程第4节直线与圆、圆与圆的位置关系第5节椭圆第6节抛物线第7节双曲线第8节曲线与方程第9节第1课时直线与圆锥曲线的位置关系第9节第2课时定点、定值、范围、最值问题第九章算法初步、统计与统计案例第1节算法与算法框图第2节随机抽样第3节统计图表、用样本估计总体学案第4节变量间的相关关系与统计案例第十章计数原理、概率、随机变量及其分布第1节分类加法计数原理与分步乘法计数原理第2节排列与组合第3节二项式定理第4节随机事件的概率学案第5节古典概型第6节几何概型第7节离散型随机变量及其分布列第8节二项分布与正态分布第9节离散型随机变量的均值与方差不等式选讲第1节绝对值不等式不等式选讲第2节不等式的证明坐标系与参数方程第1节坐标系坐标系与参数方程第2节参数方程第一节 集 合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合间的基本关系及集合的基本运算.[基础知识填充]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉. (3)集合的三种表示方法:列举法、描述法、Venn 图法. (4)常见数集的记法2.中至少有一AB3.A ∪BA ∩B∁A[(1)若有限集A 中有n 个元素,则A 的子集有2n个,真子集有2n-1个. (2)任何集合是其本身的子集,即:A ⊆A . (3)子集的传递性:A ⊆B ,B ⊆C ⇒A ⊆C . (4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B .(5)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都有两个子集.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3)若{x 2,1}={0,1},则x =0,1.( ) (4){x |x ≤1}={t |t ≤1}.( )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立. (6)若A ∩B =A ∩C ,则B =C .( )[解析] (1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.三个集合分别表示函数y =x 2的定义域(-∞,+∞),值域[0,+∞),抛物线y =x 2上的点集.(3)错误.当x =1时,不满足互异性.(4)正确.两个集合均为不大于1的实数组成的集合. (5)正确.由交集、并集、子集的概念知,正确. (6)错误.当A =∅时,B ,C 可为任意集合.[答案] (1)× (2)× (3)× (4)√ (5)√ (6)×2.(教材改编)若集合A ={x ∈N |x ≤22},a =2,则下列结论正确的是( )A .{a }⊆AB .a ⊆AC .{a }∈AD .a ∉A D [由题意知A ={0,1,2},由a =2,知a ∉A .]3.若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( )A .{x |-2<x <-1}B .{x |-2<x <3}C .{x |-1<x <1}D .{x |1<x <3}A [∵A ={x |-2<x <1},B ={x |x <-1或x >3}, ∴A ∩B ={x |-2<x <-1}.故选A.]4.设全集U ={x |x ∈N +,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,5}D .{2,4}D [由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U (A ∪B )={2,4}.] 5.已知集合A ={x 2+x,4x },若0∈A ,则x =________.-1 [由题意,得⎩⎪⎨⎪⎧x 2+x =0,4x ≠0或⎩⎪⎨⎪⎧4x =0,x 2+x ≠0,解得x =-1.](第2页)(1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( ) A .3 B .4 C .5 D .6(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019为( )A .1B .0C .-1D .±1(1)B (2)C [(1)因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4,a =1,2,3时,x =5,6,7. 当b =5,a =1,2,3时,x =6,7,8. 由集合元素的互异性,可知x =5,6,7,8. 即M ={5,6,7,8},共有4个元素. (2)由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 019+b2 019=(-1)2 019+02 019=-1.]确定集合中的元素是什么,即集合是数集还是点集看这些元素满足什么限制条件根据限制条件列式求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性[跟踪训练A.92 B.98 C .0 D .0或98(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【79140001】(1)D (2)-32 [(1)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的取值为0或98.(2)因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.](1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为________. (1)B (2)m ≤1 [(1)由题意知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 因此B A .(2)当m ≤0时,B =∅,显然B ⊆A ,当m >0时,因为A ={x |(x +1)(x -3)<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为m ≤1.] 化简集合,从表达式中寻找两集合的关系用列举法或图示法等表示各个集合,从元素或图形中寻找关系2.根据集合间的关系求参数的方法已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、A ≠,应分[跟踪训练] (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________. (1)D (2)(-∞,4] [(1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}. 由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)∵B ⊆A ,∴当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.]◎角度1 集合的运算(1)(2017·全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x<1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅(2)(2018·九江一中)设U =R ,A ={-3,-2,-1,0,1,2},B ={x |x ≥1},则A ∩(∁U B )=( ) A .{1,2}B .{-1,0,1,2}C .{-3,-2,-1,0}D .{2}(1)A (2)C [(1)∵B ={x |3x<1},∴B ={x |x <0}.又A ={x |x <1},∴A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A. (2)由题意得∁U B ={x |x <1},∴A ∩(∁U B )={-3,-2,-1,0},故选C.] ◎角度2 利用集合的运算求参数(2018·合肥第二次质检)已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [集合A ∩B ≠∅,则⎩⎪⎨⎪⎧12a ≤2a -1,2a -1≥1,解得a ≥1,故选A.] ◎角度3 新定义集合问题如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =______.{0,6} [由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.]看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解要借助用数轴表示,并注意端点值的取舍以集合为依托,对集合的定义、运算、性质加以创新,但最终应转化为原来的集合问题来解决[跟踪训练A .{1,-3} B .{1,0} C .{1,3}D .{1,5}(2)已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分(如图111)表示的集合是( )图111A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)(3)设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.【79140002】(1)C (2)D (3){0}∪[2,+∞) [(1)∵A ∩B ={1}, ∴1∈B .∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.故选C.(2)由题意可知,M=(-3,1),N=[-1,1],∴阴影部分表示的集合为M∩(∁U N)=(-3,-1).(3)由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).]第二节命题及其关系、充分条件与必要条件[考纲传真] 1.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.(第3页)[基础知识填充]1.四种命题及其相互关系(1)四种命题间的相互关系图121(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.2.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件;(2)若p⇒q,且⇒/p,则p是q的充分不必要条件;(3)若p⇒/q且q⇒p,则p是q的必要不充分条件;(4)若p⇔q,则p是q的充要条件;(5)若p⇒/q且q⇒/p,则p是q的既不充分也不必要条件.[知识拓展] 集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有:(1)若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件.(2)若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件.(3)若A=B,则p是q的充要条件.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“x 2+2x -3<0”是命题.( )(2)命题“若p ,则q ”的否命题是“若p ,则﹁q ”.( ) (3)四种形式的命题中,真命题的个数为0或2或4.( ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( )(5)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( ) [解析] (1)错误.该语句不能判断真假,故该说法是错误的. (2)错误.否命题既否定条件,又否定结论.(3)正确.因为两个命题互为逆否命题,它们有相同的真假性. (4)正确.q 是p 的必要条件说明p ⇒q ,所以p 是q 的充分条件. (5)正确.原命题与逆否命题是等价命题. [答案] (1)× (2)× (3)√ (4)√ (5)√2.(教材改编)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4C [“若p ,则q ”的逆否命题是“若﹁q ,则﹁p ”,显然﹁q :tan α≠1,﹁p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.]3.“x =1”是“(x -1)(x +2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [若x =1,则(x -1)(x +2)=0显然成立,但反之不一定成立,即若(x -1)(x +2)=0,则x =1或-2.]4.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中真命题的个数为( )A .1B .2C .3D .4B [原命题正确,从而其逆否命题也正确;其逆命题为“若a >-6,则a >-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个真命题.]5.(2017·天津高考)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 B [∵2-x ≥0,∴x ≤2. ∵|x -1|≤1,∴0≤x ≤2.∵当x ≤2时不一定有x ≥0,当0≤x ≤2时一定有x ≤2, ∴“2-x ≥0”是“|x -1|≤1”的必要而不充分条件. 故选B.](第4页)(1)命题“若a 2>b 2,则a >b ”的否命题是( ) A .若a 2>b 2,则a ≤b B .若a 2≤b 2,则a ≤b C .若a ≤b ,则a 2>b 2D .若a ≤b ,则a 2≤b 2(2)(2017·河南开封二十五中月考)下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若1x>1,则x >1”的逆否命题(1)B (2)B [(1)根据命题的四种形式可知,命题“若p ,则q ”的否命题是“若﹁p ,则﹁q ”.该题中,p 为a 2>b 2,q 为a >b ,故﹁p 为a 2≤b 2,﹁q 为a ≤b .所以原命题的否命题为:若a 2≤b 2,则a ≤b .(2)对于A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x2=4>1,故为假命题;对于B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知为真命题;对于C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故为假命题;对于D ,命题“若1x>1,则x >1”的逆否命题为“若x ≤1,则1x≤1”,易知为假命题,故选B.]联系已有的数学公式、定理、结论进行正面直接判断利用原命题与逆否命题,逆命题与否命题的等价关系进行判断易错警示:写一个命题的其他三种命题时,需注意:判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例[跟踪训练个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为( )【79140007】A.0 B.1C.2 D.3D[原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.](1)(2017·北京高考)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2017·安徽百所重点高中二模)“a3>b3”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(1)A(2)B[(1)法一:由题意知|m|≠0,|n|≠0.设m与n的夹角为θ.若存在负数λ,使得m=λn,则m与n反向共线,θ=180°,∴m·n=|m||n|cos θ=-|m||n|<0.当90°<θ<180°时,m·n<0,此时不存在负数λ,使得m=λn.故“存在负数λ,使得m=λn”是“m·n<0”的充分而不必要条件.故选A.法二:∵m=λn,∴m·n=λn·n=λ|n|2.∴当λ<0,n≠0时,m·n<0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.(2)由a 3>b 3可得a >b ,当a <0,b <0时,ln a ,ln b 无意义;反之,由ln a >ln b 可得a >b ,故a 3>b 3.因此“a 3>b 3”是“ln a >ln b ”的必要不充分条件.]定义法:根据集合法:根据断问题.等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题[跟踪训练] (1)(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-12<12”是“sin θ<2”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·合肥第一次质检)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(1)A (2)A [(1)∵⎪⎪⎪⎪⎪⎪θ-π12<π12,∴-π12<θ-π12<π12,即0<θ<π6.显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A.(2)由祖暅原理可得﹁q ⇒﹁p ,即p ⇒q ,则充分性成立;反之不成立,如将同一个圆锥正放和倒放,在等高处的截面积不恒相等,但体积相等,∴p 是q 的充分不必要条件,故选A.]m 的取值范围为________.[0,3] [由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.即所求m 的取值范围是[0,3].]1.把本例中的“必要条件”改为“充分条件”,求m 的取值范围.[解] 由x ∈P 是x ∈S 的充分条件,知P ⊆S ,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≤-2,1+m ≥10,解得m ≥9,即所求m 的取值范围是[9,+∞).2.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.[解] 不存在.理由:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,无解,∴不存在实数m ,使x ∈P 是x ∈S 的充要条件. 组求解易错警示:求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象[跟踪训练] (1)已知p :x ≥k ,q :x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1)(2)已知条件p :2x 2-3x +1≤0,条件q :a ≤x ≤a +1.若﹁p 是﹁q 的必要不充分条件,则实数a 的取值范围是________.【79140008】(1)B (2)⎣⎢⎡⎦⎥⎤0,12 [(1)∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1, ∵p 是q 的充分不必要条件,∴k >2.(2)命题p 为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.﹁p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <12, ﹁q 对应的集合B ={}x |x >a +1或x <a .∵﹁p 是﹁q 的必要不充分条件,∴⎩⎪⎨⎪⎧a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12,∴0≤a ≤12.]第三节 全称量词与存在量词、逻辑联结词“且”“或”“非”[考纲传真] 1.了解逻辑联结词“且”“或”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.(第5页) [基础知识填充]1.简单的逻辑联结词(1)命题中的“且”“或”“非”叫作逻辑联结词. (2)命题p 且q ,p 或q ,﹁p 的真假判断2.(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题. (2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)p 或q 的否定为:﹁p 且﹁q ;p 且q 的否定为:﹁p 或﹁q .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)命题“5>6或5>2”是假命题.( )(2)命题﹁(p 且q )是假命题,则命题p ,q 中至少有一个是假命题.( ) (3)“长方形的对角线相等”是特称命题.( )(4)命题“对顶角相等”的否定是“对顶角不相等”.( ) [解析] (1)错误.命题p 或q 中,p ,q 有一真则真. (2)错误.p 且q 是真命题,则p ,q 都是真命题.(3)错误.命题“长方形的对角线相等”可叙述为“所有长方形的对角线相等”,是全称命题. (4)错误.“对顶角相等”是全称命题,其否定为“有些对顶角不相等”. [答案] (1)× (2)× (3)× (4)×2.(教材改编)已知p :2是偶数,q :2是质数,则命题﹁p ,﹁q ,p 或q ,p 且q 中真命题的个数为( )A .1B .2C .3D .4B [p 和q 显然都是真命题,所以﹁p ,﹁q 都是假命题,p 或q ,p 且q 都是真命题.] 3.下列四个命题中的真命题为( )A .存在x 0∈Z,1<4x 0<3B .存在x 0∈Z,5x 0+1=0C .任意x ∈R ,x 2-1=0 D .任意x ∈R ,x 2+x +2>0D [选项A 中,14<x 0<34且x 0∈Z ,不成立;选项B 中,x 0=-15,与x 0∈Z 矛盾;选项C 中,x ≠±1时,x 2-1≠0;选项D 正确.]4.命题:“存在x 0∈R ,x 20-ax 0+1<0”的否定为________.任意x ∈R ,x 2-ax +1≥0 [因为特称命题的否定是全称命题,所以命题“存在x 0∈R ,x 20-ax 0+1<0”的否定是“任意x ∈R ,x 2-ax +1≥0”.]5.若命题“任意x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.[-8,0] [当a =0时,不等式显然成立.当a ≠0时,依题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,解得-8≤a <0.综上可知-8≤a≤0.](第6页)(1)(2018·东北三省四市模拟(一))已知命题p:函数y=lg(1-x)在(-∞,1)上单调递减,命题q:函数y=2cos x是偶函数,则下列命题中为真命题的是( )A.p且q B.(﹁p)或(﹁q)C.(﹁p)且q D.p且(﹁q)(2)若命题“p或q”是真命题,“﹁p为真命题”,则( )A.p真,q真B.p假,q真C.p真,q假D.p假,q假(1)A(2)B[(1)命题p中,因为函数u=1-x在(-∞,1)上为减函数,所以函数y=lg(1-x)在(-∞,1)上为减函数,所以p是真命题;命题q中,设f(x)=2cos x,则f(-x)=2cos(-x)=2cos x=f(x),x∈R,所以函数y=2cos x是偶函数,所以q是真命题,所以p且q是真命题,故选A.(2)因为﹁p为真命题,所以p为假命题,又因为p或q为真命题,所以q为真命题.]确定命题的构成形式;判断依据“或”——一真即真,p”等形式命题的真假是y=|tan x| [跟踪训练] (2018·呼和浩特一调)命题p:x=2π是函数y=|sin x|的一条对称轴,q:2的最小正周期,下列命题①p或q;②p且q;③p;④﹁q,其中真命题有( )【79140013】A.1个B.2个C.3个D.4个C[由已知得命题p为真命题,命题q为假命题,所以p或q为真命题,p且q为假命题,﹁q为真命题,所以真命题有①③④,共3个,故选C.]◎角度1 全称命题、特称命题的真假判断下列命题中,真命题是( ) A .任意x ∈R ,x 2-x -1>0B .任意α,β∈R ,sin(α+β)<sin α+sin βC .存在x ∈R ,x 2-x +1=0D .存在α,β∈R ,sin(α+β)=cos α+cos βD [因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以A 是假命题.当α=β=0时,有sin(α+β)=sin α+sin β,所以B 是假命题.x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,所以C 是假命题.当α=β=π2时,有sin(α+β)=cos α+cos β,所以D 是真命题,故选D.] ◎角度2 含有一个量词的命题的否定命题“任意n ∈N +,f (n )∈N +且f (n )≤n ”的否定形式是( ) A .任意n ∈N +,f (n )∉N +且f (n )>n B .任意n ∈N +,f (n )∉N +或f (n )>n C .存在n 0∈N +,f (n 0)∉N +且f (n 0)>n 0 D .存在n 0∈N +,f (n 0)∉N +或f (n 0)>n 0D [写全称命题的否定时,要把量词“任意”改为“存在”,并且否定结论,注意把“且”改为“或”.]要判断一个全称命题是真命题,必须对限定集合x 成立;但要判断全称命题是假命题,只要能找出集合x 0不成立即可要判断一个特称命题是真命题,只要在限定集合中,至少能找到一个=x 0,使x 0成立即可,否则,这一特称命题就是假命题2.全称命题与特称命题的否定改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写否定结论:对原命题的结论进行否定[跟踪训练] (1)已知命题p :存在x ∈⎝⎭⎪⎫0,2,使得cos x ≤x ,则﹁p 为( )A .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x >xB .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x <xC .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x >xD .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x ≤x(2)下列命题中的假命题是( ) A .存在x 0∈R ,lg x 0=0 B .存在x 0∈R ,tan x 0= 3 C .任意x ∈R ,x 3>0D .任意x ∈R,2x>0(1)C (2)C [(1)原命题是一个特称命题,其否定是一个全称命题,而“cos x ≤x ”的否定是“cos x >x ”.故选C.(2)当x =1时,lg x =0,故命题“存在x 0∈R ,lg x 0=0”是真命题;当x =π3时,tan x =3,故命题“存在x 0∈R ,tan x 0=3”是真命题;由于x =-1时,x 3<0,故命题“任意x ∈R ,x 3>0”是假命题;根据指数函数的性质,对任意x ∈R,2x>0,故命题“任意x ∈R,2x>0”是真命题.]给定命题p :对任意实数x 都有ax 2+ax +1>0成立;q :关于x 的方程x 2-x +a =0有实数根.如果p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.[解] 当p 为真命题时,“对任意实数x 都有ax 2+ax +1>0成立”⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0,∴0≤a <4.当q 为真命题时,“关于x 的方程x 2-x +a =0有实数根”⇔Δ=1-4a ≥0,∴a ≤14.∵p 或q 为真命题,p 且q 为假命题, ∴p ,q 一真一假.∴若p 真q 假,则0≤a <4,且a >14,∴14<a <4;若p 假q 真,则⎩⎪⎨⎪⎧a <0或a ≥4,a ≤14,即a <0.故实数a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫14,4.先求出每个简单命题是真命题时参数的取值范围再根据复合命题的真假确定各个简单命题的真假情况有时不一定只有一种情况最后由的结果求出满足条件的参数取值范围[跟踪训练] (1)(2018·太原模拟(二))若命题“任意x ∈(0,+∞),x +x≥m ”是假命题,则实数m 的取值范围是________.【79140014】(2)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围为( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2(1)(2,+∞) (2)A [(1)由题意,知“存在x ∈(0,+∞),x +1x<m ”是真命题,又因为x ∈(0,+∞),所以x +1x≥2,当且仅当x =1时等号成立,所以实数m 的取值范围为(2,+∞).(2)依题意知,p ,q 均为假命题.当p 是假命题时,任意x ∈R ,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此,由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.]第一节 函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(第8页) [基础知识填充]1.函数与映射的概念2.(1)函数的定义域、值域:数集A 叫作函数的定义域;函数值的集合{f (x )|x ∈A }叫作函数的值域. (2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. (4)函数的表示法:表示函数的常用方法有解析法、图像法和列表法. 3.分段函数若函数在其定义域内,对于定义域的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.[知识拓展]1.函数与映射的本质是两个集合间的“多对一”和“一对一”关系.2.分段函数是高考必考内容,常考查(1)求最值;(2)求分段函数单调性;(3)分段函数解析式;(4)利用分段函数求值,解题的关键是分析用哪一段函数,一般需要讨论.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.如图211所示,所给图像是函数图像的有( )图211A .1个B .2个C .3个D .4个B [(1)中,当x >0时,每一个x 的值对应两个不同的y 值,因此(1)不是函数图像;(2)中,当x =x 0时,y 的值有两个,因此(2)不是函数图像;(3)(4)中,每一个x 的值对应唯一的y 值,因此(3)(4)是函数图像,故选B.]4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=________.139 [f (3)=23,f (f (3))=⎝ ⎛⎭⎪⎫232+1=139.]5.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________.-2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.](第9页)(1)(2018·济南一模)函数f (x )=2x-12+3x +1的定义域为________.(2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.(1)(-1,+∞) (2)[0,1) [(1)由题意得⎩⎨⎧2x -12≥0,x +1≠0,解得x >-1,所以函数f (x )的定义域为(-1,+∞).(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1).]已知函数解析式,构造使解析式有意义的不等式组求解实际问题:由实际意义及使解析式有意义构成的不等式组求解抽象函数:①若已知函数x 的定义域为g x 的定义域由不等式x b 求出;②若已知函数g x 的定义域为x 的定义域为x 在时的值域.x 定义域为[m x 定义域,先求φx 值域[a a ≤h xb ,.[跟踪训练] (1)函数f (x )=1-x+lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,1 B.⎝ ⎛⎭⎪⎫-13,+∞C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 (2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【79140019】(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意可知{ 1-x >0,x +1>0,解得⎩⎨⎧x <1,x >-13,∴-13<x <1,故选A.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(4)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,令t =x +1x,当x >0时,t ≥2x ·1x=2,当且仅当x =1时取等号;当x <0时,t =-⎝ ⎛⎭⎪⎫-x -1x ≤-2,当且仅当x =-1时取等号,∴f (t )=t 2-2t ∈(-∞,-2]∪[2,+∞).综上所述.f (x )的解析式是f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴{ 2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(4)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x+2f (x )=1x.联立方程组⎩⎨⎧fx +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).待定系数法:若已知函数的类型,可用待定系数法换元法:已知复合函数gx 的解析式,可用换元法,此时要注意新元的取值范围构造法:已知关于x 与f ⎝ ⎛⎭⎪⎫1x 或f -x 的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出x已知f x +1)=,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. [解] (1)法一:(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1).法二:(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,所以f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, 所以a =1,b =2,f (x )=x 2+2x +c . 又因为方程f (x )=0有两个相等的实根, 所以Δ=4-4c =0,c =1, 故f (x )=x 2+2x +1.◎角度1 求分段函数的函数值(2015·全国卷Ⅱ)设函数f (x )={ 1+log 2-x ,x <1,x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12C [∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.故选C.]。
平面向量 高三 一轮复习(完整版)
题记:向量由于具有几何形式与代数形式的“双重身份”,使它成为高中数学知识的一个交汇点,成为多项内容的媒介.一、平面向量的概念及其线性运算 【例1】判断下列命题的真假:1、有向线段就是向量,向量就是有向线段;2、非零向量a 与非零向量b 平行,则a 与b 的方向相同或相反;3、向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; 4、若向量a 与b 同向,且|a |>|b |,则a >b ;5、若向量|a |=|b |,则a 与b 的长度相等且方向相同或相反;6、对于任意向量|a |=|b |,且a 与b 的方向相同,则a =b ;7、由于零向量0方向不确定,故0不能与任意向量平行;8、起点不同,但方向相同且模相等的几个向量是相等向量;9、向量与的长度相等;10、两个相等向量若起点相同,则终点必相同; 11、只有零向量的模等于0; 12、共线的单位向量都相等; 13、向量与是两平行向量;14、与任一向量都平行的向量为向量; 15、若AB =DC ,则A 、B 、C 、D 四点构成平行四边形;16、设O 是正三角形ABC 的中心,则向量AB 的长度是OA 长度的3倍;17、在坐标平面上,以坐标原点O 为起点的单位向量的终点P 的轨迹是单位圆; 18、凡模相等且平行的两向量均相等;19、与共线的等价条件可以是存在一个实数λ,使=λ或=λ;20、设,,是任意的非零平面向量且互不共线,则a b a b +>+21、下列命题中:其中正确的是_____________① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+; ④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a b c b ⋅=⋅ 则a c =⑥22a a = ;⑦2a b ba a⋅=; ⑧222()a b a b ⋅=⋅ ; ⑨222()2a b a a b b -=-⋅+二、平面向量平行定理(共线定理)(1)若//(0)a b b ≠⇒(2)若a b λ=共线定理作用(1) (2)【例2】设两个非零向量a 与b不共线,(1)若,28,3().AB a b BC a b CD a b =+=+=-求证:A..B.D 三点共线;(2) 试确定实数k,使ka b + 和a kb +共线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章平面向量
一、平面向量的实际背景及基本概念
1.向量既有________又有________,但两个向量不能比较大小.
2.与向量有关的概念:
(1)零向量:________的向量,记作0.
(2)单位向量:长度等于________个单位长度的向量.
(3)向量的模(长度):向量的大小,记作:||.
3.两个向量间的关系:
(1)相等向量:________的向量.
(2)平行向量(共线向量)
二、平面向量的线性运算
1.向量的加法法则是________法则与________法则.
2.共线向量定理:向量a(a≠0)与b共线,当且仅当有________一个实数λ,使________.
3.向量数乘运算的规律:
(1)λ(μa)=________.
(2)(λ+μ)a=________.
(3)λ(a+b)=________.
三、平面向量基本定理
如果e1,e2是同一平面内的两个________向量,那么对于这一平面内的________向量a,有且只有一对实数λ1,λ2,使a=________.
四、平面向量的数量积
1.向量的数量积的几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影________的乘积.
2.两个向量的数量积:设a与b的夹角为θ,则a·b=______.
3.平面两向量数量积的坐标表示:设a=(x1,y1),b=(x2,y2),则a·b=________.
4.几个常用公式:
(1)a⊥b⇔________.
(2)当a与b同向时,a·b=________.
当a与b反向时,a·b=________.
特别地,a·a=________=________或|a|=.
(3)cosθ=________(θ为a与b的夹角).
(4)|a·b|________|a||b|.
5.设a=(x1,y1),b=(x2,y2),则a∥b⇔________,a⊥b⇔________.
6.向量数量积的运算律:
(1)交换律:a·b=________.
(2)结合律:(λa)·b=________=________.
(3)分配律:a·(b+c)=________.
五、平面向量应用举例
用向量方法解决平面几何问题的“三步曲”
1.转化:建立平面几何与向量的联系,用________表示问题中涉及的几何元素,将平面几何问题转化为________.
2.运算:通过向量________,研究几何元素之间的关系,如距离、夹角等问题.
3.翻译:把运算结果“翻译”成几何关系.
热点一向量的有关概念辨析问题
【例1】给出下列四种说法,其中正确的说法是( )
A.相等的向量即为模相等的向量
B.方向不同的向量也有可能相等
C.平行向量即为方向相同的向量
D.0平行于任何一个向量
热点二向量的线性运算
【例2】(1)在△ABC中,已知点D为边BC的靠近点B的三等分点,设=a,=b,则= ( )
A.a-b
B.b-a
C.a-b
D.b-a
(2)已知E为△ABC的边BC的中点,△ABC所在平面内有一点P,满足++=0,设
=λ,则λ的值为( )
A.2
B.1
C.
D.
热点三平面向量的坐标运算
【例3】(1)(2011·湖南学业水平考试真题)在平面直角坐标系中,O为原点,点P是线段AB
的中点,向量=(3,3),=(-1,5),则向量= ( )
A.(1,8)
B.(2,4)
C.(1,4)
D.(2,8)
(2)(2015·邵阳学业水平模拟)已知向量=(1,0),=(1,1),则||等
于( )
A.1
B.
C.2
D.
平面向量坐标运算的技巧
(1)进行平面向量坐标运算前,先要分清向量坐标与向量起点、终点的关系.
(2)在进行平面向量的坐标运算时,应先将平面向量用坐标的形式表示出来,再根据向量的直角坐标运算法则进行计算.
(3)在向量的运算中要注意待定系数法、方程思想和数形结合思想的应用.
热点四共线向量
【例4】(1)(2015·湖南学业水平考试真题)已知向量a=(1,2),b=(-3,-6),若b=λa,则实数λ的值为( )
A. B.3 C.- D.-3
(2)(2015·长沙学业水平模拟)设e1,e2是两个不共线的向量,=2e1+k e2,
=e1+3e2,=2e1-e2,若A,B,D三点共线,则k=________.
热点五平面向量的数量积
【例5】(1)(2014·湖南学业水平考试真题)在△ABC中,若·=0,则△ABC的形状是( )
A.直角三角形
B.等腰三角形
C.锐角三角形
D.钝角三角形
(2)(2013·湖南学业水平考试真题)已知向量a与b的夹角为,|a|=,且a·b=4,则|b|=________.
向量数量积的运算应注意以下几点
(1)θ的范围为0°≤θ≤180°.
(2)若a·b>0⇔θ为锐角或零角,若a·b<0⇔θ为钝角或平角.
热点六平面向量在几何中的应用
【例6】在△ABC中,D,E,F分别为边AB,BC,CA的中点,G是它的重心,已知D点坐标为(1,2),E 点坐标为(3,5),F点坐标为(2,7),求A,B,C,G的坐标.
一、选择题
1.(考点1,2,3)下列说法正确的是( )
A.若a∥b,b∥c,则a∥c
B.向量a与b平行,则a与b的方向相同或相反
C.向量的长度与向量的长度相等
D.若四边形ABCD是平行四边形,则=
2.(考点4)++等于( )
A. B. C.0 D.
3.(考点9)已知M(3,-2),N(-5,-1)且=,则点P的坐标为( )
A.(-8,1)
B.
C. D.(8,-1)
4.(考点10)(2013·湖南学业水平考试真题)已知向量a=(1,2),b=(x,4),若
a∥b,则实数x的值为( )
A.8
B.2
C.-2
D.-8
5.(考点8,9)已知a=(-5,6),b=(-3,2),c=(x,y),若a-3b+2c=0,则c等于
( )
A.(-2,6)
B.(-4,0)
C.(7,6)
D.(-2,0)
6.(考点11,12)(2011·湖南学业水平考试真题)已知向量a=(2,1),b=(1,x),若a⊥b,则实数x的值为( )
A.-2
B.-1
C.0
D.1
7.(考点11,12)已知a·b=-12,|a|=4,a和b的夹角为135°,则|b|为( )
A.12
B.3
C.6
D.9
8.(考点11)如图,D为等腰三角形ABC底边AB的中点,则下列等式恒成立的
是( )
A.·=0
B.·=0
C.·=0
D.·=0
二、填空题
9.(考点10)已知向量a=(4,2),b=(x,3),若a∥b,则实数x的值为________.
10.(考点6,8,9)已知向量a=(3,4),b=(-1,2),c=(5,10),若用a和b表示c,则c=________.
11.(考点12)(2015·长沙学业水平模拟)若a·b=-10,|a|=5,|b|=4,则a,b的夹角为________.
12.(考点11,12,13)在平面直角坐标系中,正方形OABC的对角线OB的两端点坐标分别为O(0,0),B(1,1),则·=______.
三、解答题
13.(考点4,7,9)设=(3,1),=(-1,2),⊥,∥,试求满足
+=的的坐标(O为坐标原点).
14.(考点11,12)已知向量a=(-2,-1),b=(λ,1),且a与b的夹角为钝角,试求实数λ的取值范围.
15.(考点12)平面向量a=(,-1),b=,若存在不同时为0的实数k和t,使x=a+(t2-3)b,y=-k a+t b,且x⊥y,试求函数关系式k=f(t).
16.(考点4,8,11)(2014·湖南学业水平考试真题)已知向量a=(1,sinθ),
b=(2,1).
(1)当θ=时,求向量2a+b的坐标.
(2)若a∥b,且θ∈,求sin的值.
测评阶段效果,请进入“单元达标检测(七)”。