图论及其应用1-3章习题答案(电子科大)
电子科技大学研究生试题《图论及其应用》(参考答案)
电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。
则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。
图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )AC DA B CD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。
解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k (G).解:用公式(G P k -G 的色多项式:)3)(3)()(45-++=k k k G P k 。
六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。
解:设该树有n 1个1度顶点,树的边数为m.一方面:2m=n 1+2n 2+…+kn k另一方面:m= n 1+n 2+…+n k -1 v v 13图G由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k七.证明:(8分) 设G 是具有二分类(X,Y)的偶图,证明(1)G 不含奇圈;(2)若|X |≠|Y |,则G 是非哈密尔顿图。
电子科技大学-图论第一次作业-
课本习题一:
4. 证明下面两图同构。
v1
u1
v2
v6
v10 v5
v7
v8 v9
v3
v4 (a)
u6 u5
u2
u8
u10
u3
u7
u9
u4
(b)
证明:作映射 f : vi ↔ ui (i=1,2….10)
容易证明,对vi v j E ((a)),有 f (v i vj,),,ui,uj,,E,((b))
中不
3.设 G 是阶大于 2 的连通图,证明下列命题等价:
(1)
G 是块
(2)
G 无环且任意一个点和任意一条边都位于同一
个圈上;
(3)
G 无环且任意三个不同点都位于同一条路上。
: 是块,任取 的一点 ,一边 ,在 边插入一点 ,使得 成为两条边,由此 得到新图 ,显然 的是阶数大于 的块,由定理 4, 中的 u,v 位于同一个 圈上,于是 中 u 与边 都位于同一个圈上。
件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图
有 11 个。
11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)
不是图序列。
证明:由于 7 个顶点的简单图的最大度不会超过 6,因此序列(7,6,5,4,3,3,2)不
是图序列;
(6,6,5,4,3,3,1)是图序列
(G1) 2 最小边割{(6,5),(8,5)} {(6,7),(8,7)}{(6,9),(8,9)}
1j 10 ) 由图的同构定义知,图(a)与(b)是同构的。
5.证明:四个顶点的非同构简单图有 11 个。
证明:设四个顶点中边的个数为 m,则有:
电子科大图论答案(优.选)
图论第三次作业一、第六章2.证明:根据欧拉公式的推论,有m ≦l*(n-2)/(l-2),(1)若deg(f)≧4,则m ≦4*(n-2)/2=2n-4;(2)若deg(f)≧5,则m ≦5*(n-2)/3,即:3m ≦5n-10;(3)若deg(f)≧6,则m ≦6*(n-2)/4,即:2m ≦3n-6.3.证明:∵G 是简单连通图,∴根据欧拉公式推论,m ≦3n-6;又,根据欧拉公式:n-m+φ=2,∴φ=2-n+m ≦2-n+3n-6=2n-4.4.证明:(1)∵G 是极大平面图,∴每个面的次数为3,由次数公式:2m==3φ,由欧拉公式:φ=2-n+m,∴m=2-n+m,即:m=3n-6.(2)又∵m=n+φ-2,∴φ=2n-4.(3)对于3n >的极大可平面图的的每个顶点v ,有()3d v ≥,即对任一一点或者子图,至少有三个邻点与之相连,要使这个点或子图与图G 不连通,必须把与之相连的点去掉,所以至少需要去掉三个点才能使()(H)w G w G <-,由点连通度的定义知()3G κ≥。
5.证明:假设图G 不是极大可平面图,那么G 不然至少还有两点之间可以添加一条边e ,使G+e 仍为可平面图,由于图G 满足36m n =-,那么对图G+e 有36m n '=-,而平面图的必要条件为36m n '≤-,两者矛盾,所以图G 是极大可平面图。
6.证明:(1)由()4G δ=知5n ≥当n=5时,图G 为5K ,而5K 为不可平面图,所以6n ≥,(由()4G δ=和握手定理有24m n ≥,再由极大可平面图的性质36m n =-,即可得6n ≥)对于可平面图有()5G δ≤,而6n ≥,所以至少有6个点的度数不超过5.(2)由()5G δ=和握手定理有25m n ≥,再由极大可平面图的性质36m n =-,即可得12n ≥,对于可平面图有()5G δ≤,而12n ≥,所以至少有12个点的度数不超过5.二、第七章2.证明:设n=2k+1,∵G 是Δ正则单图,且Δ>0,∴m(G)==>k Δ,由定理5可知χˊ(G)=Δ(G)+1.28.解: (1)又:=k(k-1)(k-2)2(k-3)+k(k-1)2(k-2)=k(k-1)(k-2)(k2-4k+5)=k(k-1)(k-2)2(k-3),所以,原图色多项式为:k(k-1)(k-2)2(k2-4k+5)-k(k-1)(k-2)2(k-3)=k(k-1)(k-2)2(k2-5k+8)(2)∵原图与该图同构,又,同构的图具有相同的色多项式,所以原图色多项式为:k(k-1)(k-2)2(k2-5k+8)。
图论习题答案
图论习题答案
《图论习题答案》
图论作为数学中的一个重要分支,研究的是图的性质和图之间的关系。
在学习
图论的过程中,我们常常会遇到各种各样的习题,通过解答这些习题可以帮助
我们更好地理解图论的知识。
下面就让我们来看一些图论习题的答案吧。
1. 问:一个图中有多少条边?
答:一个图中的边数可以通过计算每个顶点的度数之和再除以2来得到。
2. 问:一个图中有多少个连通分量?
答:一个图中的连通分量可以通过使用深度优先搜索或广度优先搜索来求得。
3. 问:一个图中是否存在欧拉回路?
答:一个图中存在欧拉回路的充分必要条件是每个顶点的度数都是偶数。
4. 问:一个图中是否存在哈密顿回路?
答:一个图中存在哈密顿回路的判定是一个NP难题,目前还没有有效的多项式时间算法。
5. 问:一个图中的最小生成树有多少条边?
答:一个图中的最小生成树的边数恰好等于顶点数减一。
通过解答这些图论习题,我们可以更好地掌握图论的基本概念和算法。
图论不
仅在数学领域有着重要的应用,而且在计算机科学、电信网络等领域也有着广
泛的应用。
因此,熟练掌握图论知识对我们的学习和工作都有着重要的意义。
希望通过本文的分享,能够帮助大家更好地理解图论知识,提高解决问题的能力。
同时也希望大家在学习图论的过程中能够多多练习,勇于挑战各种各样的
图论习题,不断提升自己的图论水平。
祝大家在图论的学习道路上取得更大的
进步!。
电子科技大学图论05-18年研究生考试
则由 v 2 到 v5 的途径长度为 2 的条数为 _________ 。 6 、 若 K n 为 欧 拉 图 , 则 n= _________ ; 若 K n 仅 存 在 欧 拉 迹而 不 存 在 欧 拉 回 路 ,则 n= _________ 。 7、无向完全图 K n (n 为奇数),共有 _________ 条没有公共边的哈密尔顿圈。 8 、设 G 是具 有二 分类 ( X , Y ) 的偶 图, 则 G 包含 饱和 X 的每 个顶 点的 匹配 当且 仅当
(A) (54221)
(B) (6654332)
(C) (332222)
(2)已知图 G 有 13 条边,2 个 5 度顶点,4 个 3 度顶点,其余顶点的的度数为 2,则图 G 有( A )个 2 度点。
(A) 2 ( B) 4 (C ) 8 (3) 图 G 如(a)所示,与 G 同构的图是( C )
vV ( G )
d (v) 6n 6n 12 m 3n 6, 这与 G 是简单连通平
面图矛盾。 六、证明:(1) 若 G 恰有两个奇度点 u 与 v,则 u 与 v 必连通; (2) 一棵树至多只有一个完美匹配 (10 分). 证明;(1) 因为任意一个图的奇度点个数必然为偶数个,若 G 恰有两个奇度点 u 与 v,且它们不连通,那么就会得出一个连通图只有一个奇度点的矛盾结论。所 以若 G 恰有两个奇度点 u 与 v,则 u 与 v 必连通。 (2) 若树 T 有两个相异的完美匹配 M 1 , M 2 ,则 M 1M 2 且 T [ M 1M 2 ] 中 的每个顶点的度数为 2,则 T 中包含圈,这与 T 是数矛盾! 七、求图 G 的色多项式 Pk (G ) (15 分).
(A)
图论及其应用 第一章答案
)2214(题后两个算法不作要求题,除第图的基本概念<1.>若G 是简单图,证明:()()2V G E G ⎛⎫≤ ⎪⎝⎭。
证明:()()1()()()1v Gd v V G d v V G V G ∈≤-∴≤-∑(当且仅当G 是完全图时取等号) 又11()()()()122v G E G d v V G V G ∈=≤-∑ ()()2V G E G ⎛⎫∴≤ ⎪⎝⎭。
<2.>设G 是(,)p q 简单图,且12p q -⎛⎫>⎪⎝⎭。
求证G 为连通图。
证明:反证法,假设G 为非连通图。
设G 有两个连通分支1G 和2G ,且112212()1,()1,V G p V G p p p p =≥=≥+= 则1212()()22p p E G E G q ⎛⎫⎛⎫+=≤+⎪ ⎪⎝⎭⎝⎭而1211221(1)(1)(1)(2)222222p p p p p p p p p -⎛⎫⎛⎫⎛⎫----+-=+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222221212121222()2()222p p p p p p p p p p +-+-+-+++-==12(1)(1)0p p =--≤(因为121,1p p ≥≥),矛盾。
<3.>超图H 是有序二元组((),())V H E H ,其中()V H 是顶点非空有限集合,()E H 是()V H 的非空子集簇,且()()i i E E H E V H ∈=。
其中,()E H 中的元素i E 称为超图的边,没有相同边的超图称为简单超图。
证明:若H 是简单超图,则21υε≤-,其中,υε分别是H 的顶点数和边数。
证明:()V H υ=,有一条边的子集个数为1υ⎛⎫ ⎪⎝⎭,有i 条边的子集个数为,1,,.i n i υ⎛⎫= ⎪⎝⎭又02,211i i υυυυυυυ=⎛⎫⎛⎫⎛⎫=∴++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑ 。
<4.>若G 是二部图,则2()()4V G E G ≤。
图论及应用习题答案
图论及应用习题答案图论及应用习题答案图论是数学中的一个分支,研究的是图的性质和图之间的关系。
图论在现实生活中有着广泛的应用,涵盖了许多领域,如计算机科学、通信网络、社交网络等。
本文将为读者提供一些关于图论及应用的习题答案,帮助读者更好地理解和应用图论知识。
1. 图的基本概念题目:下面哪个不是图的基本概念?A. 顶点B. 边C. 路径D. 线段答案:D. 线段。
图的基本概念包括顶点、边和路径。
线段是指两个点之间的连线,而在图论中,我们使用边来表示两个顶点之间的关系。
2. 图的表示方法题目:以下哪个不是图的表示方法?A. 邻接矩阵B. 邻接表C. 边列表D. 二叉树答案:D. 二叉树。
图的表示方法包括邻接矩阵、邻接表和边列表。
二叉树是一种特殊的树结构,与图的表示方法无关。
3. 图的遍历算法题目:以下哪个不是图的遍历算法?A. 深度优先搜索B. 广度优先搜索C. 迪杰斯特拉算法D. 克鲁斯卡尔算法答案:D. 克鲁斯卡尔算法。
图的遍历算法包括深度优先搜索和广度优先搜索,用于遍历图中的所有顶点。
迪杰斯特拉算法是用于求解最短路径的算法,与图的遍历算法有所不同。
4. 最小生成树题目:以下哪个算法不是用于求解最小生成树?A. 克鲁斯卡尔算法B. 普里姆算法C. 弗洛伊德算法D. 公交车换乘算法答案:D. 公交车换乘算法。
最小生成树是指包含图中所有顶点的一棵树,使得树的边的权重之和最小。
克鲁斯卡尔算法和普里姆算法是常用的求解最小生成树的算法,而弗洛伊德算法是用于求解最短路径的算法,与最小生成树问题有所不同。
5. 图的应用题目:以下哪个不是图的应用?A. 社交网络分析B. 路径规划C. 图像处理D. 数字逻辑电路设计答案:D. 数字逻辑电路设计。
图的应用广泛存在于社交网络分析、路径规划和图像处理等领域。
数字逻辑电路设计虽然也涉及到图的概念,但与图的应用有所不同。
总结:图论是一门重要的数学分支,具有广泛的应用价值。
通过本文提供的习题答案,读者可以更好地理解和应用图论知识。
图论及其应用1-3章习题答案(电子科大) (1)
学号:201321010808 姓名:马涛习题14.证明图1-28中的两图是同构的证明 将图1-28的两图顶点标号为如下的(a)与(b)图作映射f : f(v i )→u i (1≤ i ≤ 10)容易证明,对∀v i v j ∈E((a)),有f(v i v j )=u i u j ∈E((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图1-27的两个图是同构的。
6.设G 是具有m 条边的n 阶简单图。
证明:m =⎪⎪⎭⎫⎝⎛2n 当且仅当G 是完全图。
证明 必要性 若G 为非完全图,则∃ v ∈V(G),有d(v)< n-1 ⇒ ∑ d(v) < n(n-1) ⇒ 2m <n(n-1)⇒ m < n(n-1)/2=⎪⎪⎭⎫⎝⎛2n , 与已知矛盾!充分性 若G 为完全图,则 2m=∑ d(v) =n(n-1) ⇒ m= ⎪⎪⎭⎫⎝⎛2n 。
9.证明:若k 正则偶图具有二分类V = V 1∪V 2,则 | V 1| = |V 2|。
(a)v 1v 2 v 3 v 4v 5 v 6v 7v 8 v 9v 10 u 1 u 2u 3u 4u 5 u 6 u 7 u 8 u 9 u 10 (b)证明 由于G 为k 正则偶图,所以,k | V 1 | =m = k | V 2 | ⇒ ∣V 1∣= ∣V 2 ∣。
12.证明:若δ≥2,则G 包含圈。
证明 只就连通图证明即可。
设V(G)={v 1,v 2,…,v n },对于G 中的路v 1v 2…v k ,若v k 与v 1邻接,则构成一个圈。
若v i1v i2…v in 是一条路,由于δ≥ 2,因此,对v in ,存在点v ik 与之邻接,则v ik ⋯v in v ik 构成一个圈 。
17.证明:若G 不连通,则G 连通。
证明 对)(,_G V v u ∈∀,若u 与v 属于G 的不同连通分支,显然u 与v 在_G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_G 中连通,因此,u 与v 在_G 中连通。
图论及应用参考答案
图论及应用参考答案图论及应用参考答案图论是数学中的一个重要分支,研究的是图的性质和图之间的关系。
图由节点(顶点)和边组成,节点代表对象,边代表对象之间的关系。
图论不仅在数学中有广泛的应用,也在计算机科学、物理学、生物学等领域中发挥着重要的作用。
本文将介绍图论的基本概念和一些应用。
一、图论的基本概念1. 图的类型图分为有向图和无向图。
有向图中的边有方向,表示节点之间的单向关系;无向图中的边没有方向,表示节点之间的双向关系。
2. 图的表示方法图可以用邻接矩阵或邻接表来表示。
邻接矩阵是一个二维数组,其中的元素表示节点之间是否有边相连;邻接表是一个链表数组,数组中的每个元素对应一个节点,链表中存储了该节点相邻的节点。
3. 图的性质图的性质包括节点的度、连通性和路径等。
节点的度是指与该节点相连的边的数量;连通性指的是图中任意两个节点之间是否存在路径;路径是指由边连接的节点序列。
二、图论在计算机科学中的应用1. 最短路径算法最短路径算法是图论中的经典问题之一,它用于计算图中两个节点之间的最短路径。
著名的最短路径算法有迪杰斯特拉算法和弗洛伊德算法。
这些算法在网络路由、地图导航等领域中有广泛的应用。
2. 最小生成树算法最小生成树算法用于找到一个连通图的最小生成树,即包含所有节点且边的权重之和最小的子图。
普里姆算法和克鲁斯卡尔算法是常用的最小生成树算法。
这些算法在电力网络规划、通信网络设计等领域中有重要的应用。
3. 图的着色问题图的着色问题是指给定一个图,将每个节点着上不同的颜色,使得相邻节点之间的颜色不同。
这个问题在地图着色、任务调度等方面有实际应用。
三、图论在物理学中的应用1. 粒子物理学在粒子物理学中,图论被用来描述和分析粒子之间的相互作用。
图论模型可以帮助研究粒子的衰变、散射等过程,为理解物质的基本结构提供了重要的工具。
2. 统计物理学图论在统计物理学中也有应用。
例如,渗透模型中的图可以用来研究流体在多孔介质中的渗透性质,为石油勘探、水资源管理等提供了理论基础。
电子科技大学研究生试题《图论及其应用》(参考答案)
电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。
则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ≥2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。
图G图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )A Bb c123A B 3CDAD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解:四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。
A B DC123A B DC解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k(G).解:用公式)()()(e G P G P e G P k k k •+=-,可得G 的色多项式:)3)(2()1()()(3)()(2345---=++=k k k k k k k G P k 。
六.(10分) 一棵树有n 2个顶点的度数为2,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。
电子科技大学《图论及其应用》-08年研究生试卷
电子科技大学研究生试卷一.填空题(每题2分,共20分)1.若n 阶单图G 的最大度是∆,则其补图的最小度()G δ=_n −1−∆_; 2.若图111(,)G n m =,222(,)G n m =,则它们的联图12G G G =∨的顶点数=_nn 1+nn 2;边数=mm 1+mm 2+nn 1nn 2;3.G 是一个完全l 部图,i n 是第i 部的的顶点数i=1,2,3,…,l 。
则它的边数为∑nn ii nn jj 1≤ii≤j≤l ;4.下边赋权图中,最小生成树的权值之和为5. 若n G K =,则G 的谱()spec G =�−1n −1n −116. 5个顶点的不同构的树的棵数为__4___;7. 5阶度极大非哈密尔顿图族是CC 1,5,CC 2,5;8. G 为具有二分类(X,Y)的偶图,则G 包含饱和X 的每个顶点的匹配的充分必要条件是|N (S )|≥|S |,对所有S ⊆X 成立9.3阶以上的极大平面图每个面的次数为 3 ;3阶以上的极大外平面图的每 个内部面的次数为__3__;10. n 方体的点色数为___2___;边色数为___n ___。
二.单项选择(每题3分,共12分)1.下面给出的序列中,不是某图的度序列的是( B ) (A) (33323); (B) (12222); (C) (5533); (D) (1333).2.设V(G)={}1,2,3,4,5,{}()(1,2),(2,3),(3,4),(4,5),(5,1)E G =则图(,)G V E =的补图是( B3.下列图中,既是欧拉图又是哈密尔顿图的是( B )4.下列说法中不正确的是( C ) (A)每个连通图至少包含一棵生成;(B) 2 3 5 (A) 2 35(B)23 5 (C) 234(D)(C)(D) (A)1(B)k 正则偶图(k>0)一定存在完美匹配; (C)平面图(*)*G G ≅,其中*G 表示G 的对偶图; (D)完全图2n K 可一因子分解。
电子科大研究生图论——第1,2章基本概念,树
精品课件
例
G1
G2
K1,3
四个图均为偶图;
K 3,3
K1,3 , K3,3为完全偶图
精品课件
例
偶图
不是偶图
简单图G 的补图: 设 G =(V, E),则图 H =(V,E1\E) 称为G 的补图,记为 H G , 其中集合
例1 设 V ={v1, v2, v3, v4},E ={v1v2 , v1v2, v2v3 },则 G = (V, E) 是一个4阶图。
v1
v4
若用小圆点代
表点,连线代表边
,则可将一个图用
“图形”来表示,
如例精品课件
v3
注: 也可记边 uv 为e ,即 e = uv。
例2 设V = {v1,v2,v3,v4},E = {e1,e2,e3,e4,e5},其中 e1= v1v2, e2 = v2v3, e3 = v2v3, e4 = v3v4, e5
2. Hamilton 周游世界问题
1859年 Hamilton 提出这样一个 问题:一个正十二面体有20个顶点,它 们代表世界上20个重要城市。正十二面 体的每个面均为五边形,若两个顶点之 间有边相连,则表示相应的城市之间有 航线相通。 Hamilton 提出 “能否从某 城市出发经过每个城市一次且仅一次然 后返回出发点?”
精品课件
定理5 设有非负整数组Π = (d1, d2,…, dn),且
n
di 2m
i 1
是一个偶数,n-1≥d1≥d2≥…≥dn, Π是可图的充要条件为
( d 2 1 , d 3 1 , , d d 1 1 1 , d d 1 2 , , d n )
电子科技大学《图论及其应用》复习总结--第一章图的基本概念
电⼦科技⼤学《图论及其应⽤》复习总结--第⼀章图的基本概念⼀、重要概念图、简单图、图的同构、度序列与图序列、偶图、补图与⾃补图、两个图的联图、两个图的积图1.1 图⼀个图G定义为⼀个有序对(V, E),记为G = (V, E),其中(1)V是⼀个有限⾮空集合,称为顶点集或边集,其元素称为顶点或点;(2)E是由V中的点组成的⽆序点对构成的集合,称为边集,其元素称为边,且同⼀点对在E中可出现多次。
注:图G的顶点数(或阶数)和边数可分别⽤符号n(G) 和m(G)表⽰。
连接两个相同顶点的边的条数,叫做边的重数。
重数⼤于1的边称为重边。
端点重合为⼀点的边称为环。
1.2 简单图⽆环⽆重边的图称为简单图。
(除此之外全部都是复合图)注: 1.顶点集和边集都有限的图称为有限图。
只有⼀个顶点⽽⽆边的图称为平凡图。
其他所有的图都称为⾮平凡图。
边集为空的图称为空图。
2.n阶图:顶点数为n的图,称为n阶图。
3.(n, m) 图:顶点数为n的图,边数为m的图称为(n, m) 图1.3 邻接与关联:顶点u与v相邻接:顶点u与v间有边相连接(u adj v);其中u与v称为该边的两个端点。
注:1.规定⼀个顶点与⾃⾝是邻接的。
2.顶点u与边e相关联:顶点u是边e的端点。
3.边e1与边e2相邻接:边e1与边e2有公共端点。
1.4 图的同构设有两个图G1=(V1,E1)和G2=(V2,E2),若在其顶点集合间存在双射,使得边之间存在如下关系:u1,v1∈V1,u2,v2∈ V2 ,设u1↔u2,v1↔v2,; u1v1∈E1 当且仅当u2v2∈E2,且u1v1与u2v2的重数相同。
称G1与G2同构,记为:G1≌G2注:1、图同构的两个必要条件: (1) 顶点数相同;(2) 边数相同。
2、⾃⼰空间的理解:通过空间的旋转折叠可以进⾏形态转换1.5 完全图、偶图1、在图论中,完全图是⼀个简单图,且任意⼀个顶点都与其它每个顶点有且只有⼀条边相连接。
(完整版)图论及其应用1-3章习题答案(电子科大)
习题一1. (题14):证明图1-28中的两图是同构的证明 将图1-28的两图顶点标号为如下的(a)与(b)图作映射f : f(v i )→u i (1≤ i ≤ 10)容易证明,对∀v i v j ∈E((a)),有f(v i v j )=u i u j ∈E((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图1-27的两个图是同构的。
2. (题6)设G 是具有m 条边的n 阶简单图。
证明:m =⎪⎪⎭⎫⎝⎛2n 当且仅当G 是完全图。
证明 必要性 若G 为非完全图,则∃ v ∈V(G),有d(v)< n-1 ⇒ ∑ d(v) < n(n-1) ⇒ 2m <n(n-1)⇒ m < n(n-1)/2=⎪⎪⎭⎫⎝⎛2n , 与已知矛盾!充分性 若G 为完全图,则 2m=∑ d(v) =n(n-1) ⇒ m= ⎪⎪⎭⎫⎝⎛2n 。
3. (题9)证明:若k 正则偶图具有二分类V = V 1∪V 2,则 | V 1| = |V 2|。
图1-28 (a)v 2 v 3u 4u (b)证明 由于G 为k 正则偶图,所以,k | V 1 | =m = k | V 2 | ⇒ ∣V 1∣= ∣V 2 ∣。
4. (题12)证明:若δ≥2,则G 包含圈。
证明 只就连通图证明即可。
设V(G)={v 1,v 2,…,v n },对于G 中的路v 1v 2…v k ,若v k 与v 1邻接,则构成一个圈。
若v i1v i2…v in 是一条路,由于δ≥ 2,因此,对v in ,存在点v ik 与之邻接,则v ik ⋯v in v ik 构成一个圈 。
5. (题17)证明:若G 不连通,则G 连通。
证明 对)(,_G V v u ∈∀,若u 与v 属于G 的不同连通分支,显然u 与v 在_G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_G 中连通,因此,u 与v 在_G 中连通。
图论第一章课后习题解答
bi 个 (i = 1,2,…,s),则有 列。 定理 7
bi = n。故非整数组(b ,b ,…, b )是 n 的一个划分,称为 G 的频序
1 2 s
s
i 1
一个 n 阶图 G 和它的补图 G 有相同的频序列。
§1.2 子图与图的运算
且 H 中边的重数不超过 G 中对应边的 定义 1 如果 V H V G ,E H E G , 重数,则称 H 是 G 的子图,记为 H G 。有时又称 G 是 H 的母图。 当 H G ,但 H G 时,则记为 H G ,且称 H 为 G 的真子图。G 的生成子图是 指满足 V(H) = V(G)的子图 H。 假设 V 是 V 的一个非空子集。以 V 为顶点集,以两端点均在 V 中的边的全体为边集 所组成的子图,称为 G 的由 V 导出的子图,记为 G[ V ];简称为 G 的导出子图,导出子图 G[V\ V ]记为 G V ; 它是 G 中删除 V 中的顶点以及与这些顶点相关联的边所得到的子图。 若 V = {v}, 则把 G-{v}简记为 G–v。 假设 E 是 E 的非空子集。以 E 为边集,以 E 中边的端点全体为顶点集所组成的子图 称为 G 的由 E 导出的子图,记为 G E ;简称为 G 的边导出子图,边集为 E \ E 的 G 的 导出子图简记为 G E 。若 E e ,则用 G–e 来代替 G-{e}。 定理 8 简单图 G 中所有不同的生成子图(包括 G 和空图)的个数是 2m 个。 定义 2 设 G1,G2 是 G 的子图。若 G1 和 G2 无公共顶点,则称它们是不相交的;若 G1 和 G2 无公共边,则称它们是边不重的。G1 和 G2 的并图 G1∪G2 是指 G 的一个子图,其顶点 集为 V(G1)∪V(G2),其边集为 E(G1)∪E(G2);如果 G1 和 G2 是不相交的,有时就记其并图为 G1+G2。类似地可定义 G1 和 G2 的交图 G1∩G2,但此时 G1 和 G2 至少要有一个公共顶点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题一
1. (题14):证明图1-28中的两图是同构的 证明 将图1-28的两图顶点标号为如下的(a)与(b)图
作映射f : f(v i )u i (1 i 10)
容易证明,对v i v j
E((a)),有f(v i v j )
u i u j
E((b)) (1
i 10, 1
j
10 )
由图的同构定义知,图1-27的两个图是同构的。
2. (题6)设G 是具有m 条边的n 阶简单图。
证明:m =⎪⎪⎭⎫ ⎝⎛2n 当且仅当G 是
完全图。
证明 必要性 若G 为非完全图,则 v
V(G),有d(v)
n-1 d(v)
n(n-1)
2m
n(n-1)
图1-28
(a)
v 1 v 2 v 3
v 4 v 5
v 6 v 7 v 8 v 9
v 10
u 1
u 2 u 3 u 4
u 5
u 6
u 7
u 8
u 9 u 10 (b)
m
n(n-1)/2=⎪⎪⎭
⎫
⎝⎛2n , 与已知矛盾!
充分性 若G 为完全图,则 2m=
d(v) =n(n-1)
m= ⎪⎪⎭
⎫ ⎝⎛2n 。
3. (题9)证明:若k 正则偶图具有二分类V = V 1∪V 2,则 | V 1| = |V 2|。
证明 由于G 为k 正则偶图,所以,k V 1 =m = k V 2 V 1
= V 2。
4. (题12)证明:若δ≥2,则G 包含圈。
证明 只就连通图证明即可。
设V(G)={v 1,v 2,…,v n },对于G 中的路v 1v 2…v k ,若v k 与v 1邻接,则构成一个圈。
若v i1v i2…v in 是一条路,由于 2,因此,
对v in ,存在点v ik 与之邻接,则v ik
v in v ik 构成一个圈 。
5. (题17)证明:若G 不连通,则G 连通。
证明 对)(,_
G V v u ∈∀,若u 与v 属于G 的不同连通分支,显然u 与v 在_
G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_
G 中连通,因此,u 与v 在_
G 中连通。
习题二
2、证明:每棵恰有两个1度顶点的树均是路。
证明:设树T 为任意一个恰有两个1度顶点的树,则T 是连通的,且无圈,令V 1 、V 2 为度为1的顶点,由于其他的顶点度数均为0或者2,且T 中无圈,则从V 1到V 2 有且只有一条连通路。
所以,每棵恰有两个1度顶点的树均是路。
得证。
5、证明:正整数序列),...,,(21n d d d 是一棵树的度序列当且仅当
)1(21
-=∑=n d
n
i i。
6、 证明:设正整数序列),...,,(21n d d d 是一棵树T 的度序列,则满足
E d
n
i i
21
=∑=,E 为T
的边数,又有边数和顶点的关系1+=E n ,所以)1(21
-=⇒
∑=n d
n
i i
14、证明:若e 是n K 的边,则3
)2()(--=-n n n n e K τ。
若e 为Kn 的一条边,由Kn 中的边的对称性以及每棵生成树的边数为n-1,Kn 的所有生
成树的总边数为:
2
)1(--n n n ,所以,每条边所对应的生成树的棵数为:
32
2)1(2
1
)1(--=--n n n n n n n ,所以,K n - e 对应的生成树的棵数为:
332)2(2)(----=-=-n n n n n n n n e K τ
16、Kruskal 算法能否用来求: (1)赋权连通图中的最大权值的树
(2)赋权图中的最小权的最大森林如果可以,怎样实现
解:(1)不能,Kruskal 算法得到的任何生成树一定是最小生成树。
(2)可以,步骤如下:
步骤一:选择边e1,是的)(1e ω尽可能小;
步骤二:若已选定边i e e e ,...,,21,则从},...,{\21i e e e E 选取1+i e ,使 a 、}],...,[{121+i e e e G 为无圈图 b 、)(1+i e ω是满足a 的尽可能小的权; 步骤三:当步骤二不能继续执行时停止;
习题三
3.设G 是阶大于2的连通图,证明下列命题等价:
(1)G 是块
(2)G 无环且任意一个点和任意一条边都位于同一个圈上; (3)G 无环且任意三个不同点都位于同一条路上。
证明:(1)→(2):
G 是块,任取G 的一点u ,一边e ,在e 边插入一点v ,使得e 成为两条边,由此得到新图1G ,显然1G 的是阶数大于3的块,由定理,G 中的u,v 位于同一个圈上,于是1G 中u 与边e 都位于同一个圈上。
(2)→(3):
无环,
且任意一点和任意一条边都位于同一个圈上,任取的点u ,边e ,若在上,则三个不同点位于同一个闭路,即位于同一条路,如不在上,由定理,的两点在同一个闭路上,在边插入一个点v ,由此得到新图,显然
的是阶数大于3的块,则两条边的
三个不同点在同一条路上。
(3)→(1):
连通,若不是块,则中存在着割点,划分为不同的子集块
,
,
,
无环,
12,x v y v ∈∈,点在每一条
的路上,则与已知矛盾,是块。
13、设H 是连通图G 的子图,举例说明:有可能k(H)> k(G). 解:通常
.
整个图为,割点左边的图为的的子图,
,
则
.
15、设T 是简单连通图G 的生成树,)(T E G T -=称为G 的余树,图G 的极小边割是指其任何真子集均不是边割的边割。
证明: (1)T 不含G 的极小边割。
(2)e T +包含G 的唯一的极小边割,其中e 为G 的不在T 中的边。
证明:(1)设T 含有G 的极小边割S ,则T 中不含极小边割S ,由于T 是简单连通图G 的生
e
H
成树,则T中必然含有一组极小割边,这与T中不含极小割边相矛盾,则T中不含G的极小边割。
T (2)假设e为T中的一条边,根据(1)得T+e中仍不含G的极小割边,这与e 包含G的唯一的极小边割相矛盾,则e为G的不在T中的边,得证。