【全国百强校word】河北省2017届衡水中学押题卷理数 II卷

合集下载

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题

河北衡水中学2016~2017学年度 高三下学期数学第二次摸底考试(理科)考生注意:1.本试卷分必考部分和选考部分两部分,共150分,考试时间120分钟。

2.请将各题答案填在试卷后面的答题卡上。

3.本试卷主要考试内容:高考全部内容必考部分一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|10}A k N k N =∈-∈,{|23,}N x x n x n n N ===∈或,则AB =( )A .{6,9}B .{3,6,9}C .{1,6,9,10}D .{6,9,10}2.若复数z 满足2(12)|13|z i i -+=+(i 为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.某校为了解学生学习的情况,采用分层抽样的方法从高一2400人、高二 2000人、高三n 人中,抽取90人进行问卷调查。

已知高一被抽取的人数为36,那么高三被抽取的人数为( )A .20B .24C .30D .324.已知命题1:,()ln 2x p x e x ∃>>;命题:1,1,log 2log 22a b q a b b a ∀>>+≥,则下列命题中为真命题的是 ( )A .()p q ⌝∧B .p q ∧C .()p q ∧⌝D .()p q ∨⌝5.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A .310πB .320πC .3110π-D .3120π-6.若实数,x y 满足条件21025020x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则432x z x y =+的最大值为( )A .1B .6415C .1619D .127.已知()22214sin a x x dx π-=-+⎰,则二项式922x a x ⎛⎫- ⎪⎝⎭的展开式中的常数项为( )A .158-B .212-C .54-D .1-8.已知奇函数()()()cos 0,0,0f x A x A ωϕωϕπ=+>><<的导函数的部分图象如图所示,E 是最高点,且MNE ∆是边长为1的正三角形,那么1()3f =( )A .32π-B .12-C .14D .34π-9.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .2843122++B .3643122++C .3642123++D .44122+10.执行如图所示的程序框图,输出S 的值等于( )A .2321tan9π-- B .25tan3922tan9ππ-- C .2322tan9π-- D .25tan3921tan9ππ-- 11.椭圆()222101y x b b +=<<的左焦点为F ,上顶点为A ,右顶点为B ,若FAB ∆的外接圆圆心(),P m n 在直线y x =-的左下方,则该椭圆离心率的取值范围为 ( )A .2,12⎛⎫⎪⎝⎭B .1,12⎛⎫⎪⎝⎭C .20,2⎛⎫ ⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭12.已知()'f x 是函数()f x 的导函数,且对任意的实数x 都有()()()'23(x f x e x f x e =++是自然对数的底数),()01f =,若不等式()0f x k -<的解集中恰有两个整数,则实数k 的取值范围是( )A .1,0e ⎡⎫-⎪⎢⎣⎭B .21,0e ⎡⎤-⎢⎥⎣⎦C .21,0e ⎛⎤- ⎥⎝⎦D .21,0e ⎛⎫- ⎪⎝⎭二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡中的横线上。

河北省衡水中学2017届高三第二次模拟考试数学(理)试题(含答案)

河北省衡水中学2017届高三第二次模拟考试数学(理)试题(含答案)

2016~2017学年度下学期高三年级二模考试数学(理)试卷(答案)I 卷一、选择题(本题共12个小题,每小题均只有一个正确选项,每小题5分,共60分.)A 卷:DBBABBAACB DB B 卷:BCCDA CBDDD AB二、填空题:本题共4个小题,每小题5分,共20分.13.10082016C 14.)3,3(15.416.3510三、解答题:本大题共6题,,共70分.解答应写出文字说明、证明过程或演算步骤。

17.解:(1)由sin 3cos cos C A B =-可得sin()3cos cos A B A B +=-,即sin cos cos sin 3cos cos A B A B A B +=-,因为tan tan 1A B =-,所以A,B 2π≠,两边同时除以cos cos A B ,得到tan tan 3A B +=-,因为tan()tan()tan ,A B C C π+=-=-tan tan tan()1tan tan A B A B A B ++==-所以tan C =,又0C π<<,所以3C π=。

根据正弦定理得sin sin sin 3a b c A B C ===,故,a A b B ==,sin sin sin sin 2220A B A B a b A B ++==+。

6分(2)由(1)及余弦定理可得222cos 32a b c abπ++=,因为c =,所以2210a b ab +-=,即2()210a b ab ab +--=,又由111a b+=,可得a b ab +=,故2()3100ab ab --=解得52()ab ab ==-或舍去,此时5a b ab +==,所以ABC ∆得周长为5+,ABC ∆的面积为15sin 234π⨯⨯=。

12分18.解:(1)由题意21x x <2221S S >。

2分(2)记选到的城市至多是一个“中国十佳宜居城市”为事件A,由已知既是“中国十佳宜居城市”又是“中国十佳最美丽城市”的城市有4个:深圳,惠州,信阳,烟台。

精品解析:【全国百强校word】河北省衡水中学2017年高考押题英语试题(二)(解析版)

精品解析:【全国百强校word】河北省衡水中学2017年高考押题英语试题(二)(解析版)

河北省衡水中学2017年高考押题英语试题(二)第Ⅰ卷第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.When will the party be held?A.On the 13th at 8:30 p.m.B.On the 30th at 8:00 a.m.C.On the 30th at 8:30 p.m.2.What are the speakers mainly talking about?A.The way to get her hair fixed.B.An appointment with a hairdresser.C.An appointment with a teacher.3.What does the man mean to do?A.Fix his old car.B.Solve a math problem.C.Give the woman a lift.4.Who is the woman most probably?A.The man's boss.B.The man's mother.C.The man's colleague.5.Where is the post office?A.Beside a bookshop.B.Near an office building.C.At the second light. 第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或对白,每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置,听每段对话或独白前,你将有时间阅读各个小题。

【全国百强校word】河北省衡水中学2017年高考押题英语试题(二)(有答案)

【全国百强校word】河北省衡水中学2017年高考押题英语试题(二)(有答案)

第Ⅰ卷第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.When will the party be held?A.On the 13th at 8:30 p.m.B.On the 30th at 8:00 a.m.C.On the 30th at 8:30 p.m.2.What are the speakers mainly talking about?A.The way to get her hair fixed.B.An appointment with a hairdresser.C.An appointment with a teacher.3.What does the man mean to do?A.Fix his old car.B.Solve a math problem.C.Give the woman a lift.4.Who is the woman most probably?A.The man's boss.B.The man's mother.C.The man's colleague.5.Where is the post office?A.Beside a bookshop.B.Near an office building.C.At the second light.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或对白,每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置,听每段对话或独白前,你将有时间阅读各个小题。

每小题5秒钟;听完后,各小题给出5秒钟的作答时间。

精品解析:【全国百强校word】河北省衡水中学2017年高考押题英语试题(二)(解析版)

精品解析:【全国百强校word】河北省衡水中学2017年高考押题英语试题(二)(解析版)

河北省衡水中学2017年高考押题英语试题(二)第Ⅰ卷第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.When will the party be held?A.On the 13th at 8:30 p.m.B.On the 30th at 8:00 a.m.C.On the 30th at 8:30 p.m.2.What are the speakers mainly talking about?A.The way to get her hair fixed.B.An appointment with a hairdresser.C.An appointment with a teacher.3.What does the man mean to do?A.Fix his old car.B.Solve a math problem.C.Give the woman a lift.4.Who is the woman most probably?A.The man's boss.B.The man's mother.C.The man's colleague.5.Where is the post office?A.Beside a bookshop.B.Near an office building.C.At the second light. 第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或对白,每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置,听每段对话或独白前,你将有时间阅读各个小题。

【全国百强校】河北省衡水中学2017届高三高考押题理数试题

【全国百强校】河北省衡水中学2017届高三高考押题理数试题

绝密★启用前【全国百强校】河北省衡水中学2017届高三高考押题理数试题试卷副标题考试范围:xxx ;考试时间:69分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、定义在上的函数满足,且当时,,对,,使得,则实数的取值范围为( )A .B .C .D .2、焦点为的抛物线:的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为( )A .或B .C .或D .3、为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为( ) A .720 B .768 C .810 D .8164、《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点在半圆上,点在直径上,且,设,,则该图形可以完成的无字证明为( )A .B .C .D .5、已知函数的部分图象如图所示,则函数图象的一个对称中心可能为( )A .B .C .D .6、已知一几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .7、执行如图所示的程序框图,则输出的值为( )A .1009B .-1009C .-1007D .10088、已知双曲线:与双曲线:,给出下列说法,其中错误的是( )A .它们的焦距相等B .它们的焦点在同一个圆上C .它们的渐近线方程相同D .它们的离心率相等9、下列函数中,既是偶函数,又在内单调递增的为( )A .B .C .D .10、已知为虚数单位,若复数在复平面内对应的点在第四象限,则的取值范围为( ) A .B .C .D .11、已知集合,,则=( )A .B .C .D .第II卷(非选择题)二、填空题(题型注释)12、已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作圆的截面,则所得截面圆面积的取值范围是__________.13、在中,角,,的对边分别为,,,,且,的面积为,则的值为__________.14、已知实数,满足不等式组且的最大值为,则=__________.15、已知,,若向量与共线,则在方向上的投影为_________.三、解答题(题型注释)16、选修4-5:不等式选讲.已知函数.(1)求函数的值域;(2)若,试比较,,的大小.17、已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于,两点. (1)求圆的直角坐标方程及弦的长; (2)动点在圆上(不与,重合),试求的面积的最大值.18、已知函数.(1)讨论函数的单调性;(2)当时,若函数的导函数的图象与轴交于,两点,其横坐标分别为,,线段的中点的横坐标为,且,恰为函数的零点,求证:.19、已知椭圆:的长轴长为6,且椭圆与圆:的公共弦长为.(1)求椭圆的方程. (2)过点作斜率为的直线与椭圆交于两点,,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.20、2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?21、如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心.(1)求证:平面平面; (2)若,求二面角的余弦值.22、已知的展开式中的系数恰好是数列的前项和.(1)求数列的通项公式;(2)数列满足,记数列的前项和为,求证:.参考答案1、D2、A3、B4、D5、C6、C7、B8、D9、D10、B11、B12、13、14、15、16、(1);(2).17、(1);(2).18、(1)当时,在内单调递增;当时,在内单调递减,在,内单调递增;(2)见解析.19、(1);(2)见解析.20、(1) ;(2)见解析.21、(1)见解析;(2) .22、(1);(2)见解析.【解析】1、由题知问题等价于函数在上的值域是函数在上的值域的子集.当时,,由二次函数及对勾函数的图象及性质,得此时,由,可得,当时,.则在的值域为.当时,,则有,解得,当时,,不符合题意;当时,,则有,解得.综上所述,可得的取值范围为.故本题答案选.点睛:求解分段函数问题应对自变量分类讨论,讨论的标准就是自变量与分段函数所给出的范围的关系,求解过程中要检验结果是否符合讨论时的范围.讨论应该不重复不遗漏.2、过作与准线垂直,垂足为,则,则当取得最大值时,必须取得最大值,此时直线与抛物线相切,可设切线方程为与联立,消去得,所以,得.则直线方程为或.故本题答案选.点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离,抛物线上的点到准线的距离)进行等量转化,如果问题中涉及抛物线上的点到焦点或到准线的距离,那么用抛物线定义就能解决问题.本题就是将到焦点的距离转化成到准线的距离,将比值问题转化成切线问题求解.3、由题知结果有三种情况.甲、乙、丙三名同学全参加,有种情况,其中甲、乙相邻的有种情况,所以甲、乙、丙三名同学全参加时,甲和乙的朗诵顺序不能相邻顺序有种情况;甲、乙、丙三名同学恰有一人参加,不同的朗诵顺序有种情况;甲、乙、丙三名同学恰有二人参加时,不同的朗诵顺序有种情况.则选派的4名学生不同的朗诵顺序有种情况,故本题答案选4、令,可得圆的半径,又,则,再根据题图知,即.故本题答案选.5、由图象最高点与最低点的纵坐标知,又,即,所以.则,图象过点,则,即,所以,又,则.故,令,得,令,可得其中一个对称中心为.故本题答案选.6、观察三视图可知,几何体是一个圆锥的与三棱锥的组合体,其中圆锥的底面半径为,高为.三棱锥的底面是两直角边分别为的直角三角形,高为.则几何体的体积.故本题答案选.7、由程序框图则,由规律知输出.故本题答案选.【易错点睛】本题主要考查程序框图中的循环结构.循环结构中都有一个累计变量和计数变量,累计变量用于输出结果,计算变量用于记录循环次数,累计变量用于输出结果,计数变量和累计变量一般是同步执行的,累加一次计数一次,哪一步终止循环或不能准确地识别表示累计的变量,都会出现错误.计算程序框图的有关的问题要注意判断框中的条件,同时要注意循环结构中的处理框的位置的先后顺序,顺序不一样,输出的结果一般不会相同.8、由题知.则两双曲线的焦距相等且,焦点都在圆的圆上,其实为圆与坐标轴交点.渐近线方程都为,由于实轴长度不同故离心率不同.故本题答案选,9、为非奇非偶函数,排除;为偶函数,但在内单调递减,排除;为奇函数,排除.故本题答案选.10、由题.又对应复平面的点在第四象限,可知,解得.故本题答案选.11、由题知,,则故本题答案选.12、令的中心为,球的半径为,连接,易求得,则,在中,由勾股定理得,解得,由,知,所以,所以.当截面与垂直时,截面的面积最小,此时截面圆的半径,此时截面面积为.当截面过球心时,截面圆的面积最大,此时截面圆的面积为.故本题应填.点睛:解决球与其他几何体的内切,外接问题的关系在于仔细观察,分析几何体的结构特征,搞清相关元素的位置关系和数量关系,选准最佳角度做出截面(要使这个截面尽可能多地包含球和其他几何体的各种元素,尽可能的体现这些元素之间的关系),达到空间问题平面化的目的.13、由正弦定理,原等式可化为,进一步化为,则,即.在三角形中.由面积公式,可知,由余弦定理,代入可得.故本题应填.点睛:本题主要考查正余弦定理.在利用正,余弦定理解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.选择余弦定理和面积时,要以已知角的为主.14、作出可行域,目标函数可变为,令,作出,由平移可知直线过时取最大值,则.则.故本题应填.15、由题知,又与共线,可得,得,则方向上的投影为.故本题应填.16、(1)根据函数的单调性可知,当时,.所以函数的值域.(2)因为,所以,所以.又,所以,知,,所以,所以,所以.17、试题分析:(1)利用平面直角坐标系与极坐标系间的转化关系,可得圆的直角坐标方程,将直线的参数方程代入,利用参数的几何意义可求得弦的长;(2)写出圆的参数方程,利用点到直线的距离公式,可得,可求出的最大值,即求得的面积的最大值.试题分析:(1)由得,所以,所以圆的直角坐标方程为.将直线的参数方程代入圆,并整理得,解得,.所以直线被圆截得的弦长为.(2)直线的普通方程为.圆的参数方程为(为参数),可设曲线上的动点,则点到直线的距离,当时,取最大值,且的最大值为.所以,即的面积的最大值为. 18、试题分析:(1)对函数求导后,利用导数与函数单调性的关系,对进行讨论可得函数单调性;(2)由函数的导函数可知,又是的零点,代入相减化简得,对求导,.令,求得函数.不等式得证.试题解析:(1)由于的定义域为,则.对于方程,其判别式.当,即时,恒成立,故在内单调递增.当,即,方程恰有两个不相等是实,令,得或,此时单调递增;令,得,此时单调递减.综上所述,当时,在内单调递增;当时,在内单调递减,在,内单调递增.(2)由(1)知,,所以的两根,即为方程的两根.因为,所以,,.又因为,为的零点,所以,,两式相减得,得.而,所以.令,由得,因为,两边同时除以,得,因为,故,解得或,所以.设,所以,则在上是减函数,所以,即的最小值为.所以.19、试题分析:(1)由长轴长可得值,公共弦长恰为圆直径,可知椭圆经过点,利用待定系数法可得椭圆方程;(2)可令直线的解析式为,设,的中点为,将直线方程与椭圆方程联立,消去,利用根与系数的关系可得,由等腰三角形中,可得,得出中.由此可得点的横坐标的范围.试题解析:(1)由题意可得,所以.由椭圆与圆:的公共弦长为,恰为圆的直径,可得椭圆经过点,所以,解得.所以椭圆的方程为.(2)直线的解析式为,设,的中点为.假设存在点,使得为以为底边的等腰三角形,则.由得,故,所以,.因为,所以,即,所以.当时,,所以;当时,,所以.综上所述,在轴上存在满足题目条件的点,且点的横坐标的取值范围为.点睛:本题主要考查椭圆的标准方程和几何性质,直线与椭圆的位置关系,基本不等式,及韦达定理的应用.解析几何大题的第一问一般都是确定曲线的方程,常见的有求参数确定方程和求轨迹确定方程,第二问一般为直线与椭圆的位置关系,解决此类问题一般需要充分利用数形结合的思想转化给出的条件,可将几何条件转化为代数关系,从而建立方程或者不等式来解决.20、试题分析:(1)选择方案一可以免单,但需要摸出三个红球,利用古典概型求出摸出三个红球的概率,再利用两个相互独立事件同时发生的概率应该是两事件的概率乘积可求得两位顾客均享受免单优惠的概率;(2)分别写出两种方案下付款金额的分布列,再求出期望值,利用期望值的大小,进行合理选择.试题解析:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件,则,所以两位顾客均享受到免单的概率为.(2)若选择方案一,设付款金额为元,则可能的取值为0,600,700,1000.,,,,故的分布列为,所以(元).若选择方案二,设摸到红球的个数为,付款金额为,则,由已知可得,故,所以(元).因为,所以该顾客选择第一种抽奖方案更合算.21、试题分析:(1)延长交于点,由重心性质及中位线性质可得,再结合圆的性质得,由已知,可证平面,进一步可得平面平面(2)以点为原点,,,方向分别为,,轴正方向建立空间直角坐标系,写出各点坐标,利用二面角与二个半平面的法向量的夹角间的关系可求二面角的余弦值.试题解析:(1)如图,延长交于点.因为为的重心,所以为的中点.因为为的中点,所以.因为是圆的直径,所以,所以.因为平面,平面,所以.又平面,平面=,所以平面.即平面,又平面,所以平面平面.(2)以点为原点,,,方向分别为,,轴正方向建立空间直角坐标系,则,,,,,,则,.平面即为平面,设平面的一个法向量为,则令,得.过点作于点,由平面,易得,又,所以平面,即为平面的一个法向量.在中,由,得,则,. 所以,.所以.设二面角的大小为,则.点睛:若分别二面角的两个半平面的法向量,则二面角的大小满足,二面角的平面角的大小是的夹角(或其补角,需根据观察得出结论).在利用向量求空间角时,建立合理的空间直角坐标系,正确写出各点坐标,求出平面的法向量是解题的关键.22、试题分析:(1)由二项展开式可知各项中的系数,求和后可得,利用与间的关系可得数列的通项公式;(2)由的通项公式可求得的通项公式,对进行裂项,用裂项法可求得,利用放缩法可证明不等式.试题解析:(1)的展开式中的系数为,即,所以当时,;当时,也适合上式,所以数列的通项公式为. (2)证明:,所以,所以.。

2017届河北省衡水中学高三高考押题数学(理)试题(解析版) Word版 含答案

2017届河北省衡水中学高三高考押题数学(理)试题(解析版) Word版 含答案

河北省衡水中学2017届高三高考押题理数试题一、选择题1.已知集合4{|0}2x A x Z x -=∈≥+, 1{|24}4x B x =≤≤,则A B ⋂=( ) A. {|12}x x -≤≤ B. {}1,0,1,2- C. {}2,1,0,1,2-- D. {}0,1,2 【答案】B【解析】由题知{}1,0,1,2,3,4A =-, {|22}B x x -≤≤=,则{}1,0,1,2A B ⋂=-故本题答案选B .2.已知i 为虚数单位,若复数1i1it z -=+在复平面内对应的点在第四象限,则t 的取值范围为( )A. []1,1- B. ()1,1- C. (),1-∞- D. ()1,+∞ 【答案】B 【解析】由题()()()()1-ti 1-i 1-ti 1-t 1+tz===-i 1+i 1+i 1-i 22.又对应复平面的点在第四象限,可知110022t t-+>-<且,解得11t -<<.故本题答案选B . 3.下列函数中,既是偶函数,又在(),0-∞内单调递增的为( ) A. 42y x x =+ B. 2x y = C. 22x xy -=- D. 12log 1y x =-【答案】D【解析】42y x x =+为非奇非偶函数, A 排除; 2xy =为偶函数,但在(),0-∞内单调递减, B 排除; 22x xy -=-为奇函数, C 排除.故本题答案选D .4.已知双曲线1C : 2212x y -=与双曲线2C : 2212x y -=-,给出下列说法,其中错误的是( )A. 它们的焦距相等B. 它们的焦点在同一个圆上C. 它们的渐近线方程相同D. 它们的离心率相等 【答案】D【解析】由题知222:12x C y -=.则两双曲线的焦距相等且2c =,焦点都在圆223x y +=的圆上,其实为圆与坐标轴交点.渐近线方程都为y x =,由于实轴长度不同故离心率ce a=不同.故本题答案选D ,5.在等比数列{}n a 中,“4a , 12a 是方程2310x x ++=的两根”是“81a =±”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A【解析】由韦达定理知4124123,1a a a a +=-=,则4120,0a a <<,则等比数列中4840a a q =<,则81a ==-.在常数列1n a =或1n a =-中, 412,a a 不是所给方程的两根.则在等比数列{}n a 中,“4a , 12a 是方程2310x x ++=的两根”是“81a =±”的充分不必要条件.故本题答案选A . 6.执行如图所示的程序框图,则输出的S 值为( )A. 1009B. -1009C. -1007D. 1008 【答案】B【解析】由程序框图则0,1;1,2;12,3;123,4S n S n S n S n =====-==-+=,由S 规律知输出123456...20152016201720181009S =-+-+-++-+-=-.故本题答案选B .【易错点睛】本题主要考查程序框图中的循环结构.循环结构中都有一个累计变量和计数变量,累计变量用于输出结果,计算变量用于记录循环次数,累计变量用于输出结果,计数变量和累计变量一般是同步执行的,累加一次计数一次,哪一步终止循环或不能准确地识别表示累计的变量,都会出现错误.计算程序框图的有关的问题要注意判断框中的条件,同时要注意循环结构中的处理框的位置的先后顺序,顺序不一样,输出的结果一般不会相同.7.已知一几何体的三视图如图所示,则该几何体的体积为( )A.163π+ B. 112π+ C. 1123π+ D. 143π+ 【答案】C【解析】观察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C. 8.已知函数()()sin (0,0,)f x A x A ωϕωϕπ=+>><的部分图象如图所示,则函数()()cos g x A x ϕω=+图象的一个对称中心可能为( )A. 5,02⎛⎫-⎪⎝⎭ B. 1,06⎛⎫⎪⎝⎭ C. 1,02⎛⎫- ⎪⎝⎭ D. 11,06⎛⎫- ⎪⎝⎭【答案】C【解析】由图象最高点与最低点的纵坐标知A =,又()6282T=--=,即2πT=16ω=,所以π8ω=.则()πi n 8f x x ϕ⎛⎫=+ ⎪⎝⎭,图象过点()6,0,则3πs i n 04ϕ⎛⎫+= ⎪⎝⎭,即3ππ4k ϕ+=,所以3ππ4k ϕ=-+,又ϕπ<,则π4ϕ=.故()ππ48g x x ⎛⎫=+ ⎪⎝⎭,令ππππ482x k +=+,得322x k =+,令1k =-,可得其中一个对称中心为1,02⎛⎫-⎪⎝⎭.故本题答案选C . 9.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =, BC b =,则该图形可以完成的无字证明为( )A.0,0)2a ba b +≥>> B. 222(0,0)a b ab a b +≥>>C. 20,0)ab a b a b ≤>>+D. 0,0)2a b a b +≤>> 【答案】D【解析】令,AC a BC b ==,可得圆O 的半径2a br +=,又22a b a bOC OB BC b +-=-=-=,则()()2222222442a b a b a b FC OC OF -++=+=+=,再根据题图知FO FC ≤,即2a b +≤D. 10.为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为( ) A. 720 B. 768 C. 810 D. 816 【答案】B【解析】由题知结果有三种情况. ()1甲、乙、丙三名同学全参加,有1444C A =96种情况,其中甲、乙相邻的有123423C A A 48=种情况,所以甲、乙、丙三名同学全参加时,甲和乙的朗诵顺序不能相邻顺序有964848-=种情况; ()2甲、乙、丙三名同学恰有一人参加,不同的朗诵顺序有314434C C A 288=种情况; ()3甲、乙、丙三名同学恰有二人参加时,不同的朗诵顺序有224434432C C A =种情况.则选派的4名学生不同的朗诵顺序有28843248768++=种情况,故本题答案选B11.焦点为F 的抛物线C : 28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线MA 的方程为( )A. 2y x =+或2y x =--B. 2y x =+C. 22y x =+或22y x =-+D. 22y x =-+ 【答案】A【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF===∠∠,则当MA MF取得最大值时, MAF ∠必须取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k =-= ,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离,抛物线上的点到准线的距离)进行等量转化,如果问题中涉及抛物线上的点到焦点或到准线的距离,那么用抛物线定义就能解决问题.本题就是将到焦点的距离MF 转化成到准线的距离MP ,将比值问题转化成切线问题求解.12.定义在R 上的函数()f x 满足()()22f x f x +=,且当[]2,4x ∈时,()()224,23,{12,34,x x x f x g x ax x x x-+≤≤==++<≤,对[]12,0x ∀∈-, []22,1x ∃∈-,使得()()21g x f x =,则实数a 的取值范围为( )A. 11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B. 11,00,48⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦C. (]0,8 D. ][11,,48⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】D【解析】由题知问题等价于函数()f x 在[]2,0-上的值域是函数()g x 在[]2,1-上的值域的子集.当[]2,4x ∈时, ()()224,232,34{x x x x xf x --+≤≤+<≤=,由二次函数及对勾函数的图象及性质,得此时()93,2f x ⎡⎤∈⎢⎥⎣⎦,由()()22f x f x +=,可得()()()112424f x f x f x =+=+,当[]2,0x ∈-时, []42,4x +∈.则()f x 在[]2,0-的值域为39,48⎡⎤⎢⎥⎣⎦.当0a >时, ()[]21,1g x a a ∈-++,则有3214918{a a -+≤+≥,解得18a ≥,当0a =时, ()1g x =,不符合题意;当0a <时, ()[]1,21g x a a ∈+-+,则有3149218{a a +≤-+≥,解得14a ≤-.综上所述,可得a 的取值范围为 ][11,,48⎛⎫-∞-⋃+∞ ⎪⎝⎭.故本题答案选D .点睛:求解分段函数问题应对自变量分类讨论,讨论的标准就是自变量与分段函数所给出的范围的关系,求解过程中要检验结果是否符合讨论时的范围.讨论应该 不重复不遗漏.二、填空题13.已知()1,a λ=, ()2,1b = ,若向量2a b + 与()8,6c = 共线,则a 在b 方向上的投影为_________.【答案】5【解析】由题知()24,21a b λ+=+,又2a b + 与c 共线,可得()248210λ-+=,得1λ=,则a 在方向上的投影为a b b ⋅==. 14.已知实数x , y 满足不等式组20,{250,20,x y x y y --≤+-≥-≤且2z x y =-的最大值为a ,则2cos 2xa dx π⎰=__________. 【答案】3π。

河北衡水中学2017年高考数学(理科)押题卷

河北衡水中学2017年高考数学(理科)押题卷

河北衡水中学2017年高考数学(理科)押题卷必考部分一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合()()13lg 21|,|132x M x f x N x x x -⎧⎫-⎧⎫===>⎨⎬⎨⎬-⎩⎭⎩⎭,则集合M N 等于( )A .2,3⎛⎫+∞⎪⎝⎭ B .()1,+∞ C .12,23⎛⎫ ⎪⎝⎭ D .2,13⎛⎫⎪⎝⎭2. z C ∈,若12z z i -=+,则1zi+等于( ) A .7144i + B .7144i - C .1144i -- D .1144i -+3.数列{}n a 为正项等比数列,若33a =,且()1123,2n n n a a a n N n +-=+∈≥,则此数列的前5项和5S 等于 ( ) A .1213B .41C .1193D .24194. 已知1F 、2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,以线段12F F 为边作正三角形12F MF ,如果线段1MF 的中点在双曲线的渐近线上,则该双曲线的离心率e 等于( ) A .23 B .22 C. 6 D .25.在ABC ∆中,“sin sin cos cos A B B A -=- ”是“A B =”的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件 6.已知二次函数()2f x x bx c =++的两个零点分别在区间()2,1--和()1,0-内,则()3f 的取值范围是( )A .()12,20B .()12,18 C. ()18,20 D .()8,187.如图,一个简单几何体的正视图和侧视图都是边长为2的等边三角形,若该简单几何体的体积是233,则其底面周长为( )A .()231+ B .()251+ C. ()222+ D .53+8.20世纪30年代,德国数学家洛萨---科拉茨提出猜想:任给一个正整数x ,如果x 是偶数,就将它减半;如果x 是奇数,则将它乘3加1,不断重复这样的运算,经过有限步后,一定可以得到1,这就是著名的“31x +”猜想.如图是验证“31x +”猜想的一个程序框图,若输出n 的值为8,则输入正整数m 的所有可能值的个数为( )A .3B . 4 C. 6 D .无法确定9.632243ax x x x ⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为16,则展开式中3x 项的系数为( )A .1172 B . 632C. 57 D .33 10. 数列{}n a 为非常数列,满足:39511,48a a a +==,且1223111nn n aa a a a a n aa +++++= 对任何的正整数n 都成立,则1250111a a a ++的值为( ) A .1475 B .1425 C. 1325 D .127511.已知向量,,αβγ 满足()()()1,2,αααβαγβγ=⊥--⊥-,若172β=,γ的最大值和最小值分别为,m n ,则m n +等于( )A .32 B .2 C. 52 D .15212.已知偶函数()f x 满足()()44f x f x +=-,且当(]0,4x ∈时,()()ln 2x f x x=,关于x 的不等式()()20f x af x +>在[]200,200-上有且只有200个整数解,则实数a 的取值范围是( )A .1ln 6,ln 23⎛⎤- ⎥⎝⎦B .1ln 2,ln 63⎛⎫-- ⎪⎝⎭ C. 1ln 2,ln 63⎛⎤-- ⎥⎝⎦ D .1ln 6,ln 23⎛⎫- ⎪⎝⎭二、填空题:本大题共4小题,每小题5分,共20分,将答案填在答题纸上13.为稳定当前物价,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场商品的售价x 元和销售量y 件之间的一组数据如下表所示: 价格x8.5 9 9.5 10 10.5销售量y 12 11976由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,其线性回归方程是ˆˆ3.2y x a =-+,则ˆa= . 14.将函数()3sin 2cos2f x x x =-的图象向右平移m 个单位(0m >),若所得图象对应的函数为偶函数,则m 的最小值是 .15.已知两平行平面αβ、间的距离为23,点A B α∈、,点C D β∈、,且4,3AB CD ==,若异面直线AB 与CD 所成角为60°,则四面体ABCD 的体积为 .16.已知A B 、是过抛物线()220y px p =>焦点F 的直线与抛物线的交点,O 是坐标原点,且满足23,3OAB AB FB S AB ∆==,则AB 的值为 . 三、解答题 :解答应写出文字说明、证明过程或演算步骤.17. 如图,已知ABC ∆关于AC 边的对称图形为ADC ∆,延长BC 边交AD 于点E ,且5,2AE DE ==,1tan 2BAC ∠=.(1)求BC 边的长; (2)求cos ACB ∠的值.18.如图,已知圆锥1OO 和圆柱12O O 的组合体(它们的底面重合),圆锥的底面圆1O 半径为5r =,OA 为圆锥的母线,AB 为圆柱12O O 的母线,D E 、为下底面圆2O 上的两点,且6, 6.4DE AB ==,52AO =,AO AD ⊥.(1)求证:平面ABD ⊥平面ODE ; (2)求二面角B AD O --的正弦值.19.如图,小华和小明两个小伙伴在一起做游戏,他们通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,他们规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两个人都上一级台阶,如果一方连续两次赢,那么他将额外获得一次上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时,游戏结束,记此时两个小伙伴划拳的次数为X .(1)求游戏结束时小华在第2个台阶的概率; (2)求X 的分布列和数学期望.20.如图,已知6,12P ⎛⎫ ⎪ ⎪⎝⎭为椭圆()2222:10x y E a b a b +=>>上的点,且225a b +=,过点P 的动直线与圆222:1F x y a +=+相交于A B 、两点,过点P 作直线AB 的垂线与椭圆E 相交于点Q .(1)求椭圆E 的离心率; (2)若23AB =,求PQ .21. 已知函数()()()()11,2x x xax b e f x a R g x b R e e x e --=∈=+∈+,其中e 为自然对数的底数.(参考数据:112427.39 1.28, 1.65e e e ≈≈≈, )(1)讨论函数()f x 的单调性;(2)若1a =时,函数()()2y f x g x =+有三个零点,分别记为()123123x x x x x x <<、、,证明:()12243x x -<+<.选考部分请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中直线1l 的倾斜角为α,且经过点()1,1P -,以坐标系xOy 的原点为极点,x 轴的非负半轴为极轴,建立极坐标系Ox ,曲线E 的极坐标方程为4cos ρθ=,直线1l 与曲线E 相交于A B 、两点,过点P 的直线2l 与曲线E 相交于C D 、两点,且12l l ⊥. (1)平面直角坐标系中,求直线1l 的一般方程和曲线E 的标准方程; (2)求证:22AB CD +为定值. 23.选修4-5:不等式选讲已知实数a b 、满足223a b ab +-=. (1)求a b -的取值范围; (2)若0ab >,求证:2211344a b ab++≥.试卷答案一、选择题1-5:DAADB 6-10: ACBAB 11、12:CC二、填空题13. 39.4 14.6π 15. 6 16. 92三、解答题17.解:(1)因为1tan 2BAC ∠=,所以22tan 4tan 1tan 3BAC BAE BAC ∠∠==-∠,所以3cos 5BAE ∠=.因为527AB AD AE DE ==+=+=,所以2222cos 49254232BE AB AE AB AE BAE =+-∠=+-= , 所以42BE =,又75BC AB CE AE ==,所以723BC =. (2)由(1)知42BE =,所以2224932252cos 222742AB BE AE B AB BE +-+-===⨯⨯ , 所以2sin 2B =,因为1tan 2BAC ∠=,所以525sin ,cos 55BAC BAC ∠=∠=, 所以()cos cos ACB BAC B ∠=-∠+2522510sin sin cos cos 252510B BAC B BAC =∠-∠=⨯-⨯=-. 18.解:(1)依题易知,圆锥的高为()225255h =-=,又圆柱的高为 6.4,AB AO AD =⊥,所以222OD OA AD =+,因为AB BD ⊥,所以222AD AB BD =+,连接1122OO O O DO 、、,易知12O O O 、、三点共线,22OO DO ⊥,所以22222OD OO O D =+,所以()()22222222222 6.455526.464BD OO O D AO AB =+--=++--=,解得8BD =,又因为6DE =,圆2O 的直径为10,圆心2O 在BDE ∠内,所以易知090BDE ∠=,所以DE BD ⊥.因为AB ⊥平面BDE ,所以DE AB ⊥,因为AB BD B = ,所以DE ⊥平面ABD . 又因为DE ⊂平面ODE ,所以平面ABD ⊥平面ODE .(2)如图,以D 为原点,DB 、DE 所在的直线为x y 、轴,建立空间直角坐标系.则()()()()0,0,0,8,0,6.4,8,0,0,4,3,11.4D A B O . 所以()()()8,0,6.4,8,0,0,4,3,11.4DA DB DO ===,设平面DAO 的法向理为(),,u x y z =,所以8 6.40,4311.40DA u x z DO u x y z =+==++=,令12x =,则()12,41,15u =- .可取平面BDA 的一个法向量为()0,1,0v =,所以4182cos ,10582u v u v u v ===, 所以二面角B AD O --的正弦值为3210. 19.解:(1)易知对于每次划拳比赛基本事件共有339⨯=个,其中小华赢(或输)包含三个基本事件上,他们平局也为三个基本事件,不妨设事件“第()*i i N ∈次划拳小华赢”为i A ;事件“第i 次划拳小华平”为i B ;事件“第i 次划拳小华输”为i C ,所以()()()3193i i i P A P B P C ====. 因为游戏结束时小华在第2个台阶,所以这包含两种可能的情况:第一种:小华在第1个台阶,并且小明在第2个台阶,最后一次划拳小华平; 其概率为()()()()()()212122124781p A P B P C P B P C P A P B =+=,第二种:小华在第2个台阶,并且小明也在第2个台阶,最后一次划拳小华输, 其概率为()()()()()()()()()()()()3221233123421234529243p P B P B P C A P A P B P C P C A P A P C P A P C P C =++=所以游戏结束时小华在第2个台阶的概率为127295081243243p p p =+=+=. (2)依题可知X 的可能取值为2、3、4、5,()()()()()4123412522381P X P A P C P A P C ⎛⎫===⨯= ⎪⎝⎭,()()()2121222239P X P A P A ⎛⎫===⨯= ⎪⎝⎭,()()()()()()()()()()123123123322P X P A P B P A P B P A P A P B P B P B ==++ ()()()()()()()()()()()()12312312312322213227P A P B P B P B P A P B P B P B P A P C P A P A ++++=()()()()224152381P X P X P X P X ==-=-=-==, 所以X 的分布列为:X 2 3 4 5P29 1327 2281 281所以X 的数学期望为:()2132222512345927818181E X =⨯+⨯+⨯+⨯=.20.解:(1)依题知2222611,5,04a b a b a b+=+=>>,解得223,2a b ==,所以椭圆E 的离心率22232233a b e a --===; (2)依题知圆F 的圆心为原点,半径为2,23r AB ==,所以原点到直线AB 的距离为2222232122AB d r ⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭, 因为点P 坐标为6,12⎛⎫⎪ ⎪⎝⎭,所以直线AB 的斜率存在,设为k .所以直线AB 的方程为612y k x ⎛⎫-=- ⎪ ⎪⎝⎭,即6102kx y k --+=, 所以261211k d k-==+,解得0k =或26k =.①当0k =时,此时直线PQ 的方程为62x =, 所以PQ 的值为点P 纵坐标的两倍,即212PQ =⨯=;②当26k =时,直线PQ 的方程为161226y x ⎛⎫-=-- ⎪ ⎪⎝⎭, 将它代入椭圆E 的方程2132x y 2+=,消去y 并整理,得234106210x x --=, 设Q 点坐标为()11,x y ,所以16106234x +=,解得17634x =-, 所以211630121726PQ x ⎛⎫=+--= ⎪⎝⎭.21.解:(1)因为()1x x ax x f x ae e e -⎛⎫== ⎪⎝⎭的定义域为实数R , 所以()1x x f x ae e -⎛⎫'=⎪⎝⎭. ①当0a =时,()0f x =是常数函数,没有单调性.②当0a <时,由()0f x '<,得1x <;由()0f x '>,得1x >. 所以函数()f x 在(),1-∞上单调递减,在()1,+∞上单调递增. ③当0a >时,由()0f x '<得,1x >; 由()0f x '>,得1x <, 所以函数()f x 在()1,+∞上单调递减,在(),1-∞上单调递增. (2)因为()()1,20a f x g x =+=,所以121202x x xx b e e e x e--++=+,即1111221022x x x x x x x e x b b x e e x e e e ----++=++=++. 令12x x t e e -=+,则有10t e b t-++=,即()210t b e t +-+=. 设方程()210t b e t +-+=的根为12t t 、,则121t t = , 所以123x x x 、、是方程()()121122*,**x x x xt e t e e e --=+=+ 的根. 由(1)知12x xt e e -=+在(),1-∞单调递增,在()1,+∞上单调递减. 且当x →-∞时,t →-∞,当x →+∞时,()max ,12t e t t e →==+,如图,依据题意,不妨取22e t e <<+,所以121112t e t e<=<+, 因为315122244111110,112422t e e e e t e e e e e ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+<-=-+=-+> ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,易知201x <<,要证()12243x x -<+<,即证11124x -<<-. 所以()1111024t t x t e ⎛⎫⎛⎫-<<<<- ⎪ ⎪⎝⎭⎝⎭,又函数()y t x =在(),1-∞上单调递增, 所以11124x -<<-,所以()12243x x -<+<. 22.解:(1)因为直线1l 的倾斜角为α,且经过点()1,1P -, 当090α=时,直线1l 垂直于x 轴,所以其一般方程为10x -=,当090α≠时,直线1l 的斜率为tan α,所以其方程为()1tan 1y x α+=-,即一般方程为()tan tan 10x y αα---=.因为E 的极坐标方程为4cos ρθ=,所以24cos ρρθ=,因为cos ,sin x y ρθρθ==,所以224x y x +=.所以曲线E 的标准方程为()2224x y -+=. (2)设直线1l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=-+⎩(t 为参数),代入曲线E 的标准方程为()2224x y -+=,可得()()221cos 21sin 4t t αα+-+-+=,即()22cos sin 20t t αα-+-=, 则()12122cos sin ,2t t t t αα+=+=-,所以()()()222212121244cos sin 8124sin AB t t t t t t ααα=-=+-=++=+2, 同理2124sin 2124sin 22CD παα⎛⎫=++=- ⎪⎝⎭, 所以22124sin 2124sin 224AB CD αα+=++-=.23.解:(1)因为223a b ab +-=,所以2232a b ab ab +=+≥. ①当0ab ≥时,32ab ab +≥,解得3ab ≤,即03ab ≤≤;②当0ab <时,32ab ab +≥-,解得 1ab ≥-,即10ab -≤<,所以13ab -≤≤,则034ab ≤-≤,而()2222323a b a b ab ab ab ab -=+-=+-=-, 所以()204a b ≤-≤,即22a b -≤-≤;(2)由(1)知03ab <≤, 因为2222224113444344a b a b ab a b ab +++-=-+ 2222222343333111113304442ab a b ab a b ab a b ab ab +⎛⎫⎛⎫=-+=-+=-+=-≥ ⎪ ⎪⎝⎭⎝⎭当且仅当2ab =时取等号,所以 2211344a b ab++≥ .。

【全国百强校】河北省衡水中学2017届高三上学期第二次调研考试理数试题解析(解析版)

【全国百强校】河北省衡水中学2017届高三上学期第二次调研考试理数试题解析(解析版)

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.z 是z 的共轭复数,若()2,2(z z z z i i +=-=为虚数单位),则z =( )A .1i +B .1i --C .1i -+D .1i - 【答案】D 【解析】试题分析:设,z a bi z a bi =+=-,依题意有22,22a b =-=,故1,1,1a b z i ==-=-. 考点:复数概念及运算.2.已知向量a 与b 的夹角为60,2,5a b ==,则2a b -在a 方向上的投影为( )A .32 B .2 C .52D .3 【答案】A 【解析】试题分析:投影为()222cos 6085322a b a a a b aa-⋅--===. 考点:向量概念及运算.3.在我国古代著名的数学专著《九章算术》里有—段叙述:今有良马与驽马发长安至齐,齐去长 安一千一百二十五里,良马初日行一百零三里,曰增十三里:驽马初日行九十七里,曰减半里,良马先 至齐,复还迎驽马,二马相逢,问:几日相逢?( )A . 12日B .16日C . 8日D .9日 【答案】D 【解析】试题分析:设n 日相逢,()()111103139711252222n n n n n n --⎛⎫+⋅++⋅-=⋅ ⎪⎝⎭,解得9n =. 考点:实际应用问题,相遇问题,数列求和. 4.已知0,0a b >>,若不等式3103m a b a b--≤+恒成立,则m 的最大值为( ) A . 4 B .16 C . 9 D .3 【答案】B 【解析】5.动点(),P x y 满足1253y x y x y ≥⎧⎪+≤⎨⎪+≥⎩,点Q 为()1,1,O -为原点,OQ OP OQ λ=,则λ的最大值是( )A .1-B .1C .2D .2 【答案】D 【解析】试题分析:依题意2x yλ-=,画出可行域如下图所示,由图可知,目标函数在点()3,1取得最大值为2.考点:向量,线性规划.6.如图为某几何体的三视图,則该几何体的表面积为( )A . 105+B . 102+C .6226++D .626++ 【答案】CABCED考点:三视图.7.已知函数()()2sin sin 3f x x x ϕ=+是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,则函数()()cos 2g x x ϕ=-的 图象( ) A .关于点,012π⎛⎫⎪⎝⎭对称 B .可由函数()f x 的图象向右平移3π个单位得到 C .可由函数()f x 的图象向左平移6π个单位得到 D .可由函数()f x 的图象向左平移3π个单位得到【答案】C 【解析】考点:三角函数图象变换. 8.ABC ∆中,若()sin 3cos sin cos C A A B =+,则( )A .3B π=B .2b a c =+C .ABC ∆是直角三角形D .222a b c =+或2B A C =+ 【答案】D 【解析】试题分析:由三角形内角和定理,得()()sin 3cos sin cos A B A A B +=+,化简得cos sin 03A B π⎛⎫-= ⎪⎝⎭,所以是cos 0,2A A π==直角三角形或者0,,233B B B AC ππ-===+.考点:解三角形.9.已知数列{}n a 满足()111,2nn n a a a n N a *+==∈+,若()()11121,n n b n n N b a λλ*+⎛⎫=-+∈=- ⎪⎝⎭, 且数列{}n b 是单调递增数列,則实数λ的取值范围是( ) A .23λ>B .32λ>C .23λ<D .32λ< 【答案】C 【解析】试题分析:12n n n a a a +=+取倒数,得11111121,121n n n n a a a a ++⎛⎫=⋅++=⋅+ ⎪⎝⎭,故112n n a +=,故()122n n b n λ+=-⋅,()22212,3b λλλ=->-<. 考点:数列与不等式.10.如图,正方形ABCD 中,M 是BC 的中点,若AC AM BD λμ=+,则λμ+=( )A .43 B .53 C .158D .2 【答案】B 【解析】考点:向量运算. 11.已知函数()3212f x ax x =+,在1x =-处取得极大值,记()()1'g x f x =,程序框图如图所示, 若输出的结果20142015S >,则判断框中可以填人的关于n 的判断条件是( )A .2014n ≤?B .2015n ≤?C .2014n >?D .2015n >? 【答案】B 【解析】 试题分析:()()()()()'111111310,,,3111fa a g x g n x x n n n n -=-=====-+++,程序框图的作用是求其前n 项和,由于201512014120152015S =-=,故再循环一次就满足20142015S >,故填2015n ≤. 考点:算法与程序框图.【思路点晴】本题考查裂项相消法,把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.适用于类似1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项不为零的等差数列,c 为常数)的数列、部分无理数列等.用裂项相消法求和.12.已知{}n a 满足()211112311,,44...44nn n n n n a a a n N S a a a a *-+⎛⎫=+=∈=++++ ⎪⎝⎭,则54n n n S a -=( )A .1n -B .nC .2nD .2n 【答案】B 【解析】考点:数列求和.【思路点晴】本题可用特殊值法迅速得到答案.错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.若n n n a b c =⋅,其中{}n b 是等差数列,{}n c 是公比为q 等比数列,令112211n n n n n S b c b c b c b c --=++++,则n qS =122311n n n n b c b c b c b c -+++++两式错位相减并整理即得.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.数列{}n a 满足:11a =,且对任意的,m n N *∈都有:n m n m a a a nm +=++,则100a = .【答案】5050 【解析】试题分析:令1m n ==,211113a a a =++⋅=,令2,1m n ==,321125a a a =++⋅=,故991991981199298991001299121005050a a a a a a +=++=+++==++++=+++=.考点:数列的基本概念,合情推理与演绎推理. 14.在ABC ∆中,111,2,4,,,2224A AB AC AF AB CE CA BD BC π∠======,则DE DF 的 值为 . 【答案】14- 【解析】DEFCAB考点:向量运算.15.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,5cos 23C =,且cos cos 2a B b A +=, 则ABC ∆面积的最大值为 . 【答案】52【解析】 试题分析:5cos23C =,21cos 2cos 129C C =-=,45sin 9C =,cos cos 2a B b A c +==,外接圆直径为952sin 10c R C ==,由图可知,当C 在AB 垂直平分线上时,面积取得最大值.设高CE x =,则由相交弦定理有95110x x ⎛⎫-=⎪ ⎪⎝⎭,解得52x =,故最大面积为1552222S =⋅⋅=. E OABCC'F考点:解三角形.16.已知方程23ln 02x ax -+=有4个不同的实数根,則实数a 的取值范围是 . 【答案】20,2e ⎛⎫⎪⎝⎭【解析】试题分析:定义域为{}0x ≠,令()23ln 2f x x ax =-+,这是一个偶函数,我们只需研究0x >上的零点即可,此时()()22'3112ln ,22ax f x x ax f x ax x x-=-+=-=,当0a ≤时,函数单调递增,至多只有一个零点,不合题意;当0a >时,函数在区间10,2a ⎛⎫⎪ ⎪⎝⎭上单调增,在区间1,2a ⎛⎫+∞ ⎪ ⎪⎝⎭上单调减,要有两个零点,只需11131ln ln 1022222f a a a a a ⎛⎫=-⋅+=+< ⎪ ⎪⎝⎭,解得20,2e a ⎛⎫∈ ⎪⎝⎭.考点:函数图象与性质,零点问题.【思路点晴】本题考查函数导数与不等式,函数图象与性质,函数的奇偶性,函数的单调性,数形结合的数学思想方法,分类讨论的数学思想方法.此类题目有两种方法,一种是分离参数,但是本题分离参数法处理起来很麻烦,可以直接讨论,也就是先根据奇偶性,简化题目,然后根据导数画出函数的草图,讨论之后可得到a 的范围.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且()3cos 23cos a C b c A =-.(1)求角A 的大小; (2)求25cos 2sin 22C B π⎛⎫--⎪⎝⎭的取值范围.【答案】(1)6A π=;(2)32,312⎛⎤+-- ⎥ ⎝⎦. 【解析】试题解析:(1)由正弦定理可得,3sin cos 2sin cos 3sin cos A C B A C A =-,从而可得()3sin 2sin cos ,3sin 2sin cos A C B A B B A +==,又B 为三角形的内角, 所以sin 0B ≠,于是3co s 2A =,又A 为三角形的内角, 因此6A π=. (2)255cos 2sin sin cos 1sin cos 1226C B B C B B ππ⎛⎫⎛⎫--=+-=+-- ⎪ ⎪⎝⎭⎝⎭5533sin coscos sin sin 1sin cos 13sin 166226B B B B B B πππ⎛⎫=++-=--=-- ⎪⎝⎭,由6A π=可知,520,,,6663B B ππππ⎛⎫⎛⎫∈∴-∈- ⎪⎪⎝⎭⎝⎭,从而1sin ,162B π⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,因此323sin 1,3162B π⎛⎤+⎛⎫--∈-- ⎥ ⎪ ⎝⎭⎝⎦,故25cos 2sin 22C B π⎛⎫-- ⎪⎝⎭的取值范围为32,312⎛⎤+-- ⎥ ⎝⎦. 考点:解三角形.18.(本小题满分12分)设数列{}n a 的前n 和为n S ,()211,22n n a S na n n n N*==-+∈.(1)求证:数列{}n a 为等差数列, 并分别写出n a 和n S 关于n 的表达式; (2)是否存在自然数n ,使得321...2112423n n S S S S n+++++=?若存在,求出n 的值; 若不存在, 请说 明理由; (3)设()()()1232,...7n n n n c n N T c c c c n N n a **=∈=++++∈+,若不等式()32n mT m Z >∈,对 n N *∈恒成立, 求m 的最大值.【答案】(1)证明见解析,243,2n n a n S n n =-=-;(2)10n =;(3)7.【解析】试题解析:(1)由()222n n S na n n n N *=-+∈,得()()()()211121212n n S n a n n n --=---+-≥,相减得()()()()()111144114142n n n n n n n a na n a n n a n a n a a n ---=---+⇒---=-⇒-=≥.故数列{}n a 是以1为首项, 以4公差的等差数列.()()()()1211443,22n n n n a a a n n n N S n n n N **+∴=+-⨯=-∈==-∈. (2)由(1)知()21nS n n N n*=-∈, ()()2321121...2135 (21222232)n nn n n n n S S S S n n n +-⎡⎤⎣⎦∴+++++=++++-+=+=+,由 221124n n +=,得10n =,即存在满足条件的自然数10n =.(3)故符合条件m 的最大值为7.考点:数列的基本概念,数列求和,不等式.19.(本小题满分12分)如图, 以坐标原点O 为圆心的单位圆与x 轴正半轴交于点A ,点,B P 在单位圆上, 且525,,55B AOB α⎛⎫-∠= ⎪ ⎪⎝⎭.(1)求4cos 3sin 5cos 3sin αααα-+的值;(2)若四边形OAQP 是平行四边形.①当P 在单位圆上运动时,求点Q 的轨迹方程; ②设()02POA θθπ∠=≤≤,点(),Q m n ,且()3f m n θ=+,求关于θ的函数()f θ的解析式, 并求其单调增区间.【答案】(1)10-;(2)①()2211x y -+=;②()2sin 16f πθθ⎛⎫=++ ⎪⎝⎭,增区间为0,3π⎡⎤⎢⎥⎣⎦和4,23ππ⎡⎤⎢⎥⎣⎦. 【解析】试题分析:(1)由三角函数定义得tan 2α=-,由齐次方程可计算的结果为10-;(2)①设PA 中点为H ,()()11,,,P x y Q x y ,则22111111,,22x y x y H +⎛⎫+= ⎪⎝⎭,又111,,22x x x y H y y =-⎧⎛⎫∴⎨ ⎪=⎝⎭⎩,代入上式得点Q 的轨迹方程()2211x y -+=;②依题意得11cos sin x y θθ=⎧⎨=⎩,又由①知111x m y n =-⎧⎨=⎩,cos 1sin m n θθ=+⎧⎨=⎩,()2sin 16f πθθ⎛⎫=++ ⎪⎝⎭,代入正弦的单调区间,求得增区间为0,3π⎡⎤⎢⎥⎣⎦和4,23ππ⎡⎤⎢⎥⎣⎦.试题解析:(1)由三角函数定义得tan 2α=-,所以4cos 3sin 43tan 10105cos 3sin 53tan 1αααααα--===-++-.(2)四边形OAQP 是平行四边形, 所以PA 与OQ 互相平分.①设PA 中点为H ,()()11,,,P x y Q x y ,则22111111,,22x y x y H +⎛⎫+= ⎪⎝⎭,又111,,22x x x y H y y =-⎧⎛⎫∴⎨ ⎪=⎝⎭⎩,代入上式得点Q 的轨迹方程()2211x y -+=.0,3π⎡⎤⎢⎥⎣⎦和4,23ππ⎡⎤⎢⎥⎣⎦. 考点:解三角形,轨迹方程,参数方程,三角恒等变换. 20.(本小题满分12分)已知函数()()1ln f x x a x a R x=-+∈. (1)若函数()f x 在[)1,+∞上单调递增,求实数a 的取值范围; (2)已知()()()()()211321,,22g x x m x m h x f x g x x =+-+≤-=+,当1a =时, ()h x 有两个扱值 点12,x x ,且12x x <,求()()12h x h x -的最小值. 【答案】(1)2a ≥-;(2)3ln 24-. 【解析】试题分析:(1)由已知可得()'0f x ≥在[]1,+∞上恒成立,分离参数得21x a x --≥,求右边函数的最大值为2-,故2a ≥-;(2)()21ln 2h x x x mx =++,求导得()211'x mx h x x m x x ++=++=,写出根与系数关系1212,,1x x m x x +=-=.化简()()121122121ln 2x x x h x h x x x x ⎛⎫-=--+⎪⎝⎭,令12x t x =换元后,利用导数可求得其最小值为3ln 24-. 试题解析:()()221211122211ln ln 22h x h x x x mx x x mx ⎛⎫⎛⎫∴-=++-++ ⎪ ⎪⎝⎭⎝⎭()()221212121ln ln 2x x m x x x x =-+-+-()()()()222211212121212211ln ln ln 22x x x x x x x x x x x x =--+-+-=--+1212121ln 2x x x x x x ⎛⎫=--+ ⎪⎝⎭.令()()2222112121229,0,1,22x t t x x x x x x m x =∴∈+=++-≥, 2222121212122155151,,,0,2222x x x x x x t t x x x x t +⎛⎫∴+≥∴=+≥+≥∴∈ ⎪⎝⎭,()()()()()2122111ln ,'222t h x h x t t t t t ϕϕ-⎛⎫∴-=--=∴=-⎪⎝⎭,()t ϕ∴单调递减, ()min 13ln 224t ϕϕ⎛⎫∴==- ⎪⎝⎭.考点:函数导数与不等式.21.(本小题满分12分)在单调递增数列{}n a 中, 122,4a a ==,且21221,,n n n a a a -+成等差数 列,22122,n n n a a a ++ 成等比数列,1,2,3,...n =. (1)①求证:数列{}2n a 为等差数列;②求数列{}n a 通项公式;(2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:()4,33nn S n N n *>∈+. 【答案】(1)①证明见解析;②当n 为偶数时()2124n a n =+,当n 为奇数时()()134nn n a ++=;(2)证明见解析. 【解析】试题分析:(1)①根据等差中项和等比中项有222121212222,2n n n n n n a a a a a a -+++=+=,化简得222222n n n a a a -+=+,所以数列{}2n a 为等差数列;②由①得{}2n a 首项为2公差为1,所以21n a n =+,即()221n a n =+,结合221222n n n a a a --=可得()211n a n n -=+,因此,当n 为偶数时()2124n a n =+,当n 为奇数时()()134n n n a ++=;(2)()()()2131120444n n n +++-=>,另外,()()()22312044n n n ++-+>,故()()234n n n a ++<,所以()()14112323n a n n n n >=-++++,利用裂项求和法求得()433n nS n >+.试题解析:(1)①因为数列{}n a 单调递增数列,()120,0n a a n N *=>∴>∈, 由题意 21221,,n n n a a a -+成等差数列,22122,n n n a a a ++ 成等比数列1,2,3,.n =得. 222121212222,2n n n n n n a a a a a a -+++=+=,于是222222222n n n n n a a a a a -+=+, 化简得222222n n n a a a -+=+ , 所以数列{}2n a 为等差数列.②又233214226,9a a a a a a =-===,所以数列{}2n a 的首项为22a =,公差为4221,1n d a a a n =-=∴=+,从而()221n a n =+.结合221222n n n a a a --=可得()211n a n n -=+,因此,当n 为偶数时()2124n a n =+,当n 为奇数时()()134n n n a ++=. (2)求数列{}n a 通项公式为:()()()()()()2121327111111,11,242448nn n n n n n a n n +++++-⎡⎤⎡⎤=+-++-=++⎣⎦⎣⎦, 因为()()()22711111234844nn a n n n n n n +-=++≤++<++,所以()()14112323n a n n n n ⎛⎫>=- ⎪++++⎝⎭,则有123111111111111...4...34451223n n S a a a a n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++>-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 考点:数列与不等式.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 22.(本小题满分10分)选修4-1:几何证明选讲如图,,A B 是圆O 上两点, 延长AB 至点C ,满足22AB BC ==,过C 作直线CD 与圆O 相切于点,D ADB ∠的平分线交AB 于点E .(1)证明:CD CE =; (2)求ADBD的值. 【答案】(1)证明见解析;(2)3.试题解析:(1)由题可,,,,CDB DAB EDA EDB CED DAE EDA EDC EDB BDC ∠=∠∠=∠∠=∠+∠∠=∠+∠, 故CED EDC ∠=∠,故CD CE =.(2)因为CD 与CA 分别为圆O 的切线和割线, 所以2,3CD CB CA ==,得3CD =,又因为直线CD 与圆O 相切于点D ,则CDB DAC ∠=∠,则CDB CAD ∆=∆,则33BD CD AD AC ==,故3ADBD=. 考点:几何证明选讲.23.(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系中,曲线1C 的参数方程为cos (0,sin x a a b y b ϕϕϕ=⎧>>⎨=⎩为参数),以O 为极点,x 轴的正 半轴为极轴建立极坐标系,曲线2C 是圆心在极轴上且经过极点的圆,已知曲线1C 上的点()2,3M 对应 的参数,34ππϕθ==与曲线2C 交于点2,4D π⎛⎫⎪⎝⎭. (1)求曲线1C ,2C 的普通方程;(2)()12,,,2A B πρθρθ⎛⎫+⎪⎝⎭是曲线1C 上的两点, 求221211ρρ+的值.【答案】(1)221164x y +=,()2211x y -+=;(2)516. 【解析】试题解析:(1)将()2,3m 及时对应的参数,,34ππϕθ==, 代入cos sin x a y b ϕϕ=⎧⎨=⎩得2cos43,23sin3a a b b ππ⎧=⎪=⎧⎪∴⎨⎨=⎩⎪=⎪⎩, 所以1C 的方程为221164x y +=,设圆2C 的半径R ,则圆2C 的方程为2cos R ρθ=(或()222x R y R -+=),将点2,4D π⎛⎫⎪⎝⎭代入得:1,R ∴=∴ 圆2C 的方程为:2cos ρθ=( 或()2211x y -+=).(2)设曲线1C 的方程为2222cos sin 1164ρθρθ+=,将()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭代入得222211cos sin 1164ρθρθ+=,222222cos sin 221164ππρθρθ⎛⎫⎛⎫++⎪ ⎪⎝⎭⎝⎭+=,所以2222221211cos sin sin cos 11516416416416θθθθρρ⎛⎫⎛⎫+=+++=+= ⎪ ⎪⎝⎭⎝⎭. 考点:极坐标与参数方程.24.(本小题满分10分)选修4-5:不等式选讲 已知()2122f x x x x =-++++. (1)求证:()5f x ≥;(2)若对任意实数()229,1521x f x a a -<++都成立, 求实数a 的取值范围. 【答案】(1)证明见解析;(2)2a ≠±. 【解析】试题分析:(1)利用零点分段法,按2,1,2--三个零点分段去掉绝对值,可求得()f x 最小值为5,得证;(2)由(1)知:()152f x - 的最大值等于5,()()222222999112115111a a a a a a +=++-≥+⨯-=+++,“=” 成立,()22911a a ⇔+=+, 即2,a =±∴当2a =±时,2291a a ++ 取得最小值5,当2a ≠±时,22951a a +>+, 又因为对任意实数()229,1521x f x a a -<++都成立, 所以2a ≠±,a ∴的取值范围2a ≠±. 考点:不等式选讲.。

【全国百强校word版】河北省衡水中学2017年高考押题卷(II)理综物理试题

【全国百强校word版】河北省衡水中学2017年高考押题卷(II)理综物理试题

二.选择题(本题共8小题,每小题6分,在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分)14.我国科学家为解决“玉兔号”月球车长时间处于黑夜工作的需要,研制了一种小型核能电池,将核反应释放的核能转变为电能,需要的功率并不大,但要便于防护其产生的核辐射。

请据此猜测“玉兔号”所用核能电池有可能采纳的核反应方程是A.32411120H H He n +→+B.235114192192056360U n Ba kr 3n +→++C.238238094951Pu Am e -→+D.274301132150Al He P n +→+15.穿梭于大街小巷的共享单车解决了人们出行的“最后一公里”问题。

单车的传动装置如图所示,链轮的齿数为38,飞轮的齿数为16,后轮直径为660mm,若小明以5m/s 匀速骑行,则脚踩踏板的角速度约为A. 3.2 rad/sB. 6.4 rad/sC. 12.6 rad/sD. 18.0rad/s16.如图所示圆形区域内,有垂直于纸面方向的匀强磁场,一束质量和电荷量都相同的带电粒子,以不同的速率,沿着相同的方向,对准圆心O 射入匀强磁场,又都从该磁场中射出,这些粒子在磁场中的运动时间有的较长,有的较短,若带电粒子只受磁场力的作用,则在磁场中运动时间越短的带电粒子A.在磁场中的周期一定越小B.在磁场中的速率一定越小C.在磁场中的轨道半径一定越大D.在磁场中通过的路程一定越小17.如图所示,质量可忽略的绝缘细杆做成正方体框架,边长为a ,框架的每个顶点固定着一个带电荷量为+q 、质量为m 的小球,将这个框架静止放在足够粗糙的水平面上,平面上方有水平向右的匀强电场,场强为E ,下列说法正确的是A.立方体中心位置处电场强度为零B.上方四个小球受到的电场力的合力均相同C.若以右下底边为轴把这个立方体向右侧翻转90°,系统电势能减少了6qEaD.若以右下底边为轴把这个立方体向右侧翻转90°,系统电势能减少了8qEa18.如图甲所示是一个理想变压器和一组理想二极管, A、B是变压器次级线圈的输出端, C、D、E、F、G、H是二极管组接线端,变压器原、副线圈的匝数比为10:1,原线圈电压按图乙所示规律变化,原线圈接有交流电压表,把A、B端适当的接在C、E、F、H中的某些位置,就可以向接在D、G之间的用电器供直流电,下列说法正确的是A. A、B两端电压为2202VB. A、B输出端电流方向1s改变100次C.把AC接一起,再把BH接一起,则电流可以从G流出过用电器从D流回D.把ACF接一起,再把BEH接一起,则电流可以从G流出过用电器从D流回19.北斗卫星导航系统是中国自行研制的全球卫星导航系统。

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试理数试题解析(解析版)

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试理数试题解析(解析版)

河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,或,则()A. B. C. D.【答案】D【解析】因为,所以,应选答案D。

2. 若复数满足为虚数单位),则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】因为,所以该复数在复平面内对于的点位于第三象限,应选答案C。

3. 某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为()A. B. C. D.【答案】B【解析】根据题意抽取比例为故总人数为所以高三被抽取的人数为4. 已知命题;命题,则下列命题中为真命题的是()A. B. C. D.【答案】A5. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为步和步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.【答案】D【解析】由题意可知:直角三角向斜边长为17,由等面积,可得内切圆的半径为:落在内切圆内的概率为,故落在圆外的概率为6. 若实数满足条件,则的最大值为()A. B. C. D.【答案】A【解析】根据题意画出可行域:=,所以目标函数最值问题转化为可行域中的点与原点连线斜率的问题,可知取点F,G时目标函数取到最值,F(2,1),G(1,3),所以最大值将点F代入即可得最大值为17. 已知,则二项式的展开式中的常数项为()...A. B. C. D.【答案】B【解析】=2,所以的展开式中的常数项为:,令r=3得常数项为8. 已知奇函数的导函数的部分图象如图所示,是最高点,且是边长为的正三角形,那么()A. B. C. D.【答案】D【解析】由奇函数,是边长为的正三角形,可得,是最高点且,得A=,所以9. 如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A. B.C. D.【答案】B【解析】从题设所提供的三视图中的图形信息与数据信息可知该几何体是底面分别是腰长为的等腰直角三角形,高为4的柱体,如图,其全面积,应选答案B。

2017届河北省衡水中学高三高考押题2卷数学(理)试题(解析版)_Word版_含答案

2017届河北省衡水中学高三高考押题2卷数学(理)试题(解析版)_Word版_含答案

河北省衡水中学2017届高三高考押题2卷理数试题一、选择题1.设集合2{|60,}A x x x x Z =--<∈, {|,,}B z z x y x A y A ==-∈∈,则集合A B ⋂=( )A. {}0,1B. {}0,1,2C. {}0,1,2,3D. {}1,0,1,2- 【答案】B【解析】由题意可得: {}{}1,0,1,2,0,1,2,3A B =-= ,则集合A B ⋂={}0,1,2. 本题选择B 选项.2.设复数满足,则=( )A. B. C. D.【答案】C【解析】由题意可得: .3.若1cos 43πα⎛⎫+= ⎪⎝⎭, 0,2πα⎛⎫∈ ⎪⎝⎭,则sin α的值为( ) A.426- B. 426+ C. 718D. 23 【答案】A 【解析】由题意可得:2322,,sin 1cos 444443πππππααα⎛⎫⎛⎫⎛⎫+∈∴+=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 结合两角和差正余弦公式有:42sin sin sin cos cos sin 444444ππππππαααα⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+-+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ . 本题选择A 选项.4.已知直角坐标原点O 为椭圆2222:1(0)x y C a b a b+=>>的中心, 1F , 2F 为左、右焦点,在区间()0,2任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O :2222x y a b +=-没有交点”的概率为( )A.4B. 44-C. 2D. 22【答案】A【解析】满足题意时,椭圆上的点()cos ,sin P a b θθ 到圆心()0,0O 的距离:()()222222cos 0sin 0d a b r a b θθ=-+->=+ ,整理可得2222222222sin sin 11,111sin 1sin 1sin 2b b e a a θθθθθ>∴=-<-=<+++ ,据此有:21,02e e <<<,题中事件的概率0220p -==- . 本题选择A 选项.5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90︒的正角.已知双曲线E : 22221(0,0)x y a b a b-=>>,当其离心率e ⎤∈⎦时,对应双曲线的渐近线的夹角的取值范围为( ) A. 0,6π⎡⎤⎢⎥⎣⎦ B. ,63ππ⎡⎤⎢⎥⎣⎦ C. ,43ππ⎡⎤⎢⎥⎣⎦ D. ,32ππ⎡⎤⎢⎥⎣⎦【答案】D【解析】由题意可得: [][]222222212,4,1,3c b b e a a a==+∈∴∈ ,设双曲线的渐近线与x 轴的夹角为θ , 双曲线的渐近线为b y x a =±,则,46ππθ⎡⎤∈⎢⎥⎣⎦, 结合题意相交直线夹角的定义可得双曲线的渐近线的夹角的取值范围为,32ππ⎡⎤⎢⎥⎣⎦. 本题选择D 选项.6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A. 31332222π⎛⎫+++ ⎪ ⎪⎝⎭B. 313322242π⎛⎫+++ ⎪ ⎪⎝⎭C.13222π+ D. 13224π+ 【答案】A 【解析】由三视图可知,该几何体是由四分之三圆锥和一个三棱锥组成的组合体,其中:2222313111=3,=3434232V a a V a a ππ⨯⨯⨯=⨯⨯=圆锥三棱锥由题意: 223132,242a a a ππ+=+∴= ,据此可知:31=2223242S a ππ⨯+⨯⨯=+底 ,3313=1324S ππ⨯⨯=圆锥侧 ,1=2211222S ⨯⨯=棱锥侧 ,它的表面积是 31332222π⎛⎫+++⎪ ⎪⎝⎭.本题选择A 选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.正方体与球各自的三视图相同,但圆锥的不同.7.函数sin ln y x x =+在区间[]3,3-的图象大致为( )A. B. C.D.【答案】A【解析】由题意()()sin ln sin ln f x x x x x -=-+-=-+ ,则()()f x f x -≠ 且()()f x f x -≠- ,函数为非奇非偶函数,选项C,D 错误; 当0x +→ 时, sin 0,ln x x →→-∞ ,则函数值y →-∞ ,排除选项B. 本题选择A 选项.8.二项式1(0,0)nax a b bx ⎛⎫+>> ⎪⎝⎭的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( )A. 4B. 8C. 12D. 16 【答案】B【解析】二项式1(0,0)nax a b bx ⎛⎫+>> ⎪⎝⎭的展开式中只有第6项的二项式系数最大,则10n = , 二项式101ax bx ⎛⎫+ ⎪⎝⎭ 展开式的通项公式为:()1010102110101rrrr r r rr T C ax C a b xbx ----+⎛⎫==⨯ ⎪⎝⎭, 由题意有: 282102137331103C a b T T C a b-+-+== ,整理可得: 8ab = .本题选择D 选项.点睛:二项式系数与展开式项的系数的异同一是在T r +1=r n C a n -r b r 中, rn C 是该项的二项式系数,与该项的(字母)系数是两个不同的概念,前者只指rn C ,而后者是字母外的部分,前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负.二是二项式系数的最值与增减性与指数n 的奇偶性有关,当n 为偶数,中间一项的二项式系数最大;当n 为奇数时,中间两项的二项式系数相等,且同时取得最大值. 9.执行下图的程序框图,若输入的0x =, 1y =, 1n =,则输出的p 的值为( )A. 81B. 812C. 814D. 818【答案】C【解析】依据流程图运行程序,首先 初始化数值, 0,1,1x y n === ,进入循环体:1,12y y nx n y +====,时满足条件2y x ≥ ,执行12n n =+= ,进入第二次循环,32,22y y n xn y +====,时满足条件2y x ≥ ,执行13n n =+= ,进入第三次循环,99,24y y n x n y +====,时不满足条件2y x ≥ ,输出814p xy == . 本题选择C 选项.10.已知数列11a =, 22a =,且()2221nn n a a +-=--, *n N ∈,则2017S 的值为( )A. 201610101⨯-B. 10092017⨯C. 201710101⨯-D. 10092016⨯【答案】C【解析】由递推公式可得:当n 为奇数时, 24n n a a +-= ,数列{}21n a - 是首项为1,公差为4的等差数列, 当n 为偶数时, 20n n a a +-= ,数列{}21n a - 是首项为2,公差为0的等差数列,()()20171320172420161100910091008410082220171010 1.S a a a a a a =+++++++=+⨯⨯⨯+⨯=⨯-L L本题选择C 选项.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项. 11.已知函数()()sin (0,0,)2f x A x A πωϕωϕ=+>><的图象如图所示,令()()()'g x f x f x =+,则下列关于函数()g x 的说法中不正确的是( )A. 函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈B. 函数()g x 的最大值为2C. 函数()g x 的图象上存在点P ,使得在P 点处的切线与直线:31l y x =-平行D. 方程()2g x =的两个不同的解分别为1x , 2x ,则12x x -最小值为2π 【答案】C【解析】由函数的最值可得2A = ,函数的周期2242,136T ππππωω⎛⎫=⨯-==∴= ⎪⎝⎭,当6x π=时, ()12,2623x k k k Z πππωϕϕπϕπ+=⨯+=+∴=+∈ ,令0k = 可得3πϕ=,函数的解析式()2sin 3f x x π⎛⎫=+⎪⎝⎭.则: ()()()'223334712g x f x f x sin x cos x x x πππππ=+⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫=++ ⎪⎝⎭⎛⎫=+ ⎪⎝⎭结合函数的解析式有()7'12g x x π⎛⎫⎡=+∈- ⎪⎣⎝⎭,而3⎡∉-⎣ ,选项C 错误,依据三角函数的性质考查其余选项正确.本题选择C 选项.12.已知函数()3231f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( )A. (),2-∞-B. ()2,2-C. ()2,+∞D. ()()2,00,2-⋃ 【答案】D【解析】很明显0a ≠ ,由题意可得: ()()2'3632f x ax x x ax =-=- ,则由()'0f x = 可得1220,x x a==, 由题意得不等式: ()()122281210f x f x a a=-+< ,即: 2241,4,22a a a><-<< ,综上可得a 的取值范围是 ()()2,00,2-⋃.本题选择D 选项.点睛:函数零点的求解与判断(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.二、填空题13.向量(),a m n =r , ()1,2b =-r ,若向量a r , b r 共线,且2a b =r r,则mn 的值为_________. 【答案】-8【解析】由题意可得: ()22,4a b ==-r r 或()22,4a b =-=-r r,则: ()248mn =-⨯=- 或()248mn =⨯-=- .14.在平面直角坐标系xoy 中,点M 是椭圆()222210x y a b a b+=>>上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于P 、Q 两点.若MPQ V 为锐角三角形,则该椭圆离心率的取值范围是 .【解析】试题分析:∵△PQM 是锐角三角形,∴2,c 4b QMD PMD aπ∠=∠<<∴222cos cos ,42MD c QMD ac a c b QM aπ∠==>=<-2222,a c ac a c >-<-∴2210,10e e e +->+-<解得e e ><故答案为:1,22⎛⎫⎪ ⎪⎝⎭15.设x , y 满足约束条件230,{220,220,x y x y x y +-≥-+≥--≤则yx的取值范围为__________. 【答案】27,54⎡⎤⎢⎥⎣⎦【解析】绘制不等式组表示的可行域如图所示,目标函数yx表示可行域内的点(),xy 与坐标原点()0,0之间连线的斜率,目标函数在点47,55A⎛⎫⎪⎝⎭处取得最大值74,在点51,42⎛⎫⎪⎝⎭处取得最小值25,230,220,220,x yx yx y+-≥-+≥--≤则yx的取值范围为27,54⎡⎤⎢⎥⎣⎦.点睛:本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.16.在平面五边形ABCDE中,已知120A∠=︒,90B∠=︒,120C∠=︒,90E∠=︒,3AB=,3AE=,当五边形ABCDE的面积63,93S⎡∈⎣时,则BC 的取值范围为__________.【答案】3,33【解析】由题意可设:BC DE a==,则:()21313918393333363,93 2244ABCDES a a⎡=⨯+⨯=-∈⎣,则:当33a=时,面积由最大值3;当3a=时,面积由最大值63;结合二次函数的性质可得:BC的取值范围为3,33.三、解答题17.已知数列{}n a 的前n 项和为n S , 112a =, ()*1212,n n S S n n N -=+≥∈. (1)求数列{}n a 的通项公式;(2)记()*12log n n b a n N =∈求11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)()*12n na n N =∈;(2)1n n +. 【解析】试题分析: (1)由题意可得数列{}n a 是以12为首项, 12为公比的等比数列, 12n n a = ()*n N ∈. (2)裂项求和, 11111n n b b n n +=-+,故1n n T n =+. 试题解析:(1)当2n =时,由121n n S S -=+及112a =, 得2121S S =+,即121221a a a +=+,解得214a =. 又由121n n S S -=+,① 可知121n n S S +=+,② ②-①得12n n a a +=,即()1122n n a n a +=≥. 且1n =时,2112a a =适合上式,因此数列{}n a 是以12为首项, 12为公比的等比数列,故12n n a =()*n N ∈. (2)由(1)及12log n n b a = ()*n N ∈,可知121log 2nn b n ⎛⎫== ⎪⎝⎭,所以()1111111n n b b n n n n +==-++, 故2231111n n n n T b b b b b b +=+++=L1111112231n n ⎡⎤⎛⎫⎛⎫⎛⎫-+-++-= ⎪ ⎪⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦L 1111nn n -=++. 18.如图所示的几何体ABCDEF 中,底面ABCD 为菱形, 2AB a =, 120ABC ∠=︒, AC 与BD 相交于O 点,四边形BDEF 为直角梯形, //DE BF ,BD DE ⊥, 222DE BF a ==,平面BDEF ⊥底面ABCD .(1)证明:平面AEF ⊥平面AFC ; (2)求二面角E AC F --的余弦值. 【答案】(1)见解析;(23 【解析】试题分析:(1)利用题意证得EF ⊥平面AFC .由面面垂直的判断定理可得平面AEF ⊥平面AFC .(2)结合(1)的结论和题意建立空间直角坐标系,由平面的法向量可得二面角E AC F --3 试题解析:(1)因为底面ABCD 为菱形,所以AC BD ⊥,又平面BDEF ⊥底面ABCD ,平面BDEF ⋂平面ABCD BD =, 因此AC ⊥平面BDEF ,从而AC EF ⊥. 又BD DE ⊥,所以DE ⊥平面ABCD ,由2AB a =, 222DE BF a ==, 120ABC ∠=︒, 可知22426AF a a a =+, 2BD a =,22426EF a a a =+=, 224823AE a a a +=,从而222AF FE AE +=,故EF AF ⊥.又AF AC A ⋂=,所以EF ⊥平面AFC .又EF ⊂平面AEF ,所以平面AEF ⊥平面AFC .(2)取EF 中点G ,由题可知//OG DE ,所以OG ⊥平面ABCD ,又在菱形ABCD中, OA OB ⊥,所以分别以OA u u u r , OB uuu r , OG u u u r的方向为x , y , z 轴正方向建立空间直角坐标系O xyz -(如图示),则()0,0,0O , ()3,0,0Aa , ()3,0,0C a -, ()0,,22E a a -, ()0,2F a a ,所以())0,,223,0,0AE a a a =--=u u u r()3,,22a a a --, ())3,0,03,0,0AC a a =--=u u u r()23,0,0a -,()()0,,20,,22EF a a a a =--u u ur()0,2,2a a =-.由(1)可知EF ⊥平面AFC ,所以平面AFC 的法向量可取为()0,2,2EF a a =-u u u r.设平面AEC 的法向量为(),,nx y z =r,则0,{0,n AE n AC ⋅=⋅=u u u r r u u u rr 即3220,{0,x y z x --+==即22,{0,y z x ==令2z =,得4y =, 所以()0,4,2n =r.从而cos ,n EF =u u u r r 363n EF an EF ⋅==⋅u u u r r u u u r r . 故所求的二面角E AC F --的余弦值为33.点睛:作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A 级的个数ξ的分布列与数学期望.【答案】(1)448;(2)该校高三年级目前学生的“考前心理稳定整体”已过关;(3)见解析.【解析】试题分析:(1)由频率分布直方图估算该校高三年级学生获得成绩为B 的人数为448; (2)计算平均分可得该校高三年级目前学生的“考前心理稳定整体”已过关. (3) ξ的可能值为0,1,2,3.由超几何分布的概率写出分布列,求得数学期望为1211. 试题解析:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩为B 的人数约有1480044825⨯=.(2)这100名学生成绩的平均分为()1321005690780370260100⨯+⨯+⨯+⨯+⨯91.3=,因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A 级4个, B 级7个,从而任意选取3个,这3个为A 级的个数ξ的可能值为0,1,2,3.则()03473117033C C P C ξ===, ()124731128155C C P C ξ===, ()214731114255C C P C ξ===, ()304731143165C C P C ξ===. 因此可得ξ的分布列为:则()7281440123335555165E ξ=⨯+⨯+⨯+⨯1211=. 20.已知椭圆C : 22221(0)x y a b a b +=>>223P ⎝⎭,动直线l : y kx m -+交椭圆C 于不同的两点A , B ,且0OA OB ⋅=u u u r u u u r(O 为坐标原点)(1)求椭圆C 的方程.(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由.【答案】(1)2212x y +=;(2)22322m k -=. 【解析】试题分析:(1)由题意求得21b =, 22a =,故所求的椭圆方程为2212x y +=. (2)联立直线与椭圆的方程,利用根与系数的关系结合题意可证得22322m k -=为定值.试题解析: (1)由题意可知c a =()222222a c a b ==-,即222a b =,①又点,22P ⎛⎫⎪ ⎪⎝⎭在椭圆上,所以有2223144a b +=,② 由①②联立,解得21b =, 22a =,故所求的椭圆方程为2212x y +=. (2)设()()1122,,,A x y B x y ,由0OA OB ⋅=u u u r u u u r,可知12120x x y y +=.联立方程组22,{1,2y kx m x y =++=消去y 化简整理得()222124220k x kmx m +++-=,由()()22221681120k m m k ∆=--+>,得2212k m +>,所以122412kmx x k +=-+,21222212m x x k -=+,③又由题知12120x x y y +=, 即()()12120x x kx m kx m +++=,整理为()()22121210k x x km x x m ++++=. 将③代入上式,得()22222224101212m km kkm m k k-+-⋅+=++.化简整理得222322012m k k--=+,从而得到22322m k -=. 21.设函数()()22ln f x a x x ax a R =-+-∈.(1)试讨论函数()f x 的单调性;(2)设()()22ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x , 2x ,证明12'02x x h +⎛⎫>⎪⎝⎭. 【答案】(1)见解析;(2)见解析. 【解析】试题分析:(1)求解函数的导函数,分类讨论可得:①若0a >时,当()0,x a ∈时,函数()f x 单调递减,当(),x a ∈+∞时,函数()f x 单调递增;②若0a =时,函数()f x 单调递增; ③若0a <时,当0,2a x ⎛⎫∈-⎪⎝⎭时,函数()f x 单调递减,当,2a x ⎛⎫∈-+∞ ⎪⎝⎭时,函数()f x 单调递增.(2)构造新函数()()()h x f x x ϕ=+= ()22ln x a x a x +-- (0)x >,结合新函数的性质即可证得题中的不等式.试题解析: (1)由()22ln f x a x x ax=-+-,可知()2'2a f x x a x=-+-=()()2222x a x a x ax a x x+---=.因为函数()f x 的定义域为()0,+∞,所以,①若0a >时,当()0,x a ∈时, ()'0f x <,函数()f x 单调递减,当(),x a ∈+∞时,()'0f x >,函数()f x 单调递增;②若0a =时,当()'20f x x =>在()0,x ∈+∞内恒成立,函数()f x 单调递增; ③若0a <时,当0,2a x ⎛⎫∈-⎪⎝⎭时, ()'0f x <,函数()f x 单调递减,当,2a x ⎛⎫∈-+∞ ⎪⎝⎭时, ()'0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x f x x ϕ=+= ()22ln x a x a x +-- (0)x >,所以()()'22ah x x a x=+--= ()()()22221x a x a x a x x x +---+=.所以当0,2a x ⎛⎫∈ ⎪⎝⎭时, ()'0h x <;当,2a x ⎛⎫∈+∞ ⎪⎝⎭时, ()'0h x >;当2a x =时, '02a h ⎛⎫= ⎪⎝⎭. 欲证12'02x x h +⎛⎫>⎪⎝⎭,只需证12''22x x a h h +⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,又()2''20a h x x =+>,即()'h x 单调递增,故只需证明1222x x a +>. 设1x , 2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则()()211122222,{2,x a x alnx m x a x alnx m +--=+--=两式相减并整理得()1212ln ln a x x x x -+-= 22121222x x x x -+-,从而221212121222ln ln x x x x a x x x x -+-=-+-,故只需证明()2212121212122222ln ln x x x x x x x x x x +-+->-+-, 即22121212121222ln ln x x x x x x x x x x -+-+=-+-.因为1212ln ln 0x x x x -+-<, 所以()式可化为12121222ln ln x x x x x x --<+,即11212222ln 1x x x x x x -<+.因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+, ()0,1t ∈.记()22ln 1t R t t t -=-+, ()0,1t ∈,所以()()()()222114'011t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在()0,1单调递增. 又()10R =,因此()0R t <, ()0,1t ∈, 故22ln 1t t t -<+, ()0,1t ∈得证, 从而12'02x x h +⎛⎫>⎪⎝⎭得证. 22.选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C : 3,{2x cost y sintαα=+=+(t 为参数, 0a >),在以坐标原点为极点, x 轴的非负半轴为极轴的极坐标系中,曲线2C : 4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围;(2)当3a =时,两曲线相交于A , B 两点,求AB .【答案】(1)1C , ()()22232x y a -+-=, 2C : ()2224x y +-=; []1,5;(2)3. 【解析】试题分析:(1)由题意计算可得曲线1C 与2C 化为直角坐标系xOy 中的普通方程为()()22232x y a -+-=, ()2224x y +-=; a 的取值范围是[]1,5;(2)首先求解圆心到直线的距离,然后利用圆的弦长计算公式可得3AB =. 试题解析: (1)曲线1C : 3,{2,x cost y sint αα=+=+消去参数t 可得普通方程为()()22232x y a -+-=.曲线2C : 4sin ρθ=,两边同乘ρ.可得普通方程为()2224x y +-=.把()2224y x -=-代入曲线1C 的普通方程得: ()22234136a x x x =-+-=-,而对2C 有()22224x x y ≤+-=,即22x -≤≤,所以2125a ≤≤故当两曲线有公共点时, a 的取值范围为[]1,5.(2)当3a =时,曲线1C : ()()22329x y -+-=,两曲线交点A , B 所在直线方程为23x =. 曲线()2224x y +-=的圆心到直线23x =的距离为23d =,所以482249AB =-=. 23.选修4-5:不等式选讲. 已知函数()211f x x x =-++.(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++. 【答案】(1)[]1,1-;图见解析(2)见解析. 【解析】试题分析:(1)将函数写成分段函数的形式解不等式可得解集为[]1,1-.(2)整理题中所给的算式,构造出适合均值不等式的形式,然后利用均值不等式的结论证明题中的不等式即可,注意等号成立的条件. 试题解析:(1)因为()211f x x x =-++= 3,1,1{2,1,213,.2x x x x x x -<--+-≤≤> 所以作出图象如图所示,并从图可知满足不等式()3f x ≤的解集为[]1,1-.(2)证明:由图可知函数()y f x =的最小值为32,即32m =. 所以2232a b +=,从而227112a b +++=, 从而221411a b +=++()()22222141171a b a a b ⎛⎫⎡⎤++++= ⎪⎣⎦++⎝⎭()222241215711a b a b ⎡⎤⎛⎫++⎢⎥ ⎪++≥ ⎪++⎢⎥⎝⎭⎣⎦()2222412118527117a b a b ⎡++⎢+⋅=⎢++⎣. 当且仅当()222241111a b a b ++=++时,等号成立, 即216a =, 243b =时,有最小值, 所以221418117a b +≥++得证.。

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题

河北衡水中学2016~2017学年度高三下学期数学第二次摸底考试(理科)考生注意:1.本试卷分必考部分和选考部分两部分,共150分,考试时间120分钟。

2.请将各题答案填在试卷后面的答题卡上。

3.本试卷主要考试内容:高考全部内容必考部分一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|10}A k N k N =∈-∈,{|23,}N x x n x n n N ===∈或,则AB =( )A .{6,9}B .{3,6,9}C .{1,6,9,10}D .{6,9,10}2.若复数z 满足2(12)|13|z i i -+=+(i 为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.某校为了解学生学习的情况,采用分层抽样的方法从高一2400人、高二 2000人、高三n 人中,抽取90人进行问卷调查。

已知高一被抽取的人数为36,那么高三被抽取的人数为( )A .20B .24C .30D .324.已知命题1:,()ln 2x p x e x ∃>>;命题:1,1,log 2log 22a b q a b b a ∀>>+≥,则下列命题中为真命题的是 ( )A .()p q ⌝∧B .p q ∧C .()p q ∧⌝D .()p q ∨⌝5.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A .310πB .320πC .3110π-D .3120π-6.若实数,x y 满足条件21025020x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则432x z x y =+的最大值为( )A .1B .6415C .1619D .127.已知()22214sin a x x dx π-=-+⎰,则二项式922x a x ⎛⎫- ⎪⎝⎭的展开式中的常数项为( )A .158-B .212-C .54-D .1-8.已知奇函数()()()cos 0,0,0f x A x A ωϕωϕπ=+>><<的导函数的部分图象如图所示,E 是最高点,且MNE ∆是边长为1的正三角形,那么1()3f =( )A .32π-B .12-C .14D .34π-9.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .2843122++B .3643122++C .3642123++D .44122+10.执行如图所示的程序框图,输出S 的值等于( )A .2321tan9π-- B .25tan3922tan9ππ-- C .2322tan9π-- D .25tan3921tan9ππ-- 11.椭圆()222101y x b b +=<<的左焦点为F ,上顶点为A ,右顶点为B ,若FAB ∆的外接圆圆心(),P m n 在直线y x =-的左下方,则该椭圆离心率的取值范围为 ( )A .2,12⎛⎫⎪⎝⎭B .1,12⎛⎫⎪⎝⎭C .20,2⎛⎫ ⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭12.已知()'f x 是函数()f x 的导函数,且对任意的实数x 都有()()()'23(x f x e x f x e =++是自然对数的底数),()01f =,若不等式()0f x k -<的解集中恰有两个整数,则实数k 的取值范围是( )A .1,0e ⎡⎫-⎪⎢⎣⎭B .21,0e ⎡⎤-⎢⎥⎣⎦C .21,0e ⎛⎤- ⎥⎝⎦D .21,0e ⎛⎫- ⎪⎝⎭二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡中的横线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年普通高等学校招生全国统一考试模拟试题理科数学(Ⅱ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|60,}A x x x x Z =--<∈,{|||,,}B z z x y x A y A ==-∈∈,则集合A B =( )A .{0,1}B .{0,1,2}C .{0,1,2,3}D .{1,0,1,2}- 2.设复数z 满足121z i i +=-+,则1||z=( )A .15C D 3.若1cos()43πα+=,(0,)2πα∈,则sin α的值为( )718D 4.已知直角坐标原点O 为椭圆:C 22221(0)x y a b a b+=>>的中心,1F ,2F 为左、右焦点,在区间(0,2)任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O :2222x y a b +=-没有交点”的概率为( )A.4 B .44 C.2 D .225.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90︒的正角.已知双曲线E :22221(0,0)x y a b a b-=>>,当其离心率2]e ∈时,对应双曲线的渐近线的夹角的取值范围为( )A .[0,]6πB .[,]63ππ C.[,]43ππ D .[,]32ππ6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A.(3)22π++ B .3()242π+C.2 D .4+ 7.函数sin ln ||y x x =+在区间[3,3]-的图象大致为( )A .B .C .D . 8.二项式1()(0,0)nax a b bx+>>的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( ) A .4 B .8 C.12 D .169.执行下图的程序框图,若输入的0x =,1y =,1n =,则输出的p 的值为( )A.81 B .812 C.814 D .81810.已知数列11a =,22a =,且222(1)n n n a a +-=--,*n N ∈,则2017S 的值为( )A .201610101⨯-B .10092017⨯ C.201710101⨯- D .10092016⨯11.已知函数()sin()f x A x ωϕ=+(0,0,||)2A πωϕ>><的图象如图所示,令()()'()g x f x f x =+,则下列关于函数()g x 的说法中不正确的是( )A. 函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈B .函数()g x 的最大值为C. 函数()g x 的图象上存在点P ,使得在P 点处的切线与直线:31l y x =-平行 D .方程()2g x =的两个不同的解分别为1x ,2x ,则12||x x -最小值为2π 12.已知函数32()31f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( ) A .(,2)-∞- B .(2,2)- C.(2,)+∞D .(2,0)(0,2)-第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,共20分13.向量(,)a m n =,(1,2)b =-,若向量a ,b 共线,且||2||a b =,则mn 的值为 .14.设点M 是椭圆22221(0)x y a b a b+=>>上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于不同的两点P 、Q ,若PMQ ∆为锐角三角形,则椭圆的离心率的取值范围为 .15.设x ,y 满足约束条件230,220,220,x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩则y x 的取值范围为 .16.在平面五边形ABCDE 中,已知120A ∠=︒,90B ∠=︒,120C ∠=︒,90E ∠=︒,3AB =,3AE =,当五边形ABCDE的面积S ∈时,则BC 的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,112a =,121n n S S -=+*(2,)n n N ≥∈. (1)求数列{}n a 的通项公式;(2)记12log n n b a =*()n N ∈求11{}n n b b +的前n 项和n T . 18.如图所示的几何体ABCDEF 中,底面ABCD 为菱形,2AB a =,120ABC ∠=︒,AC与BD 相交于O 点,四边形BDEF 为直角梯形,//DE BF ,BD DE ⊥,2DE BF ==,平面BDEF ⊥底面ABCD .(1)证明:平面AEF ⊥平面AFC ; (2)求二面角E AC F --的余弦值.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A 级的个数ξ的分布列与数学期望.20. 已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,且过点2P ,动直线l :y kx m -+交椭圆C 于不同的两点A ,B ,且0OA OB ⋅=(O 为坐标原点)(1)求椭圆C 的方程.(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由. 21. 设函数22()ln f x a x x ax =-+-()a R ∈. (1)试讨论函数()f x 的单调性;(2)设2()2()l n x x a a x ϕ=+-,记()()(h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x ,2x ,证明12'()02x x h +>. 请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C :3cos ,2sin x t y tαα=+⎧⎨=+⎩(t 为参数,0a >),在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C :4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围;(2)当3a =时,两曲线相交于A ,B 两点,求||AB . 23. 选修4-5:不等式选讲. 已知函数()|21||1|f x x x =-++.(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++. 参考答案及解析 理科数学(Ⅱ)一、选择题1-5:BCAAD 6-10:AABCC 11、12:CD二、填空题13.-8 14.122e << 15.27[,]5416.三、解答题17.解:(1)当2n =时,由121n n S S -=+及112a =,得2121S S =+,即121221a a a +=+,解得214a =. 又由121n n S S -=+,① 可知121n n S S +=+,② ②-①得12n n a a +=,即11(2)2n n a n a +=≥. 且1n =时,2112a a =适合上式,因此数列{}n a 是以12为首项,12为公比的等比数列,故12n n a =*()n N ∈ (2)由(1)及12log n n b a =*()n N ∈, 可知121log ()2nn b n ==,所以11111(1)1n n b b n n n n +==-++, 故2231111n n n n T b b b b b b +=+++=11111[(1)()()]2231n n -+-++-=+1111nn n -=++. 18.解:(1)因为底面ABCD 为菱形,所以AC BD ⊥, 又平面BDEF ⊥底面ABCD ,平面BDEF 平面ABCD BD =,因此AC ⊥平面BDEF ,从而AC EF⊥. 又BD DE ⊥,所以DE ⊥平面ABCD ,由2AB a =,2DEBF ==,120ABC ∠=︒, 可知AF=,2BD a =,EF ==,AE ==,从而222AF FE AE +=,故EF AF ⊥. 又AFAC A =,所以EF ⊥平面AFC .又EF ⊂平面AEF ,所以平面AEF ⊥平面AFC .(2)取EF 中点G ,由题可知//OG DE ,所以OG ⊥平面ABCD ,又在菱形ABCD 中,OA OB ⊥,所以分别以OA ,OB ,OG 的方向为x ,y ,z 轴正方向建立空间直角坐标系O xyz -(如图示),则(0,0,0)O,,0,0)A,(,0,0)C,(0,,)E a -,(0,)F a ,所以(0,,),0,0)AE a =--=(,,)a -,(,0,0),0,0)AC =-=(,0,0)-,(0,)(0,,)EF a a =--(0,2,)a =.由(1)可知EF ⊥平面AFC ,所以平面AFC的法向量可取为(0,2,)EF a =. 设平面AEC 的法向量为(,,)n x y z =,则0,0,n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩即0,0,y x ⎧-+=⎪⎨=⎪⎩即,0,y x ⎧=⎪⎨=⎪⎩令z =,得4y =,所以(0,n =. 从而cos ,n EF <>=3||||63n EF nEF ⋅==⋅. 故所求的二面角E AC F --的余弦值为3.19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩为B 的人数约有1480044825⨯=.(2)这100名学生成绩的平均分为1(321005690780370260)100⨯+⨯+⨯+⨯+⨯91.3=,因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A 级4个,B 级7个,从而任意选取3个,这3个为A 级的个数ξ的可能值为0,1,2,3.则03473117(0)33C C P C ξ===,124731128(1)55C C P C ξ===, 214731114(2)55C C P C ξ===,30473114(3)165C C P C ξ===. 因此可得ξ的分布列为:则728144()0123335555165E ξ=⨯+⨯+⨯+⨯1211=. 20.解:(1)由题意可知2c a =,所以222222()a c a b ==-,即222a b =,①又点(2P 在椭圆上,所以有2223144a b+=,② 由①②联立,解得21b =,22a =,故所求的椭圆方程为2212x y +=. (2)设1122(,),(,)A x y B x y ,由0OA OB ⋅=, 可知12120x x y y +=.联立方程组22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩ 消去y 化简整理得222(12)4220k x kmx m +++-=,由2222168(1)(12)0k m m k ∆=--+>,得2212k m +>,所以122412kmx x k+=-+,21222212m x x k -=+,③又由题知12120x x y y +=, 即1212()()0x x kx m kx m +++=,整理为221212(1)()0k x x km x x m ++++=.将③代入上式,得22222224(1)01212m km k km m k k-+-⋅+=++. 化简整理得222322012m k k--=+,从而得到22322m k -=. 21. 解:(1)由22()ln f x a x x ax =-+-,可知2'()2a f x x a x =-+-=222(2)()x ax a x a x a x x--+-=.因为函数()f x 的定义域为(0,)+∞,所以,①若0a >时,当(0,)x a ∈时,'()0f x <,函数()f x 单调递减,当(,)x a ∈+∞时,'()0f x >,函数()f x 单调递增;②若0a =时,当'()20f x x =>在(0,)x ∈+∞内恒成立,函数()f x 单调递增; ③若0a <时,当(0,)2ax ∈-时,'()0f x <,函数()f x 单调递减,当(,)2ax ∈-+∞时,'()0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x f x x ϕ=+=2(2)ln x a x a x +--(0)x >,所以'()2(2)a h x x a x=+--=22(2)(2)(1)x a x a x a x x x +---+=.所以当(0,)2ax ∈时,'()0h x <;当(,)2a x ∈+∞时,'()0h x >;当2a x =时,'()02ah =. 欲证12'()02x x h +>,只需证12'()'()22x x a h h +>,又2'()20ah x x =+>,即'()h x 单调递增,故只需证明1222x x a+>.设1x ,2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则21112222(2)ln ,(2)ln ,x a x a x m x a x a x m ⎧+--=⎨+--=⎩ 两式相减并整理得1212(ln ln )a x x x x -+-=22121222x x x x -+-,从而221212121222ln ln x x x x a x x x x -+-=-+-,故只需证明2212121212122222(ln ln )x x x x x x x x x x +-+->-+-, 即22121212121222ln ln x x x x x x x x x x -+-+=-+-.因为1212ln ln 0x x x x -+-<, 所以(*)式可化为12121222ln ln x x x x x x --<+,即11212222ln 1x x x x x x -<+.因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+,(0,1)t ∈. 记22()ln 1t R t t t -=-+,(0,1)t ∈,所以22214(1)'()0(1)(1)t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在(0,1)单调递增. 又(1)0R =,因此()0R t <,(0,1)t ∈, 故22ln 1t t t -<+,(0,1)t ∈得证,从而12'()02x x h +>得证. 22.解:(1)曲线1C :3cos ,2sin ,x t y t αα=+⎧⎨=+⎩消去参数t 可得普通方程为222(3)(2)x y a -+-=.曲线2C :4sin ρθ=,两边同乘ρ.可得普通方程为22(2)4x y +-=.把22(2)4y x -=-代入曲线1C 的普通方程得:222(3)4136a x x x =-+-=-,而对2C 有222(2)4x x y ≤+-=,即22x -≤≤,所以2125a ≤≤故当两曲线有公共点时,a的取值范围为[1,5].(2)当3a =时,曲线1C :22(3)(2)9x y -+-=,两曲线交点A ,B 所在直线方程为23x =. 曲线22(2)4x y +-=的圆心到直线23x =的距离为23d =,所以||3AB ==. 23. 解:(1)因为()|21||1|f x x x =-++=3,1,12,1,213,.2x x x x x x ⎧⎪-<-⎪⎪-+-≤≤⎨⎪⎪>⎪⎩所以作出图象如图所示,并从图可知满足不等式()3f x ≤的解集为[1,1]-.(2)证明:由图可知函数()y f x =的最小值为32,即32m =.所以2232a b +=,从而227112a b +++=, 从而221411a b +=++2222214[(1)(1)]()71a b a a b ++++=++2222214(1)[5()]711b a a b ++++≥++218[577+=. 当且仅当222214(1)11b a a b ++=++时,等号成立, 即216a =,243b =时,有最小值, 所以221418117a b +≥++得证.。

相关文档
最新文档