毕奥_萨伐尔定律的螺旋表达式

合集下载

10-(3)毕奥—萨伐尔定律

10-(3)毕奥—萨伐尔定律
×内
2、 4、 6、 8 点 :
外 6
dB
0 Id l
4π R
0 sin 45 2
4
二 运动电荷的磁场
S Id l
r
v
P
0 I d l r0 dB 4 r2
dB
n,q dl
dl dl v v
单位时间通过横截面S的电荷量即等于电流。
I
电流元的磁场:

x

l
r2
0 IR 2 π R Bx dl 3 0 4πr
0 IR 2R 4(x R )2
2 2 3
dB
dB x
0 I cosdl
4π r
2

0 IR 2 2 (x R )2
2 2 3
13
I
o
R
x
*
B
x
B
0 IR 2
2 (x R )2
10-3 毕奥—萨伐尔定律
1
一 毕奥─萨伐尔定律 (实验规律 1820)
在真空中,载流导线上任一电流元Idl,在真空中给定点 P所产生的磁感应强度dB的大小与电流元的大小Idl成正比, 与电流元到P点的矢量r之间的夹角的正弦 (sinα)成正比;与 电流元到P点的距离的平方(r2)成反比;dB的方向垂直于dl和 r所组成的平面,其指向由右手螺旋定则确定。 毕奥─萨伐尔定律
电流元中的运动电荷总数均为dN=nSdl
则每个运动电荷产生的电流元在P点产生的磁感应强度为:
dB 0 qv r0 运动电荷的磁场: B dN 4 r 2
适用条件: v <<C
6
运动电荷的磁场

毕奥---萨伐尔定律

毕奥---萨伐尔定律
毕奥---萨伐尔定律 毕奥 萨伐尔定律
两电流元之间的安培定律也可表示成 两电流元之间的安培定律也可表示成
u r r uur u r ˆ I1 I 2 dl2 × (dl1 × r12 ) d F12 = k = I 2 dl2 × dB1 2 r 12
电流元 I1d l1产生的磁场
ˆ ˆ Idl × r µ0 Idl × r dB = k = 2 2 r 4π r
• 求二阶导数
d 2B 在O 令x = 0处的 2 = 0 ⇒ 在O点附近磁场最均匀的条件 dx µ0 d 2B 2a 2 − 2 R 2 = 6π R 2 I = 0 ⇒ a2 = R2 7 2 dx 2 x =0 4π 2 a 2 2 R + 4
a=R
例1、无限长载流直导线弯成如图形状
大小
µ0 Idl dB = 4π r2
r r 方向 Idl × r0
分析对称性、 分析对称性、写出分量式
r r B⊥ = ∫ dB = 0

µ0 Idl sinα Bx = ∫ dBx = ∫ 4π r2
统一积分变量
µ0 Idl sinα Bx = ∫ dBx = ∫ 4π r2 µ0IR µ0IR dl = π = ⋅2 R 3 ∫ 3 4 r 4 r π π
a


P T
µ0I 3 BL′A = (cos π − cosπ ) 4πa 4
µ0I π BLA = (cos0 − cos ) 方向 ⊗ 4 a 4 π
方向 ⊗
T点
Bp = BLA + BL′A = 2.94×10−5T 方向 ⊗
r 电流元 Idl
——右手定则 右手定则 r r r µ0 Idl ×r 毕奥-萨伐尔定律 毕奥 萨伐尔定律 dB = 4 π r3 r r r r µ0 Idl ×r 对一段载流导线 B = ∫ dB = ∫ 4π L r3

毕奥-萨伐尔定律

毕奥-萨伐尔定律

1.若 ,(无限长的 无限长的) 1.若 l >>R ,(无限长的)螺线管的中心处
β1 = π , β2 = 0
2.若 在管端口处: 2.若 l >>R ,在管端口处:
B = µ0nI
1 B = µ0nI 2
µ 0 nI
2
β1 = π/2 , β2 = 0 ; β1 = π, β2 = π/2
B
µ 0 nI
第五章 稳恒电流的磁场
17
v r
P
v dB
v r
v dB
v dB
v Idl
r
v I vdl
磁场为: 对任何一载流导线在某点产生的磁场为:
v B=
v ∫ dB
v v ˆ µ0 Idl × er B=∫ 4π r 2 L
先化为分量式后分别积分。 先化为分量式后分别积分。
3 µ0I 2 π 3µ0I B2 = ⋅ = 2R 2π 8R
I 1 3
方向垂直纸面向外
B3 =
µ0I
4πR
3µ0I µ0I + 8R 4πR
方向垂直纸面向外
B = B1 + B2 + B3 =
方向垂直纸面向外
12
第五章 稳恒电流的磁场
例4:载流螺旋管在其轴上的磁场。 :载流螺旋管在其轴上的磁场。 求半径为R,总长度 求半径为 ,总长度l ,导线电 流为I,单位长度上的匝数为n 流为 ,单位长度上的匝数为 的 螺线管在其轴线上一点的磁场? 螺线管在其轴线上一点的磁场? 解:采用“并排圆电流”模型简化。 采用“并排圆电流”模型简化。
4π r2
P
方向为垂直向里。且所有电流元在 点的磁感应强 方向为垂直向里。且所有电流元在P点的磁感应强 度方向相同(垂直向里)。 度方向相同(垂直向里)。

毕奥-萨伐尔定律

毕奥-萨伐尔定律
结果对比
将实验结果与毕奥-萨伐尔定律的理论值进行对比,评估定律的准确性。
结果分析
分析实验误差来源,如设备精度、环境干扰等,提高实验的可靠性和准确性。
05
毕奥-萨伐尔定律的扩展与 推广
对三维空间的推广
总结词
毕奥-萨伐尔定律最初是在二维空间中 推导出来的,但通过引入矢量运算, 该定律可以扩展到三维空间中。
Idl
电流元,表示电流的一 部分。
r
观察点到电流元的径矢 ,表示观察点与电流元
之间的距离。
03
毕奥-萨伐尔定律的应用场 景
电场与磁场的关系
磁场是由电流产生的,而电场是由电 荷产生的。毕奥-萨伐尔定律描述了 电流和磁偶极子产生的磁场,以及变 化的电场产生的磁场。
毕奥-萨伐尔定律揭示了电场和磁场之 间的相互关系,表明它们是电磁场的 两个方面,而不是独立存在的。
THANKS
对微观尺度的适用性问题
毕奥-萨伐尔定律在描述微观尺度的电磁场时,其精确度受 到限制。在量子尺度下,电磁场的涨落和量子效应可能导 致定律的不适用。
未来研究需要进一步探索毕奥-萨伐尔定律在微观尺度下 的适用性和修正,以更好地描述量子电磁场的行为。
对超导态物质的适用性问题
毕奥-萨伐尔定律在描述超导态物质的 电磁场时,可能存在局限性。超导态 物质的电磁行为与常规物质有所不同, 需要更复杂的理论模型来描述。
电流与磁场的相互作用
根据毕奥-萨伐尔定律,电流产生磁场,而磁场对电流有作用 力。这种作用力被称为洛伦兹力,它描述了电流在磁场中所 受到的力。
毕奥-萨伐尔定律是电动机和发电机等电气设备工作的基础, 它解释了电流如何在磁场中受到作用力,从而产生旋转或线 性运动。
磁力线的描绘

毕奥萨伐尔定律的数学表达式

毕奥萨伐尔定律的数学表达式

毕奥萨伐尔定律的数学表达式
毕奥萨伐尔定律是描述一个重要物理现象的重要定律。

1853年,德国物理学家威廉·毕奥萨·伐尔提出了这一定律,他指出,磁体周围存在一种旋转电流,磁体正在试图引导这种旋转电流。

由此,如果磁体不能无限循环这种电流,那么磁场强度就会减弱,直到磁体消失。

毕奥萨·伐尔定律的数学表达式是用来描述磁体的磁场的变化的重要理论,其定律如下:B⃗={μ⃗0 ·(I⃗·r̂)/4πr2}r̂, 其中B⃗是磁场,μ⃗0是真空磁导率,I⃗是电流,r̂是相对于磁片的单位向量。

从这个公式可以看出,磁场强度随着距离的增加而减弱,磁场强度和电流强度之间存在着内在联系。

毕奥萨·伐尔定律非常重要,它不仅在物理上解释了磁场的结构,而且是研究电磁相关问题的基础。

在电工学中广泛应用,例如在线圈的设计中,用伐尔定律可以迅速计算线圈的磁场,确定绕线的线圈,以及测量电压、电流和功率。

总之,毕奥萨·伐尔定律是一个重要及有效的定律,它可以解释磁体所受到的影响,而且它在电磁学中被广泛应用。

它的数学表达式让研究变得简单、快速,也显示出物理系统中物体与环境之间微妙的相互作用。

6.2_毕奥-萨伐尔定律

6.2_毕奥-萨伐尔定律

6.2 毕奥—萨伐尔定律一 毕奥—萨伐尔定律 (电流元在空间产生的磁场)第6章 稳恒磁场v Idlv dB4π r v v v μ0 Idl × r0 dB = 4π r2−7 −2 真空磁导率μ0 = 4π ×10 N ⋅ AdB =μ0 Idl sin θ2v dBP *v rθv IdlIv r任意载流导线在点 P 处的磁感强度 磁感强度叠加原理v v v v μ0 I dl × r0 B = ∫ dB = ∫ 2 4π r6.2 毕奥—萨伐尔定律v v v μ0 Idl × r0 毕奥—萨伐尔定律 dB = 2 4π r1 8第6章 稳恒磁场例 判断下列各点磁感强度的方向和大小.2dB = 0 1、5 点 :3、7点 :dB +3+7v IdlR6 5=μ 0 Id l4π R22、4、6、8 点 :+4dB =μ 0 Idl4π R0 sin 45 26.2 毕奥—萨伐尔定律二 毕奥---萨伐尔定律应用举例第6章 稳恒磁场θ1、 θ2、 r0 例1 载流长直导线的磁场. 已知:真空中 I、zDθ2解dz θ vIzθ1rv dB* P yxor0dB = 2 4π r v dB 方向均沿r Ì任取电流元 Id z μ 0 Idz sin θ⊗Ì建立坐标系OXYCx 轴的负方向 μ0 Idz sinθ B = ∫ dB = ∫ 2 CD 4π r6.2 毕奥—萨伐尔定律Ì写出分量式第6章 稳恒磁场Idz sinθ B = ∫ dB = ∫ 2 CD 4π rÌ统一积分变量μ0zDθ2z = r0ctg(π −θ ) = −r0ctgθ ,dz θ vIzθ1rv dB* P yr = r0 / sinθxor0Cdz = r0dθ / sin θ μ 0 I sin θ dz B=∫ 2 4π r2=∫μ 0 sin 2 θ r0 d θ I sin θ 2 2 sin θ 4 π r06.2 毕奥—萨伐尔定律第6章 稳恒磁场B=μ0I4 π r0∫θθ21sin θ d θ =v B 的方向沿 x 轴的负方向.B=(cosθ1 − cosθ 2) 4π r0μ0 IzDθ2v B无限长载流长直导线的磁场.(cosθ1 − cosθ 2) 4π r0B=μ0 IIoxCθ1 → 0 θ2 →πμ0I2 π r0θ1P y+6.2 毕奥—萨伐尔定律无限长载流长直导线的磁场 I B第6章 稳恒磁场B=μ0I2π rIXB电流与磁感强度成右螺旋关系 半无限长载流长直导线的磁场π θ1 → 2 θ 2 →πBP =μ0I4π rIor* P6.2 毕奥—萨伐尔定律第6章 稳恒磁场例2 圆形载流导线的磁场. 真空中 , 半径为R 的载流导线 , 通有电流I , 称圆 电流. 求其轴线上一点 p 的磁感强度的方向和大小.v Idlrv Bv dBp *oRϕv BI 解 根据对称性分析4π r B = Bx = ∫ dB sin ϕdB =μ 0 Id l2x6.2 毕奥—萨伐尔定律 v IdlR第6章 稳恒磁场rxoϕr 2 2 2 ϕ r =R +x α μ 0 I cos α dl *p x B= 4 π ∫l r 2v dBcosα = R4π r μ 0 I cos αdl dB x = 2 4π rdB =μ 0 Id l2B=B=μ0 IR4π r 2 μ0 IR2 23 0∫2π Rdl3( 2 x + R )26.2 毕奥—萨伐尔定律第6章 稳恒磁场IR ox*v BxB=B=μ0 IR22 2 3讨 论( 2 x + R )2 v v 2)x < 0 B 的方向不变( I 和 B 成右螺旋关系) μ 0I B = 3)x = 0 2R 2 IR IS μ μ 0 0 4)x >> R , B= B= 3 3 2x 2π x2 21)若线圈有 N 匝( 2 x + R )2 2 N μ 0 IR36.2 毕奥—萨伐尔定律 例:载流圆弧,已知 I , R , θ r 求: B 0 r r 解: B = ∫ dB r r μ 0 Idl sin( dl , r ) B = ∫ dB = 2 ∫ 4π R μ0 I Rθ μ0 Iθ = dl = 2 ∫ 4πR 0 4πR第6章 稳恒磁场 Iθ⊗ oR6.2 毕奥—萨伐尔定律(1) I (2 ) o+ (3) I R⊗第6章 稳恒磁场 (4)v R B x 0 μ0I o B0 = 2RI RBA =d (5) I *AR1• * oμ0 I4π d⊗B0 =μ0 I4RR2B0 =oμ0 I8RB0 =μ0 I4 R2−μ0 I4 R1−μ0 I4π R16.2 毕奥—萨伐尔定律(6)O•第6章 稳恒磁场B =IRμ0I8R•(7)R•OIμ0I + B = 4R 2π Rμ0I•(8)2π 3• OIRμ0I 3 (1 − B = + ) 6R 2π R 2⊗μ0I。

毕奥-萨伐尔定律及应用

毕奥-萨伐尔定律及应用

B x = ∫ dB x B y = ∫ dB y Bz = ∫ dBz
}Байду номын сангаас

v v v v B = Bx i + B y j + Bz k
设有长为L的载流直导 例1 载流长直导线的磁场 设有长为 的载流直导 线,其中电流为I。计算距离直导线为a处的 点的磁 其中电流为 。计算距离直导线为 处的P点的磁 处的 感应强度。 感应强度。 I 解:任取电流元 Idl 据毕奥-萨伐尔定律 萨伐尔定律, r 据毕奥 萨伐尔定律,此电 α Idl 流元在P 流元在P点磁感应强度dB为 r r L r
I dl
R
r
x
d B⊥
θ
θ
r dB
I
O
P
r d B//
µ0 I d l B = ∫ dB// = ∫ dB sin θ = ∫L r 2 sin θ L L 4π µ 0 I sin θ 2πR µ 0 I sin θ = 2 ∫0 d l = 4πr 2 2πR 4πr
µ0 I sin θ B= 2πR 2 4πr
单位矢量
真空中的磁导率
大小: 大小: dB =

µ0 Idl sin θ
r2
Idl vθ
P
v B
方向: 方向:右螺旋法则
v r
r dB
r dB
r Id l
P
r r
α
r dl
I
电流元在给定点所产生的磁感应强度的大小与 I d l 成正比 , 与到电流元的距离平方成反比 ,与电 r 成正比,与到电流元的距离平方成反比, r 流 元 r 矢 径 夹 角 的 正 弦 成 正 比 。 dB 方 向 垂 直 于 r 和 r r 组成的平面, 与 Idl 组成的平面,指向为由 Idl 经 α 角转向 r 时 右螺旋前进方向。 右螺旋前进方向。 r

毕奥萨伐尔定律公式

毕奥萨伐尔定律公式

毕奥萨伐尔定律公式1埃尔维·毕奥萨伐尔定律埃尔维·毕奥萨伐尔定律(Erwin Bolza's Law)是一个定理,由德国数学家埃尔维·毕奥萨伐尔(Erwin Bolza)在1847年提出,指出把一个复数函数系统化为一个多项式来得到方程的解。

在这里,复数是表示多个自变量聚集在一起形成的函数,而多项式是一组关于自变量的有限阶多项式,当满足相应条件时,就可以将复数函数简化为多项式,从而得出所有的解决方案。

由于埃尔维·毕奥萨伐尔定律是一个常规的、可证明的定理,因此它被广泛应用于各种数学领域,包括几何、计算机科学和物理学等。

对于具有多个变量的函数系统,它可以比较快速地将复数函数简化为多项式,从而更容易求解。

2毕奥萨伐尔定理的原理埃尔维·毕奥萨伐尔定理的核心原理是,在满足一定条件的情况下,可以将一个复数函数简化为多项式,从而得出它的解。

首先,毕奥萨伐尔定理要求复数函数系统有@n@个自变量,其中每个自变量由特定的多项式表示,而这@n@个多项式的系数必须是一定的,唯一的属性是他们的阶数可以不同。

接下来,当@n@个多项式被联合起来时,它们就可以形成一个复数函数,其中也可以得到它们关于每个自变量的解。

但是,由于有许多系数参与到计算当中,这样的计算过程可能很耗时。

这时,埃尔维·毕奥萨伐尔定理的核心原理就起作用了:它可以把复数函数系统改写成一个多项式,这样就更容易求解,而@n@个多项式的系数也可以任意调整,以获得最优的解。

3应用由于埃尔维·毕奥萨伐尔定理对于多项式的变量以及联合变量的计算有重要的应用,因此它在多个领域中都有广泛应用。

例如,它可以用于求解一元二次方程组——一组有两个自变量的方程组——的解。

在这里,一元二次方程组有两个多项式,其中每个多项式有两个系数,这里也就是有两个自变量。

通过把它们简化成一个多项式,就可以求出来它们的解。

此外,埃尔维·毕奥萨伐尔定理还可以用于比较两个物体的动力学性质,因为它可以有效地求出这两个物体的总运动方程,以及这两个物体的动力学特性。

电磁学-03毕奥—萨伐尔定律

电磁学-03毕奥—萨伐尔定律

( 2 x R )2 2 N 0 IR
3
电源 电动势 B— S萨伐尔定律 定律 11 一 –§ 23 毕奥 — ( 1) I (2 )
第十一章 稳恒磁场 ( 4)
R B x 0 I 0 o B0 2R
I
0 I BA 4π d
d *A
R1 R2
R
o ( 3) I R
B0
0 I
2
2、 4、 6、 8 点 :
+4
5
dB
0 Idl
4π R
0 sin 45 2
电源 电动势 B— S萨伐尔定律 定律 11 一 –§ 23 毕奥 —
第十一章 稳恒磁场
二 毕奥---萨伐尔定律应用举例
例1 载流长直导线的磁场.
dB 方向均沿
z
D
2
dz
I

z
1
r
r0
dB
* P y
4R
( 5) I
*o
B0
o
0 I
8R
B0
0 I
4 R2

0 I
4 R1

0 I
4π R1
电源 电动势 B— S萨伐尔定律 定律 11 一 –§ 23 毕奥 — 三 磁偶极矩magnetic dipole moment
第十一章 稳恒磁场
m ISen
2
I
例2中圆电流磁感强度公 式也可写成
第十一章 稳恒磁场
如图所示,有一长为l , 半径为R的载流密绕直螺 线管,螺线管的总匝数为N,通有电流I. 设把螺线管 放在真空中,求管内轴线上一点处的磁感强度. o * p
R
x
dx

毕奥萨伐尔定律

毕奥萨伐尔定律
电磁炉具有加热速度快、热效率高、安全可靠等优点,广泛 应用于家庭和餐饮行业。
磁力发电机
磁力发电机是一种利用磁场产生电能的装置。根据毕奥萨 伐尔定律,当导体在磁场中运动时,会在导体中产生感应 电流。磁力发电机通过转子产生的旋转磁场与定子绕组相 对运动,使定子绕组中产生感应电流,实现发电的目的。
磁力发电机广泛应用于风力发电、水力发电、汽车发动机 等领域,为可再生能源的开发和节能减排做出了重要贡献 。
06
毕奥萨伐尔定律的未来研 究与展望
磁场产生的原因与机制
磁场产生的原因
毕奥-萨伐尔定律指出,运动电荷或电流会产生磁场,这是磁场产生的根本原因。
磁场产生的机制
磁场的产生与电荷或电流的运动有关,当电荷或电流运动时,会激发周围的磁场 ,磁场的大小和方向与电荷或电流的运动状态有关。
磁场对物质的作用与影响
核磁共振成像等磁现象在医疗领域具有广泛的应用前景,同时磁 约束核聚变等前沿技术也在积极探索中。
磁现象在太阳能领域的应用
太阳能电池板在吸收太阳能时,利用磁性原理可以提高太阳能利 用率。
感谢您的观看
THANKS
磁场强度的方向与单位
磁场强度的方向
在右手螺旋定则中,拇指指向电流的方向 ,四指环绕的方向就是磁场的方向。
VS
磁场强度的单位
安培/米(A/m),国际单位制中,磁场强度 的单位是安培/米。
03
毕奥萨伐尔定律的实验验 证
实验设计思路
确定实验目标
验证毕奥萨伐尔定律在特定情况下 的适用性,即通过实验手段测量物 理量以验证理论的准确性。
总结词
描述电磁场基本规律的方程组。
详细描述
麦克斯韦方程组是描述电磁场基本规律的方程组,其 中包括了电场、磁场和电荷密度等物理量的关系。毕 奥萨伐尔定律是麦克斯韦方程组的一个推论,它描述 了磁场与电流之间的关系。此外,麦克斯韦方程组还 预言了电磁波的存在,即光、无线电波等。

磁学 3-2 毕奥-萨伐尔定律

磁学 3-2 毕奥-萨伐尔定律

B
0m 2x3
类似于电偶极子电场强度
m S en
I
B
磁偶极子
E
电偶极子
三、运动电荷产生的磁场
电流是大量电荷定向运动形 成的,所以从本质上说电流 产生的电场就是运动电荷所 产生的磁场。
I
qv
I = nqSv
S
P
在载流 导线中选取一段电流
dl
元 Idl ,其电流 I = nqSv
代入毕奥-萨伐尔定律,得
大小为
dB
0 4
Idl sin
r2
θ2
Id l
θ
r
l
Oa
θ1
B
P
由右手螺旋法则知其方向 垂直于纸面向内。因直导 线上所有电流元在 P 点产 生的磁感应强度方向均相
B
dB
0 4
Idl sin r2
l a cot ( ) a cot
同,故 P 点总的磁感应强
dl ad / sin 2
磁场叠加原理:任意形状的载流导线的磁场是所有
电流元的磁场的矢量和
B dB
0
L
L 4
Idl
r2
er
积分遍及整 个载流导线
实际上不存在孤立的电流元,毕奥-萨伐尔定律是基 于特殊情形的实验结果从数学上倒推出来的。但从 此定律出发推出任意恒定电流的磁场都与实验结果 相符,从而验证了毕奥-萨伐尔定律的正确性。
B 0I 4a
(3)直电流延长线上 B = 0
直线电流的 磁感应线
例 2 载流圆线圈半径为 R,电流强度为 I,求圆线圈 中轴线上与圆心 O 距离为 x 处 P 点的磁感应强度。
解:如图建立坐标 系
任取一电流元 Idl,注意到

大学物理(上册) 7.3 毕奥-萨伐尔定律

大学物理(上册) 7.3 毕奥-萨伐尔定律
3
(5)
B
0 IR 2
( 2 x 2 R 2)2
3
i
(6)
讨论: 1.若线圈有 N 匝:
( 2 x R )2 I 和 B 成右螺旋关系; 2. x 0 B 的方向不变;
2 2
B
N 0 IR2
3
3. x 0 4. x R
B
0 I
2R
2 3
B
0 IR
0 Idl sin ; 方向:右手法则; 大小: dB 4π r2
2.有限载流导线在空间产生的磁场
任意形状电流在空间产生的磁场:等于各电流元在 空间产生磁场的矢量和,磁感应强度用积分表示:
B dB
L
0 I dl r
4π r
3
(2)
a.上式即为任意形状的电流产生磁场的分布规律;
1 8 7 6 5
0 Idl
4π R 2
+
R
2
Idl
+4
+3
2、 4、 6 、 8 点 : 0 Idl 0 dB sin 45 4π R 2
1. 载流直导线的磁场
z
B
2
设真空中有长L的载流直导线如 dz 图所示,电流为I,场点 P 到 r z 导线的垂距为 r0 ,且 P 与导线 I r0 两端点的连线与电流的夹角分 o 别为1、2 ,试应用毕-萨定律 x 1 A 计算 P 点的磁感应强度。
7.3 毕奥——萨伐尔定律 7.3.1 毕—萨定律 1.电流元在真空产生的磁场 对应的磁感应强度: 0 Idl r dB (1) 4π r3
7 2 4 π 10 N A 真空磁导率 :0

毕奥萨伐尔定律表达式

毕奥萨伐尔定律表达式

毕奥萨伐尔定律表达式
毕奥萨伐尔定律公式: k=107T·m·A-1。

在静磁学中,毕奥-萨伐尔定律(英文:Biot-SavartLaw)描述电流元在空间任意点P处所激发的磁场。

具体表述如下:毕奥-萨伐尔公式,它指出,曲线涡丝段d l所诱导的速度d v,其方向垂直子d l和 r,大小则与距离 r的平方成反比,而且同d l和d l与 r
时夹角的正弦成正比。

毕奥萨伐尔定律介绍:
在恒定磁场中引入电流元的概念,分析电流元产生磁场的规律,即B-S定律,最后利用磁场的叠加原理,可以解决任意载流体所产生的稳恒磁场的分布。

B-S(毕奥萨伐尔定律)的物理意义:表明一切磁现象的根源是电流(运动电荷)产生的磁场。

反映了载流导线上任一电流元在空间任一点处产生磁感应强度在大小和方向上的关系。

由此定律原则上可以解决任何载流导体在其周围空间产生的磁场分别。

磁场,物理概念,是指传递实物间磁力作用的场。

磁场是一种看不见、摸不着的特殊物质。

磁场不是由原子或分子组成的,但磁场是客观存在的。

磁场具有波粒的辐射特性。

磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的,所以两磁体不用在物理层面接触就能发生作用。

毕奥-萨伐尔定律介绍

毕奥-萨伐尔定律介绍

0I
4πr
6
无限长载流长直导线的磁场
B 0I
2πr
I B
I XB
电流与磁感强度成右手螺旋关系
7
例2 圆形载流导线轴线上的磁场.
解 分析点P处磁场方向得:B Bx dBsin
Idl
cos R r
R
o
r
dB
r2 R2 x2
x
*p x
dB
0

Idl r2
I
dBx
0

I
cosdl
r2
Idl
2
例 判断下列各点磁感强度的方向和大小.
1
8
2
×
7
Idl × 3
R
6
×
4
dB
5
0

Idl
r
r3
1、5点 :dB 0
3、7点
:dB
0 Idl
4π R2
2、4、6、8 点 :
dB
0 Idl
4π R2
sin
450
毕奥-萨伐尔定律
3
二 毕奥-萨伐尔定律应用举例
例1 载流长直导线的磁场.
一 毕奥-萨伐尔定律
(电流元在空间产生的磁场)
dB
0

Idl sin
r2
dB
0

Idl
r
r3
真空磁导率 0 4 π107 N A2
r
dB
P*r
Idl
dB
Idl
I
1
任意载流导线在点 P 处的磁感强度
磁感强度 叠加原理
B dB
0I
dl

磁感应强度 毕奥-萨伐尔定律

磁感应强度 毕奥-萨伐尔定律

µ0
r
2
B=
µ0 I
4 π r0
∫θ
θ2
1
sin θ d θ
v B 的方向沿 x 轴的负方向. 轴的负方向
无限长载流长直导线的磁场 无限长载流长直导线的磁场. 载流长直导线的磁场
z
D
θ2
v B
B=
(cosθ1 − cosθ 2) 4π r0
B=
µ0 I
I
o
x
C
θ1 → 0 θ2 →π
µ0I
2 π r0
r µ0 B= 4π

L1
r ˆ ( I 1 d l1 × r12 )
2 r12
r r r dF2 = I 2 dl 2 × B
——磁感应强度矢量
讨论: 讨论:
r r r 为矢量式, (1) dF2 = I 2 dl2 × B 为矢量式,其标量式为 )
dF2 = I 2 dl2 B sin θ
θ
u r u r 是 I 2 dl2与 B 的夹角
d N = nS d l v v v v d B µ0 qv × r B= = d N 4π r 3
−q
v r
θ
v v
v B
例4 半径 为 R 的带电薄圆盘的电荷面密度 为 σ , 并以角速度 ω 绕通过盘心垂直于盘面的轴转 圆盘中心的磁感强度. 中心的磁感强度 动 ,求圆盘中心的磁感强度
σ R o
B
1 µ 0 nI 2
O
四 运动电荷的磁场
v v v µ0 Idl × r 毕— 萨定律 dB = 3 4π r v
v j
S
v v Id l = j S d l = nS d lq v v v v µ 0 nSdlqv × r dB = 3 4π r

7-4 毕奥-萨伐尔定律

7-4 毕奥-萨伐尔定律

7-4
y
I
Id l
2
0 Id l r dB 4π r3
毕奥-萨伐尔定律
• 任取电流元 Idl 0 Idy sin 大小: dB 4 r2
r a sin( ) a sin
• 建立坐标系oxy

1
r
y
O
dB
a P x
y actg ( ) actg
I
v
0 ev B 2 13T 4 r

e v e m ISn I e S r 2 T 2r 1 m IS vre 0.93 10 23 Am 2 方向: 2
第七章 恒定磁场
物理学
第五版
7-4
毕奥-萨伐尔定律
例2 均匀带电圆盘绕轴线匀速旋转。 已知: q、R、 求:圆心处的 B 解: 取半径为r ,宽为dr的环带。
2( R 2 x 2 )3 2
2) x>>R 处:
0 IR 2 B 2x3
I
• 此时圆电流称为磁偶极子. • 该磁偶极子的磁矩为:
m IS n
I
S
n
轴线上任一点的磁场为:
0 m B 2x 3
第七章 恒定磁场
物理学
第五版
7-4
毕奥-萨伐尔定律
例1 如图,求圆心O点的 B .
B 0 nI
2) 半无限长螺线管 π 1 , 2 0 2
1 0 nI 2
1 B 0 nI 2 B
0 nI
O
第七章 恒定磁场
x
物理学
第五版
7-4
毕奥-萨伐尔定律

132 毕奥-萨伐尔定律

132 毕奥-萨伐尔定律
2x 3
引入磁矩 引入磁矩
m = IS = ISn
m µ0 B= 2π (R 2 + x 2 )3 / 2
例题3、 例题 、载流螺旋管在其轴上的磁场 l
求半径为R, 求半径为 ,总长度 L,单 , 位长度上的匝数为n的螺线 位长度上的匝数为 的螺线 管在其轴线上一点的磁场。 管在其轴线上一点的磁场。 解:长度为dl内的各匝圆线圈 长度为 内的各匝圆线圈 的总效果, 的总效果,是一匝圆电流线圈 的ndl 倍。 选坐标如图示
L 1
∫ [R
R2 In ⋅ dl + (x − l) ]
2 3 2
2
B=
B=
µonI
2
µonI
2
∫β sin β ⋅ dβ
1
β2
演示
(cos β1 − cos β2 ) 磁场的方向
磁场方向与电流满足右手螺旋法则。 磁场方向与电流满足右手螺旋法则。
B
β1 = 0, β2 = π B = µ nI o β1 = 0, β2 = π / 2
2 1
磁感应强度B的方向,与电流成右手螺旋关系, 磁感应强度 的方向,与电流成右手螺旋关系,拇指表示电流 的方向 方向,四指给出磁场方向。 方向,四指给出磁场方向。
当θ1=0,θ2=π时, 时
µo I B= 2πro
若场点在导线的延长线上, 若场点在导线的延长线上,则有
B
I
演示
B=0
例题2、 例题 、载流圆线圈在其轴上的磁场
r
µ 0 Idl × r0 µ0 Idl × r dB = dB = 2 3 4π r 4π r −7 −2 µ 0 = 4π × 10 N ⋅ A 称为真空磁导率
3、 叠加原理 、 任一电流产生的磁场

毕奥-萨伐尔定律

毕奥-萨伐尔定律

O R •
µ0 I
O•
R
⊗ 4R
B=
µ0 I
8R
I

R
•O
2π 3
I
µ0 I B= + 4R 2πR
2010-12-11
µ0 I
3 µ0 I B= ( 1− ) + 6R πR 2
µ0 I
• O
R


15
3. 磁偶极矩 磁偶极矩(magnetic dipole moment)
v v m = IS e n
R
x1
O*
β
β
2
x2 x
×× × ×× × ×× × ×× ×× ×
第七章 恒定磁场
20
物理学
第五版
7-4
毕奥毕奥-萨伐尔定律
讨 论
B=
µ0 nI
2
(cos β 2 − cos β1 )
β1 = π − β 2
l/2
点位于管内轴线中点 (1)P点位于管内轴线中点 ) 点位于管内
cos β1 = − cos β 2
µ 0 Idl o dB = sin 90 2 4π r
B = ∫ dBz
r dB'
p
z
α
r dB
dB⊥
垂直分量抵消! 垂直分量抵消!
z
o
α
r r
r Idl
y
R
µ 0 I dl sin α x = 2 2 2 ∫ r2 r =R +z 4π 2 2π R µ 0 IR µ0 I = sin α ∫ dl = 3 2 0 2 2 4π r 2( R + z ) 2
R

毕奥定律复习

毕奥定律复习
45o 45o
B1
B2
I
12-1 边长为 L 的正方形线圈,分别用图示 两种方式通以电流 I ( 其中 ab、cd 与正方形 共面 ),在这两种情况下,线圈在其中心产 生的磁感应强度的大小分别为: (A) B1 = 0 , B2 = 0 . (B) B1 = 0 , B2 = 2. 828 oI /L . (C) B1 = 2. 828 oI /L , B2 = 0 . (D) B1 = 2. 828 oI /L , B2 = 2. 828 oI /L . L I L B=oI [sin /4-sin(-/4)]/4(L/2) I
x
12-8 一无限长通电流的扁平铜片,宽度为 a ,厚度不计,电流 I 在铜片上均匀分布。在 铜片外与铜片共面,离铜片右边缘为 b 处的 P 点的磁感应强度 B 的大小为 ——————。 解:在 x 处 , dx 宽无限 长通电流: dI =Idx /a I x dx 在 P 点的磁感应强度: P a b
12-8 一无限长通电流的扁平铜片,宽度为 a ,厚度不计,电流 I 在铜片上均匀分布。在 铜片外与铜片共面,且离铜片右边缘为 b 处 的 P 点的磁感应强度 B 的大小为 —————— 。 I
P a b
x
12-8 一无限长通电流的扁平铜片,宽度为 a ,厚度不计,电流 I 在铜片上均匀分布。在 铜片外与铜片共面,离铜片右边缘为 b 处的 P 点的磁感应强度 B 的大小为 ——————。 解:在 x 处 , dx 宽度的无限 长电流元: dI =Idx /a I x dx P a b
解:可视为通电大实心圆柱体与反向通电小 圆柱体产生磁场的迭加。 大实心圆柱体通电电流: R I’ = I R2/ ( R2- a2 ) 大实心圆柱体产生磁场: O B’R(a) = o a I’/2R2 r o’ 通电小圆柱体产生磁场为: Br(0) = 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档