毕奥-萨伐尔定律介绍

合集下载

毕奥---萨伐尔定律

毕奥---萨伐尔定律
毕奥---萨伐尔定律 毕奥 萨伐尔定律
两电流元之间的安培定律也可表示成 两电流元之间的安培定律也可表示成
u r r uur u r ˆ I1 I 2 dl2 × (dl1 × r12 ) d F12 = k = I 2 dl2 × dB1 2 r 12
电流元 I1d l1产生的磁场
ˆ ˆ Idl × r µ0 Idl × r dB = k = 2 2 r 4π r
• 求二阶导数
d 2B 在O 令x = 0处的 2 = 0 ⇒ 在O点附近磁场最均匀的条件 dx µ0 d 2B 2a 2 − 2 R 2 = 6π R 2 I = 0 ⇒ a2 = R2 7 2 dx 2 x =0 4π 2 a 2 2 R + 4
a=R
例1、无限长载流直导线弯成如图形状
大小
µ0 Idl dB = 4π r2
r r 方向 Idl × r0
分析对称性、 分析对称性、写出分量式
r r B⊥ = ∫ dB = 0

µ0 Idl sinα Bx = ∫ dBx = ∫ 4π r2
统一积分变量
µ0 Idl sinα Bx = ∫ dBx = ∫ 4π r2 µ0IR µ0IR dl = π = ⋅2 R 3 ∫ 3 4 r 4 r π π
a


P T
µ0I 3 BL′A = (cos π − cosπ ) 4πa 4
µ0I π BLA = (cos0 − cos ) 方向 ⊗ 4 a 4 π
方向 ⊗
T点
Bp = BLA + BL′A = 2.94×10−5T 方向 ⊗
r 电流元 Idl
——右手定则 右手定则 r r r µ0 Idl ×r 毕奥-萨伐尔定律 毕奥 萨伐尔定律 dB = 4 π r3 r r r r µ0 Idl ×r 对一段载流导线 B = ∫ dB = ∫ 4π L r3

毕奥萨伐尔定律介绍课件

毕奥萨伐尔定律介绍课件

定律的物理意义
物理意义
毕奥-萨伐尔定律揭示了电流在空间 中产生磁场的基本规律,对于电磁场 理论的发展和应用具有重要意义。
应用举例
在电磁学、电机学、变压器、电磁铁 等领域中,毕奥-萨伐尔定律被广泛应 用于分析和计算磁场分布。
Part
02
毕奥萨伐尔定律的推导
毕奥萨伐尔的生平与贡献
毕奥出生于1774年,是 法国物理学家和数学家。
在物理学中的应用
01
02
03
描述磁场分布
毕奥-萨伐尔定律可以用来 描述磁场在空间中的分布 ,特别是在电流和磁铁附 近产生的磁场。
计算磁场力
根据毕奥-萨伐尔定律,可 以计算磁场对电流和磁铁 的作用力,即洛伦兹力和 安培力。
解决电磁问题
在解决电磁学问题时,毕 奥-萨伐尔定律常与其他电 磁学定律一起使用,以完 整地描述电磁场的行为。
毕奥萨伐尔定律介绍 课件
• 毕奥萨伐尔定律概述 • 毕奥萨伐尔定律的推导 • 毕奥萨伐尔定律的应用 • 毕奥萨伐尔定律的实验验证 • 毕奥萨伐尔定律的扩展与展望
目录
Part
01
毕奥萨伐尔定律概述
定义与公式
定义
毕奥-萨伐尔定律描述了电流在空间中产生的磁场分布,特别是电流元在空间中产生的磁 场。
公式
毕奥和萨伐尔通过实验观 测到电流在空间中产生磁 场的现象。
毕奥萨伐尔定律的数学表达形式
毕奥萨伐尔定律可以用数学公式 表示,描述了电流产生的磁场的
大小和方向。
这个定律在电磁学中非常重要, 是研究电磁场和电磁力的基础。
通过应用毕奥萨伐尔定律,可以 解决许多与电流和磁场相关的问
题。
Part
03
毕奥萨伐尔定律的应用

6-3毕奥—萨伐尔定律

6-3毕奥—萨伐尔定律

0 I 1 l r1 r2 0 I 2 l d r1 ln ln 2 r1 2 d r1 r2
2.26 10 6 Wb
运动电荷的磁场
三、 运动电荷的磁场
形成
电荷运动
电 流
磁 场
设电流元 Idl ,横截面积S,单位体积内有n 个定向运动的正电荷 , 每个电荷电量为 q ,定向 速度为v。

L
I d l er 2 r
二、毕奥—萨伐尔定律的应用 先将载流导体分割成许多电流元 Idl 写出电流元 Idl 在所求点处的磁感应强度,然后
按照磁感应强度的叠加原理求出所有电流元在该点 磁感应强度的矢量和。 实际计算时要应先建立合适的坐标系,求各电流元的 分量式。即电流元产生的磁场方向不同时,应先求出 各分量 dBx dBy dBz 然后再对各分量积分,
0 I sin B 2R 2 4r
I dl
R
r
d B


dB
IO
2 2
x
2
P
d B//
R R r R x ; sin 2 2 12 r (R x ) 0 IR 2 0 IS B 2 2 32 2 2 32 2 ( R x ) 2( R x )
0 qv sin dB B dN 4 r2
矢量式:
0 qv er B 2 4 r
其方向根 据 右手螺 旋法则, B 垂直 v 、r 组成的平面。 q 为正, B 为 v 的方向;q为 r 负, B 与 v r 的方向 相反。
1.71 105 T
方向
S点
L

0 I 1 1 BLA (sin sin ) 方向 4a 4 2 L 0 I 1 1 BAL (sin sin ) 方向 4a 2 4

2 毕-萨定律

2 毕-萨定律

到P点的矢径与电流流向之间的夹角。 讨论:若导线为无限长,则 1
0
, 2

B
0I
2 d
方向:右手定则
[例2] 圆电流轴线上的磁场
载流单匝圆线圈(圆电流),其半径 R ,电流 强度为 I ,计算它在轴线上任意一点 P 的磁 感应强度 B
R
I
O
P
步骤1: 取对称坐标系如图; 在圆电流上取任一电流元Idl, 画出矢径 r
[例1] 载流长直导线的磁场
真空中载流直导线通有电流 I, 计算空间任意P点的磁场 B
I d
P
步骤1: 以 P点到导线上的垂点为坐标原点O, 沿直导线的电流方向取坐标系OZ,在载 流导线正方向上任一位置取一电流元Idl 画出从电流元 Idl到 P点的矢径 r
步骤2: 写出该电流元在P点产生的 磁感应强度dB的大小
0
2
dr
0 R
2
0
所取的圆环对应的电流为 dI = σωr dr 面积为 S =πr2,载流圆环的磁矩为 dPm = dIS =σωr dr πr2 = πσωr3 dr 整个转动带电圆盘的磁矩为
Pm

S
dP m

R
r dr
3
1 4
R
4
1 4
QR
转动时,小圆环所对应的等效圆电流为
dI = dq/T =σ2πr dr/(2π/ω)= σωr dr dq
r dr
等效电流dI
等效圆电流在圆盘中心O处的磁感应强度为
dB
0 dI
2r

0
2
dB
dr
O
所有的小圆环转动方向都一致,整个带电圆盘 在盘心O处的磁感应强度为

毕奥-萨戈尔定律

毕奥-萨戈尔定律

毕奥-萨戈尔定律
毕奥-萨伐尔定律(英文:Biot-Savart Law)在静磁学中是描述电流元在空间任意点P处所激发的磁场。

毕奥-萨伐尔定律是法国科学家毕奥和萨伐尔合作研究发现的,以让-巴蒂斯特·毕奥(Jean-Baptiste Biot)和费利克斯·萨伐尔(Félix Savart)命名,1820年9月30日两人将第一个实验结果发表:载流长直导线到磁极距离与其作用力成反比,这一结果肯定了电和磁的联系。

毕奥-萨伐尔定律在静磁近似中是有效的,并且与安培(Ampère)的电路规律和磁性高斯定律一致。

毕奥-萨伐尔定律文字描述:电流元Idl在空间某点P处产生的磁感应强度dB的大小与电流元Idl的大小成正比,与电流元Idl所在处到P点的位置矢量和电流元Idl之间的夹角的正弦成正比,而与电流元Idl到P点的距离的平方成反比。

毕奥-萨伐尔定律在生产和生活中的应用有磁悬浮列车、根据工件大小来选择充磁电流的大小,从而达到磁粉探伤所需的磁场等。

毕奥-萨伐尔定律及毕奥-萨伐尔定律应用举例

毕奥-萨伐尔定律及毕奥-萨伐尔定律应用举例

毕奥-萨伐尔定律及毕奥-萨伐尔定律应用举例一、毕奥-萨伐尔定律1.毕奥-萨伐尔定律:载流导线产生磁场的基本规律。

微分形式为:整个闭合回路产生的磁场是各电流元所产生的元磁场dB的叠加。

磁感应线的方向服从右手定则,如图。

二、毕奥-萨伐尔定律应用举例两种基本电流周围的磁感应强度的分布:载流直导线;圆电流。

例1.载流长直导线的磁场解:建立如图坐标系,在载流直导线上,任取一电流元Idz,由毕-萨定律得元电流在P点产生的磁感应强度大小为:方向为垂直进入纸面。

所有电流元在P点产生的磁场方向相同,所以求总磁感强度的积分为标量积分,即:(1)由图得:,即:此外:,代入(1)可得:讨论:(1)无限长直通电导线的磁场:(2)半无限长直通电导线的磁场:(3)其他例子例2:圆形载流导线轴线上的磁场:设在真空中,有一半径为 R ,通电流为 I 的细导线圆环,求其轴线上距圆心 O 为 x 处的P点的磁感应强度。

解:建立坐标系如图,任取电流元,由毕-萨定律得:,方向如图:,所有dB形成锥面。

将dB进行正交分解:,则由由对称性分析得:,所以有:,因为: ,r=常量,所以:,又因为:所以:,方向:沿x轴正方向,与电流成右螺旋关系。

讨论:(1)圆心处的磁场:x=0 ,。

(2)当即P点远离圆环电流时,P点的磁感应强度为:。

例3:设有一密绕直螺线管。

半径为 R ,通电流 I。

总长度L,总匝数N(单位长度绕有n 匝线圈),试求管内部轴线上一点 P 处的磁感应强度。

解:建立坐标系,在距P 点 x 处任意截取一小段 dx ,其线圈匝数为: 电流为:。

其相当于一个圆电流,它在P点的磁感应强度为:。

因为螺线管各小段在P点的磁感应强度的方向均沿轴线向右,所以整个螺线管在P点的磁感应强度的大小为:因为:代入上式得:所以:讨论:(1)管内轴线上中点的磁场:(2)当 L>>R时,为无限长螺线管。

此时,,管内磁场。

即无限长螺线管轴线上及内部为均匀磁场,方向与轴线平行满足右手定则。

毕奥萨伐尔定律

毕奥萨伐尔定律
• 我们只计算了轴线上的磁场分布,轴线以外磁场分布的计算比 较复杂, 略。为了给同学们一个较全面的印象,下左图显示 了通过圆线圈轴线的平面上磁感应线的分布图。可以看出, 磁感应线是一些套连在圆电流环上的闭合曲线。
• 下右图给出另一个右手定则,用它可以判断载流线 圈的磁感应线方向。这右手定则是:用右手弯曲的 四指代替圆线圈中电流的方向,则伸直的姆指将沿着 轴线上B的方向。
生的磁感应强度的大小 • 与电流元Idl的大小成正比, • 与电流元和从电流元到P点的位矢之间的夹
角θ的正弦成正比, • 与位矢r的大小的平方成反比。即:
一、毕奥---萨伐尔定律
dB的方向 垂直于dl和r所确定的平面,沿
dl×r的方向,用右手螺旋法 则来判定。
矢量表示为: d B 0 Id l r 4 r 3
• 其中:S=πR2为圆线圈的面积。
三、载流圆环导线轴线上的磁场
• 圆线圈轴线上各点的磁感应强度都沿着轴线方向, 与电流方向组成右手螺旋关系。
• 下面讨论两种特殊的情况: • 1、在圆心O处,即a=0处的磁感应强度为: •
• 2、在远离线圈处,即 a>>R,轴线上各点的磁感 应强度约为:
三、载流圆环导线轴线上的磁场
• 由图
cos 1
x L 2
R2 (x L )2 2
cos 2
x L 2
R2 (x L)2 2
代入即得螺线管轴线上任一点P的磁感应强度。
B随x变化关系见上图中的曲线,由这曲线可以看出,当 L>>R时,在螺线管内部很大一个范围内磁场近于均匀, 只在端点附近B值才显著下降。
• 其中 40为比例系数, • μ0 称 为 真 空 磁 导 率 , :

毕奥萨伐尔定律公式详细解说

毕奥萨伐尔定律公式详细解说

毕奥萨伐尔定律公式详细解说毕奥萨伐尔定律是电磁学中的基本定律之一,描述了通过一个导体回路所产生的磁场与通过该回路的电流的关系。

该定律由法国物理学家安德烈-玛丽·安普尔·毕奥萨伐尔于1820年发现并提出。

毕奥萨伐尔定律的数学表达式为:B = μ0 * I / (2 * π * r),其中B 表示磁场的强度,μ0为真空中的磁导率,I表示电流的强度,r表示距离导体回路的距离。

这个公式是通过实验观测得到的,可以用来计算任意一个导体回路所产生的磁场强度。

根据毕奥萨伐尔定律,当电流通过一个导体回路时,会在该回路周围产生一个环绕回路的磁场。

这个磁场的强度与电流的强度成正比,与距离导体回路的距离成反比。

磁场的方向则由右手定则来确定,即握住导线,大拇指指向电流方向,其他四指的弯曲方向就是磁场的方向。

毕奥萨伐尔定律的应用非常广泛。

在电磁学中,我们可以利用这个定律来计算各种不同形状和电流分布的导体回路所产生的磁场。

例如,在电磁铁中,通电线圈产生的磁场可以吸引铁磁物体;在电动机中,导线中的电流通过电磁场与磁场相互作用,产生力矩使电动机运转;在变压器中,通过调整线圈的匝数比可以改变磁场的强度,从而实现电能的传输和转换等。

除了应用于电磁学领域外,毕奥萨伐尔定律还有很多其他应用。

在电路中,我们可以利用这个定律来计算线圈的自感和互感。

自感是指通过一个线圈产生的磁场对该线圈自身电流的影响,而互感则是指线圈之间由于磁场耦合而产生的电流相互影响。

了解自感和互感的大小对于电路的设计和工作原理的理解非常重要。

毕奥萨伐尔定律还可以用于解释许多其他现象。

例如,当一个导体在磁场中运动时,会受到一个由毕奥萨伐尔定律描述的洛伦兹力的作用。

这个力可以使导体受到推动或制动,也可以用于实现电能与机械能的相互转换。

毕奥萨伐尔定律是电磁学中的重要定律,描述了电流通过一个导体回路所产生的磁场与磁场的强度、电流的关系。

它不仅在电磁学领域有广泛的应用,还可以用于解释和理解其他相关现象。

毕奥萨伐尔定律

毕奥萨伐尔定律
电磁炉具有加热速度快、热效率高、安全可靠等优点,广泛 应用于家庭和餐饮行业。
磁力发电机
磁力发电机是一种利用磁场产生电能的装置。根据毕奥萨 伐尔定律,当导体在磁场中运动时,会在导体中产生感应 电流。磁力发电机通过转子产生的旋转磁场与定子绕组相 对运动,使定子绕组中产生感应电流,实现发电的目的。
磁力发电机广泛应用于风力发电、水力发电、汽车发动机 等领域,为可再生能源的开发和节能减排做出了重要贡献 。
06
毕奥萨伐尔定律的未来研 究与展望
磁场产生的原因与机制
磁场产生的原因
毕奥-萨伐尔定律指出,运动电荷或电流会产生磁场,这是磁场产生的根本原因。
磁场产生的机制
磁场的产生与电荷或电流的运动有关,当电荷或电流运动时,会激发周围的磁场 ,磁场的大小和方向与电荷或电流的运动状态有关。
磁场对物质的作用与影响
核磁共振成像等磁现象在医疗领域具有广泛的应用前景,同时磁 约束核聚变等前沿技术也在积极探索中。
磁现象在太阳能领域的应用
太阳能电池板在吸收太阳能时,利用磁性原理可以提高太阳能利 用率。
感谢您的观看
THANKS
磁场强度的方向与单位
磁场强度的方向
在右手螺旋定则中,拇指指向电流的方向 ,四指环绕的方向就是磁场的方向。
VS
磁场强度的单位
安培/米(A/m),国际单位制中,磁场强度 的单位是安培/米。
03
毕奥萨伐尔定律的实验验 证
实验设计思路
确定实验目标
验证毕奥萨伐尔定律在特定情况下 的适用性,即通过实验手段测量物 理量以验证理论的准确性。
总结词
描述电磁场基本规律的方程组。
详细描述
麦克斯韦方程组是描述电磁场基本规律的方程组,其 中包括了电场、磁场和电荷密度等物理量的关系。毕 奥萨伐尔定律是麦克斯韦方程组的一个推论,它描述 了磁场与电流之间的关系。此外,麦克斯韦方程组还 预言了电磁波的存在,即光、无线电波等。

毕奥撒法尔定律

毕奥撒法尔定律

毕奥撒法尔定律
毕奥-萨伐尔定律(也被称为电场定律)是电学中的一个重要定律,它描述了电荷之间的相互作用力与它们所带电荷量的乘积以及它们之间距离之间的关系。

具体来说,毕奥-萨伐尔定律表明在真空中,静止的点电荷所产生的电场强度与它们所带电荷量成正比,与它们之间的距离的平方成反比。

公式表示为:$\frac{E}{q} = \frac{k}{r^{2}}$,其中E是电场强度,q是源电荷的电荷量,k是常数,r是源电荷与试探电荷之间的距离。

这个定律是英国物理学家约瑟夫·安培的学生,法国物理学家奥古斯汀·毕奥和其时的科学家萨伐尔共同发现的。

他们在研究电流产生的磁场时,通过实验和理论推导得出了这个定律。

这个定律不仅适用于点电荷产生的电场,还适用于任何形状的电荷分布产生的电场,以及多个电荷共同产生的电场。

需要注意的是,毕奥-萨伐尔定律是在静止电荷产生的电场中得出的,对于随时间变化的磁场,需要使用麦克斯韦方程组来描述。

毕奥-萨伐尔定律

毕奥-萨伐尔定律

x
l 2
17
B
I0 I0
从以上分析可以看出长直载流螺线管的磁场 分布情况:在螺线管中心区域为均匀磁场,在 管端口处,磁场等于中心处的一半,在螺线管 外部距管轴中心约七个管半径处,磁场就几乎 等于零了。
18
例4. 在半径R=2cm的无限长的半圆形金属薄片中, 有电流I=6A自下而上的通过,如图求 圆柱轴线上任一点的磁感应强度。
位矢量,指向与电流的方向满足右螺旋关系。
多匝平面线圈电流I 应以线圈的总匝数与每匝
线圈的电流的乘积代替。
0 m m 0 圆电流 B n 3 3 2π x 2x
10
三 磁矩
m ISen
2
I
例2 中圆电流磁感强度 公式也可写成
S
en
m
B
0 IR
2x
3
0 IR 2
0 IR 2
a
4π a
25
例7 在玻尔的氢原子模型中,电子绕原子核运动相 当于一个圆电流,具有相应的磁矩(称为轨道磁 矩)。求轨道磁矩 与轨道角动量之间的关系。 解: 设电子的轨道半径为r,每秒转速为ν。 电流:
I e 2 磁矩: IS e πr
圆电流面积: S π r 2
4π d
R
o ( 3) I R
B0
0 I
4R
R2
*o
B0
o
0 I
8R
B0
0 I
4 R2

0 I
4 R1

0 I
4π R1
13
例3 载流直螺线管的磁场 如图所示,有一长为 l , 半径为R的载流密绕直螺 线管,螺线管的总匝数为N,通有电流 I. 设把螺线管 放在真空中,求管内轴线上一点处的磁感强度.

磁学 3-2 毕奥-萨伐尔定律

磁学 3-2 毕奥-萨伐尔定律

B
0m 2x3
类似于电偶极子电场强度
m S en
I
B
磁偶极子
E
电偶极子
三、运动电荷产生的磁场
电流是大量电荷定向运动形 成的,所以从本质上说电流 产生的电场就是运动电荷所 产生的磁场。
I
qv
I = nqSv
S
P
在载流 导线中选取一段电流
dl
元 Idl ,其电流 I = nqSv
代入毕奥-萨伐尔定律,得
大小为
dB
0 4
Idl sin
r2
θ2
Id l
θ
r
l
Oa
θ1
B
P
由右手螺旋法则知其方向 垂直于纸面向内。因直导 线上所有电流元在 P 点产 生的磁感应强度方向均相
B
dB
0 4
Idl sin r2
l a cot ( ) a cot
同,故 P 点总的磁感应强
dl ad / sin 2
磁场叠加原理:任意形状的载流导线的磁场是所有
电流元的磁场的矢量和
B dB
0
L
L 4
Idl
r2
er
积分遍及整 个载流导线
实际上不存在孤立的电流元,毕奥-萨伐尔定律是基 于特殊情形的实验结果从数学上倒推出来的。但从 此定律出发推出任意恒定电流的磁场都与实验结果 相符,从而验证了毕奥-萨伐尔定律的正确性。
B 0I 4a
(3)直电流延长线上 B = 0
直线电流的 磁感应线
例 2 载流圆线圈半径为 R,电流强度为 I,求圆线圈 中轴线上与圆心 O 距离为 x 处 P 点的磁感应强度。
解:如图建立坐标 系
任取一电流元 Idl,注意到

毕奥-萨伐尔定律

毕奥-萨伐尔定律

半无限长载流长直导线的磁场
1
π 2
2 π
BP
0I
4π r
I
o r *P
例2 圆形载流导线的磁场.
真空中 , 半径为R 的载流导线 , 通有电流I , 称圆
电流. 求其轴线上一点 p 的磁感强度的方向和大小.
Idl
B
o
R
r
dB
pB
*
x
I
dB 0 Idl
4π r 2
解 根据对称性分析 B Bx dB sin
x2
x + + + + + + + + + + + + + + +
dB 0 2
R 2 Indx R2 x2 3/2
x Rcot
dx R csc2 d
B
dB 0nI
2
x2 x1
R2dx R2 x2 3/2
R2 x2 R2 csc2
B 0nI
2
2 R3csc2 d 1 R3 csc3 d
Idl
cos R r
R
r
dB r2 R2 x2
o
x
*p x
B 0I

cosdl
l r2
dB 0

Idl r2
dBx
0

I cosdl
r2
B
0IR
4π r3
2π R
dl
0
B
0IR2
(2 x2 R2)32
I
R
ox
B
*x
B
0IR2
(2 x2 R2)32

高中毕奥-萨伐尔定律详解

高中毕奥-萨伐尔定律详解
2
2 R csc β µ o n I dβ µ on I B=∫ = 2 2cscβ µ o n I ( cosβ cosβ 1) 2 = 2
µ o n I ( R csc β dβ ) R = = 3 3
2
2
µ o n I dβ
2cscβ sinβ dβ
结束
返回
∫β
β2
1
...................
r
r3
用矢量形式表示的毕奥 萨伐尔定律 µ o I dl × r µ o I dl r ×( dB = ) = 3 2 r r 4π 4π r B =∫ µ o I dl

×
r I
r3
r
I
dB Idl
r
dB
结束
返回
二、 运动电荷的磁场 dB = 4 π
µ o I d l sin α
2
r µ o n q v S dl sin α I =nq v S = r2 4 π 载流粒子数 µ o q v d N sin ( v , r ) = d N = n S dl r2 4 π dB µ o q v sin ( v , r ) B = = 2 dN 4 r π B = 4 π
返回
dB =
µ
I dl sin α r2 4π
o
µo
真空中的磁导率
µ o = 4π
× 10
7
( H . m 1 ) 或 ( 亨利 米 亨利.米 萨伐尔定律
×(
1
)
用矢量形式表示的毕奥 dB = µ o I dl

×
r
r3 B =∫

µ o I dl = 4π r 2

毕奥-萨伐尔定律介绍

毕奥-萨伐尔定律介绍
毕奥-萨伐尔定律介绍
$number {01}
目 录
• 毕奥-萨伐尔定律的背景 • 毕奥-萨伐尔定律的内容 • 毕奥-萨伐尔定律的应用 • 毕奥-萨伐尔定律的推导与证明 • 毕奥-萨伐尔定律的局限性与发展
01
毕奥-萨伐尔定律的背景
发现过程
毕奥和萨伐尔的研究
毕奥和萨伐尔在19世纪初对磁力和 电力进行研究,通过实验和观察,他 们发现电流在其周围空间产生磁场, 磁场的方向与电流的方向有关。
THANKS
对未来研究的展望
探索新型材料
实验验证与修正
随着新型材料的不断涌现,研究这些 材料在磁场中的行为,以及如何利用 毕奥-萨伐尔定律描述其磁效应,是未 来的研究重点之一。
通过实验验证毕奥-萨伐尔定律的准确 性,并对定律进行必要的修正,以适 应不断发展的研究和应用需求。
跨学科应用
毕奥-萨伐尔定律在物理学、工程学等 领域有广泛的应用,未来可以进一步 探索其在其他学科领域的应用,如生 物学、医学等。
在其他领域的应用
生物医学工程
在生物医学工程中,毕奥-萨伐尔定律 可用于研究生物体内的电流和磁场, 如心电、脑电等领域。
地球物理学
在地球物理学中,毕奥-萨伐尔定律可 用于研究地球内部的磁场分布和变化, 如地磁场的起源、变化规律等。
04
毕奥-萨伐尔定律的推导与 证明
推导过程
毕奥-萨伐尔定律的数学模型
基于电流元相互作用原理,通过微积分和矢量分析的方法,推导出两个电流元在空间中产生的磁 场分布。
电流元的位置和方向
考虑电流元的位置和方向的变化,对每个电流元分别进行推导,得出其在空间中产生的磁场分布 。
磁场分布的叠加
根据磁场分布的叠加原理,将各个电流元产生的磁场分布进行叠加,得到整个电流回路在空间中 产生的总磁场分布。

毕奥萨伐尔定律

毕奥萨伐尔定律

比奥·萨瓦特定律指出:磁场源是电流元素,磁场的衰减与场点到电流元素的距离的平方成正比。

磁场遵循叠加原理。

由任意形状的导线激励的总磁感应强度B是由电流元件激励的磁感应强度DB的矢量积。

任何形状的载流导线都可以视为许多电流元件IDL,只要已知由电流元件激发的磁场定律,就可以通过叠加原理获得任意载流导线激发的磁场的分布。

载流线的任何电流元素IDL在给定点P处产生的磁感应强度DB 与电流元素的大小成正比,与电流元素与从电流元素到矢量的矢量r 之间的夹角正弦成正比。

P点,与当前元素和P点之间的距离的平方成反比;DB的方向垂直于由DL和R确定的平面,并且该方向由右螺旋规则确定,也就是说,当右螺旋从IDL旋转小于180°到R的角度时,螺钉的方向如图1所示。

数学表达式为
地球磁场起源的理论
其中k为比例系数,真空中k = 107t·m·a-1,不同磁性介质的K值不同。

为了使DB的公式合理化,设k =μ/ 4π,μ为介质的渗透率,μ= 4π×107t·m·a-1在真空中
地球磁场起源的理论
Biot Savart定律的向量表达如下:
地球磁场起源的理论
由任意形状的载流线在点P处产生的磁感应强度B等于该点上导体上每个电流元素IDL产生的磁感应强度的矢量和
地球磁场起源的理论
Biot Savart定律给出了当前元素IDL在距R的空间中的点P处产生dB的幅度和方向。

但是,由于当前元素不能单独存在,因此无法通过实验直接验证Biot Savart定律。

间接证明了比奥·萨瓦特定律的正确性,因为从比奥·萨瓦特定律得到的所有结果都与实验结果吻合良好。

毕奥-萨伐尔定律介绍

毕奥-萨伐尔定律介绍

0I
4πr
6
无限长载流长直导线的磁场
B 0I
2πr
I B
I XB
电流与磁感强度成右手螺旋关系
7
例2 圆形载流导线轴线上的磁场.
解 分析点P处磁场方向得:B Bx dBsin
Idl
cos R r
R
o
r
dB
r2 R2 x2
x
*p x
dB
0

Idl r2
I
dBx
0

I
cosdl
r2
Idl
2
例 判断下列各点磁感强度的方向和大小.
1
8
2
×
7
Idl × 3
R
6
×
4
dB
5
0

Idl
r
r3
1、5点 :dB 0
3、7点
:dB
0 Idl
4π R2
2、4、6、8 点 :
dB
0 Idl
4π R2
sin
450
毕奥-萨伐尔定律
3
二 毕奥-萨伐尔定律应用举例
例1 载流长直导线的磁场.
一 毕奥-萨伐尔定律
(电流元在空间产生的磁场)
dB
0

Idl sin
r2
dB
0

Idl
r
r3
真空磁导率 0 4 π107 N A2
r
dB
P*r
Idl
dB
Idl
I
1
任意载流导线在点 P 处的磁感强度
磁感强度 叠加原理
B dB
0I
dl

毕奥萨伐尔定律

毕奥萨伐尔定律

毕奥-萨伐尔定律的公式是什么
一、电流(沿闭合曲线)
毕奥-萨伐尔定律适用于计算一个稳定电流所产生的磁场。

这电流是连续流过一条导线的电荷,电流量不随时间而改变,电荷不会在任意位置累积或消失。

采用国际单位制,用方程表示:,
其中,是源电流,是积分路径,是源电流的微小线元素,为电流元指向待求场点的单位向量,为真空磁导率其值为。

二、电流(整个导体体积)
当电流可以近似为穿过无限窄的电线时,上面给出的配方工作良好。

如果导体具有一定厚度,则适用于Biot-Savart定律(再次以SI为单位):
三、恒定均匀电流
在稳定的恒定电流I的特殊情况下,磁场B是,即电流可以从积分中取出。

四、磁感应电流:基本上是类比于线性电流关系的旋转,电对流:。

其中ρ是电荷密度。

B被认为是在其轴向平面上排列的一种涡流磁流,其中H是涡流的圆周速度。

扩展资料
在静磁学中,毕奥-萨伐尔定律(英文:Biot-Savart Law)描述电流元在空间任意点P处所激发的磁场。

定律文字描述:电流元Idl 在空间某点P处产生的磁感应强度dB 的大小与电流元Idl 的大小成正比,与电流元Idl 所在处到P点的位置矢量和电流元Idl 之间的夹角的正弦成正比,而与电流元Idl 到P点的距离的平方成反比。

该定律在静磁近似中是有效的,并且与Ampère的电路规律和磁性高斯定律一致,以Jean-Baptiste Biot和FélixSavart命名。

132 毕奥-萨伐尔定律

132 毕奥-萨伐尔定律
2x 3
引入磁矩 引入磁矩
m = IS = ISn
m µ0 B= 2π (R 2 + x 2 )3 / 2
例题3、 例题 、载流螺旋管在其轴上的磁场 l
求半径为R, 求半径为 ,总长度 L,单 , 位长度上的匝数为n的螺线 位长度上的匝数为 的螺线 管在其轴线上一点的磁场。 管在其轴线上一点的磁场。 解:长度为dl内的各匝圆线圈 长度为 内的各匝圆线圈 的总效果, 的总效果,是一匝圆电流线圈 的ndl 倍。 选坐标如图示
L 1
∫ [R
R2 In ⋅ dl + (x − l) ]
2 3 2
2
B=
B=
µonI
2
µonI
2
∫β sin β ⋅ dβ
1
β2
演示
(cos β1 − cos β2 ) 磁场的方向
磁场方向与电流满足右手螺旋法则。 磁场方向与电流满足右手螺旋法则。
B
β1 = 0, β2 = π B = µ nI o β1 = 0, β2 = π / 2
2 1
磁感应强度B的方向,与电流成右手螺旋关系, 磁感应强度 的方向,与电流成右手螺旋关系,拇指表示电流 的方向 方向,四指给出磁场方向。 方向,四指给出磁场方向。
当θ1=0,θ2=π时, 时
µo I B= 2πro
若场点在导线的延长线上, 若场点在导线的延长线上,则有
B
I
演示
B=0
例题2、 例题 、载流圆线圈在其轴上的磁场
r
µ 0 Idl × r0 µ0 Idl × r dB = dB = 2 3 4π r 4π r −7 −2 µ 0 = 4π × 10 N ⋅ A 称为真空磁导率
3、 叠加原理 、 任一电流产生的磁场

毕奥- 萨伐尔定律

毕奥- 萨伐尔定律

毕奥- 萨伐尔定律
如图9- 12所示.因此,总 磁感应强度B的矢量积分可化为 标量积分
图9- 12 直线电流的磁场
毕奥- 萨伐尔定律
(1)若直线电流为无限长,即θ1=0,θ2=π,则 (9- 13)
与实验结果一致.无限长直线电流是一个理想模型, 在实际问题中,若直线电流的长度远大于到场点P的距离 a,此时直线电流就可视为无限长.直线外到带电直线距 离相等的各点磁感应强度B,其大小都相等,方向沿每点 的切向,人们称无限长直线电流在场点激发的磁场具有 轴对称性.
毕奥- 萨伐尔定律
三、 典型电流的磁场计算——毕- 萨定律的应用
电流磁场的计算类似于带电体电场分布的计算,用毕奥- 萨伐 尔定律计算磁场中各点磁感应强度的具体步骤如下:
首先,将载流导线划分为一段段电流元,任选一段电流元Idl, 并标出Idl到场点P的位矢r,确定两者的夹角θ(Idl,r).
其次,根据毕奥- 萨伐尔定律,求出电流元Idl在场点P所激发 的磁感应强度dB的大小,并由右手螺旋法则决定dB的方向.
毕奥- 萨伐尔定律
(2)若直线电流为半无限长,即θ1=0, θ2=π/2(或θ1=π/2,θ2=π),则P点的B的大小 为
(3)P点在延长线上,θ=0或θ2=π, dB=0,B=0.
毕奥- 萨伐尔定律
2. 圆电流在其轴线上的磁场
设圆电流(载流线圈)半径为R,通有电流I,试计算它 在其轴线上任一点P的磁感应强度.
毕奥- 萨伐尔定律
【例9-1】
如图9-11所示,试求电流元Idl周围空间的磁感 应强度.
解:计算电流元Idl周围空间的磁感应强度dB.根 据毕- 萨定律先计算dB的大小,即
毕奥- 萨伐尔定律
图9- 11 例9- 1图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 恒定磁场
en
S
I
13
物理学
第五版
7-4
毕奥-萨伐尔定律
例3 载流直螺线管内部的磁场. 如图所示,有一长为l ,半径为R的载 流密绕直螺线管,螺线管的总匝数为N, 通有电流I. 设把螺线管放在真空中,求管 内轴线上一点处的磁感强度.
R
*
P
×× × ×× × ×× × ×× ×× ×
第七章 恒定磁场
1
r
x
C
o r0
P
y
B 的方向沿 x 轴负方向
5
0 I (cos1 cos 2 ) 4 π r0
第七章 恒定磁场
物理学
第五版
7-4
毕奥-萨伐尔定律
B
0 I
4 π r0
(cos1 cos 2 )
z
D
无限长载流长直导线
1 0 2 π
×
2
B
0 I
2 π r0
1
物理学
第五版
7-4
毕奥-萨伐尔定律
任意载流导线在点 P 处的磁感强度 磁感强度 叠加原理 B dB
dB
r
Idl
0 I dl r 4 π r3
dB
P*
I

Idl
r
第七章 恒定磁场
2
物理学
第五版
7-4
毕奥-萨伐尔定律
例 判断下列各点磁感强度的方向和大小.
第五版
7-4
毕奥-萨伐尔定律
2
x Rcot
B dB
2
dx R csc d
0 nI
2
2 2
R
x1
x2
R dx
2
2
x
2 3/ 2

R x R csc
2
R
x1
1 O*

2
x2 x
×× × ×× × ×× × ×× ×× ×
第七章 恒定磁场
16
物理学
14
物理学
第五版
7-4
毕奥-萨伐尔定律

螺线管可看成圆形电流的组合 2 0 IR 由圆形电流磁场公式 B 2 2 3/ 2 2( x R )
dB
0
2
R
P
R 2 In dx
2
x
2 3/ 2

N n l
R
O*
x
第七章 恒定磁场
x
×× × ×× × ×× × ×× ×× ×
15
物理学
物理学
第五版
7-4
毕奥-萨伐尔定律
一 毕奥-萨伐尔定律
(电流元在空间产生的磁场)
dB
0 Idl sin

2
dB
r 0 Idl r dB 4 π r3
r
Idl
dB
P*
I

Idl
真空磁导率 7 2 0 4 π10 N A
r
第七章 恒定磁场
7-4
毕奥-萨伐尔定律
二 毕奥-萨伐尔定律应用举例
例1 载流长直导线的磁场. 0 Idz sin z 解 dB 2 4 π r D 2
dz
I

z
1
r
*
dB
dB 方向均沿
x 轴的负方向
0 Idz sin B dB 4 π CD r 2
4
x
C
o r0
P
y
Idl
0 I cos dl
4π r
2
cos dl B 2 l 4π r
dB

0 I
R
r
x

*p
0 IR 2 π R B dl 3 0 4πr
0 IR
2 2 2 3
o

x B
I
( 2 x R)2
第七章 恒定磁场
9
物理学
第五版
7-4
毕奥-萨伐尔定律
2
讨 (1)若线圈有 N 匝 B N 0 IR 3 2 2 论 ( 2 x R)2 0 I x0 B ( 2) 2R x R ( 3) r R 2 IR 0 B B , o *p x 3 x 2x I 0 IS B 2 π x3
1 8 7
×
2
×3
Idl
R
6 5
×
4
0 Idl r dB 4 π r3
1、5点 :dB 0 0 Idl 3、7点 :dB 4 π R2 2、4、6、8 点 : 0 Idl 0 dB sin 45 4 π R2 毕奥-萨伐尔定律
3
第七章 恒定磁场
物理学
第五版
I
B
y
半无限长载流长直导线
π 1 2 2 π
x
C
o
1
P
BP
0 I
4πr
6
第七章 恒定磁场
物理学
第五版
7-4
毕奥-萨伐尔定律
无限长载流长直导线的磁场
B
0 I
2πr
I B
I
X
ห้องสมุดไป่ตู้
B
电流与磁感强度成右手螺旋关系
第七章 恒定磁场
7
物理学
第五版
7-4
毕奥-萨伐尔定律
例2 圆形载流导线轴线上的磁场.
第五版
7-4
毕奥-萨伐尔定律
B
0 nI
2

2
1
2
1
R 3csc2 d 3 3 R csc d
0 nI 2
R

sin d
x1
1 O*

2
x2 x
×× × ×× × ×× × ×× ×× ×
第七章 恒定磁场
17
物理学
第五版
7-4
毕奥-萨伐尔定律
0 nI cos 2 cos 1 B 讨 论 2 (1)P点位于管内轴线中点 1 π 2
B0
0 I
4 R2
R2

0 I
4 R1
* o
0 I
4 π R1
第七章 恒定磁场
12
物理学
第五版
7-4
毕奥-萨伐尔定律
三 磁偶极矩
m ISen
2x 0m B e 3 n 2π x

B
0 IR
3
2
0 m B 3 2π x
I
S
en
m
m
说明:m的方向与圆电流 的单位正法矢 en 的方向相同.
B Bx dB sin 解 分析点P处磁场方向得: cos R r Idl 2 2 2 r R x dB
R
r

o
x

*p

x
dB
dB x
0 Id l
4π r

2
I
0 I cos dl
r
2
8
第七章 恒定磁场
物理学
第五版
7-4
毕奥-萨伐尔定律
dB x
第七章 恒定磁场
物理学
第五版
7-4
毕奥-萨伐尔定律
0 Idz sin B dB 2 CD 4π r
z
D
2
z r0 cot , r r0 / sin
dz r0d / sin
2
dz
I
B
dB
*
0 I
4 π r0

2
1
sin d
z
cos1 cos2
第七章 恒定磁场
10
物理学
第五版
7-4 (1) I
毕奥-萨伐尔定律
R B x 0 o
I
B0
0 I
2R

广
(2) o
(3) I R
R
×
B0
B0
0 I
4R
0 I
8R
11
× o
第七章 恒定磁场
物理学
第五版
7-4 (4)
毕奥-萨伐尔定律
d
(5) I
*A
R1
0 I BA 4πd
相关文档
最新文档