常用逻辑用语测试题(答案)
常用逻辑用语测试题
常用逻辑用语测试题一 、 选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列语句不是命题的有( )①230x -=;②与一条直线相交的两直线平行吗?③315+=;④536x ->A.①③④B.①②③C.①②④D.②③④2.(改编题)命题“a 、b 都是奇数,则a +b 是偶数”的逆命题是 ( )A .a 、b 都不是奇数,则a +b 是偶数B .a +b 是偶数,则a 、b 都是奇数C .a +b 不是偶数,则a 、b 都不是奇数D .a +b 不是偶数,则a 、b 不都是奇数3.命题“若a >b ,则22ac bc >”(这里a 、b 、c 都是实数)与它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A .4个B .3个C .2个D .0个4.命题“若A ∪B =A ,则A ∩B=B ”的否命题是( )A .若A ∪B ≠A ,则A ∩B ≠BB .若A ∩B =B ,则A ∪B=AC .若A ∩B ≠A ,则A ∪B ≠BD .若A ∪B =B ,则A ∩B =A5.(改编题)下列有关命题的说法中错误的个数是( )①若p q ∧为假命题,则p q 、均为假命题 ②“1x =”是“2320x x -+=”的充分不必要条件③命题“若2320x x -+=,则1x =“的逆否命题为:“若1,x ≠则2320x x -+≠” ④对于命题:,p x R ∃∈使得210x x ++<,则:,p x R ⌝∀∈均有210x x ++≥A 4B 3C 2D 16.已知命题:p R x ∈∃,022≤++a ax x .若命题p 是假命题,则实数a 的取值范围是( )A.(,0][1,)-∞+∞UB.[0,1]C.(,0)(1,)-∞+∞UD.(0,1)7.(原创题)“2a b=-”是“直线20ax y +=垂直于直线1x by +=”的( ) A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件8.用反证法证明命题:“a ,b ∈N ,ab 能被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容是( )A .a 、b 都能被5整除B .a 、b 都不能被5整除C .a 、b 不都能被5整除D .a 不能被5整除,或b 不能被5整除9.圆221x y +=与直线2y kx =+没有公共点的充要条件是( )A.(k ∈B.(,)k ∈-∞+∞UC.(k ∈D.(,)k ∈-∞+∞U10.命题:“∀x ∈R,022≥+-x x ”的否定是( )A.∃x ∈R,022≥+-x xB.∀x ∈R,022≥+-x xC.∃x ∈R,022<+-x xD.∀x ∈R,022<+-x x 11、在ABC ∆中,设命题p:sin sin sin a b c B C A ==,命题q:ABC ∆是等边三角形,那么命题p 是命题q 的( )A.充要条件B.必要不充分条件C.充分不必要条件D.即不充分也不必要条件12、设命题p :函数21()lg()4f x ax x a =-+的定义域为R ;命题q :不等式39x x a -<对一切正实数...均成立.如果命题“p 或q ”为真命题,且“p 且q ”为假命题,则实数a 的取值范围是 ( )A.(1,)+∞B.[0,1]C.[0,)+∞D.(0,1)二、填空题(共4小题,每小题3分共12分,把答案填在相应的位置上)13.设p?r 都是q 的充分条件,s 是q 的充要条件,t 是s 的必要条件,t 是r 的充分条件,那么p 是t 的________条件,r 是t 的________条件.(用充分?必要?充要填空)14.“末位数字是0或5的整数能被5整除”的否定形式是 ;否命题是 .15.(原创题)若命题“∃x ∈R ,x 2+ax +1<0”是假命题,则实数a 的取值范围是 .16.给出下列命题:(1)命题“若b 2-4ac<0,则方程ax 2+bx+c=0(a ≠0)无实根”的否命题(2)命题“△ABC 中,AB=BC=CA ,那么△ABC 为等边三角形”的逆命题(3)命题“若a>b>0,则3a >3b >0”的逆否命题(4)“若m >1,则mx 2-2(m +1)x +(m -3)>0的解集为R ”的逆命题其中真命题的序号为__________.三. 解答题:(本大题四个小题,共52分,解答应写出文字说明,证明过程或演算步骤)17.(本小题10分)写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假.(1)两条平行线不相交(2)两条对角线不相等的平行四边形不是矩形(3)若x ≥10,则2x +1>2018.(改编题)(本小题10分) 已知命题),0(012:,64:22>≥-+-≤-a a x x q x p若非p 是q 的充分不必要条件,求a 的取值范围.19.(本小题10分)已知命题p :方程x 2+mx +1=0有两个不等的负根;命题q :方程4x 2+4(m -2)x +1=0无实根.若“p 或q ”为真,“p 且q ”为假,求m 的取值范围.20.(本小题10分)证明:已知a 与b 均为有理数,且a 和b 都是无理数,证明a +b 也是无理数.21.(本小题12分)已知下列三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a=0至少有一个方程有实根,求实数a 的取值范围【 挑战能力】★1.(改编题)在ABC ∆中,AB AC BA BC ⋅=⋅u u u r u u u r u u u r u u u r “” 是 AC BC =u u u r u u u r “”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件★2 (原创题)命题:p 若a b ∈R ,,若1a b +>则1a b +>,命题:q 函数y =的定义域是(][)13--+U ,,∞∞,则下列命题( )A.p q ∨假 B.p q ∧真C.p 真,q 假 D.p 假,q 真 ★3.已知0≠ab ,求证1=+b a 的充要条件是02233=--++b a ab b a .常用逻辑用语测试题参考答案一 、 选择题1.【答案】C【解析】①④无法判断其真假,②为疑问句,所以只有③为命题.2.【答案】B【解析】“都是”的否定是“不都是”.3.【答案】C【解析】原命题为假命题,当c=0时不成立,故逆否命题也为假命题;逆命题与否命题都是真命题;另外四种命题中真命题与假命题的个数只能是0,2,4,不可能是3个.4.【答案】A【解析】“A ∪B=A ”的否定是“A ∪B ≠A ”而不是“A ∩B ≠A ”5.【答案】D【解析】由命题p q ∧真假性的可知A 是错的.6.【答案】D【解析】p 为假,知“不存在x R ∈,使220x ax a ++≤”为真,即“x R ∀∈, 220x ax a ++>”为真,∴△=244001a a a -<⇒<<.7.【答案】A【解析】由“2a b=-”知直线20ax y +=与直线1x by +=的斜率均为1-,两直线垂直;当. 0,0a b ==时两直线垂直。
常用逻辑用语试题及答案
第一章 常用逻辑用语一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +-> D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0a b >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。
2.12:,A x x 是方程20(0)ax bx c a ++=≠的两实数根;12:b B x x a +=-,则A 是B 的 条件。
3.用“充分、必要、充要”填空:①p q ∨为真命题是p q ∧为真命题的_____________________条件; ②p ⌝为假命题是p q ∨为真命题的_____________________条件;③:23A x -<, 2:4150B x x --<, 则A 是B 的___________条件。
高二数学第一章 常用逻辑用语测试题及答案
高二数学(选修1-1 第一章 常用逻辑用语)姓名:_________班级:________ 得分:________一:选择题1、判断下列语句是真命题的为( ). (供题)A .若整数a是素数,则a是奇数B .指数函数是增函数吗?C .若平面上两条直线不相交,则这两条直线平行D .x>151.已知P :A ∩¢=¢,Q: A ∪¢=A,则下列判断错误的是( )(铁一中 张爱丽 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真1.已知P :2+2=5,Q:3>2,则下列判断错误的是( )(十二厂 闫春亮 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真3、对于两个命题:①,1sin 1x R x ∀∈-≤≤,②22,sin cos 1x R x x ∃∈+>,下列判断正确的是( )。
( 金台中学 唐宁 供题 两个数学符号教材未涉及,可以换为文字语言)A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真2.在下列命题中,真命题是( )(十二厂 闫春亮 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2.在下列命题中,真命题是( )(铁一中 张爱丽 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2. “2x >”是“24x >”的( ). (斗鸡中学 张永春 供题)A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.已知P:(2x -3)2<1, Q:x(x -3)<0, 则P 是Q 的( )(铁一中 张爱丽 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件2、设,,l m n 均为直线,其中,m n 在平面a 内,则“”l α⊥是“l m ⊥且”l n ⊥的( )( 金台中学 唐宁 供题)A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.条件210p x ->:,条件2q x <-:,则p ⌝是q ⌝的( ). (斗鸡中学 张永春 供题)A. 充分但不必要条件B. 必要但不充分条件C. 充分且必要条件D. 既不充分也不必要条件3.已知P:|2x -3|<1, Q:x(x -3)<0, 则P 是Q 的( )(十二厂 闫春亮 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件二:填空题11.在下列四个命题中,①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件②“⎩⎨⎧≤-=∆>04,02ac b a ”是“一元二次不等式20ax bx c ++≥的解集为R 的充要条件③“1x ≠”是“21x ≠”的充分不必要条件④“0x ≠”是“0x x +>”的必要不充分条件正确的有________.(填序号)(斗鸡中学 张永春 供题)11、已知命题p :x ∀∈R ,sin x x >,则p ⌝形式的命题是__ ( 金台中学 唐宁 供题)三:解答题15.已知集合{}{}22320,20A x x x B x x x m =-+==-+=且AB A =,求m 的取值范围.(斗鸡中学 张永春 供题)17.(命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围。
第一章 集合与常用逻辑用语 单元测试卷(Word版含答案)
《第一章集合与常用逻辑用语》单元测试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={1,2,3,4,5,6},A={1,3,4},B={1,3,5},则(∁U A)∪B=()A.{5}B.{1,3}C.{1,2,3,5,6}D.⌀2.命题“∀x∈Q,3x2+2x+1∈Q”的否定为()A.∀x∉Q,3x2+2x+1∉QB.∀x∈Q,3x2+2x+1∉QC.∃x∉Q,3x2+2x+1∉QD.∃x∈Q,3x2+2x+1∉Q3.已知集合A={0,1,2},B={1,m}.若B⊆A,则m=()A.0B.0或1C.0或2D.1或24.设全集U=R,M={x|x<-3或x>3},N={x|2≤x≤4},如图,阴影部分所表示的集合为()A.{x|-3≤x<2}B.{x|-3≤x≤4}C.{x|x≤2或x>3}D.{x|-3≤x≤3}5. “|x|≠|y|”是“x≠y”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设集合A={x|2a<x<a+2},B={x|x<-3或x>5},若A∩B=⌀,则实数a的取值范围为()A.{a|a≥-32} B.{a|a>-32}C.{a|a≤-32} D.{a|a<-32}7.若p:x2+x-6=0是q:ax-1=0(a≠0)的必要不充分条件,则实数a的值为()A.-12B.-12或13C.-13D.12或-138.已知集合A中有10个元素,B中有6个元素,全集U有18个元素,A∩B≠⌀.设集合(∁U A)∩(∁U B)中有x个元素,则x的取值范围是()A.{x|3≤x≤8,且x∈N}B.{x|2≤x≤8,且x∈N}C.{x|8≤x≤12,且x∈N}D.{x|10≤x≤15,且x∈N}二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知命题p:∃x∈R,x2+2x+2-a=0为真命题,则实数a的值可以是()A.1B.0C.3D.-310.图中阴影部分表示的集合是()A.N∩(∁U M)B.M∩(∁U N)C.[∁U(M∩N)]∩ND.(∁U M)∩(∁U N)11.设全集为U,下列选项中,是“B⊆A”的充要条件的是()A.A∪B=AB.A∩B=AC.(∁U A)⊆(∁U B)D.A∪(∁U B)=U12.整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},其中k∈{0,1,2,3,4}.以下判断正确的是()A.2 022∈[2]B.-2∈[2]C.Z=[0]∪[1]∪[2]∪[3]∪[4]D.若a-b∈[0],则整数a,b属于同一“类”三、填空题:本题共4小题,每小题5分,共20分.13.设集合M={2,3,a2+1},N={a2+a,a+2,-1},且M∩N={2},则实数a的值为.14.写出一个使得命题“∀x∈R,ax2-2x+3>0恒成立”是假命题的实数a的值:.15.若p:m-1≤x≤2m+1,q:2≤x≤3,q是p的充分不必要条件,则实数m的取值范围是.16.已知有限集合A={a1,a2,a3,…,a n},定义集合B={a i+a j|1≤i<j≤n,i,j∈N*}中的元素的个数为集合A的“容量”,记为L(A).若集合A={x∈N*|1≤x≤3},则L(A)=;若集合A={x∈N*|1≤x≤n},且L(A)=4 041,则正整数n的值是.(本题第一空2分,第二空3分.)四、解答题:本题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤.≤x≤2}.17.(10分)已知集合A={x|2-b≤ax≤2b-2}(a>0),B={x|-12(1)当a=1,b=3时,求A∪B和∁R B.(2)是否存在实数a,b,使得A=B?若存在,求出a,b的值;若不存在,请说明理由.18.(10分)在①A∪B=B,②“x∈A”是“x∈B”的充分条件,③“x∈∁R A”是“x∈∁R B”的必要条件这三个条件中任选一个,补充到本题第(2)问的横线处,并求解下列问题.问题:已知集合A={x|a≤x≤a+2},B={x|-1<x<3}.(1)当a=2时,求A∩B;(2)若,求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.参考答案一、单项选择题1.C2.D3.C4.A5.A6.A7.D8.A二、多项选择题9.AC 10.AC 11.ACD 12.ACD三、填空题13.-2或014.-1(答案不唯一)15.{m|1≤m≤3}16.3 2 022四、解答题17. 解:(1)当a =1,b =3时,A ={x |-1≤x ≤4}.又B ={x |-12≤x ≤2},所以 A ∪B ={x |-1≤x ≤4},(2分) ∁R B ={x |x <-12或x >2}.(4分)(2)假设存在实数a ,b 满足条件.因为a >0,所以由2-b ≤ax ≤2b -2,得2−b a ≤x ≤2b−2a .(6分) 由A =B ,得{2−b a =−12,2b−2a =2, 解得{a =2,b =3.(9分) 故存在a =2,b =3,使得A =B.(10分)18. 解:(1)当a =2时,A ={x |2≤x ≤4}, 所以A ∩B ={x |2≤x <3}.(4分)(2)方案一 选条件①.因为A ∪B =B ,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案二 选条件②.因为“x ∈A ”是“x ∈B ”的充分条件, 所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案三 选条件③.因为“x ∈∁R A ”是“x ∈∁R B ”的必要条件,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分)。
高中数学选修1-1第一章《常用逻辑用语》单元测试(一)
105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数2.(2019 ·北京清华附中高一期中)“ x> 1”是“ < 1”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D. 既不充分又不必要条件3.(2019 ·天津静海一中高一月考)命题“ V x> 0,x2 一1 > 一1”的否定是( )A. V x> 0,x2 一1 < 一1B. V x< 0,x2 一1 < 一1C. 3x> 0,x2 一1 < 一1D. 3x< 0,x2 一1 < 一14.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 05.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤06.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= -2D. m= -2 或m= 18.(2019 ·天津静海一中高一月考)已知p :log2 (x- 1) < 1 ,q : x2 - 2x- 3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________.13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________15.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 - x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是_______________________,该命题的否命题是___________________________.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.21.(2019·青冈县第一中学校高二月考( 文)) 已知,:关于的方程有实数根.( 1)若为真命题,求实数的取值范围;(2)若为真命题,为真命题,求实数的取值范围.22.(2019·湖南高二期中( 理)) 已知命题p : x2 + mx+ 1 = 0 有两个不相等的负根,命题q : 4x2 + 4(m一2)x+ 1 = 0 无实根,若p^ p为假,p八q为真,求实数m的取值范围.105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数【答案】C2.(2019 ·北京清华附中高一期中)“ x> 1”是“< 1”的( )A.充分而不必要条件C.充分必要条件B.必要而不充分条件D. 既不充分又不必要条件【答案】A3.(2019 ·天津静海一中高一月考)命题“ V x> 0, x2 一1 > 一1”的否定是( )A. V x> 0, x2 一1 < 一1B. V x< 0, x2 一1 < 一1C. 3x> 0, x2 一1 < 一 1D. 3x< 0, x2 一1 < 一1【答案】C4.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 0【答案】A5.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤0【答案】D6.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要【答案】A7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= 一2D. m= 一2 或m= 1 【答案】D8.(2019 ·天津静海一中高一月考)已知p :log2 (x一1) < 1 ,q : x2 一2x一3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要【答案】A9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件【答案】B10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分【答案】C7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.【答案】充分非必要12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________. 【答案】x> 6 (答案不唯一)13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________【答案】若a< 0 或b< 0 ,则ab< 015.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 一x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________【答案】真假15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)【答案】且16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是________________________________,该命题的否命题是___________________________. 【答案】面积相等的三角形不一定是全等三角形;若两个三角形的面积不相等,则这两个三角形不是全等三角形.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)【答案】假56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.【答案】恳x1共x<2}19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.【答案】( 1) a< 3 ;(2) a> 3 ;(3)充要条件} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.【答案】( 1) A 1, 2 ;(2) m 1或 m 2【解析】( 1) x 23x 2 0 x 1 x 2 0即 x1或x 2 ,A 1, 2 ;(2)若x B 是x A 的充分条件,则 B A ,x 2 m 1 x m 0 x 1 x m 0解得 x 1 或 x m ,当 m1时, B 1 ,满足 B A ,当 m 2 时, B 1, 2 ,同样满足B A ,所以 m1或 m 2 .21.(2019· 青 冈 县 第 一 中 学 校 高 二 月考 ( 文 )) 已 知有实数根.( 1)若为真命题,求实数的取值范围; (2)若为真命题,为真命题,求实数的取值范围.【答案】( 1);(2)【解析】( 1) 方程有实数根,得:(2)为真命题,为真命题为真命题,为假命题,即得 .22.(2019· 湖南 高 二期 中( 理)) 已 知命题 p : x2mx 1 0 有两个 不相等 的 负根 , 命题q : 4x 2 4(m 2)x 1 0 无实根,若p p 为假, p q 为真,求实数 m 的取值范围.【答案】 (1, 2]得;, : 关 于 的 方 程【解析】因为p⊥ p假,并且p q为真,故p假,而q真即x2 + mx+ 1 = 0不存在两个不等的负根,且4x2 +4(m 2)x+1= 0无实根.所以= 16(m 2)2 16 < 0 ,即1< m< 3,当1< m 2 时,x2 + mx+ 1 = 0不存在两个不等的负根,当2< m< 3时,x2 + mx+ 1 = 0存在两个不等的负根.所以m的取值范围是(1, 2]。
逻辑三十道测试题答案
逻辑三十道测试题答案-、单项选择题1. 以下哪项不是逻辑学的基本概念?A. 命题B. 推理C. 假设D. 变量答案:D2. 逻辑推理中的“充分条件”指的是:A. 有之足够,无之不足B. 有之不足,无之足够C. 既不充分也不必要D. 既不必要也不充分答案:A3. "如果今天下百,那么地面会湿”这句话中的“今天下酉”是:A. 充分条件B. 必要条件C. 既非充分也非必要条件D. 条件的否定答案:A4. 在逻辑学中,所谓的"谬误”是指:A. 逻辑的有效推理B. 无效的推理C. 语法错误D. 拼写错误答案:B5. "所有人都是凡人,苏格拉底是人”这个推理的结论是:A. 苏格拉底是凡人B. 苏格拉底不是人C. 所有人都是凡人D. 苏格拉底不是神答案:A6. 以下哪个选项是演绎推理的例子?A. 因为昨天下百,所以地面湿了B. 因为地面湿了,所以昨天可能下可C. 苏格拉底是人,且所有人都会死,所以苏格拉底会死D. 许多科学家都是男性,因此所有男性都是科学家答案:C7. 逻辑等价表达式中,“非P"与"P的否定":A. 表示不同的含义B. 是完全不同的概念C. 表示相同的意义D. 只在特定条件下相同答案:C8. "如果A,则B"与"A仅当B"之间的区别是:A. 前者是后者的逆否命题B. 前者是后者的必要条件C. 前者是后者的充分条件D. 两者表达相同的含义答案:A9. 在逻辑学中,“归纳推理”是基于:A. 个别事例得出普遍结论B. 普遍事实得出个别结论C. 假设得出证据D. 证据得出假设答案:A10. "所有金子都是金属”这个命题中的“金子”是:A. 属性B. 谓词C. 主词D. 宾词答案:C二、多项选择题11. 以下哪些选项属于逻辑谬误?A. 诉诸权威B. 诉诸情感C. 归纳法D. 偷换概念答案:A, B, D12. 逻辑学中的“三段论“包括哪些部分?A. 大前提B. 小前提C. 结论D. 假设答案:A, B, C13. 以下哪些原则是有效推理必须遵守的?A. 形式有效B. 内容真实C. 结构合理D. 论据充分答案:A, C14. 在逻辑学中,哪些是常见的推理形式?A. 演绎推理B. 归纳推理C. 类比推理D. 因果推理答案:A, B, C三、判断题15. 逻辑学是研究有效推理的学科。
50道经典逻辑题及答案
一、逻辑判断: 每题给出一段陈述, 这段陈述被假设是正确的, 不容置疑的。
要求你根据这段陈述, 选择一个答案。
注意, 正确的答案应与所给的陈述相符合, 不需要任何附加说明即可以从陈述中直接推出1. 以下是一则广告: 就瘘痛而言, 四分之三的医院都会给病人使用"诺维克斯"镇痛剂。
因此, 你想最有效地镇瘘痛, 请选择"诺维克斯"。
以下哪项如果为真, 最强地削弱该广告的论点?( )A. 一些名牌的镇痛剂除了减少瘘痛外, 还可减少其他的疼痛B. 许多通常不用"诺维克斯"的医院, 对那些不适应医院常用药的人, 也用"诺维克斯" C.许多药物制造商, 以他们愿意提供的最低价格, 销售这些产品给医院, 从而增加他们产品的销售额D. 和其他名牌的镇痛剂不一样, 没有医生的处方, 也可以在药店里买到"诺维克斯"正确答案:C2. 会骑自行车的人比不会骑自行车的人学骑三轮车更困难。
由于习惯于骑自行车, 会骑自行车的人在骑三轮车转弯时, 对保持平衡没有足够的重视。
据此可知骑自行车( )。
A. 比骑三轮车省力B. 比三轮车更让人欢迎C. 转弯时比骑三轮车更容易保持平衡D. 比骑三轮车容易上坡正确答案:C 解题思路: 题干已知, 不会骑自行车的人反而比会骑的人更容易学习骑三轮车, 原因是骑三轮车在转弯时需要更多地控制平衡, 由此可以推断出选项C为正确答案, 选项A、B、D与题干无关。
故选C。
3. 长久以来认为, 高水平的睾丸激素荷尔蒙是男性心脏病发作的主要原因。
然而, 这个观点不可能正确, 因为有心脏病的男性一般比没有心脏病的男性有显著低水平的睾丸激素。
上面的论述是基于下列哪一个假设的?( )。
A. 从未患过心脏病的许多男性通常有低水平的睾丸激素B. 患心脏病不会显著降低男性的睾丸激素水平C. 除了睾丸激素以外的荷尔蒙水平显著影响一个人患心脏病的可能性D. 男性的心脏病和降低睾丸激素是一个相同原因的结果正确答案:B 解题思路:题干推理过程为:有心脏病的男性的睾丸激素水平低于无心脏病的, 所以高水平的睾丸激素荷尔蒙不是男性心脏病发作的主要原因。
逻辑测试题目及答案
逻辑测试题目及答案一、选择题1. 如果所有的苹果都是水果,那么以下哪项陈述是正确的?A. 所有的水果都是苹果B. 有些水果是苹果C. 没有水果是苹果D. 有些水果不是苹果2. 假设“如果下雨,地面就会湿”,那么以下哪项陈述与此逻辑相反?A. 如果地面湿,那么下雨了B. 如果地面不湿,那么没有下雨C. 如果没有下雨,地面就不会湿D. 如果地面湿,那么没有下雨二、判断题1. 如果“所有的猫都怕水”,那么“有些猫不怕水”这个陈述是错误的。
()2. 如果“只有当小明在家时,电视才会开着”,那么“电视开着,所以小明在家”这个推理是有效的。
()三、逻辑推理题1. 假设在一个岛上,所有的居民要么是骑士,要么是无赖。
骑士总是说真话,无赖总是说谎。
一个居民告诉你:“我旁边的人是无赖。
”根据这个陈述,你能确定说话的人是什么吗?2. 一个逻辑谜题:有三个开关,分别对应着远处的三盏灯。
每个开关可以是开或关状态,但灯的亮灭状态与开关的开闭状态不直接对应。
你只能去远处观察灯的亮灭状态一次,如何确定哪个开关控制哪盏灯?四、解答题1. 解释“逆否命题”的概念,并给出一个例子。
2. 描述“演绎推理”和“归纳推理”的区别,并各举一例。
答案:一、选择题1. D2. D二、判断题1. 正确2. 正确三、逻辑推理题1. 说话的人是无赖。
因为如果说话的人是骑士,他会说真话,那么他旁边的人就是无赖,这与他的陈述一致。
但如果说话的人是无赖,他说谎,那么他旁边的人就不是无赖,这与他的陈述矛盾。
因此,说话的人只能是无赖。
2. 首先打开第一个开关,等待一段时间,然后关闭它并打开第二个开关,然后直接去观察灯的状态。
如果灯是亮的,那么是第二个开关控制的。
如果灯是暗的但摸起来热,那么是第一个开关控制的。
如果灯是暗且冷,那么是第三个开关控制的。
四、解答题1. 逆否命题是指将一个命题的条件和结论都取反。
例如,原命题是“如果下雨,那么地面湿”,其逆否命题是“如果地面不湿,那么没有下雨”。
(完整版)常用逻辑用语测试题一和答案
1 / 11 常用逻辑用语测试题一一、选择题。
1.下列命题 :①2x x x ∀∈,≥R ;②2x x x ∃∈,≥R ; ③43≥;④“21x ≠”的充要条件是“1x ≠,或1x ≠-”. 中,其中正确命题的个数是 ( )A .0B .1C .2D .32.已知命题p :x ∀∈R ,||0x ≥,那么命题p ⌝为( )A .x ∃∈R ,||0x ≤B .x ∀∈R ,||0x ≤C .x ∃∈R ,||0x <D .x ∀∈R ,||0x <3.已知命题 :p x ∀∈R ,2x ≥,那么命题p ⌝为( )A .2x x ∀∈≤R ,B .2x x ∃∈<R ,C .2x x ∀∈≤-R ,D .2x x ∃∈<-R ,4.下列命题中的真命题是( )A .R x ∈∃使得5.1cos sin =+x xB . x x x cos sin ),,0(>∈∀πC .R x ∈∃使得12-=+x xD . 1),,0(+>+∞∈∀x e x x2 / 11 5.已知命题p :0x ∃∈R ,200220x x ++≤,那么下列结论正确的是( )A .0:p x ⌝∃∈R ,200220x x ++>B .:p x ⌝∀∈R ,2220x x ++>C .0:p x ⌝∃∈R ,200220x x ++≥D .:p x ⌝∀∈R ,2220x x ++≥ 6.“2a =”是“直线20ax y +=与1x y +=平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.命题p :∃实数∈x 集合A ,满足032x x 2<--,命题q :∀实数∈x 集合A ,满足032x x 2<--,则命题p 是命题q 为真的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、非充分非必要条件8.如果对于任意实数x ,[]x 表示不超过x 的最大整数. 例如[]3.273=,[]0.60=.那么“[][]x y =”是“1x y -<”的( )A .充分而不必要条件B 必要不充分条件C .充分必要条件D .既不充分也不必要条件9.“b a <<0”是“ba )41()41(>”的( )A 充分不必要条件B .必要不充分条件C .充要条件D .既不充分条件也不必要条件3 / 1110.“2=a ”是“直线03:21=+-y x a l 与直线14:2-=x y l互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.“2m =-”是“直线(1)20m x y ++-=与直线(22)10mx m y +++=相互垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.在ABC ∆中,AB AC BA BC ⋅=⋅u u u r u u u r u u u r u u u r “” 是AC BC =u u u r u u u r “”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要二、填空题。
常用逻辑用语测试题(含答案)
常用逻辑用语测试题一 1、一个命题与他们的逆命题、否命题、逆否命题这4个命题中( ) A 、真命题与假命题的个数相同 B 、真命题的个数一定是奇数 C 、真命题的个数一定是偶数 D 、真命题的个数可能是奇数,也可能是偶数 2、下列说法中正确的是( ) A 、一个命题的逆命题为真,则它的逆否命题一定为真 B 、“a b >”与“ a c b c +>+”不等价 C 、“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠” D 、一个命题的否命题为真,则它的逆命题一定为真 3、给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A 、3 B 、2 C 、1 D 、0 4、命题“设a 、b 、c R ∈,若22ac bc >则a b >”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A 、0 B 、1 C 、2 D 、3 5、“若x ≠a 且x ≠b,则2()x a b x ab -++≠0”的否命题( ) A 、若x =a 且x =b ,则2()x a b x ab -++=0 B 、若x =a 或x =b ,则2()x a b x ab -++≠0C 、若x =a 且x =b ,则2()x a b x ab -++≠0D 、若x =a 或x =b ,则2()x a b x ab -++=0 6、“0x >”是“320x >”成立的( ) A 、充分不必要条件. B 、必要不充分条件. C 、充要条件. D 、既不充分也不必要条件. 7、“()24x k k Z ππ=+∈”是“tan 1x =”成立的( ) A 、充分不必要条件. B 、必要不充分条件. C 、充分条件. D 、既不充分也不必要条件. 8、不等式2230x x --<成立的一个必要不充分条件是( ) A 、-1<x<3 B 、0<x<3 C 、-2<x<3 D 、-2<x<1 9、设甲是乙的充分而不必要条件,丙是乙的充要条件,丁是丙的必要而不充分条件,则丁是甲的( ) A 、充分而不必要条件 B 、必要而不充分条件 C 、充要条件 D 、既不充分也不必要条件 10、若"a b c d ≥⇒>"和"a b e f <⇒≤"都是真命题,且它们的逆命题都是假命题,则"c d ≤"是"e f ≤" 的( )A 、必要非充分条件B 、充分非必要条件C 、充分必要条件D 、既非充分也非必要条件 11、命题:“若0>a ,则02>a ”的否命题是__________________________________________ 12、设P :x >2或2x <3;Q: x >2或x <-1,则¬p 是¬q 的___________________________条件. 13、:23A x -<, 2:2150B x x --<, 则A 是B 的__________________________条件。
(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(答案解析)
一、选择题1.使不等式2x x 60--<成立的一个充分不必要条件是( )A .2x 0-<<B .3x 2-<<C .2x 3-<<D .2x 4-<< 2.“a b >”是“b a a b e e ->-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知命题p :若实数,x y 满足330x y +=,则,x y 互为相反数;命题q :若0a b >>,则11a b<.下列命题p q ∧,p q ∨,p ⌝,q ⌝中,真命题的个数是( ) A .1B .2C .3D .44.已知命题p 、q ,如果p ⌝是q ⌝的充分而不必要条件,那么q 是p 的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要 5.若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是( )A .p ∧qB .¬p ∨qC .¬p ∧qD .¬p ∨q ⌝6.已知命题():0,p x ∀∈+∞,1102xm ⎛⎫+-> ⎪⎝⎭;命题():0,q x ∃∈+∞,2410mx x +-=,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.下列说法中正确的是( )A .命题“若x y =,则22x y =”的逆命题为真命题B .若p q ∧为假命题,则,p q 均为假命题C .若p q ∧为假命题,则p q ∨为真命题D .命题“若两个平面向量,a b 满足||||||a b a b ⋅>⋅,则,a b 不共线”的否命题是真命题. 8.命题:p “1a >”是命题:q “函数()cos f x ax x =+在R 上是单调递增”成立的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件 9.若函数()sin f x x x =,则对a ,,22b ππ⎛⎫∈- ⎪⎝⎭,不等式()()f a f b >成立的一个充要条件是( ) A .a b >B .a b <C .a b >D .22a b >10.下列命题中真命题的是( )A .命题:若21x =,则1x =或1x =-的逆否命题为:若1x ≠且1x ≠-,则21x ≠B .“22am bm <”是“a b <”的充要条件C .若p q ∧为假命题,则,p q 均为假命题D .对于实数,x y ,:8p x y +≠,:2q x ≠或6y ≠,则p 是q 的必要不充分条件 11.已知命题2:230p x x --<,命题:q x a <,若q 的一个充分不必要条件是p ,则a 的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .(],1-∞- D .(),1-∞-12.已知2:11xp x <+,:()(3)0q x a x -->,p 为q 的充分不必要条件,则a 的范围是( ) A .[)1,+∞B .()1,+∞C .[)0,+∞D .()1,-+∞二、填空题13.给出如下四个命题:①把二进制数(2)110011化为十进制数,结果为51;②将一组数据中的每个数据都加上或减去同一个常数后,平均值不变,方差不变;③从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立;④若“p q ∧”为假命题,则p 、q 均为假命题.其中正确的命题的序号是________. 14.命题p :(x ﹣m )2>3(x ﹣m )是命题q :x 2+3x ﹣4<0成立的必要不充分条件,则实数m 的取值范围为____.15.若命题“存在,x R ∈220x x a ++≤”是假命题,则实数a 的取值范围是________. 16.函数()y f x =的定义域为[)(]1,00,1-,其图象上任一点(,)P x y 都满足221x y +=.①函数()y f x =一定是偶函数;②函数()y f x =可能既不是偶函数也不是奇函数; ③函数()y f x =若是偶函数,则值域是(]1,0-或[)0,1;④函数()y f x =可以是奇函数;⑤函数()y f x =的值域是(1,1)-,则()y f x =一定是奇函数. 其中正确命题的序号是__________(填上所有正确的序号)17.若命题“存在实数x ,使得()222(2)40a x a x -+--≥成立”是假命题,则实数a 的取值范围是________.18.设:12p x <<,:21x q >,则p 是q 成立的________条件19.已知集合{}|A x x a =>,{}|22,B x x x R =-<∈,若“x A ∈”是“x B ∈”的必要不充分条件,则a 的取值范围_________. 20.给出如下四个命题:①若“p 或q ”为真命题,则p 、q 均为真命题; ②命题“若且,则”的否命题为“若且,则”;③在中,“”是“”的充要条件;④已知条件,条件,若是的充分不必要条件,则的取值范围是;其中正确的命题的是________.三、解答题21.已知命题p :实数x 满足27100,x x -+≤命题q :实数x 满足22430.x mx m -+≤其中m > 0.(1)若m =4且命题p , q 都为真命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围.22.已知{}2|8200A x x x =--≤,{}|2B x x m =-≤(1)若“∃x ∈A ,使得x ∈B ”为真命题,求m 的取值范围;(2)是否存在实数m ,使“x ∈A ”是“X ∈B ”必要不充分条件,若存在,求出m 的取值范围;若不存在,请说明理由.23.给定两个命题:p 对任意实数x 都有不等式210ax ax ++>恒成立;:q 关于x 的方程20x x a --=有实数根;若p q ∨为真命题,p q ∧为假命题,求实数a 的取值范围.24.已知a R ∈,设集合(){}22|619320A x x a x a a =-+++-<,{}|10B x x a =-+≥. (1)当1a =时,求集合B . (2)问:12a ≥是A B =∅的什么条件.(充分非必要条件、必要非充分条件、充要条件、既非充分也非必要条件)?并证明你的结论.25.设:p 实数x 满足22430x ax a -+<,其中0a <;:q 实数x 满足260x x --≤,且p 是q 的充分不必要条件,求a 的取值范围.26.已知命题p :任意2,230x R x mx m ∈-->成立;命题q :存在2,410x R x mx ∈++<成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题,p q 中恰有一个为真命题,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先求解二次不等式,然后确定其成立的一个充分不必要条件即可. 【详解】由260x x --<得()()230x x +-<,得23x -<<, 若使不等式260x x --<成立的一个充分不必要条件, 则对应范围是()2,3-的一个真子集, 即20x -<<,满足条件, 故选A . 【点睛】本题主要考查充分条件和必要条件的应用,转化为集合真子集关系是解决本题的关键.2.C解析:C 【分析】构造函数()x f x e x =+利用单调性判断. 【详解】设()x f x e x =+,()e 10x f x '=+>,所以()f x 为增函数, 由于a b >,所以()()f a f b >,所以b a a b e e ->-; 反之b a a b e e ->-成立,则有()()f a f b >,所以a b >. 所以是充要条件,故选C. 【点睛】本题主要考查充要条件的判定,明确两者之间的推出关系是判定的关键.3.B解析:B 【分析】根据条件分别判断两个命题的真假,结合复合命题的真假关系,进行判断,即可判定. 【详解】由题意,例如0x y ==时,此时330x y +=,所以命题p 为假命题;命题q :中当0a b >>时,110b a a b ab --=<成立,所以11a b<,所以命题q 为真命题,所以命题p q ∧假命题;p q ∨为真命题;p ⌝为真命题;q ⌝为假命题,真命题的个数是2个,故选B. 【点睛】本题主要考查了命题的真假判断,其中解答中先判定命题,p q 的真假,再结合复合命题的真假关系判定真假是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.B解析:B【解析】p ⌝是q ⌝的充分不必要条件,∴根据逆否命题与原命题的等价性可知,q 是p 的充分不必要条件,故选B.5.D解析:D 【分析】根据命题q 是假命题,命题p 是真命题,结合复合命题真假判断的真值表,可判断出复合命题的真假,进而得到答案. 【详解】∵命题q 是假命题,命题p 是真命题, ∴“p ∧q”是假命题,即A 错误; “¬p ∨q”是假命题,即B 误; “¬p ∧q”是假命题,即C 错误; “p q ⌝∨⌝ ”是真命题,故D 正确错; 故选D . 【点睛】本题考查的知识点是复合命题的真假,熟练掌握复合命题真假判断的真值表,是解答的关键.6.A解析:A 【分析】分别计算得到m 1≥和4m ≥-,根据范围大小判断得到答案. 【详解】():0,p x ∀∈+∞,1102xm ⎛⎫+-> ⎪⎝⎭,即112xm ⎛⎫>- ⎪⎝⎭,易知函数()112xf x ⎛⎫=- ⎪⎝⎭单调递增,故m 1≥.命题():0,q x ∃∈+∞,2410mx x +-=, 2214124m x x x ⎛⎫=-=-- ⎪⎝⎭,故4m ≥-. 故命题p 是命题q 的充分不必要条件. 故选:A . 【点睛】本题考查了根据命题求参数,充分不必要条件,意在考查学生的推断能力.7.D解析:D 【分析】A 中,利用四种命题的的真假判断即可;B 、C 中,命题“p q ∧”为假命题时,p 、q 至少有一个为假命题;D 中,写出该命题的否命题,再判断它的真假性. 【详解】对于A ,命题“若x y =,则22x y =”的逆命题是:若22x y =,则x y =;因为y x =-也成立.所以A 不正确;对于B ,命题“p q ∧”为假命题时,p 、q 至少有一个为假命题,所以B 错误;C 错误; 对于D ,“平面向量,a b 满足||||||a b a b ⋅>⋅”,则,a b 不共线的否命题是,若“平面向量,a b 满足||||||a b a b ⋅≤⋅”,则,a b 共线; 由||||cos a b a b θ⋅=⋅⨯知:||||||a b a b ⋅≥⋅,一定有||||||a b a b ⋅=⋅,cos 1θ=±, 所以,a b 共线,D 正确. 故选:D. 【点睛】本题考查了命题的真假性判断问题,也考查了推理与判断能力,是基础题.8.B解析:B 【分析】利用导数法求出()cos f x ax x =+为R 上的增函数等价命题,进而根据集合的包含关系即可判断. 【详解】()cos f x ax x =+,()sin f x a x '=-,若函数()y f x =在R 上单调递增,则()0f x '≥在R 上恒成立,即()max sin 1a x ≥=. 由于{}1a a > {}1a a ≥,故命题:p “1a >”是命题:q “函数()cos f x ax x =+在R 上是单调递增”成立的充分不必要条件, 故选:B. 【点睛】本题考查充分不必要条件的判断,同时也考查了利用函数的单调性求参数,一般转化为导数不等式恒成立问题,考查推理能力与运算求解能力,属于中等题.9.D解析:D 【分析】先分析函数的奇偶性,由导数得出函数的单调性,利用这两个性质求解. 【详解】()sin f x x x =,()sin()sin ()f x x x x x f x -=--==,()f x 是偶函数,()sin cos f x x x x '=+,在02x π≤<时,()0f x '≥,()f x 递增,所以22()()()()f a f b f a f b a b a b >⇔>⇔>⇒>. 故选:D. 【点睛】本题考查函数的奇偶性与单调性,用函数的这两个性质求解不等式.本题还考查了导数与单调性的关系.掌握用导数研究不等式的方法是解题关键.10.A解析:A 【分析】A. 根据四种命题的结构形式及转化来判断.B.利用特殊值法,当 0m =时,逆命题不成立.C. 若p q ∧为假命题,由结论“一假则假”来判断. D 用等价命题来判断. 【详解】命题:若21x =,则1x =或1x =-的逆否命题为:若1x ≠且1x ≠-,则21x ≠, 故A 正确;若22am bm <,则0m ≠,可得a b <,反之a b <,0m =,22am bm <不成立,故B 错误;若p q ∧为假命题,则p ,q 中至少有一个为假命题,故C 错误;对于实数x ,y ,p :8x y +≠,q :2x ≠或6y ≠,由2x =且6y =,可得8x y +=,即p 可得q ,反之由q 推不到p ,则p 是q 的充分不必要条件,故D 错误.故选:A 【点睛】本题主要考查命题的转化及关系以及逻辑条件,还考查了理解辨析的能力,属于基础题.11.A解析:A 【分析】根据充分条件和必要条件的定义进行求解即可. 【详解】解:由2230x x --<得13x ,q 的一个充分不必要条件是p ,3a ∴,故选:A . 【点睛】本题主要考查充分条件和必要条件的应用,根据不等式关系是解决本题的关键,属于基础题.12.A解析:A 【分析】由p 为q 的充分不必要条件可得211xx <+的解集是()(3)0x a x -->的解集的真子集,从而可求出答案. 【详解】 解:∵211x x <+,∴2101x x x --<+,即101x x -<+, ∴()()110x x +-<,解得11x -<<, ∴:11p x -<<,由p 为q 的充分不必要条件可得211xx <+的解集是()(3)0x a x -->的解集的真子集, 当3a =时,解得:3q x ≠,满足条件; 当3a >时,解得:q x a >或3x <,满足条件; 当3a <时,解得:3q x >或x a <,∴13a ≤<, 综上:1a ≥, 故选:A . 【点睛】本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题的等价条件是解决本题的关键,属于基础题.二、填空题13.①③【分析】①根据二进制与十进制的关系转换后可判断②利用均值与方差的计算公式可判断③根据事件的关系判断④根据且的真假判断【详解】对于①正确;对于②将一组数据中的每个数据都加上或减去同一个常数后平均值解析:①③ 【分析】①根据二进制与十进制的关系转换后可判断,②利用均值与方差的计算公式可判断,③根据事件的关系判断,④根据“且”的真假判断. 【详解】对于①543210(2)11001112120202121251=⨯+⨯+⨯+⨯+⨯+⨯=正确;对于②,将一组数据中的每个数据都加上或减去同一个常数后,平均值为加上或减去这个常数,均值改变,方差不变,错误;对于③,从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,“至多一个红球”为“一红一白或两白”,“都是红球”为“两红”,则事件“至多一个红球”与“都是红球”互斥且对立,正确;对于④,若“p q ∧”为假命题,则p ,q 至少有一个为假命题,则④不正确;答案:①③. 【点睛】方法点睛:本题命题的真假判断,解题时需对每个命题进行判断,要求掌握相应的知识,考查的知识点较多,属于中档题.14.m≥1或m ≤﹣7【分析】先求出命题p 和命题q 中不等式的解再根据必要不充分条件列不等式求解【详解】解:由x2+3x ﹣4<0得﹣4<x <1由(x ﹣m )2>3(x ﹣m )得(x ﹣m ﹣3)(x ﹣m )>0即x >解析:m ≥1或m ≤﹣7【分析】先求出命题p 和命题q 中不等式的解,再根据必要不充分条件列不等式求解. 【详解】解:由x 2+3x ﹣4<0得﹣4<x <1,由(x ﹣m )2>3(x ﹣m )得(x ﹣m ﹣3)(x ﹣m )>0, 即x >m +3或x <m , 若p 是q 的必要不充分条件, 则1≤m 或m +3≤﹣4, 即m ≥1或m ≤﹣7, 故答案为:m ≥1或m ≤﹣7. 【点睛】本题考查二次不等式的求解,考查充分性,必要性的应用,是中档题.15.【分析】根据所给的特称命题的否定:任意实数是真命题得到判别式小于0解不等式即可【详解】命题存在的否定任意实数是真命题解得:故答案为:【点睛】本题考查命题的否定写出正确的全称命题并且根据这个命题是一个 解析:1a >【分析】根据所给的特称命题的否定:任意实数x ,220x x a ++>是真命题,得到判别式小于0,解不等式即可. 【详解】命题“存在x ∈R , 220x x a ++≤”的否定 “任意实数x , 220x x a ++>”是真命题,∴440a ∆=-<,解得:1a >,故答案为:1a >. 【点睛】本题考查命题的否定,写出正确的全称命题,并且根据这个命题是一个真命题,得到判别式的情况,属于容易题.16.②④⑤【分析】因为函数的定义域为其图象上任一点都满足所以函数的图象为圆上的一部分故对每个命题通过画反例图或者结合圆的性质分析判断即可得到结果【详解】因为函数的定义域为其图象上任一点都满足所以函数的图解析:②④⑤ 【分析】因为函数()y f x =的定义域为[)(]1,00,1-,其图象上任一点(,)P x y 都满足221x y +=,所以,函数的图象为圆221x y +=上的一部分.故对每个命题通过画反例图或者结合圆的性质分析判断即可得到结果. 【详解】因为函数()y f x =的定义域为[)(]1,00,1-,其图象上任一点(,)P x y 都满足221x y +=,所以,函数的图象为圆221x y +=上的一部分.命题①:可举出反例如图,则可知函数()y f x =不一定是偶函数,故命题①错误; 命题②:举出存在的例子,由图可知函数()y f x =可能既不是偶函数,也不是奇函数,故命题②正确; 命题③:举出反例如图,则可知函数()y f x =如果是偶函数,则值域不一定是(]1,0-或[)0,1,故命题③错误; 命题④:由命题①中图象可知,函数()y f x =可以是奇函数,故命题④正确; 命题⑤:由函数图象性质可知,若函数()y f x =值域是(1,1)-,则函数一定是奇函数,故命题⑤正确.故其中正确的命题的序号是②④⑤. 故答案为:②④⑤. 【点睛】本题主要考查函数的性质,以及圆的方程的性质,通过举反例排除是判断命题正确与否的常用手段,属中档题.17.(﹣22【分析】由原命题的否定为真命题得到∀实数x 使得(a ﹣2)x2+2(a ﹣2)x ﹣4<0成立然后分二次项系数为0和不为0讨论当二次项系数不为0时需要二次项系数小于0且判别式小于0求解【详解】命题解析:(﹣2,2]. 【分析】由原命题的否定为真命题得到∀实数x ,使得(a ﹣2)x 2+2(a ﹣2)x ﹣4<0成立,然后分二次项系数为0和不为0讨论,当二次项系数不为0时,需要二次项系数小于0,且判别式小于0求解. 【详解】命题“存在实数x ,使得(a ﹣2)x 2+2(a ﹣2)x ﹣4≥0成立”是假命题, 则其否定为“∀实数x ,使得(a ﹣2)x 2+2(a ﹣2)x ﹣4<0成立”是真命题, 当a =2时,原不等式化为﹣4<0恒成立; 当a ≠2时,则()2204(2)1620a a a -⎧⎨=-+-⎩<<,解得﹣2<a <2. 综上,实数a 的取值范围是(﹣2,2]. 故答案为:(﹣2,2]. 【点睛】本题考查命题的真假判断与应用,考查了复合命题的真假判断,训练了不等式恒成立的解法,是中档题.18.充分不必要【解析】【分析】根据充分必要条件的定义判断即可【详解】由解得即因为所以是成立的充分不必要条件故答案为:充分不必要【点睛】本题主要考查了充分条件必要条件的判定属于中档题解析:充分不必要 【解析】 【分析】根据充分必要条件的定义判断即可. 【详解】由21x >解得0x >,即:0q x >, 因为120x x <<⇒>,012x x ><<,所以p 是q 成立的充分不必要条件,故答案为:充分不必要 【点睛】本题主要考查了充分条件,必要条件的判定,属于中档题.19.【分析】根据必要不充分条件得到集合之间的关系从而求解出参数的取值范围【详解】因为是的必要不充分条件所以又因为所以因为所以即的取值范围是:【点睛】集合:若是的必要不充分条件则有:;若是的充分不必要条件 解析:0a ≤【分析】根据必要不充分条件得到集合,A B 之间的关系,从而求解出参数的取值范围.【详解】因为“x A ∈”是“x B ∈”的必要不充分条件,所以BA ,又因为{}|22,B x x x R =-<∈,所以()0,4B =,因为(),A a =+∞,所以0a ≤,即a 的取值范围是:0a ≤. 【点睛】集合()(){|},{|}A x x p x B x x q x =∈=∈: 若“x A ∈”是“x B ∈”的必要不充分条件,则有:B A ;若“x A ∈”是“x B ∈”的充分不必要条件,则有:AB .20.④【解析】试题分析:若或为真命题则pq 至少有一真所以命题 错误;命题若且则的否命题为若或则故命题‚错误;三角形ABC 中角A 时故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件由因p:所以由一解析:④ 【解析】试题分析:若“p 或q ”为真命题,则p 、q 至少有一真,所以命题•错误;命题“若且,则”的否命题为“若或,则”,故命题 错误;三角形ABC 中,角A时,,故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件.由因p:,所以由一元二次方程根的分布可得,解得,.故正确的命题是④.考点:命题的真假性判断.三、解答题21.(1)[]4,5 ;(2)5,23⎡⎤⎢⎥⎣⎦【分析】(1)首先解一元二次不等式得到p 、q ,再根据命题p 、q 均为真命题,取交集即可得解;(2)因为p 是q 的充分不必要条件,则[][]()2,5,30m m m >,即可得到不等式组,解得即可; 【详解】解:因为27100x x -+≤,解得25x ≤≤,22430x mx m -+≤()0m >,解得3m x m ≤≤所以:25p x ≤≤,():30q m x m m ≤≤> (1)当4m =时,:412q x ≤≤ 因为命题p 、q 均为真命题,所以25412x x ≤≤⎧⎨≤≤⎩,解得45x ≤≤,即[]4,5x ∈(2)因为p 是q 的充分不必要条件,所以[][]()2,5,30m m m >所以3520m m m ≥⎧⎪≤⎨⎪>⎩解得523m ≤≤,即5,23m ⎡⎤∈⎢⎥⎣⎦【点睛】考查解一元二次不等式的解得以及充分条件、必要条件、必要不充分条件的概念.属于中档题.22.(1)412m -≤≤;(1)存在,08m ≤≤ 【分析】(1)根据题意转化为集合A 、B 存在公共元素,求出A 、B 无公共元素时,实数m 的取值范围,取补集即可.(2)由题意转化为B A ⊆,再根据集合的包含关系可得22210m m -≥-⎧⎨+≤⎩,解不等式组即可.【详解】{}()(){}{}2|82001020210A x x x x x x x x =--≤=-+≤=-≤≤, {}{}{}|22222B x x m x x m x m x m =-≤=-≤-≤=-≤≤+(1)若“∃x ∈A ,使得x ∈B ”为真命题,即集合A 、B 存在公共元素, 假设A 、B 无公共元素,则210m ->或22m +<-, 解得12m >或4m <-,则集合A 、B 存在公共元素时,实数m 的取值范围412m -≤≤. (2)存在实数m ,使“x ∈A ”是“X ∈B ”必要不充分条件, 若 “x ∈A ”是“X ∈B ”必要不充分条件,则B A ,所以22210m m -≥-⎧⎨+≤⎩,解得08m ≤≤, 所以m 的取值范围为08m ≤≤. 【点睛】本题考查了充分条件、必要条件的集合思想,考查了转化与化归的思想,属于中档题.23.1,0[4,)4⎡⎫-⋃+∞⎪⎢⎣⎭【分析】由条件p q ∨为真命题,p q ∧为假命题,可知,应满足p ,q 一真一假,将命题p ,q 化简求出其参数取值范围,分类讨论分为p 真q 假和p 假q 真求解即可 【详解】若命题p 为真命题,则对任意实数x 都有210ax ax ++>恒成立,所以有0a =或240a a a >⎧⎨∆=-<⎩,解得04a ≤<;若q 为真命题,则关于x 的方程20x x a --=有实数根,所以有140a ∆=+≥,解得14a ≥-;因为p q ∨为真命题,p q ∧为假命题,所以p ,q 一真一假,若p 真q 假,则有0414a a ≤<⎧⎪⎨<-⎪⎩,此不等式组无解;若p 假q 真,则有4014a a a ≥<⎧⎪⎨≥-⎪⎩或,解得104a -≤<或4a ≥. 所以a 的取值范围为1,0[4,)4⎡⎫-+∞⎪⎢⎣⎭【点睛】本题考查由命题的真假求解参数取值范围,分类讨论法的应用,属于中档题 24.(1)[2,0]B =-;(2)充分非必要条件. 【分析】(1)根据绝对值的性质解不等式得集合B ; (2)解不等式得集合,A B ,由A B =∅求出a 的范围,再判断是什么条件.【详解】(1)由110x -+≥得11x +≤,111x -≤+≤,20x -≤≤,所以[2,0]B =-; (2)由题意(31,32)A a a =-+,[1,1]B a a =---+, 若A B =∅,则321a a +≤--或311a a -≥-+,解得34a ≤-或12a ≥.∴12a ≥是A B =∅的充分非必要条件. 【点睛】本题考查解绝对值不等式,考查解一元二次不等式,考查充分必要条件的判断,掌握集合的包含关系与充分必要条件之间的联系是解题关键.25.203a -≤<【分析】p 是q 的充分不必要条件,则集合A 是集合B 的子集,运用区间端点值之间的关系可求a 的取值范围. 【详解】 解:0a <,由22430x ax a -+<得3a x a <<,设{}3A x a x a =<<,由260x x --≤得23x -≤≤,设{}23B x x =-≤≤,p 是q 的充分不必要条件,A ∴ B ,323a a ≥-⎧∴⎨≤⎩0a <203a ∴-≤<. 【点睛】本题是命题真假的判断与应用,考查了必要条件问题,属于中档题.判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系. 26.(1)(3,0)-;(2)(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【分析】(1)只需24120m m ∆=+<,然后求解m 的取值范围; (2)分p 真q 假、p 假q 真两种情况讨论求解. 【详解】解:(1)若命题p 为真命题,则24120m m ∆=+<,解得30m -<<, 故实数m 的取值范围(3,0)-(2)若命题q 为真命题,则21640m ∆=->,解得12m <-或12m > ∵命题,p q 中恰有一个为真命题, ∴命题,p q 一真一假①当p 真q 假时,301122m m -<<⎧⎪⎨-≤≤⎪⎩,解得:102m -≤< ②当p 假q 真时,301122m m m m ≤-≥⎧⎪⎨-⎪⎩或或,解得:3m ≤-或12m >.综上,实数m 的取值范围(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭.【点睛】本题考查根据命题的真假求解参数的取值范围,考查二次不等式恒成立与有解问题,难度一般.。
逻辑测试题及答案面试
逻辑测试题及答案面试一、单项选择题1. 如果所有的苹果都是水果,那么以下哪项陈述是错误的?A. 苹果是水果B. 水果包括苹果C. 香蕉不是苹果D. 苹果不是蔬菜答案:D2. 如果所有的狗都是哺乳动物,那么以下哪项陈述是正确的?A. 哺乳动物包括狗B. 所有哺乳动物都是狗C. 狗不是哺乳动物D. 哺乳动物不包括狗答案:A3. 如果所有的猫都怕水,那么以下哪项陈述是正确的?A. 怕水的一定是猫B. 猫不怕水C. 有些猫不怕水D. 怕水的动物可能是猫答案:D二、多项选择题1. 以下哪些陈述可以同时为真?A. 所有的鸟都会飞B. 企鹅是鸟C. 企鹅不会飞D. 有些鸟不会飞答案:B, C, D2. 如果所有的红色花朵都是玫瑰,以下哪些陈述可以同时为真?A. 所有的玫瑰都是红色B. 有些花朵是红色C. 有些玫瑰不是红色D. 红色花朵可能是玫瑰答案:B, D三、判断题1. 如果所有的A都是B,那么B中一定包含A。
()答案:错误2. 如果所有的C都是D,那么D中一定全部是C。
()答案:错误3. 如果所有的E都是F,那么不存在F不是E的情况。
()答案:正确四、逻辑推理题1. 在一个班级中,如果一个学生是班长,那么他一定是数学成绩最好的。
现在班级中有一个学生是班长,并且数学成绩不是最好的。
请问以下哪个结论是正确的?A. 这个班级没有班长B. 班长不是数学成绩最好的学生C. 这个班级有两个班长D. 班长的数学成绩是班级第二答案:A2. 如果所有的G都是H,并且所有的I都是G,那么所有的I都是H。
现在已知所有的I都是G,但是有些I不是H。
请问以下哪个结论是正确的?A. 所有的G都是HB. 有些G不是IC. 有些I不是GD. 有些H不是I答案:B五、解答题1. 请解释为什么“所有的苹果都是水果”不能推出“所有的水果都是苹果”。
答案:因为“所有的苹果都是水果”是一个普遍性陈述,它只说明了苹果是水果的一个子集。
而“所有的水果都是苹果”则是一个错误的结论,因为它错误地假设了水果的集合只包含苹果,而实际上水果是一个更大的集合,包含了苹果以外的其他种类。
(好题)高中数学选修1-1第一章《常用逻辑用语》测试(含答案解析)(3)
一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.已知命题1:,04xp x R ⎛⎫∀∈> ⎪⎝⎭,命题p 的否定是( ) A .1,04xx R ⎛⎫∃∈> ⎪⎝⎭ B .1,04xx R ⎛⎫∃∈≤ ⎪⎝⎭C .1,04xx R ⎛⎫∀∈≤ ⎪⎝⎭D .1,04xx R ⎛⎫∀∉≤ ⎪⎝⎭3.已知命题:0p a ∃≥,20a a +<,则命题p ⌝为( )A .0a ∀≥,20a a +≤B .0a ∀≥,20a a +<C .0a ∀≥,20a a +≥D .0a ∃<,20a a +< 4.命题“x R ∀∈,210x x +-<”的否定是( )A .x R ∃∈,210x x +->B .x R ∃∈,210x x +-≥C .x R ∀∈,210x x +-≥D .x R ∀∈,210x x +->5.已知命题2:,21>0p x R x ∀∈+,则命题p 的否定是( ) A .2,210x R x ∀∈+≤ B .2,21<0x R x ∀∈+ C .2,21<0x R x ∃∈+D .2,210x R x ∃∈+≤6.设a 、b ∈R ,则“a b >”是“()20a b b ->”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件7.已知直线,m n ,平面,αβ,n αβ=,m ∥α,m n ⊥,那么“m ⊥β”是“α⊥β”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 8.命题“210x x x ∀>->,”的否定是( )A .21,0x x x ∃≤->B .21,0x x x ∀>-≤C .21,0x x x ∃>-≤D .21,0x x x ∀≤-> 9.设非空集合,M N 满足M N N =,则( )A .0,x N ∃∈ 有x M ∉B .,x N ∀∉有x M ∈C .0,x M ∃∉ 有0x N ∈D .,x N ∀∈有x M ∈10.命题:p “0,,sin cos 2x x x π⎛⎫∀∈< ⎪⎝⎭”的否定p ⌝为( ) A .0,,sin cos 2x x x π⎛⎫∀∈≥ ⎪⎝⎭B .0,,sin cos 2x x x π⎛⎫∀∈> ⎪⎝⎭C .0000,,sin cos 2x x x π⎛⎫∃∈≥ ⎪⎝⎭D .0000,,sin cos 2x x x π⎛⎫∃∉≥ ⎪⎝⎭11.命题“,sin 0x x R x e ∃∈+>”的否定为( ) A .,sin 0x x R x e ∀∈+< B .,sin 0x x R x e ∀∈+≤ C .,sin 0x x R x e ∃∈+<D .,sin 0x x R x e ∃∈+≤12.若“x a ≥”是“12x ≥”的充分条件,则下列不可能是a 的一个取值的是( ) A .sin3πB .13C .2D .π二、填空题13.命题“2,0x R x x ∀∈+>”的否定是___________.14.已知命题():1,p x ∃∈+∞,24x >,则命题p ⌝为__________. 15.若“x ∃∈R ,220x x a ++<”是假命题,则实数a 的取值范围是________. 16.若“[]1,2,0x x a ∃∈-≤”是假命题,则实数a 的取值范围是__________. 17.命题“0,21x x ∀>>”的否定____________. 18.下列五个命题中正确的是_____.(填序号)①若ABC 为锐角三角形,且满足()sin 12cos 2sin cos cos sin B C A C A C +=+,则2a b =;②若cos cos a A b B =,则ABC 是等腰三角形;③若a b <,x ∈R ,则b b x a a x+<+; ④设等差数列{}n a 的前n 项和为n S ,若202011S S -=,则20211S >; ⑤函数2()f x =的最小值为2.19.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下:甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”,经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是________. 20.已知,,αβγ是三个不同的平面,,m n 是两条不同的直线,给出下列命题:①若//,m n αα⊂,则//m n ; ②若,//αβ⋂=m m n ,且,n n αβ⊄⊄,则//,//αβn n ;③若,,//αβαβ⊥⊂n m ,则m n ⊥; ④ ,,,αγβγαβγ⊥⊥⋂=⊂m n ,则m n ⊥. 其中真命题是__________.三、解答题21.已知命题p :x R ∀∈,2210x ax -+>,命题q :函数(21)y a x =-单调递增, (1)若命题p 为真命题,求实数a 的取值范围;(2)若命题q 为真命题,求实数a 的取值范围;(3)若命题p q ∧是假命题,命题p q ∨是真命题,求实数a 的取值范围; 22.已知命题p :22310x x -+≤和命题q :2(21)(1)0x a x a a -+++≤ (1)若12a =,且p 和q 都是真命题,求实数x 的取值范围. (2)若p 是q 的充分不必要条件,求实数a 的取值范围.23.已知命题:“{}|22x x x ∃∈-<<,使等式20x x m --=成立”是真命题. (1)求实数m 的取值集合M ;(2)设关于x 的不等式()()80x a x a ---<的解集为N ,若“x ∈N ”是“x M ∈”的必要条件,求a 的取值范围.24.已知:集合2{|320},M x R x x =∈-+≤集合{|132}N x R m x m =∈+≤≤- (1)若“”x M ∈是“”x N ∈的充分不必要条件,求m 的取值范围. (2)若M N M ⋃=,求m 的取值范围.25.设p :对任意的x ∈R 都有22x x a ->,q :存在0x R ∈,使20220x ax a ++-=,如果命题p q ∨为真,命题p q ∧为假,求实数a 的取值范围.26.设a R ∈,命题p :∃[]1,2x ∈,满足()11>0a x --,命题q :∀x R ∈,2++1>0ax x .(1)若命题p q ∧是真命题,求a 的范围;(2)()p q ⌝∧为假,()p q ⌝∨为真,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案.解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.2.B解析:B 【分析】根据命题的否定的定义,写出命题的否定,然后判断. 【详解】命题1:,04xp x R ⎛⎫∀∈> ⎪⎝⎭的否定是:1,04xx R ⎛⎫∃∈≤ ⎪⎝⎭. 故选:B . 3.C解析:C 【分析】根据特称命题的否定可得出结论. 【详解】命题p 为特称命题,该命题的否定为:0p a ⌝∀≥,20a a +≥. 故选:C.4.B解析:B 【分析】根据全称命题的否定是特称命题即可得正确答案. 【详解】命题“x R ∀∈,210x x +-<”的否定是x R ∃∈,210x x +-≥ 故选:B5.D解析:D 【分析】根据命题的否定的定义写出命题的否定,再判断. 【详解】命题2:,21>0p x R x ∀∈+的否定是2,210x R x ∃∈+≤. 故选:D .6.C解析:C 【分析】利用充分条件、必要条件的定义结合不等式的基本性质、特殊值法判断可得出结论.充分性:取0b =,由0a b >=,则()20a b b -=,充分性不成立;必要性:()20a b b ->,则0b ≠,且0a b ->,则a b >,必要性成立.因此,“a b >”是“()20a b b ->”的必要不充分条件. 故选:C.7.C解析:C 【分析】若m ⊥β,在平面α内找到与m 平行的直线m ',根据面面垂直的判定定理可得α⊥β, 若α⊥β,在平面α内找到与m 平行的直线m ',根据面面垂直的性定定理可得m ⊥β,再根据充要条件的定义可得答案. 【详解】 若m ⊥β,过直线m 作平面γ,交平面α于直线m ',∵//m α,∴//m m ', 又m ⊥β,∴m '⊥β, 又∵m '⊂α,∴α⊥β, 若α⊥β,过直线m 作平面γ,交平面α于直线m ',∵//m α,∴//m m ', ∵m n ⊥,∴m n '⊥, 又∵α⊥β,α∩β=n , ∴m β'⊥,∴m β⊥, 故“m ⊥β”是“α⊥β”的充要条件,【点睛】关键点点睛:根据面面垂直的判定定理以及性质定理求解是解题关键.8.C解析:C 【分析】根据全称命题否定的定义得解. 【详解】由全称命题的定义可知,命题“210x x x ∀>->,”的否定是: 21,0x x x ∃>-≤故选:C9.D解析:D 【分析】根据交集的结果可得N M ⊆,分析选项,即可得答案. 【详解】 因为MN N =,所以N M ⊆,所以,x N ∀∈有x M ∈. 故选:D10.C解析:C 【分析】根据命题否定的定义写出命题的否定,然后判断. 【详解】根据命题否定的概念知,p ⌝为002x π⎛⎫∃∈ ⎪⎝⎭,,00sin cos x x ≥,故选:C .11.B解析:B 【分析】根据特称命题的否定变换形式即可得出结果. 【详解】特称命题的否定为全称命题,故“,sin 0x x R x e ∃∈+>”的否定为“,sin 0xx R x e ∀∈+≤”,故选:B .12.B解析:B根据已知条件得出实数a 的取值范围,由此可得出合适的选项. 【详解】因为“x a ≥”是“12x ≥”的充分条件,则12a ≥,而sin 32π=.故满足条件的选项为B. 故选:B.二、填空题13.【分析】根据全称命题的否定的结构形式写出即可【详解】命题的否定为故答案为:解析:2,0x R x x ∃∈+≤【分析】根据全称命题的否定的结构形式写出即可. 【详解】命题“2,0x R x x ∀∈+>”的否定为“2,0x R x x ∃∈+≤”故答案为:2,0x R x x ∃∈+≤14.【分析】根据含一个量词命题否定的定义即可求得答案【详解】命题则为:故答案为:解析:()21,,4x x ∀∈+∞≤【分析】根据含一个量词命题否定的定义,即可求得答案. 【详解】命题():1,p x ∃∈+∞,24x >,则p ⌝为:()21,,4x x ∀∈+∞≤.故答案为:()21,,4x x ∀∈+∞≤15.【分析】根据题意可知命题是真命题可得出由此可求得实数的取值范围【详解】由于命题是假命题则该命题的否定是真命题解得因此实数的取值范围是故答案为: 解析:[)1,+∞【分析】根据题意可知,命题“x R ∀∈,220x x a ++≥”是真命题,可得出0∆≤,由此可求得实数a 的取值范围, 【详解】由于命题“x ∃∈R ,220x x a ++<”是假命题,则该命题的否定“x R ∀∈,220x x a ++≥”是真命题,440a ∴∆=-≤,解得1a ≥.因此,实数a 的取值范围是[)1,+∞. 故答案为:[)1,+∞.16.【分析】由题转化为命题为真命题即恒成立故可求解实数的取值范围【详解】由题转化为命题为真命题即恒成立又在上单调递增所以故故答案为:解析:()1+∞, 【分析】由题转化为命题“[]1,2x ∀∈,0x a ->”为真命题,即a x <恒成立,故可求解实数a 的取值范围. 【详解】由题转化为命题“[]1,2x ∀∈,0x a ->”为真命题,即a x <恒成立, 又y x =在[]1,2上单调递增,所以min 1y =,故1a <.故答案为:()1+∞, 17.【解析】试题分析:命题的否定是:考点:命题的否定 解析:0,21x x ∃>≤【解析】试题分析:命题“0,21x x ∀>>”的否定是:0,21xx ∃>≤.考点:命题的否定.18.①④【分析】利用三角函数恒等变换公式和正弦定理余弦定理判断①②由不等式的性质判断③根据等差数列前项和与等差数列性质判断④应用基本不等式判断⑤【详解】①∵∴∴又为锐角∴由正弦定理和①正确;②∵由正弦定解析:①④ 【分析】利用三角函数恒等变换公式和正弦定理、余弦定理判断①②,由不等式的性质判断③,根据等差数列前n 项和与等差数列性质判断④,应用基本不等式判断⑤. 【详解】①∵()sin 12cos 2sin cos cos sin B C A C A C +=+,∴sin 2sin cos sin cos sin()sin cos sin B B C A C A C A C B +=++=+,∴2sin cos sin cos B C A C =,又C 为锐角,cos 0C ≠,∴2sin sin B A =,由正弦定理和2b a =.①正确;②∵cos cos a A b B =,由正弦定理得sin cos sin cos A A B B =,即2sin cos 2sin cos A A B B =,sin 2sin 2A B =,又,A B 是三角形内角,∴22A B =或22180A B +=︒,∴A B =或90A B +=︒,ABC 是等腰三角形或直角三角形,②错;③0x =时,b b x a a x+=+,不等式不成立,③错误; ④∵{}n a 是等差数列,202011S S -=,∴2320201a a a +++=,220202019()12a a +=,2202022019a a +=, ∴120212021220202021()2021202122021()122220192019a a S a a +==+=⨯=>,④正确;⑤22()2f x ===≥=,=,即241x +=时,等号成立,但2441x +≥>,因此不等式中等号不成立,2不是()f x 的最小值(可利用单调性得最小值为52).⑤错. 故答案为:①④ 【点睛】本题考查命题的真假判断,考查正弦定理、三角函数的恒等变换,不等式的性质,等差数列的性质与前n 项和,考查基本不等式求最值的条件.需要掌握的知识点较多,属于中档题.19.乙【解析】四人供词中乙丁意见一致或同真或同假若同真即丙偷的而四人有两人说的是真话甲丙说的是假话甲说乙丙丁偷的是假话即乙丙丁没偷相互矛盾;若同假即不是丙偷的则甲丙说的是真话甲说乙丙丁三人之中丙说甲乙两解析:乙 【解析】四人供词中,乙、丁意见一致,或同真或同假,若同真,即丙偷的,而四人有两人说的是真话,甲、丙说的是假话,甲说“乙、丙、丁偷的”是假话,即乙、丙、丁没偷,相互矛盾;若同假,即不是丙偷的,则甲、丙说的是真话,甲说“乙、丙、丁三人之中”,丙说“甲、乙两人中有一人是小偷”是真话, 可知犯罪的是乙.【点评】本体是逻辑分析题,应结合题意,根据丁说“乙说的是事实”发现,乙、丁意见一致,从而找到解题的突破口,四人中有两人说的是真话,因此针对乙、丁的供词同真和同假分两种情况分别讨论分析得出结论.20.②③④【分析】利用线面关系逐一分析即可【详解】对于①若则或异面故错误;对于②由线面平行的判定定理知:若且则故正确;对于③由面面平行的性质定理以及线面垂直的性质定理可知:若则故正确;对于④设在面内任取解析:②③④ 【分析】利用线面关系逐一分析即可.【详解】对于①,若//,m n αα⊂,则//m n 或,m n 异面,故错误; 对于②,由线面平行的判定定理知:若,//αβ⋂=m m n , 且,n n αβ⊄⊄,则//,//αβn n ,故正确;对于③,由面面平行的性质定理以及线面垂直的性质定理可知: 若,,//αβαβ⊥⊂n m ,则m n ⊥,故正确; 对于④,设,a b αγβγ==,在面γ内任取点O ,作,OA a OB b ⊥⊥,由,αγβγ⊥⊥,得OA α⊥,OB β⊥, 故OA m ⊥,OB m ⊥,则m γ⊥, 又γ⊂n ,则m n ⊥,故正确; 故答案为:②③④ 【点睛】本题考查了命题的真假判断、线面之间的位置关系、面面平行的性质定理、线面垂直的性质定理,考查了考生的空间想象能力,属于基础题.三、解答题21.(1)()1,1-;(2)1,2⎛⎫+∞ ⎪⎝⎭;(3)[)11,1,2a ⎛⎤∈-⋃+∞ ⎥⎝⎦.【分析】(1)由x R ∀∈,2210x ax -+>恒成立,利用判别式法求解. (2)根据函数(21)y a x =-单调递增,由210a ->求解.(3)根据命题p q ∧是假命题,命题p q ∨是真命题,则由p 、q 一真一假求解. 【详解】(1)因为命题p 为真命题,即x R ∀∈,2210x ax -+>恒成立, 所以2440a ∆=-<, 解得11a -<<,所以实数a 的取值范围是()1,1-.(2)若命题q 为真命题,即函数(21)y a x =-单调递增, 则210a ->, 解得12a >, 所以实数a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭. (3)因为命题p q ∧是假命题,命题p q ∨是真命题,所以p 、q 一真一假,①若p 真、q 假,则1112a a -<<⎧⎪⎨≤⎪⎩,解得112a -<≤; ②若p 假、q 真,则1112a a a ≤-≥⎧⎪⎨>⎪⎩或,解得1a ≥; 综上:[)11,1,2a ⎛⎤∈-⋃+∞ ⎥⎝⎦22.(1)112x ≤≤;(2)102a ≤≤. 【分析】 (1)由一元二次不等式可得命题p :112x ≤≤,命题q :1322x ≤≤,即可得解; (2)由命题间的关系转化条件为112xx ⎧⎫≤≤⎨⎬⎩⎭ {}1x a x a ≤≤+,即可得解. 【详解】 不等式22310x x -+≤即()()2110x x --≤,解得112x ≤≤, 不等式2(21)(1)0x a x a a -+++≤即()()10x a x a ---≤,解得1a x a ≤≤+,则命题p :112x ≤≤,命题q :1a x a ≤≤+, (1)当12a =时,命题p :112x ≤≤,命题q :1322x ≤≤, 若p 和q 都是真命题,则112x ≤≤; (2)因为p 是q 的充分不必要条件,所以112xx ⎧⎫≤≤⎨⎬⎩⎭ {}1x a x a ≤≤+, 所以1211a a ⎧≤⎪⎨⎪+≥⎩且等号不同时成立,解得102a ≤≤, 所以实数a 的取值范围为102a ≤≤. 23.(1)164⎡⎫-⎪⎢⎣⎭,;(2)124⎡⎫--⎪⎢⎣⎭,. 【分析】 (1)利用参数分离法将m 用x 表示,结合二次函数的性质求出m 的取值范围,从而可求集合M ;(2)若x ∈N 是x M ∈的必要条件,则M N ⊆即可得到不等式,从而求出参数的取值范围;【详解】解:(1)由题意可知20x x m --=,所以221124m x x x ⎛⎫=-=-- ⎪⎝⎭,因为{}|22x x x ∈-<<,所以21116244x ⎛⎫⎡⎫--∈- ⎪⎪⎢⎝⎭⎣⎭,,即164m -≤<,则实数m 的取值集合M=164⎡⎫-⎪⎢⎣⎭,; (2)由()()80x a x a ---<,可得()8N a a =+,,因为“x N ∈”是“x M ∈”的必要条件,所以M N ⊆,则1486a a ⎧<-⎪⎨⎪+≥⎩,解得124a -≤<-,所以a 的取值范围为124⎡⎫--⎪⎢⎣⎭,. 【点睛】本题考查必要条件求参数的取值范围,一般可根据如下规则判断计算:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对的集合与p 对应集合互不包含. 24.(1){|0}m m ≤;(2)1{|}2m m ≥.【分析】 (1)首先解出集合{|12}M x x =≤≤,由条件可知M N ≠⊂,列不等式求m 的取值范围;(2)由条件可知N M ⊆,再分N =∅和N ≠∅两种情况列式求m 的取值范围.【详解】解:(1){|12}M x x =≤≤,因为“”x M ∈是“”x N ∈的充分不必要条件,所以M N ≠⊂. 即:01113222m m m m ≤⎧+≤⎧⎪⇒⎨⎨-≥≤⎩⎪⎩,(等号不能同时取)0m ∴≤ 故m 的范围为{|0}m m ≤(2)因为,M N M =所以N M ⊆①当N =∅时:132m m +>-,23m >所以 ②当N ≠∅时:2132311032212m m m m m m m ⎧≤⎪+≤-⎧⎪⎪+≥⇒≥⎨⎨⎪⎪-≤⎩⎪≥⎩, 即1223m ≤≤ 综上可得:m 的范围为1{|}2m m ≥【点睛】本题考查根据充分必要条件,以及集合的包含关系求参数的取值范围,重点考查转化与化归思想,计算能力,属于基础题型. 25.[)(2,1)1,a ∈--+∞【解析】 试题分析:先根据恒成立得 22a x x <-最小值,得p ,再根据方程有解得q ,根据命题p q ∨为真,命题p q ∧为假,得,p q 一真一假,最后分类求实数a 的取值范围. 试题由题意:对于命题p ,∵对任意的2,2x R x x a ∈->,∴1440a ∆=+<,即:1p a <-;对于命题q ,∵存在x R ∈,使2220x ax a ++-=,∴()224420a a ∆=--≥,即:1q a ≥或2a ≤-. ∵p q ∨为真,p q ∧为假,∴,p q 一真一假,①p 真q 假时,21a -<<-, ②p 假q 真时,1a ≥.综上,()[)2,11,a ∈--⋃+∞.26.(1)322a <<;(2)3(,2],22⎛⎫-∞-⋃ ⎪⎝⎭. 【分析】(1)由命题p q ∧是真命题,则需命题p 为真命题且q 为真命题,建立关于a 的不等式组,可得答案;(2)由()p q ⌝∧为假,()p q ⌝∨为真p ⇒、q 同时为假或同时为真,分p 假q 假和p 真q 真,建立关于a 的不等式组,可得a 的取值范围;【详解】 (1)命题p 真时,则()1>0211>0a a -⎧⎨--⎩或()10111>0a a -<⎧⎨⨯--⎩, 得3>2a ; q 真,则240a -<,得22a -<<,所以p q ∧真,322a <<; (2)由()p q ⌝∧为假,()p q ⌝∨为真p ⇒、q 同时为假或同时为真,若p 假q 假,则3222a a a ⎧≤-⎪⎨⎪≤-≥⎩或,得2a ≤-,若p 真q 真,则3>222a a ⎧⎪⎨⎪-<<⎩,所以,322a <<, 综上2a ≤-或322a <<. 故a 的取值范围是3(,2],22⎛⎫-∞-⋃ ⎪⎝⎭.【点睛】本题考查根据复合命题的真假求参数的范围的问题,属于基础题.。
逻辑测试题及答案
逻辑测试题及答案一、选择题1. 如果所有的A都是B,且C是A,那么C是:A. 不一定是BB. 一定是BC. 不是BD. 可能是B答案:B2. 以下哪个选项不是逻辑推理的正确形式?A. 否定前提B. 肯定结论C. 否定结论D. 肯定前提答案:A二、填空题3. 如果“所有的苹果都是水果”,那么“苹果”与“水果”的关系是_________。
答案:子集4. 逻辑中的“非”操作表示对一个命题的否定,例如,“非p”表示_________。
答案:p的否定三、简答题5. 解释“演绎推理”和“归纳推理”的区别。
答案:演绎推理是从一般到特殊的推理过程,它是基于已知的前提推导出必然的结论。
归纳推理则是从特殊到一般的推理过程,它是基于观察到的特定实例来推导出一般性的结论。
四、论述题6. 论述逻辑谬误中的“偷换概念”错误,并给出一个例子。
答案:偷换概念是一种逻辑谬误,它发生在论证过程中,当一个词或短语在论证的不同部分被赋予不同的含义时。
例如,某人可能会说:“所有的鸟都会飞。
企鹅是鸟,所以企鹅会飞。
”这里的谬误在于“鸟”一词在第一个命题中指的是能够飞行的动物,而在第二个命题中则简单地指生物学分类,没有考虑到企鹅是鸟类但不会飞的特殊性。
五、案例分析题7. 阅读以下案例,并判断是否存在逻辑错误:案例:小张说:“如果今天下雨,我就不去图书馆。
” 结果今天真的下雨了,小张也没有去图书馆。
因此,小张的预测是准确的。
答案:存在逻辑错误。
这个案例中的逻辑错误是“后此谬误”(post hoc fallacy),即错误地认为因为B事件在A事件之后发生,所以B事件是由A事件引起的。
在这个案例中,小张没有去图书馆可能是因为下雨,但也可能是其他原因,不能仅凭结果就断定小张的预测是准确的。
六、逻辑构建题8. 构建一个逻辑论证,证明“如果一个人是诚实的,那么他不会说谎。
”答案:论证如下:- 前提1:诚实的人总是说真话。
- 前提2:说谎意味着说不真实的话。
逻辑关系试题及答案
逻辑关系试题及答案1. 如果今天是星期三,那么明天是星期四。
请问,如果今天是星期四,那么昨天是星期几?A. 星期一B. 星期二C. 星期三D. 星期五答案:C2. 所有的猫都是哺乳动物。
如果一只动物是猫,那么它一定是哺乳动物。
请问,如果一只动物不是哺乳动物,那么它是不是猫?A. 是B. 不是C. 可能是D. 无法确定答案:B3. 如果一个人是大学生,那么他/她必须通过大学入学考试。
如果张三没有通过大学入学考试,那么张三是不是大学生?A. 是B. 不是C. 可能是D. 无法确定答案:B4. 所有的苹果都是水果。
如果一个物体是苹果,那么它一定是水果。
请问,如果一个物体是水果,那么它是不是苹果?A. 是B. 不是C. 可能是D. 无法确定答案:C5. 如果今天下雨,那么明天会降温。
如果明天没有降温,那么今天是否下雨?A. 是B. 不是C. 可能是D. 无法确定答案:D6. 所有的鸟都会飞。
如果一个生物是鸟,那么它一定会飞。
请问,如果一个生物不会飞,那么它是不是鸟?A. 是B. 不是C. 可能是D. 无法确定答案:B7. 如果一个学生通过了所有科目的考试,那么他/她将获得学位。
如果一个学生没有获得学位,那么他/她是否通过了所有科目的考试?A. 是B. 不是C. 可能是D. 无法确定答案:B8. 如果一个物体是金属,那么它导电。
如果一个物体不导电,那么它是不是金属?A. 是B. 不是C. 可能是D. 无法确定答案:C9. 如果一个学生是优秀学生,那么他/她的成绩在班级中排名前10%。
如果一个学生的成绩在班级中排名前10%,那么他/她是不是优秀学生?A. 是B. 不是C. 可能是D. 无法确定答案:C10. 如果一个事件是必然发生的,那么它一定会发生。
如果一个事件没有发生,那么它是不是必然发生的?A. 是B. 不是C. 可能是D. 无法确定答案:B。
集合与常用逻辑用语测试题和答案
集合与常用逻辑用语测试题一、选择题(本大题共12小题,每小题5分,共60分)1.(2013·新课标全国卷Ⅰ)已知集合A={x|x2-2x>0},,则( )A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B2.(2014·昆明模拟)已知集合S={1,2},集合T={a},∅表示空集,如果S∪T=S,那么a的值构成的集合是( )A.∅B.{1}C.{2}D.{1,2}3.已知命题p:∃x0∈R,-3x0+3≤0,则下列说法正确的是( )A.p:∃x 0∈R,-3x0+3>0,且p为真命题B.p:∃x 0∈R,-3x0+3>0,且p为假命题C.p:∀x∈R,x2-3x+3>0,且p为真命题D.p:∀x∈R,x2-3x+3>0,且p为假命题4.(2013·辽宁高考)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=( )A.{0}B.{0,1}C.{0,2}D.{0,1,2}5.已知ab>0,若a>b,则<的否命题是( )A.已知ab≤0,若a≤b,则≥B.已知ab≤0,若a>b,则≥C.已知ab>0,若a≤b,则≥D.已知ab>0,若a>b,则≥6.(2014·西城模拟)已知集合{1,2,3,4,5}的非空子集A具有性质P:当a∈A时,必有6-a ∈A.则具有性质P的集合A的个数是( )A.8B.7C.6D.57.设a,b为实数,则“0<ab<1”是“b<”成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(2014·哈尔滨模拟)给定下列两个命题:①“p∨q”为真是“p”为假的必要不充分条件;②“∃x0∈R,使sinx0>0”的否定是“∀x∈R,使sinx≤0”.其中说法正确的是( )A.①真②假B.①假②真C.①和②都为假D.①和②都为真9.(2013·山东高考)给定两个命题p,q,若p是q的必要而不充分条件,则p是q的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件10.(2014·金华模拟)给出下列命题:(1)等比数列{a n}的公比为q,则“q>1”是“a n+1>a n(n∈N*)”的既不充分也不必要条件;(2)“x≠1”是“x2≠1”的必要不充分条件;(3)函数y=lg(x2+ax+1)的值域为R,则实数-2<a<2;(4)“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充要条件.其中真命题的个数是( )A.1B.2C.3D.411.已知函数f(x)=x2+bx+c,则“c<0”是“∃x0∈R,使f(x0)<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件12.已知下列四个命题:①命题“若α=,则tanα=1”的逆否命题为假命题;②命题p:∀x∈R,sinx≤1,则p:∃x 0∈R,使sinx0>1;③“φ=+kπ(k∈Z)”是“函数y=sin(2x+φ)为偶函数”的充要条件;④命题p:“∃x 0∈R,使sinx0+cosx0=”;命题q:“若sinα>sinβ,则α>β”,那么(p)∧q 为真命题.其中正确的个数是( )A.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2014·银川模拟)若命题“∃x0∈R,+(a-3)x0+4<0”为假命题,则实数a的取值范围是.14.(2014·青岛模拟)已知A=,B={x|log2(x-2)<1},则A∪B= .15.(2014·玉溪模拟)已知命题p:函数f(x)=2ax2-x-1(a≠0)在(0,1)内恰有一个零点;命题q:函数y=x2-a在(0,+∞)上是减函数.若p且q为真命题,则实数a的取值范围是.16.已知下列四个结论:①命题“若p,则q”与命题“若q,则p”互为逆否命题;②命题p:∃x0∈[0,1],≥1,命题q:∃x0∈R,+x0+1<0,则p∨q为真;③若p∨q为假命题,则p,q均为假命题;④“若am2<bm2,则a<b”的逆命题为真命题.其中正确结论的序号是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知A={x||x-a|<4},B={x||x-2|>3}.(1)若a=1,求A∩B.(2)若A∪B=R,求实数a的取值范围.18.(12分)已知命题p:方程x2+mx+1=0有两个不相等的负实根,命题q:不等式4x2+4(m-2)x+1>0的解集为R.若p∨q为真命题、p∧q为假命题,求实数m的取值范围.19.(12分)(2014·黄山模拟)已知全集U=R,集合A={x|(x-2)(x-3)<0},B={x|(x-a)(x-a2-2)<0}.(1)当a=时,求(∁U B)∩A.(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.20.(12分)(2014·枣庄模拟)设p:实数x满足x2-4ax+3a2<0,其中a≠0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围.(2)若p是q的必要不充分条件,求实数a的取值范围.21.(12分)求证:方程ax2+2x+1=0有且只有一个负数根的充要条件为a≤0或a=1.22.(12分)(能力挑战题)已知函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数x0,使f(x0)>0,求p的取值范围.集合与常用逻辑用语测试题答案解析1.选B2.选D.3.选C.4.选B.5.选C.6.选B.7.选D.8.【选D9.选A.10.【解析】选B.若首项为负,则公比q>1时,数列为递减数列,a n+1<a n(n∈N*),当a n+1>a n(n∈N*)时,包含首项为正,公比q>1和首项为负,公比0<q<1两种情况,故(1)正确;“x≠1”时,“x2≠1”在x=-1时不成立,“x2≠1”时,“x≠1”一定成立,故(2)正确;函数y=lg(x2+ax+1)的值域为R,则x2+ax+1=0的Δ=a2-4≥0,解得a≥2或a≤-2,故(3)错误;“a=1”时,“函数y=cos2x-sin2x=cos2x的最小正周期为π”,但“函数y=cos2ax-sin2ax的最小正周期为π”时,“a=〒1”,故“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充分不必要条件,故(4)错误.故选B.11.【解析】选A 12.【解析】选B.①中的原命题为真,所以逆否命题也为真,所以①错误.②根据全称命题的否定是特称命题知,②为真.③当函数为偶函数时,有φ=+kπ(k∈Z),所以为充要条件,所以③正确.④因为sinx+cosx=sin的最大值为<,所以命题p 为假命题,p为真,三角函数在定义域上不单调,所以q为假命题,所以(p)∧q为假命题,所以④错误.所以正确的个数为2,故选B..13.答案:[-1,7] 14.答案:{x|1<x<4} 15.答案:(1,2]16.【解析】根据四种命题的关系,结论①正确;②中命题p为真命题、q为假命题,故p∨q 是真命题,结论②正确;根据或命题的真假判断方法知结论③正确;④中命题的逆命题是“若a<b,则am2<bm2”,这个命题在m=0时不成立,结论④不正确.答案:①②③17.实数a的取值范围是(1,3).18. m的取值范围是(1,2]∪[3,+≦).19.∁U B=, (∁U B)∩A=.(2)由若q是p的必要条件知p⇒q,可知A⊆B.由a2+2>a知B={x|a<x<a2+2}.所以解得a≤-1或1≤a≤2.即a∈(-≦,-1]∪[1,2].20.实数x的取值范围是(2,3).(2)由x2-4ax+3a2<0,得(x-a)(x-3a)<0.①当a>0时,p:a<x<3a,由题意,得(2,3](a,3a),所以即1<a≤2;②当a<0时,p:3a<x<a,由题意,得(2,3](3a,a),所以无解.综上,可得a∈(1,2].21.【证明】充分性:当a=0时,方程为2x+1=0,其根为x=-,方程只有一负根.当a=1时,方程为x2+2x+1=0,其根为x=-1,方程只有一负根.当a<0时,Δ=4(1-a)>0,方程有两个不相等的根,且<0,方程有一正一负两个根.必要性:若方程ax2+2x+1=0有且只有一负根.当a=0时,符合条件.当a≠0时,方程ax2+2x+1=0有实根,则Δ=4-4a≥0,所以a≤1,当a=1时,方程有一负根x=-1.当a<1时,若方程有且只有一负根,则所以a<0.综上,方程ax2+2x+1=0有且只有一个负根的充要条件为a≤0或a=1.22.【解析】记p的取值范围是I,原题可作为命题:若p∈I,则函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数x0,使f(x0)>0.若函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上对任意的x都有f(x)≤0,则p∈∁I. 由对任意的x都有f(x)≤0,结合图形知⇒⇒p≤-3或p≥,即∁I=,所以I=,故所求p的取值范围为.。
贵阳市十九中高中数学选修2-1第一章《常用逻辑用语》测试(有答案解析)
一、选择题1.已知x ∈R ,条件2:p x x <,条件1:q a x≥,若p 是q 的充分不必要条件,则实数a 的取值不可能是( ) A .12B .1C .2D .2-2.若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是( ) A .p ∧q B .¬p ∨q C .¬p ∧qD .¬p ∨q ⌝3.下列说法不正确的是( ) A .命题“若a b >,则ac bc >”是真命题 B .命题“若220a b +=,则,a b 全为0”是真命题C .命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠”D .命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠” 4.给出如下四个命题:①若“p 且q ”为假命题,则,p q 均为假命题;②命题“若a b >,则221a b >-”的否命题为“若a b <,则221a b ≤-”; ③“x ∀∈R ,211x +≥”的否定是“x ∃∈R ,211x +<”; 其中正确的命题的个数是( ) A .0B .1C .2D .35.若数列{}n a 对任意2()n n *∈N ≥满足11(4)(3)0n n n n a a a a -----=,下面给出关于数列{}n a 的四个命题:①{}n a 可以是等差数列;②{}n a 可以是等比数列;③{}n a 可以既是等差又是等比数列;④{}n a 可以既不是等差又不是等比数列.正确命题的个数为( ). A .1B .2C .3D .46.已知命题p :若x y >且y z >,则()()1122log log x y y z -<-,则命题p 的逆否命题及其真假分别为( )A .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,真B .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,真C .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,假D .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,假7.下列四种说法中,错误的个数是( )①命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”;②命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件; ③“若22am bm <,则a b <”的逆命题为真; ④若实数x ,[]0,1y ∈,则满足221x y +>的概率为4π. A .0个B .1个C .2个D .3个8.若命题“0x R ∃∈,200230x mx m ++-<”为假命题,则实数m 的取值范围是( ) A .[]2,6 B .()2,6C .(][),26,-∞+∞ D .()(),26,-∞+∞9.下列命题中正确的是( ) A .“12m =”是“直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行”的充分不必条件B .“直线l 垂直平面α内无数条直线”是“直线l 垂直于平面α”的充分条件C .已知a 、b 、c 为非零向量,则“a b a c ⋅=⋅”是“b c =”的充要条件D .p :存在x ∈R ,2220130x x ++≤.则p ⌝:任意x ∈R ,2220130x x ++> 10.已知命题:,sin cos 10p x R x x ∀∈++;命题:q 直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切的一个充分不必要条件是5m =-;则下列命题中是真命题的是( ) A .pB .()p q ∨⌝C .()p q ⌝∧D .p q ∧11.下列说法正确的是( )A .“若24x =,则2x =或2x =-”的否命题是“若24x ≠,则2x ≠或2x ≠-”B .如果p 是q 的充分条件,那么p ⌝是q ⌝的充分条件C .若命题p 为真命题,q 为假命题,则p q ∧为假命题D .命题“若αβ=,则sin sin αβ=”的否命题为真命题 12.“12a <<”是“对任意的正数x ,22ax x+≥”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.若0, 0a >b >,则“4a b +≤”是 “4ab ≤”的_____条件14.设2:8120x x α-+>,2:x m m β-≤,若β是α的充分非必要条件,则实数m 的取值范围是_______________. 15.下列五个命题:①“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件; ②函数31()13f x x x =-++有两个零点;③集合{2,3}A =,{1,2,3}B =,从A ,B 中各任意取一个数,则这两数之和等于4的概率是13; ④动圆C 既与定圆22(2)4x y -+=相外切,又与y 轴相切,则圆心C 的轨迹方程是28(0)y x x =≠;⑤若对任意的正数x ,不等式x e x a ≥+恒成立,则实数a 的取值范围是1a ≤. 其中正确的命题序号是________.16.若命题“p :x R ∀∈,2210ax x ++>”是假命题,则实数a 的取值范围是______.17.设命题:p 函数()21lg 16f x ax x a ⎛⎫=-+⎪⎝⎭的值域为R ;命题:q 不等式39x x a -<对一切正实数x 均成立,若命题p 和q 不全为真命题,则实数a 的取值范围是__________. 18.若[]2"2,8,log 4log 2"x x m x ∃∈≤+为真命题,则实数m 的最大值为__________. 19.命题“0x R ∃∈,使()200110m x mx m +-+-≤”是假命题,则实数m 的取值范围为__________.20.下列是有关△ABC 的几个命题:① 若tan tan tan 0A B C ++>,则△ABC 是锐角三角形;② 若cos cos a A b B =,则△ABC 是等腰三角形;③ 若cos cos a B b A b +=,则△ABC 是等腰三角形;④ 若cos sin A B =,则△ABC 是直角三角形,其中所有正确命题的序号是________三、解答题21.设关于x 的不等式254x x ≤-的解集为A ,不等式2(2)20()x a x a a R -++≤∈的解集为B .(1)求集合A ,B ;(2)若x A ∈是x B ∈的必要条件,求实数a 的取值范围.22.已知集合{}220A xx x =-->∣,集合{}22(25)50,B x x k x k k R =+++<∈∣ (1)求集合B ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求实数k 的取值范围.23.已知命题p :方程22122xy aa +=-表示焦点在x 轴上的双曲线,命题q :复平面内表示复数()()32R z a ai a =-+∈的点位于第二象限. (1)若命题p 为真命题,求实数a 的取值范围;(2)若命题p 是假命题,q 是真命题,求实数a 的取值范围.24.已知集合{}{}222430(0),540A x x ax a a B x x x =-+≤>=-+≥,若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.25.设:p 实数x 满足22430x ax a -+<,其中0a <;:q 实数x 满足260x x --≤,且p 是q 的充分不必要条件,求a 的取值范围.26.命题p :关于x 的方程()21210m x x m +-+-=有实数解;命题q :[)0,x ∀∈+∞,关于x 的不等式11023x xm ⎛⎫⎛⎫++> ⎪ ⎪⎝⎭⎝⎭都成立; 若命题p 和命题q 都是真命题,则实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先解出命题所对应的集合,再将条件之间的关系转化为集合间的关系,即可得解. 【详解】因为x ∈R ,条件2:p x x <,条件1:q a x≥, 所以p 对应的集合()0,1A =,q 对应的集合1B x a x ⎧⎫=≥⎨⎬⎩⎭, 又p 是q 的充分不必要条件,所以A B ,当0a =时,集合{}100B x x x x ⎧⎫=≥=>⎨⎬⎩⎭,满足题意; 当>0a 时,集合110B xa x x x a ⎧⎫⎧⎫=≥=<≤⎨⎬⎨⎬⎩⎭⎩⎭,此时需满足11a≥即01a <≤; 当0a <时,集合()11,0,B xa x a ⎧⎫⎛⎤=≥=-∞⋃+∞⎨⎬ ⎥⎩⎭⎝⎦,满足题意;所以实数a 的取值范围为(],1-∞. 所以实数a 的取值不可能是2. 故选:C. 【点睛】关键点点睛:解决本题的关键是把命题间的关系转化为集合间的关系及分类求解命题q 对应的集合.2.D解析:D 【分析】根据命题q 是假命题,命题p 是真命题,结合复合命题真假判断的真值表,可判断出复合命题的真假,进而得到答案.∵命题q 是假命题,命题p 是真命题, ∴“p ∧q”是假命题,即A 错误; “¬p ∨q”是假命题,即B 误; “¬p ∧q”是假命题,即C 错误; “p q ⌝∨⌝ ”是真命题,故D 正确错; 故选D . 【点睛】本题考查的知识点是复合命题的真假,熟练掌握复合命题真假判断的真值表,是解答的关键.3.A解析:A 【分析】根据不等式性质,真命题,否命题,逆否命题性质逐一判断各个选项即可. 【详解】A 选项,若a b >,当0c ≤时,ac bc >不成立,所以命题为假命题,所以A 不正确B 选项,若220a b +=,则,a b 全为0正确,所以命题为真命题,正确C 选项,否命题否定结论和条件,本选项满足否命题形式,正确D 选项,命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”满足逆否命题的形式. 所以答案选A 【点睛】本题考查了不等式的性质,真命题的判断,否命题和逆否命题的知识.属于基础题目.4.B解析:B 【分析】结合命题相关知识,对选项逐个分析即可得到答案. 【详解】对于①,,p q 可能为一真一假也可能两个都为假,故①错误;对于②,命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”,故②错误;对于③,“x ∀∈R ,211x +≥”的否定是“x ∃∈R ,211x +<”,正确.故只有③正确,答案为B. 【点睛】本题考查了复合命题的性质,考查了命题的否定、原命题的否命题,属于基础题.5.C解析:C 【分析】根据题意得到14n n a a --=或13n n a a -=,结合等差数列和等比数列的定义,即可判定.由题意知,数列{}n a 对任意2()n n *∈N ≥满足11(4)(3)0n n n n a a a a -----=, 所以14n n a a --=或13n n a a -=,则:对于①中,数列{}n a 可以是公差为4的等差数列; 对于②中,数列{}n a 可以是公比为3的等比数列;对于③中,若数列{}n a 既是等差又是等比数列,则此时数列{}n a 必为非零的常数列, 则公差为0,公比为1,由①②可知,③不正确;对于④{}n a 中,数列{}n a 可以既不是等差又不是等比数列,例如:1,5,15,19,,满足题设条件,此数列既不是等差又不是等比数列,所以④正确. 故选:C. 【点睛】本题主要以命题的真假判定与应用为载体,考查了等差数列、等比数列的定义及判定,其中解答中熟记等差数列、等比数列的定义,合理判定是解答的关键,着重考查推理与运算能力.6.D解析:D 【分析】先根据逆否命题的概念写出命题p 的逆否命题,再举反例说明其真假. 【详解】命题p 的逆否命题为“若()()1122log log x y y z -≥-,则x y ≤或y z ≤”;由于原命题为假(如4x =,3y =,1z =),故其逆否命题也为假, 故选:D. 【点睛】本题主要考查命题的逆否命题及其真假的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.7.C解析:C 【分析】根据题意,①②说法正确,若0m =③错误,根据古典概型④概率应该为14π-.【详解】命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”,所以①正确;命题“p q ∨为真”即p ,q 至少有一个为真,不能推出命题“p q ∧为真”,命题“p q ∧为真”则p ,q 全为真,能够推出命题“p q ∨为真”,所以命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件,所以②正确;“若22am bm <,则a b <”的逆命题是:若a b <,则22am bm <,当0m =时不成立,所以该逆命题不是真命题,所以③不正确;若实数x ,[]0,1y ∈,有序数对(),x y 对应平面内的点形成的区域面积为1,如图:其中扇形区域不满足221x y +>,面积为4π,深色区域符合题意, 则满足221x y +>的概率为14π-,所以④不正确.故选:C 【点睛】此题考查命题的真假判断,涉及全称命题的否定,含有逻辑连接词的命题真假判断,不等式的性质辨析,求几何概型,涉及知识面比较广.8.A解析:A 【分析】因为原命题是假命题,其否定为真命题,问题可转化为0x R ∀∈,200230x mx m ++-≥恒成立,故由0∆≤即可求出m 的取值范围. 【详解】因为命题“0x R ∃∈,200230x mx m ++-<”为假命题, 故其否定:“0x R ∀∈,200230x mx m ++-≥”为真命题, 故224(23)8120m m m m ∆=--=-+≤,解得26m ≤≤, 故实数m 的取值范围是[2,6]. 故选:A 【点睛】本题原命题是存在性命题且为假命题,它的否定是全称命题且为真命题,进而将问题转化为恒成立处理,采用正难则反的思想进行求解,同时考查命题的等价性和转化的思想.9.D解析:D 【分析】由两直线平行与系数的关系式求得m 判断A;由线面垂直的判定定理判断B ;由平面向量的数量积的运算判断C ;写出特称命题的否定判断D ,综合可得答案. 【详解】解:由直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行⇔223203220m m m m m ⎧+--=⎨-+--≠⎩()()()(),可得m =“12m =”是“直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行”的既不充分也不必条件,故A 错误;直线l 垂直平面α内无数条直线不一定有直线垂直平面,故“直线l 垂直平面α内无数条直线”不是“直线l 垂直于平面α”的充分条件,故B 错误;a 、b 、c 为非零向量,由“a b a c ⋅=⋅”不能得到“b c =”,反之由“b c =”能够得到“a b a c ⋅=⋅”,故“a b a c ⋅=⋅”是“b c =”的必要不充分条件,故C 错误;p :存在x ∈R ,2220130x x ++≤.则p ⌝:任意x ∈R ,2220130x x ++>,故D 正确; 故选:D. 【点睛】本题主要考查命题真假的判断,涉及全称命题与特称命题的否定的书写、充分必要条件的判断等知识点,属于中档题.10.C解析:C 【分析】由辅助角公式化简命题p ,利用特殊值判断命题p 为假命题;根据直线与圆相切的性质,结合点到直线距离公式,可求得m 的值,判断出命题q 为真命题.即可由复合命题真假判断选项. 【详解】命题:,sin cos 10p x R x x ∀∈++≥由辅助角化简可得sin cos 114x x x π⎛⎫++=++ ⎪⎝⎭,可知当34x π=-104x π⎛⎫++< ⎪⎝⎭,故p 为假; 命题:q 直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切的一个充分不必要条件是5m =-若直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切,则d ==, 即|1|4d m =+=,解得3m =或5m =-,故q 为真, 故()p q ⌝∧为真, 故选:C.【点睛】本题考查了三角函数式的化简,根据直线与圆位置关系求参数的值,充分必要条件的判定,复合命题真假的判断,综合性强,属于中档题.11.C解析:C 【分析】写出“若24x =,则2x =或2x =-”的否命题,即可A 选项; 根据原命题与逆否命题的等价性,判断B 选项; 根据且命题的性质判断C 选项;写出该命题的否命题,举例说明,判断D 选项. 【详解】“若24x =,则2x =或2x =-”的否命题是“若24x ≠,则2x ≠且2x ≠-”,故A 错误; 因为p 是q 的充分条件,所以由p 能推出q ,所以q ⌝能推出p ⌝,即p ⌝是q ⌝的必要条件故B 错误;命题p 为真,q 为假,则p q ∧为假命题,故C 正确;命题“若αβ=,则sin sin αβ=”的否命题为“若αβ≠,则sin sin αβ≠”,所以否命题为假命题,例如当30,150αβ=︒=︒时,sin sin αβ=,故D 错误. 故选:C 【点睛】本题主要考查了写出命题的否命题并且判断真假,原命题与逆否命题的等价性应用,属于中档题.12.A解析:A 【分析】已知“对任意的正数x ,22ax x+≥”利用分离参数,求出a 的范围, 再根据充分必要条件的定义进行判断. 【详解】由对任意的正数x ,22ax x+≥成立时, 可得222a x x ≥-,22111222()222y x x x =-=--+≥,12a ∴≥即对任意的正数x ,22ax x+≥成立推不出12a <<,当12a <<成立时,可推出2222a ax x x x+⨯=>>, 即12a <<能推出对任意的正数x ,22ax x+≥, 所以“12a <<”是“对任意的正数x ,22ax x+≥”的充分不必要条件, 故选:A 【点睛】本题主要考查了充分不必要条件,二次函数的最值,均值不等式,属于中档题.二、填空题13.充分不必要【分析】根据题意利用基本不等式可判定充分性是成立的可举出反例说明必要性不成立即可得到答案【详解】当时由基本不等式可得当时有解得充分性是成立的;例如:当时满足但此时必要性不成立综上所述是的充解析:充分不必要 【分析】根据题意,利用基本不等式,可判定充分性是成立的,可举出反例,说明必要性不成立,即可得到答案. 【详解】当0,0a b >>时,由基本不等式,可得a b +≥当4a b +≤时,有4a b +≤,解得4ab ≤,充分性是成立的; 例如:当1,4a b ==时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故答案为充分不必要条件. 【点睛】本题主要考查了充分不必要条件的判定,其中解答中熟记充分条件、必要条件的判定方法,以及合理利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.14.【分析】根据是的充分非必要条件可知集合是集合的真子集由集合之间的包含关系再求参数范围即可【详解】对集合:解得;对集合:解得;因为是的充分非必要条件可知集合是集合的真子集故可得或解得或故故答案为:【点 解析:21m -<<【分析】根据β是α的充分非必要条件,可知集合β是集合α的真子集,由集合之间的包含关系,再求参数范围即可. 【详解】对集合α:28120x x -+>,解得()(),26,x ∈-∞⋂+∞;对集合β:2x m m -≤,解得22,x m m m m ⎡⎤∈-++⎣⎦;因为β是α的充分非必要条件,可知集合β是集合α的真子集, 故可得22m m +<,或26m m -+>, 解得()2,1m ∈-或m ∈∅, 故()2,1m ∈-. 故答案为:21m -<<. 【点睛】本题考查由充分非必要条件,推出集合之间的关系,以及根据集合关系求参数范围的问题,属综合基础题.15.①③⑤【分析】①用导数法求出在R 上的增函数的充要条件与对比即可判断结果;②求出函数的极值并判断正负即可判断结论;③列出从AB 中各任意取一个数所有情况算出两数之和等于4的基本事件即可求出概率判断结论真解析:①③⑤ 【分析】①用导数法求出()sin f x ax x =-在R 上的增函数的充要条件,与2a >对比即可判断结果;②求出函数31()13f x x x =-++的极值,并判断正负,即可判断结论; ③列出从A ,B 中各任意取一个数所有情况,算出两数之和等于4的基本事件,即可求出概率,判断结论真假;④按求轨迹的方法求出动点轨迹方程,即可判断结论,或举出反例;⑤构造函数(),(0,)x f x e x x =-∈+∞,求出最小值或取值范围,进而得出a 的范围,即可判断命题真假. 【详解】①()sin f x ax x =-在R 上的增函数,()cos 0,cos ,f x a x a x x R '∴=-≥≥∈恒成立,1a ≥.“2a >”是“1a ≥”的充分不必要条件,所以①正确; ②321()1,()1(1)(1)3f x x x f x x x x '=-++=-+=--+, ()0,11,()0,1f x x f x x ''>-<<<<-或1x >,()f x 递增区间是(1,1)-,递减区间是(,1),(1,)-∞-+∞,()f x ∴极大值为5(1),()3f f x =的极小值为1(1)3f -=,()f x 只有一个零点,②不正确;③集合{2,3}A =,{1,2,3}B =,从A ,B 中各任意取一个数, 所以情况有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种取法,两数之和等于4有2种取法,所以概率为13,③正确; ④设圆心(,)C x y ,定圆22(2)4x y -+=圆心为(2,0), 半径为2||2x =+,平方化简得244||y x x -=,当0x >时,28y x =,当0,0x y ==,C 在定圆上不合题意,当0x <时,0y =,④不正确;⑤设(),(0,),()10x x f x e x x f x e '=-∈+∞=->在(0,)x ∈+∞上恒成立,(),(0,)x f x e x x =-∈+∞单调递增,()(0)1f x f >=,不等式x e x a ≥+在(0,)x ∈+∞上恒成立,1a ∴≤,⑤正确.故答案为:①③⑤. 【点睛】本题考查命题真假的判定,涉及到:充分不必要条件判断、函数零点、古典概型概率、轨迹方程、不等式恒成立问题,属于中档题.16.【分析】若命题p :∀x ∈Rax2+2x+1>0是假命题则a =0或a <0或进而得到实数a 的取值范围【详解】若命题p :∀x ∈Rax2+2x+1>0是假命题则∃x ∈Rax2+2x+1≤0当a =0时y =2x 解析:(],1-∞【分析】若命题“p :∀x ∈R ,ax 2+2x +1>0”是假命题,则a =0,或a <0,或0440a a ⎧⎨=-≥⎩>,进而得到实数a 的取值范围. 【详解】若命题“p :∀x ∈R ,ax 2+2x +1>0”是假命题, 则∃x ∈R ,ax 2+2x +1≤0,当a =0时,y =2x +1为一次函数,满足条件;当a <0时,y =ax 2+2x +1是开口朝下的二次函数,满足条件; 当a >0时,y =ax 2+2x +1是开口朝上的二次函数, 则函数图象与x 轴有交点,即△=4﹣4a ≥0, 解得:0<a ≤1综上可得:实数a 的取值范围是:(],1-∞ 故答案为:(],1-∞ 【点睛】本题以命题的真假判断与应用为载体,考查了二次函数的图象和性质,难度中档.17.【分析】根据对数型复合函数值域可知是的值域的子集根据二次函数图象分析可得不等关系求得命题为真时;利用换元法将转化为求解的最值可求得命题为真时;求出当全为真时的范围取补集得到结果【详解】若命题为真即值 解析:(,0)(2,)-∞+∞【分析】根据对数型复合函数值域可知()0,∞+是2116y ax x a =-+的值域的子集,根据二次函数图象分析可得不等关系,求得命题p 为真时,02a ≤≤;利用换元法将39x x a -<转化为()21a t tt >->,求解2t t-的最值可求得命题q 为真时,0a ≥;求出当,p q 全为真时a 的范围,取补集得到结果.【详解】 若命题p 为真,即()21lg 16f x ax x a ⎛⎫=-+ ⎪⎝⎭值域为R当0a =时,0x ->,解得:0x <,满足题意当0a ≠时,21104a a >⎧⎪⎨∆=-≥⎪⎩,解得:02a <≤ 综上所述:若命题p 为真,则02a ≤≤若命题q 为真,即不等式39x x a -<对()0,x ∈+∞恒成立 令31x t =>,则2a t t >-1t > 2110t t ∴-<-= 0a ∴≥即若命题q 为真,则0a ≥∴当命题,p q 全为真命题时,02a ≤≤命题,p q 不全为真命题 a ∴的取值范围为:()(),02,-∞+∞故答案为:()(),02,-∞+∞【点睛】本题考查根据命题的真假性求解参数范围,涉及到根据对数型复合函数的值域求解参数范围、不等式恒成立问题的求解等知识.18.【分析】根据题意转化为利用可将函数进行换元利用对勾函数求函数的最大值【详解】当时又设设当时取得最大值若为真命题即的最大值是5故填:5【点睛】本题考查了根据全称命题的真假求参数取值范围的问题考查了转化 解析:5【分析】根据题意转化为()2max log 4log 2x m x ≤+,利用21log 2log x x=,可将函数进行换元,利用对勾函数求函数的最大值. 【详解】当[]2,8x ∈时,[]2log 1,3x ∈ 又21log 2log x x=,设[]2log 1,3x t =∈ , 设24log 4log 2x y x t t=+=+当1t =时,取得最大值max 5y =.若[]2"2,8,log 4log 2"x x m x ∃∈≤+为真命题,()2max log 4log 2x m x ≤+ ,即5m ≤,m ∴的最大值是5.故填:5. 【点睛】本题考查了根据全称命题的真假,求参数取值范围的问题,考查了转化与化归的思想,若存在0x ,使()0m f x ≤,即()()maxm f x ≤,若0x ∀,使()0m f x ≤恒成立,所以()()min m f x ≤,需注意时任意还是存在问题.19.【分析】使是假命题则使是真命题对是否等于进行讨论当时不符合题意当时由二次函数的图像与性质解答即可【详解】使是假命题则使是真命题当即转化为不是对任意的恒成立;当使即恒成立即第二个式子化简得解得或所以【解析:m >【分析】0x R ∃∈,使()200110m x mx m +-+-≤是假命题,则x R ∀∈,使()2110m x mx m +-+->是真命题,对1m +是否等于0进行讨论,当10m +=时不符合题意,当10m +≠时,由二次函数的图像与性质解答即可. 【详解】0x R ∃∈,使()200110m x mx m +-+-≤是假命题,则x R ∀∈,使()2110m x mx m +-+->是真命题,当10m +=,即1m =-,()2110m x mx m +-+->转化为20x ->,不是对任意的x ∈R 恒成立;当10m +≠,x R ∀∈,使()2110m x mx m +-+->即恒成立,即()()()2104110m m m m +>⎧⎪⎨--+-<⎪⎩ ,第二个式子化简得234m >,解得m >或m <所以m >【点睛】本题考查命题间的关系以及二次函数的图像与性质,解题的关键是得出x R ∀∈,使()2110m x mx m +-+->是真命题这一条件,属于一般题.20.①③【分析】根据正弦定理三角形内角正切关系以及诱导公式进行判断选择【详解】因为△中所以若则因此必有即△是锐角三角形;若则或;若则所以△是等腰三角形;若则所以或即或;综上正确命题的序号是①③【点睛】本解析:①③ 【分析】根据正弦定理、三角形内角正切关系以及诱导公式进行判断选择. 【详解】因为△ABC 中tan tan tan tan tan tan A B C A B C ++=,所以若tan tan tan 0A B C ++>,则tan tan tan 0A B C >,因此必有tan 0,tan 0,tan 0A B C >>>,即△ABC 是锐角三角形; 若cos cos a A b B =,则cos cos sinA A sinB B =, 22,A B sin A sin B ==或A B 2π+=;若cos cos a B b A b +=,则cos cos sinA B sinB A sinB +=, ()sin A B sinB +=,sinC sinB =,C B =,所以△ABC 是等腰三角形;若cos sin A B =,则sin sin 2A B π⎛⎫-= ⎪⎝⎭,所以2A B π-=或2A B ππ-+=,即2A B π+=或2A B π-+=;综上正确命题的序号是①③. 【点睛】本题考查正弦定理、三角形内角正切关系以及诱导公式,考查基本转化与判断化简能力,属中档题.三、解答题21.(1){}14A x x =≤≤,当2a >时,{}2B x x a =≤≤;当2a =时,{2}B =;当2a <时,{}2B x a x =≤≤;(2)14a ≤≤.【分析】(1)利用一元二次不等式的解法,即可求得A ,将不等式2(2)20()x a x a a R -++≤∈因式分解,讨论2a >、2a =、2a <三种情况,即可得答案;(2)根据题意可得B A ⊆,讨论2a >、2a =、2a <三种情况,即可得答案.【详解】(1)不等式254x x ≤-,整理得2540x x -+≤,即(1)(4)0x x --≤, 解得14x ≤≤,所以{}14A x x =≤≤.不等式2(2)20()x a x a a R -++≤∈,整理得()(2)0x a x --≤, 当2a >时,解得2x a ≤≤,所以解集为{}2B x x a =≤≤; 当2a =时,解集为{2}B =;当2a <时,解得2a x ≤≤,所以解集为{}2B x a x =≤≤. (2)因为x A ∈是x B ∈的必要条件,即B A ⊆, 当2a >时,{}2B x x a =≤≤,所以4a ≤,即24a <≤; 当2a =时,{2}B =,满足题意;当2a <时,{}2B x a x =≤≤,所以1a ≥,即12a ≤<, 综上14a ≤≤. 【点睛】本题考查一元二次不等式的解法,充分、必要条件等知识,考查分析理解,分类讨论,计算化简的能力,属中档题. 22.(1)当52k >时,5,2B k ⎛⎫=-- ⎪⎝⎭;当52k =时,B =∅;当52k <时,5,2B k ⎛⎫=-- ⎪⎝⎭;(2)1k.【分析】(1)分类讨论解不等式可得集合B ;(2)求解集合A ,根据充分不必要条件与集合包含之间的关系可求解. 【详解】(1)22(25)50x k x k +++<,则(25)()0x x k ++<, ∴52k >时,52k x -<<-,52k =时,不等式无实解,当52k <时,52x k -<<-. ∴当52k >时,5,2B k ⎛⎫=-- ⎪⎝⎭;当52k =时,B =∅;当52k <时,5,2B k ⎛⎫=-- ⎪⎝⎭; (2)由已知{|1A x x =<-或2}x > 若“x B ∈”是“x A ∈”的充分不必要条件,则BA ,52k ≥时,显然满足B A ,52k <时,1k -≤-,∴512k ≤<. 综上1k.【点睛】本题考查解一元二次不等式,考查由充分不必要条件与集合包含之间的关系求参数范围.属于基础题.解含参数的一元二次不等式时注意分类讨论. 23.(1)(0,1);(2)[1,3). 【分析】(1)根据双曲线的标准方程求解;(2)再求出q 为真命题的a 的范围,由(1)得p 为假时a 的范围,求交集可得结论. 【详解】(1)方程22122x y a a +=-表示焦点在x 轴上的双曲线,则0220a a >⎧⎨-<⎩,解得01a <<, 所以a 的范围是(0,1);(2)由(1)得p 为假时,(,0][1,)a ∈-∞+∞,又()32z a ai =-+对应点坐标为(3,2)a a -,该点在第二象限,则3020a a -<⎧⎨>⎩,解得0<<3a ,所以命题p 是假命题,q 是真命题时,13a ≤<.即a 的取值范围是[1,3).【点睛】本题考查命题的真假以及复合命题的真假,考查双曲线的标准方程和复数的几何意义,属于基础题. 24.[)10,4,3⎛⎤+∞ ⎥⎝⎦.【分析】先化简两个集合,再根据充分必要性得到A 是B 的真子集,再列式计算即可. 【详解】解:{}{}224303(0)A x x ax a x a x a a =-+≤=≤≤>,{}2540{1B x x x x x =-+≥=≤或4}x ≥,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 是B 的真子集,故310a a ≤⎧⎨>⎩或40a a ≥⎧⎨>⎩,103a ∴<≤或4a ≥,∴实数a 的取值范围是[)10,4,3⎛⎤+∞ ⎥⎝⎦.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.25.203a -≤<【分析】p 是q 的充分不必要条件,则集合A 是集合B 的子集,运用区间端点值之间的关系可求a 的取值范围. 【详解】 解:0a <,由22430x ax a -+<得3a x a <<,设{}3A x a x a =<<,由260x x --≤得23x -≤≤,设{}23B x x =-≤≤,p 是q 的充分不必要条件,A ∴ B ,323a a ≥-⎧∴⎨≤⎩0a <203a ∴-≤<. 【点睛】本题是命题真假的判断与应用,考查了必要条件问题,属于中档题.判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.26.⎢⎣【分析】对于命题p ,讨论1m =-和1m ≠-时,结合判别式求出m 范围;对于命题q ,根据()1123xxg x m ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的单调性求出最值即可得出m 范围,联立两个命题即可得出答案.【详解】命题p :关于x 的方程()21210m x m +-+-=有实数解,讨论如下:①1m =-显然成立;②1m ≠-时,()()()224110m m ∆=--+-≥,整理的220m -≥解得:m ≤≤1m ≠-; ∴命题p为真命题时,m ≤命题q :[)0,x ∀∈+∞,关于x 的不等式11023x xm ⎛⎫⎛⎫++> ⎪ ⎪⎝⎭⎝⎭都成立 令()1123xxg x m ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,[)0,x ∈+∞ 函数()y g x =在[)0,+∞单调递减,()(],2g x m m ∈+不等式1123x xm⎛⎫⎛⎫++>⎪ ⎪⎝⎭⎝⎭恒成立,∴0m≥;因为命题p和命题q都是真命题,所以m的范围⎢⎣.【点睛】方法点睛:解决此类问题一般先求出命题为真时对应的参数范围,再结合命题的真假或复合命题的真假列出对应的不等式求解.。
逻辑测试题目及答案
逻辑测试题目及答案一、选择题1. 如果所有的猫都是哺乳动物,而所有的哺乳动物都有毛发,那么我们可以得出以下结论:A. 所有的猫都有毛发。
B. 所有的猫都是哺乳动物。
C. 所有的毛发都是猫的毛发。
D. 所有的猫都是动物。
答案:A2. 假设在一个岛上,只有两种颜色的鸟:蓝色和红色。
如果一只鸟不是蓝色的,那么它一定是红色的。
现在,岛上有一只红色的鸟,那么我们可以得出以下结论:A. 岛上没有蓝色的鸟。
B. 岛上的鸟都是红色的。
C. 岛上的鸟都是红色的或者蓝色的。
D. 岛上至少有一只红色的鸟。
答案:D二、判断题1. 如果所有的A都是B,并且所有的B都是C,那么所有的A都是C。
()答案:正确2. 如果所有的A都不是B,那么所有的B都不是A。
()答案:错误三、推理题某公司有三位员工:Alice、Bob和Charlie。
他们分别负责三个不同的部门:财务、市场和人力资源。
已知:- Alice不负责人力资源。
- Bob不负责财务。
- 负责市场的员工是唯一的男性。
根据以上信息,回答以下问题:1. Alice负责哪个部门?2. Bob负责哪个部门?3. Charlie负责哪个部门?答案:1. Alice负责财务部门。
2. Bob负责人力资源部门。
3. Charlie负责市场部门。
四、逻辑分析题在一个村庄里,有五座房子,每座房子的颜色都不同,分别是红色、蓝色、黄色、绿色和紫色。
这些房子是按顺序排列的。
以下是关于这些房子的一些信息:- 最左边的房子是红色的。
- 绿色房子在最右边。
- 黄色房子的邻居是蓝色的。
- 紫色房子在蓝色房子的左边。
根据以上信息,确定每座房子的颜色。
答案:1. 最左边的房子:红色2. 第二座房子:蓝色3. 第三座房子:紫色4. 第四座房子:黄色5. 最右边的房子:绿色五、综合应用题一个逻辑谜题中,有五位朋友:Alice、Bob、Charlie、David和Eva。
他们分别喜欢不同的运动:足球、篮球、排球、网球和乒乓球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用逻辑用语测试题
1、一个命题与他们的逆命题、否命题、逆否命题这4个命题中( )
A 、真命题与假命题的个数相同
B 、真命题的个数一定是奇数
C 、真命题的个数一定是偶数
D 、真命题的个数可能是奇数,也可能是偶数
2、下列说法中正确的是( )
A 、一个命题的逆命题为真,则它的逆否命题一定为真
B 、“a b >”与“ a c b c +>+”不等价
C 、“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”
D 、一个命题的否命题为真,则它的逆命题一定为真
3、给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )
A 、3
B 、2
C 、1
D 、0
4、命题“设a 、b 、c R ∈,若22
ac bc >则a b >”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )
A 、0
B 、1
C 、2
D 、3
5、“若x ≠a 且x ≠b ,则2()x a b x ab -++≠0”的否命题( )
A 、若x =a 且x =b ,则2()x a b x ab -++=0
B 、若x =a 或x =b ,则2()x a b x ab -++≠0
C 、若x =a 且x =b ,则2
()x a b x ab -++≠0 D 、若x =a 或x =b ,则2()x a b x ab -++=0
6、“0x >”是0>”成立的( )
A 、充分不必要条件.
B 、必要不充分条件.
C 、充要条件.
D 、既不充分也不必要条件.
7、“()24x k k Z π
π=+∈”是“tan 1x =”成立的 ( )
A 、充分不必要条件.
B 、必要不充分条件.
C 、充分条件.
D 、既不充分也不必要条件.
8、不等式2
230x x --<成立的一个必要不充分条件是( )
A 、-1<x<3
B 、0<x<3
C 、-2<x<3
D 、-2<x<1
9、设甲是乙的充分而不必要条件,丙是乙的充要条件,丁是丙的必要而不充分条件,则丁是甲的( )
A 、充分而不必要条件
B 、必要而不充分条件
C 、充要条件
D 、既不充分也不必要条件
10、若"a b c d ≥⇒>"和"a b e f <⇒≤"都是真命题,且它们的逆命题都是假命题,则"c d ≤"是"e f ≤"
的( )
A 、必要非充分条件
B 、充分非必要条件
C 、充分必要条件
D 、既非充分也非必要条件
11、命题:“若0>a ,则02>a ”的否命题是
__________________________________________
12、设P :x >2或2x <
3
;Q: x >2或x <-1,则¬p 是¬q 的___________________________条件.
13、:23A x -<, 2:2150B x x --<, 则A 是B 的__________________________条件。
14、存在一个三角形没有外接圆”的否定是
_________________________________________________
15、“所有末位数字是0或5的整数能被5整除”的否定形式是 ________________
16、在下列结论中:①""q p ∧为真是""q p ∨为真的充分不必要条件
②""q p ∧为假是""q p ∨为真的充分不必要条件 ③""q p ∨为真是""p ⌝为假的必要不充分条件 ④""p ⌝为真是""q p ∧为假的必要不充分条件
正确的是
17.写出命题“若m ,n 都是有理数,则m+n 是有理数。
”的逆命题,否命题和逆否命题,并判断所有命题的真假。
18.已知p :40x m +<,q :2
20x x -->,若p 是q 的一个充分不必要条件,求m 的取值范围.
19.命题p :关于x 的不等式2240x ax ++>对一切x R ∈恒成立;
命题q :函数()a f x lag x =在(0,)+∞上递增
若p q ∨为真,而p q ∧为假,求实数a 的取值范围。
参考答案
1.C
2. D
3. C
4. C
5. D
6. A
7. B
8. C
9. B 10. B
11. 0a ≤则20a ≤ 12. 充分不必要 13. 充分不必要
14. 所有的三角形都没有外接圆 15.至少存在一个末位数字是0或5的整数不能被5整除 16.①③
17.解:逆命题:若m+n 是有理数,则m ,n 都是有理数。
假命题
否命题:若m ,n 不都是有理数,则m+n 不是有理数。
假命题
逆否命题:若m+n 不是有理数,则m ,n 不都是有理数。
真命题 18.解:由p :40x m +<得4
m x <-
;由q :220x x -->得1x <-或2x > ∵p 是q 的一个充分不必要条件,∴只有p ⇒q 成立,∴14
m -≤-,∴4m ≥ 19.解:命题p :关于x 的不等式2240x ax ++>对一切x R ∈恒成立; pT ⇒()2
2240a ∆=-<,即22a -<< 命题q :函数()a f x lag x =在(0,)+∞上递增;qT ⇒1a >
∵p q ∨为真,而p q ∧为假,∴pq 一真一假
p 真q 假时,pT ⇒22a -<<;qF ⇒1a ≤;∴21a -<≤
p 假q 真时,pF ⇒22a a ≤-≥或;qF ⇒1a >;∴2a ≥
感谢您的阅读,祝您生活愉快。