(含答案)应用题-高三数学提优辅导

合集下载

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1)2、三角函数与解三角形3、函数与导数(2)4、立体几何5、数列(1)6、应用题7、解析几何8、数列(2)9、矩阵与变换10、坐标系与参数方程11、空间向量与立体几何12、曲线与方程、抛物线13、计数原理与二项式分布14、随机变量及其概率分布15、数学归纳法高考压轴大题突破练(一)函数与导数(1)1.已知函数f (x )=a e x x+x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值;(2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.解 (1)∵f ′(x )=a e x (x -1)+x 2x 2, ∴f ′(1)=1,f (1)=a e +1.∴函数f (x )在(1,f (1))处的切线方程为y -(a e +1)=x -1,又直线过点(0,-1),∴-1-(a e +1)=-1,解得a =-1e. (2)若a <0,f ′(x )=a e x (x -1)+x 2x 2, 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值.方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0),则⎩⎪⎨⎪⎧ x 0>1,f (x 0)>0,f ′(x 0)=0,则00000200201,e 0,e (1)0,x x x a x x a x x x ⎛ > +> -+ = ⎝①②③ 由③得0e x a =-x 20x 0-1,代入②得-x 0x 0-1+x 0>0, 结合①可解得x 0>2,再由f (x 0)=0e x a x +x 0>0,得a >-020e x x , 设h (x )=-x 2e x ,则h ′(x )=x (x -2)e x, 当x >2时,h ′(x )>0,即h (x )是增函数,∴a >h (x 0)>h (2)=-4e 2.又a <0,故当极大值为正数时,a ∈⎝⎛⎭⎫-4e 2,0, 从而不存在负整数a 满足条件.方法二 当x ∈(1,+∞)时,令H (x )=a e x (x -1)+x 2,则H ′(x )=(a e x +2)x ,∵x ∈(1,+∞),∴e x ∈(e ,+∞),∵a 为负整数,∴a ≤-1,∴a e x ≤a e ≤-e ,∴a e x +2<0,∴H ′(x )<0,∴H (x )在(1,+∞)上单调递减.又H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0,∴∃x 0∈(1,2),使得H (x 0)=0,且当1<x <x 0时,H (x )>0,即f ′(x )>0;当x >x 0时,H (x )<0,即f ′(x )<0.∴f (x )在x 0处取得极大值f (x 0)=0e x a x +x 0.(*) 又H (x 0)=0e x a (x 0-1)+x 20=0, ∴00e x a x =-x 0x 0-1,代入(*)得f (x 0)=-x 0x 0-1+x 0=x 0(x 0-2)x 0-1<0, ∴不存在负整数a 满足条件.2.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ). (1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且∃x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围.解 (1)∵函数f (x )=ax 3-3x 2+1,∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a, ∵a >0,∴x 1<x 2,当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的极大值为f (0)=1,极小值为f ⎝⎛⎭⎫2a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∵∃x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在[1,2]上有解,即不等式2a ≤1x 3+3x在[1,2]上有解, 设y =1x 3+3x =3x 2+1x3(x ∈[1,2]), ∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立, ∴y =1x 3+3x在[1,2]上单调递减, ∴当x =1时,y =1x 3+3x的最大值为4, ∴2a ≤4,即a ≤2.高考中档大题规范练(一)三角函数与解三角形1.(2017·江苏宿迁中学质检)已知函数f (x )=sin 2x +23sin x cos x +sin ⎝⎛⎭⎫x +π4sin ⎝⎛⎭⎫x -π4,x ∈R . (1)求f (x )的最小正周期和值域;(2)若x =x 0⎝⎛⎭⎫0≤x 0≤π2为f (x )的一个零点,求sin 2x 0的值. 解 (1)易得f (x )=sin 2x +3sin 2x +12(sin 2x -cos 2x ) =1-cos 2x 2+3sin 2x -12cos 2x =3sin 2x -cos 2x +12=2sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为π,值域为⎣⎡⎦⎤-32,52. (2)由f (x 0)=2sin ⎝⎛⎭⎫2x 0-π6+12=0,得 sin ⎝⎛⎭⎫2x 0-π6=-14<0,又由0≤x 0≤π2,得-π6≤2x 0-π6≤5π6, 所以-π6≤2x 0-π6<0,故cos ⎝⎛⎭⎫2x 0-π6=154, 此时sin 2x 0=sin ⎣⎡⎦⎤⎝⎛⎭⎫2x 0-π6+π6 =sin ⎝⎛⎭⎫2x 0-π6cos π6+cos ⎝⎛⎭⎫2x 0-π6sin π6=-14×32+154×12=15-38. 2.(2017·江苏南通四模)已知向量m =⎝⎛⎭⎫sin x 2,1,n =⎝⎛⎭⎫1,3cos x 2,函数f (x )=m ·n . (1)求函数f (x )的最小正周期;(2)若f ⎝⎛⎭⎫α-2π3=23,求f ⎝⎛⎭⎫2α+π3的值. 解 (1)f (x )=m ·n =sin x 2+3cos x 2=2⎝⎛⎭⎫12sin x 2+32cos x 2 =2⎝⎛⎭⎫sin x 2cos π3+cos x 2sin π3 =2sin ⎝⎛⎭⎫x 2+π3,所以函数f (x )的最小正周期为T =2π12=4π. (2)由f ⎝⎛⎭⎫α-2π3=23,得2sin α2=23,即sin α2=13. 所以f ⎝⎛⎭⎫2α+π3=2sin ⎝⎛⎭⎫α+π2=2cos α =2⎝⎛⎭⎫1-2sin 2α2=149. 3.(2017·江苏南师大考前模拟)已知△ABC 为锐角三角形,向量m =⎝⎛⎭⎫cos ⎝⎛⎭⎫A +π3,sin ⎝⎛⎭⎫A +π3,n =(cos B ,sin B ),并且m ⊥n .(1)求A -B ; (2)若cos B =35,AC =8,求BC 的长. 解 (1)因为m ⊥n ,所以m ·n =cos ⎝⎛⎭⎫A +π3cos B +sin ⎝⎛⎭⎫A +π3sin B=cos ⎝⎛⎭⎫A +π3-B =0. 因为0<A ,B <π2,所以-π6<A +π3-B <5π6, 所以A +π3-B =π2,即A -B =π6. (2)因为cos B =35,B ∈⎝⎛⎭⎫0,π2,所以sin B =45, 所以sin A =sin ⎝⎛⎭⎫B +π6=sin B cos π6+cos B sin π6=45×32+35×12=43+310, 由正弦定理可得BC =sin A sin B×AC =43+3. 4.(2017·江苏镇江三模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a -c )(sin A +sin C )=(b -3c )sin B .(1)求角A ;(2)若f (x )=cos 2(x +A )-sin 2(x -A ),求f (x )的单调递增区间.解 (1)由(a -c )(sin A +sin C )=(b -3c )sin B 及正弦定理,得(a -c )(a +c )=(b -3c )b ,即a 2=b 2+c 2-3bc . 由余弦定理,得cos A =32, 因为0<A <π,所以A =π6. (2)f (x )=cos 2(x +A )-sin 2(x -A )=cos 2⎝⎛⎭⎫x +π6-sin 2⎝⎛⎭⎫x -π6 =1+cos ⎝⎛⎭⎫2x +π32-1-cos ⎝⎛⎭⎫2x -π32=12cos 2x , 令π+2k π≤2x ≤2π+2k π,k ∈Z ,得π2+k π≤x ≤π+k π,k ∈Z . 则f (x )的单调增区间为⎣⎡⎦⎤π2+k π,π+k π,k ∈Z .(二)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的一条切线.(1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2.①试求b 的取值范围;②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0),则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0. (2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点.h ′(x )=1x -1x-b =-bx +x -1x , 令h ′(x )=0,得bx -x +1=0(x >0).令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于⎩⎪⎨⎪⎧ Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b >0,解得0<b <14. 当0<b <14时,设h ′(x )=0的两正根为x 1,x 2,且x 1<x 2, 则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2). 当x ∈(0,x 1)时,h ′(x )<0;当x ∈(x 1,x 2)时,h ′(x )>0;当x ∈(x 2,+∞)时,h ′(x )<0. 所以x 1,x 2是h (x )=f (x )-g (x )的极值点,∴b 的取值范围是⎝⎛⎭⎫0,14. ②由①知x 1x 2=x 1+x 2=1b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b . 记k (b )=12-b ln b -b ⎝⎛⎭⎫0<b <14, 则k ′(b )=-ln b -2,令k ′(b )=0,得b =1e 2∈⎝⎛⎭⎫0,14, 且当b ∈⎝⎛⎭⎫0,1e 2时,k ′(b )>0,k (b )单调递增; 当b ∈⎝⎛⎭⎫1e 2,14时,k ′(b )<0,k (b )单调递减,且当b =1e 2时,k (b )取最大值1e 2+12, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 2.设函数f (x )=2ax +b x+c ln x . (1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1<x 2. ①求a 的取值范围;②求f (x 2)的取值范围.解 (1)f (x )=2ax +b x+c ln x ,x >0, f ′(x )=2a -b x 2+c x =2ax 2+cx -b x 2. 当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x>0恒成立, 所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a; 令f ′(x )=2ax +1x <0,解得x >-12a, 所以,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. 综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在⎝⎛⎭⎫0,-12a上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6,所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3,所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-a x 2, 函数f (x )有两个极值点x 1,x 2,x 1<x 2,则方程2ax 2-ax +3-a =0有两个大于0的解,⎩⎨⎧ Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a 2a >0,解得83<a <3. 所以a 的取值范围是⎝⎛⎭⎫83,3.②2ax 22-ax 2+3-a =0,x 2=a +9a 2-24a 4a =14⎝⎛⎭⎫1+ 9-24a , 由83<a <3,得x 2∈⎝⎛⎭⎫14,12, 由2ax 22-ax 2+3-a =0,得a =-32x 22-x 2-1. f (x 2)=2ax 2+a -3x 2-a ln x 2 =a ⎝⎛⎭⎫2x 2+1x 2-ln x 2-3x 2=-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t 2t 2-t -1-3t ,t ∈⎝⎛⎭⎫14,12, φ′(t )=-3⎝⎛⎭⎫2-1t 2-1t (2t 2-t -1)-⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2 =-31t 2(2t 2-t -1)2+3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2. 当t ∈⎝⎛⎭⎫14,12时,2t +1t-ln t >0,4t -1>0,φ′(t )>0,所以φ(t )在⎝⎛⎭⎫14,12上单调递增,φ(t )∈⎝⎛⎭⎫163ln 2,3+3ln 2, 所以f (x 2)的取值范围是⎝⎛⎭⎫163ln 2,3+3ln 2. (二)立体几何1.(2017·江苏扬州调研)如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,CD ∥AB ,AB =2CD ,AC 交BD 于O ,锐角△P AD 所在平面⊥底面ABCD ,P A ⊥BD ,点Q 在侧棱PC 上,且PQ =2QC .求证:(1)P A ∥平面QBD ;(2)BD ⊥AD .证明 (1)如图,连结OQ ,因为AB∥CD,AB=2CD,所以AO=2OC.又PQ=2QC,所以P A∥OQ.又OQ⊂平面QBD,P A⊄平面QBD,所以P A∥平面QBD.(2)在平面P AD内过P作PH⊥AD于点H,因为侧面P AD⊥底面ABCD,平面P AD∩平面ABCD=AD,PH⊂平面P AD,所以PH⊥平面ABCD.又BD⊂平面ABCD,所以PH⊥BD.又P A⊥BD,P A∩PH=P,所以BD⊥平面P AD.又AD⊂平面P AD,所以BD⊥AD.2.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC与BD交于点O,PC⊥底面ABCD,E为PB上一点,G为PO的中点.(1)若PD∥平面ACE,求证:E为PB的中点;(2)若AB=2PC,求证:CG⊥平面PBD.证明(1)连结OE,由四边形ABCD是正方形知,O为BD的中点,因为PD∥平面ACE,PD⊂平面PBD,平面PBD∩平面ACE=OE,所以PD∥OE.因为O为BD的中点,所以E为PB的中点.(2)在四棱锥P-ABCD中,AB=2PC,因为四边形ABCD是正方形,所以OC=22AB,所以PC=OC.因为G为PO的中点,所以CG⊥PO.又因为PC⊥底面ABCD,BD⊂底面ABCD,所以PC⊥BD.而四边形ABCD是正方形,所以AC⊥BD,因为AC,PC⊂平面P AC,AC∩PC=C,所以BD⊥平面P AC,因为CG⊂平面P AC,所以BD⊥CG.因为PO,BD⊂平面PBD,PO∩BD=O,所以CG⊥平面PBD.3.(2017·江苏怀仁中学模拟)如图,在四棱锥E-ABCD中,△ABD为正三角形,EB=ED,CB=CD.(1)求证:EC⊥BD;(2)若AB⊥BC,M,N分别为线段AE,AB的中点,求证:平面DMN∥平面BCE.证明(1)取BD的中点O,连结EO,CO.∵CD=CB,EB=ED,∴CO⊥BD,EO⊥BD.又CO∩EO=O,CO,EO⊂平面EOC,∴BD⊥平面EOC.又EC⊂平面EOC,∴BD⊥EC.(2)∵N是AB的中点,△ABD为正三角形,∴DN⊥AB,∵BC⊥AB,∴DN∥BC.又BC⊂平面BCE,DN⊄平面BCE,∴DN∥平面BCE.∵M为AE的中点,N为AB的中点,∴MN∥BE,又MN⊄平面BCE,BE⊂平面BCE,∴MN∥平面BCE.∵MN∩DN=N,∴平面DMN∥平面BCE.4.(2017·江苏楚水中学质检)如图,在三棱锥P-ABC中,点E,F分别是棱PC,AC的中点.(1)求证:P A∥平面BEF;(2)若平面P AB⊥平面ABC,PB⊥BC,求证:BC⊥P A.证明(1)在△P AC中,E,F分别是棱PC,AC的中点,所以P A∥EF.又P A⊄平面BEF,EF⊂平面BEF,所以P A∥平面BEF.(2)在平面P AB内过点P作PD⊥AB,垂足为D.因为平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,PD ⊂平面P AB ,所以PD ⊥平面ABC , 因为BC ⊂平面ABC ,所以PD ⊥BC ,又PB ⊥BC ,PD ∩PB =P ,PD ⊂平面P AB ,PB ⊂平面P AB ,所以BC ⊥平面P AB , 又P A ⊂平面P AB ,所以BC ⊥P A .(三)数 列(1)1.已知数列{a n }的前n 项和为S n ,且S n +a n =4,n ∈N *. (1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列,若存在,求出C 的值;若不存在,请说明理由.(3)若数列{b n },对于任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝⎛⎭⎫12n -n +22成立,求证:数列{b n }是等差数列. (1)解 a 1=4-a 1,所以a 1=2,由S n +a n =4,得当n ≥2时,S n -1+a n -1=4, 两式相减,得2a n =a n -1,所以a n a n -1=12,数列{a n }是以2为首项,公比为12的等比数列,所以a n =22-n (n ∈N *). (2)解 由于数列{d n }是常数列, d n =c n +log C a n =2n +3+(2-n )log C 2 =2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数, 则2-log C 2=0, 解得C =2,此时d n =7.(3)证明 b 1a n +b 2a n -1+b 3a n -2+…+b n a 1 =⎝⎛⎭⎫12n -n +22,①当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=⎝⎛⎭⎫12n -1-n +12,② ②式两边同时乘以12,得b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=⎝⎛⎭⎫12n -n +14,③ 由①-③,得b n a 1=-n -34,所以b n =-n 8-38(n ∈N *,n ≥2),且b n +1-b n =-18,又b 1=-12=-18-38,所以数列{b n }是以-12为首项,公差为-18的等差数列.2.在数列{a n }中,已知a 1=13,a n +1=13a n -23n +1,n ∈N *,设S n 为{a n }的前n 项和.(1)求证:数列{3n a n }是等差数列; (2)求S n ;(3)是否存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列?若存在,求出p ,q ,r 的值;若不存在,说明理由.(1)证明 因为a n +1=13a n -23n +1,所以3n +1a n +1-3n a n =-2. 又因为a 1=13,所以31·a 1=1,所以{3n a n }是首项为1,公差为-2的等差数列. (2)解 由(1)知3n a n =1+(n -1)·(-2)=3-2n ,所以a n =(3-2n )⎝⎛⎭⎫13n,所以S n =1·⎝⎛⎭⎫131+(-1)·⎝⎛⎭⎫132+(-3)·⎝⎛⎭⎫133+…+(3-2n )·⎝⎛⎭⎫13n , 所以13S n =1·⎝⎛⎭⎫132+(-1)·⎝⎛⎭⎫133+…+(5-2n )·⎝⎛⎭⎫13n +(3-2n )·⎝⎛⎭⎫13n +1, 两式相减,得23S n =13-2⎣⎡⎦⎤⎝⎛⎭⎫132+⎝⎛⎭⎫133+…+⎝⎛⎭⎫13n -(3-2n )·⎝⎛⎭⎫13n +1=13-2⎣⎢⎡⎦⎥⎤19×1-⎝⎛⎭⎫13n -11-13+(2n -3)·⎝⎛⎭⎫13n +1=2n ·⎝⎛⎭⎫13n +1, 所以S n =n 3n .(3)解 假设存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列,则2S q =S p +S r ,即2q3q =p 3p +r 3r. 当n ≥2时,a n =(3-2n )⎝⎛⎭⎫13n<0,所以数列{S n }单调递减. 又p <q ,所以p ≤q -1且q 至少为2, 所以p 3p ≥q -13q -1,q -13q -1-2q 3q =q -33q .①当q ≥3时,p 3p ≥q -13q -1≥2q 3q ,又r 3r >0,所以p 3p +r 3r >2q3q ,等式不成立. ②当q =2时,p =1,所以49=13+r 3r ,所以r 3r =19,所以r =3({S n }单调递减,解惟一确定). 综上可知,p ,q ,r 的值为1,2,3.(三)应用题1.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少? 解 (1)当9天购买一次时,该厂用于配料的保管费用 P =70+0.03×200×(1+2)=88(元).(2)①当x ≤7时,y =360x +10x +236=370x +236,②当x >7时,y =360x +236+70+6[(x -7)+(x -6)+…+2+1]=3x 2+321x +432,∴y =⎩⎪⎨⎪⎧370x +236,x ≤7,3x 2+321x +432,x >7,∴设该厂x 天购买一次配料平均每天支付的费用为f (x )元.f (x )=⎩⎨⎧370x +236x,x ≤7,3x 2+321x +432x,x >7.当x ≤7时,f (x )=370+236x ,当且仅当x =7时,f (x )有最小值2 8267≈404(元);当x >7时,f (x )=3x 2+321x +432x =3⎝⎛⎭⎫x +144x +321≥393.当且仅当x =12时取等号.∵393<404,∴当x =12时f (x )有最小值393元.2.南半球某地区冰川的体积每年中随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年的数据,冰川的体积(亿立方米)关于t 的近似函数的关系式为V (t )=⎩⎪⎨⎪⎧-t 3+11t 2-24t +100,0<t ≤10,4(t -10)(3t -41)+100,10<t ≤12.(1)该冰川的体积小于100亿立方米的时期称为衰退期.以i -1<t <i 表示第i 月份(i =1,2,…,12),问一年内哪几个月是衰退期? (2)求一年内该地区冰川的最大体积.解 (1)当0<t ≤10时,V (t )=-t 3+11t 2-24t +100<100,化简得t 2-11t +24>0,解得t <3或t >8.又0<t ≤10,故0<t <3或8<t ≤10,当10<t ≤12时,V (t )=4(t -10)(3t -41)+100<100, 解得10<t <413,又10<t ≤12,故10<t ≤12.综上得0<t <3或8<t ≤12.所以衰退期为1月,2月,3月,9月,10月,11月,12月共7个月. (2)由(1)知,V (t )的最大值只能在(3,9)内取到.由V ′(t )=(-t 3+11t 2-24t +100)′=-3t 2+22t -24, 令V ′(t )=0,解得t =6或t =43(舍去).当t 变化时,V ′(t )与V (t )的变化情况如下表:由上表,V (t )在t =6时取得最大值V (6)=136(亿立方米). 故该冰川的最大体积为136亿立方米.3.如图,某城市有一条公路从正西方AO 通过市中心O 后转向东偏北α角方向的OB .位于该市的某大学M 与市中心O 的距离OM =313 km ,且∠AOM =β.现要修筑一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,且经过大学M .其中tan α=2,cos β=313,AO =15 km.(1)求大学M 与站A 的距离AM ; (2)求铁路AB 段的长AB .解 (1)在△AOM 中,AO =15,∠AOM =β且cos β=313,OM =313, 由余弦定理,得AM 2=OA 2+OM 2-2OA ·OM ·cos ∠AOM =152+(313)2-2×15×313×313=13×9+15×15-2×3×15×3=72.∴AM =62,即大学M 与站A 的距离(2)∵cos β=313,且β为锐角,∴sin β=213, 在△AOM 中,由正弦定理,得AM sin β=OMsin ∠MAO ,即62213=313sin ∠MAO ,sin ∠MAO =22, ∴∠MAO =π4,∴∠ABO =α-π4,∵tan α=2,∴sin α=25,cos α=15, ∴sin ∠ABO =sin ⎝⎛⎭⎫α-π4=110, 又∠AOB =π-α,∴sin ∠AOB =sin(π-α)=25. 在△AOB 中,OA =15,由正弦定理,得 AB sin ∠AOB =OA sin ∠ABO,即AB 25=15110,∴AB =302,即铁路AB 段的长为30 2 km.4.(2017·江苏苏州大学指导卷)如图,某地区有一块长方形植物园ABCD ,AB =8(百米),BC =4(百米).植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为HBCEFG ,满足下列要求:E 在CD 的延长线上,H 在BA 的延长线上,DE =0.5(百米),AH =4(百米),N 为AH 的中点,FN ⊥AH ,EF 为曲线段,它上面的任意一点到AD 与AH 的距离的乘积为定值,FG ,GH 均为线段,GH ⊥HA ,GH =0.5(百米).(1)求四边形FGHN 的面积;(2)已知音乐广场M 在AB 上,AM =2(百米),若计划在EFG 的某一处P 开一个植物园大门,在原植物园ABCD 内选一点Q 为中心建一个休息区,使得QM =PM ,且∠QMP =90°,问点P 在何处时,AQ 最小.解 (1)以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系如图所示.则E ⎝⎛⎭⎫-12,4,因为E 到AD 与AH 距离的乘积为2, 所以曲线EF 上的任意一点都在函数y =-2x 的图象上.由题意,N (-2,0),所以F (-2,1).四边形FGHN 的面积为12×⎝⎛⎭⎫12+1×2=32(平方百米). (2)设P (x ,y ),则MP →=(x -2,y ),MQ →=(y ,-x +2),AQ →=(y +2,-x +2),因为点Q 在原植物园内,所以⎩⎪⎨⎪⎧0≤y +2≤8,0≤2-x ≤4,即-2≤x ≤2.又点P 在曲线EFG 上,x ∈⎣⎡⎦⎤-4,-12, 所以-2≤x ≤-12,则点P 在曲线段EF 上,AQ =(y +2)2+(2-x )2, 因为y =-2x ,所以AQ =⎝⎛⎭⎫-2x +22+(2-x )2= x 2+4x 2-4x -8x+8=⎝⎛⎭⎫x +2x 2-4⎝⎛⎭⎫x +2x +4=⎝⎛⎭⎫x +2x -22=-x +2-x+2≥22+2. 当且仅当-x =-2x,即x =-2时等号成立.此时点P (-2,2),即点P 在距离AD 与AH 均为2百米时,AQ 最小.(四)解析几何1.已知点A (x 1,y 1),B (x 2,y 2)(x 1x 2≠0),O 是坐标原点,P 是线段AB 的中点,若C 是点A 关于原点的对称点,Q 是线段BC 的中点,且OP =OQ ,设圆P 的方程为x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.(1)证明:线段AB 是圆P 的直径;(2)若存在正数p 使得2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2成立,当圆P 的圆心到直线x -2y =0的距离的最小值为255时,求p 的值.(1)证明 由题意知,点P 的坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22,点A (x 1,y 1)关于原点的对称点为C (-x 1,-y 1),那么点Q 的坐标为⎝⎛⎭⎫-x 1+x 22,-y 1+y 22,由OP =OQ ,得OP 2=OQ 2, 即⎝⎛⎭⎫x 1+x 222+⎝⎛⎭⎫y 1+y 222=⎝⎛⎭⎫-x 1+x 222+⎝⎛⎭⎫-y 1+y 222,得(x 1+x 2)2+(y 1+y 2)2=(x 1-x 2)2+(y 1-y 2)2, 从而x 1x 2+y 1y 2=0,由此得OA ⊥OB ,由方程x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0知,圆P 过原点,且点A ,B 在圆P 上, 故线段AB 是圆P 的直径.(2)解 由2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2,得x 1+x 2=12p [(y 1+y 2)2+8p 2],又圆心P ⎝⎛⎭⎫x 1+x 22,y 1+y 22到直线x -2y =0的距离为d =⎪⎪⎪⎪x 1+x 22-(y 1+y 2)5=⎪⎪⎪⎪14p [(y 1+y 2)2+8p 2]-(y 1+y 2)5=[(y 1+y 2)-2p ]2+4p 245p ≥4p 245p,当且仅当y 1+y 2=2p 时,等号成立,所以4p 245p =255,从而得p =2.2.如图,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,O 是坐标原点,OF =5,过点F 作OF 的垂线交椭圆C 于P 0,Q 0两点,△OP 0Q 0的面积为453.(1)求椭圆的标准方程;(2)若过点M (-5,0)的直线l 与上、下半椭圆分别交于点P ,Q ,且PM =2MQ ,求直线l 的方程.解 (1)由题设条件,P 0F =00OP Q S OF∆=4535=43.易知P 0F =b 2a ,所以b 2a =43.又c =OF =5,即a 2-b 2=5,因此a 2-43a -5=0,解得a =3或a =-53,又a >0,所以a =3,从而b =2. 故所求椭圆的标准方程为x 29+y 24=1.(2)设P (x 1,y 1),Q (x 2,y 2),由题意y 1>0,y 2<0, 并可设直线l :x =ty -5, 代入椭圆方程得(ty -5)29+y 24=1,即(4t 2+9)y 2-85ty -16=0. 从而y 1+y 2=85t 4t 2+9,y 1y 2=-164t 2+9.又由PM =2MQ ,得y 1-y 2=PMMQ=2,即y 1=-2y 2.因此y 1+y 2=-y 2,y 1y 2=-2y 22, 故-164t 2+9=-2⎝ ⎛⎭⎪⎫-85t 4t 2+92,可解得t 2=14.注意到y 2=-85t 4t 2+9且y 2<0,知t >0,因此t =12.故满足题意的直线l 的方程为2x -y +25=0.3.如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线l :y =-12x 与椭圆E 相交于A ,B 两点,AB =210,C ,D 是椭圆E 上异于A ,B 的两点,且直线AC ,BD 相交于点P ,直线AD ,BC 相交于点Q .(1)求椭圆E 的标准方程; (2)求证:直线PQ 的斜率为定值. (1)解 因为e =c a =32,所以c 2=34a 2,即a 2-b 2=34a 2,所以a =2b .所以椭圆方程为x 24b 2+y 2b2=1.由题意不妨设点A 在第二象限,点B 在第四象限,由⎩⎨⎧y =-12x ,x 24b 2+y2b 2=1,得A (-2b ,22b ). 又AB =210,所以OA =10, 则2b 2+12b 2=52b 2=10,得b =2,a =4.所以椭圆E 的标准方程为x 216+y 24=1.(2)证明 由(1)知,椭圆E 的方程为x 216+y 24=1,A (-22,2),B (22,-2).①当直线CA ,CB ,DA ,DB 的斜率都存在,且不为零时,设直线CA ,DA 的斜率分别为k 1,k 2,C (x 0,y 0),显然k 1≠k 2.从而k 1·k CB =y 0-2x 0+22·y 0+2x 0-22=y 20-2x 20-8=4⎝⎛⎭⎫1-x 2016-2x 20-8=2-x 204x 20-8=-14,所以k CB =-14k 1.同理k DB =-14k 2.所以直线AD 的方程为y -2=k 2(x +22),直线BC 的方程为y +2=-14k 1(x -22), 由⎩⎪⎨⎪⎧y +2=-14k 1(x -22),y -2=k 2(x +22), 解得⎩⎪⎨⎪⎧x =22(-4k 1k 2-4k 1+1)4k 1k 2+1,y =2(-4k 1k 2+4k 2+1)4k 1k 2+1,从而点Q 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 1+1)4k 1k 2+1,2(-4k 1k 2+4k 2+1)4k 1k 2+1.用k 2代替k 1,k 1代替k 2得点P 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 2+1)4k 1k 2+1,2(-4k 1k 2+4k 1+1)4k 1k 2+1.所以k PQ =2(-4k 1k 2+4k 2+1)4k 1k 2+1-2(-4k 1k 2+4k 1+1)4k 1k 2+122(-4k 1k 2-4k 1+1)4k 1k 2+1-22(-4k 1k 2-4k 2+1)4k 1k 2+1=42(k 2-k 1)82(k 2-k 1)=12.即直线PQ 的斜率为定值,其定值为12.②当直线CA ,CB ,DA ,DB 中,有直线的斜率不存在时,由题意得,至多有一条直线的斜率不存在,不妨设直线CA 的斜率不存在,从而C (-22,-2). 设DA 的斜率为k ,由①知,k DB =-14k.因为直线CA :x =-22,直线DB :y +2=-14k (x -22),得P ⎝⎛⎭⎫-22,-2+2k . 又直线BC :y =-2,直线AD :y -2=k (x +22), 得Q ⎝⎛⎭⎫-22-22k ,-2, 所以k PQ =12.由①②可知,直线PQ 的斜率为定值,其定值为12.4.(2017·江苏预测卷)平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,右准线的方程为x =433.(1)求椭圆C 的方程;(2)已知点P ⎝⎛⎭⎫12,2,过x 轴上的一个定点M 作直线l 与椭圆C 交于A ,B 两点,若三条直线P A ,PM ,PB 的斜率成等差数列,求点M 的坐标. 解 (1)因为椭圆的离心率为32,右准线的方程为x =433, 所以e =c a =32,a 2c =433,则a =2,c =3,b =1,椭圆C 的方程为x 24+y 2=1.(2)设M (m,0),当直线l 为y =0时,A (-2,0),B (2,0), P A ,PM ,PB 的斜率分别为 k P A =45,k PM =41-2m,k PB =-43,因为直线P A ,PM ,PB 的斜率成等差数列, 所以81-2m =45-43,m =8.证明如下:当M (8,0)时,直线P A ,PM ,PB 的斜率构成等差数列, 设AB :y =k (x -8),代入椭圆方程x 2+4y 2-4=0, 得x 2+4k 2(x -8)2-4=0,即(1+4k 2)x 2-64k 2x +256k 2-4=0, 设A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=64k 21+4k 2,x 1x 2=256k 2-41+4k 2,又k PM =0-28-12=-415, 所以k P A +k PB =y 1-2x 1-12+y 2-2x 2-12=kx 1-8k -2x 1-12+kx 2-8k -2x 2-12=2k +⎝⎛⎭⎫-152k -2⎝ ⎛⎭⎪⎫1x 1-12+1x 2-12 =2k +⎝⎛⎭⎫-152k -2(x 1+x 2)-1x 1x 2-12(x 1+x 2)+14=2k +⎝⎛⎭⎫-152k -264k 21+4k 2-1256k 2-41+4k 2-12×64k 21+4k 2+14=2k +⎝⎛⎭⎫-152k -260k 2-1154(60k 2-1)=-815=2k PM ,即证. (四)数 列(2)1.已知{a n },{b n },{c n }都是各项不为零的数列,且满足a 1b 1+a 2b 2+…+a n b n =c n S n ,n ∈N *,其中S n 是数列{a n }的前n 项和,{c n }是公差为d (d ≠0)的等差数列. (1)若数列{a n }是常数列,d =2,c 2=3,求数列{b n }的通项公式; (2)若a n =λn (λ是不为零的常数),求证:数列{b n }是等差数列;(3)若a 1=c 1=d =k (k 为常数,k ∈N *),b n =c n +k (n ≥2,n ∈N *),求证:对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.(1)解 因为d =2,c 2=3,所以c n =2n -1. 因为数列{a n }是各项不为零的常数列, 所以a 1=a 2=…=a n ,S n =na 1.则由c n S n =a 1b 1+a 2b 2+…+a n b n 及c n =2n -1,得 n (2n -1)=b 1+b 2+…+b n ,当n ≥2时,(n -1)(2n -3)=b 1+b 2+…+b n -1, 两式相减得b n =4n -3.当n =1时,b 1=1也满足b n =4n -3. 故b n =4n -3(n ∈N *).(2)证明 因为a 1b 1+a 2b 2+…+a n b n =c n S n , 当n ≥2时,c n -1S n -1=a 1b 1+a 2b 2+…+a n -1b n -1, 两式相减得c n S n -c n -1S n -1=a n b n , 即(S n -1+a n )c n -S n -1c n -1=a n b n , S n -1(c n -c n -1)+a n c n =a n b n , 所以S n -1d +λnc n =λnb n .又S n -1=λ+λ(n -1)2(n -1)=λn (n -1)2,所以λn (n -1)2d +λnc n =λnb n ,即(n -1)2d +c n =b n ,(*) 所以当n ≥3时,(n -2)2d +c n -1=b n -1,两式相减得b n -b n -1=32d (n ≥3),所以数列{b n }从第二项起是公差为32d 的等差数列.又当n =1时,由c 1S 1=a 1b 1,得c 1=b 1. 当n =2时,由(*)得b 2=(2-1)2d +c 2=12d +(c 1+d )=b 1+32d ,得b 2-b 1=32d .故数列{b n }是公差为32d 的等差数列.(3)证明 由(2)得当n ≥2时,S n -1(c n -c n -1)+a n c n =a n b n ,即S n -1d =a n (b n -c n ). 因为b n =c n +k ,所以b n =c n +kd , 即b n -c n =kd , 所以S n -1d =a n ·kd , 即S n -1=ka n ,所以S n =S n -1+a n =(k +1)a n . 当n ≥3时,S n -1=(k +1)a n -1, 两式相减得a n =(k +1)a n -(k +1)a n -1, 即a n =k +1k a n -1,故从第二项起数列{a n }是等比数列, 所以当n ≥2时,a n =a 2⎝⎛⎭⎫k +1k n -2,b n =c n +k =c n +kd =c 1+(n -1)k +k 2=k +(n -1)k +k 2=k (n +k ), 另外由已知条件得(a 1+a 2)c 2=a 1b 1+a 2b 2. 又c 2=2k ,b 1=k ,b 2=k (2+k ), 所以a 2=1,因而a n =⎝⎛⎭⎫k +1k n -2.令d n =b na n ,则d n +1d n =b n +1a n a n +1b n =(n +k +1)k (n +k )(k +1).因为(n +k +1)k -(n +k )(k +1)=-n <0, 所以d n +1d n<1,所以对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.2.已知数列{a n }的前n 项和为S n ,且a 1=1,a 2=2,设b n =a n +a n +1,c n =a n ·a n +1(n ∈N *). (1)若数列{b 2n -1}是公比为3的等比数列,求S 2n ; (2)若数列{b n }是公差为3的等差数列,求S n ;(3)是否存在这样的数列{a n },使得{b n }成等差数列和{c n }成等比数列同时成立,若存在,求出{a n }的通项公式;若不存在,请说明理由. 解 (1)b 1=a 1+a 2=1+2=3,S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 3+…+b 2n -1=3(1-3n )1-3=3n +1-32.(2)∵b n +1-b n =a n +2-a n =3,∴{a 2k -1},{a 2k }均是公差为3的等差数列,a 2k -1=a 1+(k -1)·3=3k -2,a 2k =a 2+(k -1)·3=3k -1,当n =2k (k ∈N *)时,S n =S 2k =(a 1+a 3+…+a 2k -1)+(a 2+a 4+…+a 2k )=k (1+3k -2)2+k (2+3k -1)2=3k 2=3n 24;当n =2k -1(k ∈N *)时,Sn =S 2k -1=S 2k -a 2k =3k 2-3k +1=3×⎝⎛⎭⎫n +122-3·n +12+1=3n 2+14.综上可知,S n=⎩⎨⎧3n 24,n =2k ,k ∈N *,3n 2+14,n =2k -1,k ∈N *.(3)∵{b n }成等差数列,∴2b 2=b 1+b 3,即2(a 2+a 3)=(a 1+a 2)+(a 3+a 4),a 2+a 3=a 1+a 4,① ∵{c n }成等比数列,∴c 22=c 1c 3. 即(a 2a 3)2=(a 1a 2)·(a 3a 4), ∵c 2=a 2a 3≠0,∴a 2a 3=a 1a 4,②由①②及a 1=1,a 2=2,得a 3=1,a 4=2,设{b n }的公差为d ,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=d ,即a n +2-a n =d ,即数列{a n }的奇数项和偶数项都构成公差为d 的等差数列, 又d =a 3-a 1=a 4-a 2=0, ∴数列{a n }=1,2,1,2,1,2,…,即a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *.此时c n =2,{c n }是公比为1的等比数列,满足题意.∴存在数列{a n },a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *, 使得{b n }成等差数列和{c n }成等比数列同时成立.高考附加题加分练 1.矩阵与变换1.已知矩阵M =⎣⎢⎡⎦⎥⎤a 1b 0,点A (1,0)在矩阵M 对应的变换作用下变为A ′(1,2),求矩阵M 的逆矩阵M -1. 解 ∵⎣⎢⎡⎦⎥⎤a 1b0 ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤12, ∴a =1,b =2.∴M =⎣⎢⎡⎦⎥⎤1 120,∴M -1=⎣⎢⎡⎦⎥⎤0 121 -12.2.(2017·江苏徐州一中检测)已知曲线C :y 2=12x ,在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0 11 0 ⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ), 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x .又点P (x ′,y ′)在曲线C :y 2=12x 上,∴⎝⎛⎭⎫-12x 2=12y ,即x 2=2y .3.已知矩阵M =⎣⎢⎡⎦⎥⎤1 22x 的一个特征值为3,求M 的另一个特征值及其对应的一个特征向量. 解 矩阵M 的特征多项式为f (λ)=⎣⎢⎡⎦⎥⎤λ-1 -2-2 λ-x =(λ-1)(λ-x )-4.因为λ1=3是方程f (λ)=0的一根,所以x =1. 由(λ-1)(λ-1)-4=0,得λ2=-1. 设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y , 则⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0,得x =-y . 令x =1,则y =-1,所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤ 1-1.4.(2017·江苏江阴中学质检)若点A (2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.解 M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1,解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.由M -1M =⎣⎢⎡⎦⎥⎤1 001,得M -1=⎣⎢⎡⎦⎥⎤1-10. 2.坐标系与参数方程1.(2017·江苏兴化中学调研)已知曲线C 1的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=-1,曲线C 2的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4,判断两曲线的位置关系. 解 将曲线C 1,C 2化为直角坐标方程,得 C 1:x +3y +2=0,C 2:x 2+y 2-2x -2y =0, 即C 2:(x -1)2+(y -1)2=2. 圆心到直线的距离d =|1+3+2|12+(3)2=∴曲线C 1与C 2相离.2.(2017·江苏金坛一中期中)已知在极坐标系下,圆C :ρ=2cos ⎝⎛⎭⎫θ+π2与直线l :ρsin ⎝⎛⎭⎫θ+π4=2,点M 为圆C 上的动点,求点M 到直线l 的距离的最大值. 解 圆C 化为直角坐标方程,得x 2+(y +1)2=1. 直线l 化为直角坐标方程,得x +y =2. 圆心C 到直线l 的距离d =|-1-2|2=322,所以点M 到直线l 的距离的最大值为1+322.3.已知直线l :⎩⎪⎨⎪⎧ x =1+t ,y =-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数. (1)当m =0时,求线段AB 的长;(2)当圆C 上恰有三点到直线的距离为1时,求m 的值. 解 (1)直线l :x +y -1=0,曲线C :x 2+y 2=4, 圆心到直线的距离d =12, 故AB =2r 2-d 2=14.(2)圆C 的直角坐标方程为x 2+(y -m )2=4, 直线l :x +y -1=0,由题意,知圆心到直线的距离d =|m -1|2=1,∴m =1± 2.4.(2017·江苏昆山中学质检)已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为ρ2cos 2θ+3ρ2sin 2θ=3,直线l 的参数方程为⎩⎨⎧x =-3t ,y =1+t(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大. 解 曲线C 的普通方程是x 23+y 2=1,直线l 的普通方程是x +3y -3=0.设点M 的直角坐标是(3cos θ,sin θ),则点M 到直线l 的距离是d =|3cos θ+3sin θ-3|2=3⎪⎪⎪⎪2sin ⎝⎛⎭⎫θ+π4-12.因为-2≤2sin ⎝⎛⎭⎫θ+π4≤2,所以当sin ⎝⎛⎭⎫ θ+π4=-1,即θ=2k π-3π4(k ∈Z )时,d 取得最大值.此时3cos θ=-62,sin θ=-22. 设点M 的极角为φ,则⎩⎨⎧ρcos φ=-62,ρsin φ=-22,所以⎩⎪⎨⎪⎧ρ=2,φ=7π6. 综上,当点M 的极坐标为⎝⎛⎭⎫2,7π6时,该点到直线l 的距离最大. 3.空间向量与立体几何1.(2017·江苏南通中学月考)如图,已知三棱锥O -ABC 的侧棱OA ,OB ,OC 两两垂直,且OA =1,OB =OC =2,E 是OC 的中点.(1)求异面直线BE 与AC 所成角的余弦值; (2)求二面角A -BE -C 的正弦值.解 (1)以O 为原点,分别以OB ,OC ,OA 为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,1),B (2,0,0),C (0,2,0),E (0,1,0). EB →=(2,-1,0),AC →=(0,2,-1), ∴cos 〈EB →,AC →〉=-25,即异面直线BE 与AC 所成角的余弦值为25.(2)AB →=(2,0,-1),AE →=(0,1,-1), 设平面ABE 的法向量为n 1=(x ,y ,z ), 则由n 1⊥AB →,n 1⊥AE →,得⎩⎪⎨⎪⎧2x -z =0,y -z =0,取n 1=(1,2,2), 平面BEC 的法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23,∴二面角A -BE -C 的余弦值cos θ=23,∴sin θ=53, 即二面角A -BE -C 的正弦值为53.2.(2017·江苏宜兴中学质检)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,AA 1=3,D 是BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1-A 1D -C 1的正弦值.解 (1)由题意知,B (2,0,0),C (0,4,0),D (1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3),则A 1D →=(1,2,-3),A 1C 1→=(0,4,0),DB 1→=(1,-2,3). 设平面A 1C 1D 的一个法向量为n =(x ,y ,z ). 由n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0, 得y =0,x =3z ,令z =1,得x =3,n =(3,0,1).设直线DB 1与平面A 1C 1D 所成的角为θ, 则sin θ=|cos 〈DB 1→,n 〉|=|3+3|10×14=33535.(2)设平面A 1B 1D 的一个法向量为m =(a ,b ,c ),A 1B 1→=(2,0,0). 由m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0, 得a =0,2b =3c ,令c =2,得b =3,m =(0,3,2). 设二面角B 1-A 1D -C 1的大小为α, |cos α|=|cos 〈m ,n 〉|=|m ·n ||m ||n |=265, sin α=3765=345565.所以二面角B 1-A 1D -C 13.(2017·江苏运河中学质检)PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =π2,AB =AD =PD =1,CD =2.设Q 为侧棱PC 上一点,PQ →=λPC →.试确定λ的值,使得二面角Q -BD -P 为π4.解 因为侧面PCD ⊥底面ABCD , 平面PCD ∩平面ABCD =CD ,PD ⊥CD , 所以PD ⊥平面ABCD ,所以PD ⊥AD , 又∠ADC =π2,故DA ,DC ,DP 两两互相垂直.如图,以D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立直角坐标系,A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,1),则平面PBD 的一个法向量为n =(-1,1,0),PC →=(0,2,-1),PQ →=λPC →,λ∈(0,1), 所以Q (0,2λ,1-λ).设平面QBD 的一个法向量为m =(a ,b ,c ), 由m ·BD →=0,m ·DQ →=0,得⎩⎪⎨⎪⎧a +b =0,2λb +(1-λ)c =0, 所以取b =1,得m =⎝⎛⎭⎫-1,1,2λλ-1,所以cos π4=|m ·n ||m ||n |,即22·2+⎝⎛⎭⎫2λλ-12=22. 注意到λ∈(0,1),解得λ=2-1.4.在三棱锥S -ABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 是AC 的中点,侧棱SB 和底面成45°角.(1)若D 为棱SB 上一点,当SDDB为何值时,CD ⊥AB ; (2)求二面角S -BC -A 的余弦值的大小.解 以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系. 由题意知∠SBO =45°,SO =3.。

高三数学题最难的应用题

高三数学题最难的应用题

高三数学题最难的应用题
以下是一个可能的高三数学最难应用题示例:
题目:假设有一个人在某个城市中要找寻一个目标地点,他每走一步可以向北、东、南、西中的一个方向移动1个单位或者2个单位。

在走了10步之后,他到达了目标地点。

已知他在这10步中,向北移动了3次,向南移动了3次,向东移动了2次,向西移动了2次,那么,这个目标地点可能的位置是在起点的哪个方向和距离上?
这个题目涉及到等可能事件的概率计算,需要分析每一步的可能性并计算总的可能性数量,并从中推断出目标地点的位置。

需要使用概率和数理逻辑来解决。

这个问题非常复杂,答案需要通过数学建模和计算机编程进行模拟才能得到解决。

这个问题可能是高三数学中最难的应用题之一,需要很高的数学能力和思维能力才能解决。

高三数学题最难的应用题

高三数学题最难的应用题

高三数学题最难的应用题高三数学是学生们面临的重要考试之一,而在高三数学中,应用题往往被认为是最具挑战性的题型之一。

应用题不仅要求学生掌握数学知识,还需要学生能够将数学知识应用到实际问题中,解决实际问题。

下面将介绍一道高三数学题中最难的应用题。

假设有一座矩形的花坛,长为L,宽为W,其中有一棵树位于花坛的一侧,树的高度为H。

现在需要在花坛内修建一个折线形的小路,使得小路的两端分别与花坛的两个对角线相交,并且小路的两段长度相等。

请问,小路的最大长度是多少?这是一道较为复杂的应用题,需要学生综合运用数学知识来解答。

首先,我们需要明确小路的形状,即折线形。

根据题目中的描述,我们可以得知,小路由两段组成,且两端分别与花坛的两个对角线相交。

那么,我们可以将小路的形状分为三个部分:一个直角三角形和两个直线段。

接下来,我们可以考虑如何确定小路的长度。

假设小路的长度为x,则小路的第一段长度为x/2,第二段长度为x/2。

由于小路的两端分别与花坛的两个对角线相交,我们可以利用相似三角形的性质来求解。

考虑花坛的对角线,可以将花坛分成两个直角三角形。

假设对角线的长度为D,根据勾股定理,我们可以得知,花坛的长的一半为L/2,花坛的宽的一半为W/2。

由于小路的第一段长度为x/2,根据相似三角形的性质,我们可以得到以下等式:x/2 / (L/2) = (x/2 + H) / D通过简单的代数运算,我们可以解得x的值:x = 2H / (D/L - 1)因此,小路的长度为2H / (D/L - 1)。

根据题目的描述,我们可以得知,小路的长度必须小于花坛的对角线的长度。

因此,我们可以将小路的长度的取值范围限定为(0, D)。

接下来,我们需要考虑小路的最大长度。

为了求得小路的最大长度,我们需要求解当x的值趋近于D时,小路的长度趋近于多少。

当x趋近于D时,我们可以将(D/L - 1)近似为1,从而得到以下等式:x ≈ 2H / (D/L - 1) ≈ 2H / 1 = 2H因此,小路的最大长度为2H。

高三数学常见应用题解析

高三数学常见应用题解析

高三数学常见应用题解析在高三数学学习过程中,应用题是不可避免的一部分。

这些问题通常涉及到实际生活中的应用场景,要求学生能够将数学知识运用到实际问题中,并解决出正确的答案。

本文将通过解析几个常见的高三数学应用题,帮助同学们更好地理解与应用数学知识。

1. 函数应用题解析题目:某商品进价是售价的1.5倍,商家以进价的80%的价格出售,利润率为多少?解析:首先,我们设商品的进价为x元,则售价为1.5x元。

商家以进价的80%的价格出售,即售价为0.8x元。

利润率定义为利润与成本比值的百分数形式。

利润为售价减去进价,即1.5x - x = 0.5x,成本即进价,即x。

所以利润率为 (0.5x / x) × 100%= 50%。

因此,利润率为50%。

2. 概率应用题解析题目:一只袋中有5个红球、3个黄球和2个蓝球,从袋中随机抽取一个球,求抽取到红球或黄球的概率。

解析:首先,袋中共有10个球,其中红球和黄球共有5 + 3 = 8个。

所以,抽取到红球或黄球的概率为 (8 / 10) × 100% = 80%。

因此,抽取到红球或黄球的概率为80%。

3. 速度与时间应用题解析题目:甲、乙两车同时从A地出发,甲车以恒定速度60km/h从A向B行驶,乙车以恒定速度80km/h从B向A行驶,当甲车行驶到B地时,乙车刚好到达A地。

如果AB之间的距离为360km,那么A地到B地多长时间?解析:设从A地到B地所需要的时间为t小时,则根据速度与时间的关系,甲车行驶的距离为60t km,乙车行驶的距离为80t km。

根据题意,甲车行驶的距离为AB之间的距离,即60t = 360,解得t = 6小时。

所以,从A地到B地需要6小时。

通过以上三个例子的解析,我们可以看到,在高三数学中,应用题的解题思路主要是根据题目中给出的条件,将问题转化为适当的数学模型,并应用相关知识进行求解。

掌握这些解题技巧和方法,可以帮助同学们在解决实际问题时更加得心应手。

高三数学高级代数问题解答练习题及答案

高三数学高级代数问题解答练习题及答案

高三数学高级代数问题解答练习题及答案一、选择题1. 若函数f(x) = 2x^3 - 3x^2 - 12x + 7,那么f(-1)的值是多少?A) -12 B) -10 C) -8 D) 6答案:D) 6解析:将x替换为-1,得到f(-1) = 2(-1)^3 - 3(-1)^2 - 12(-1) + 7 = 2 + 3 + 12 + 7 = 24。

因此,f(-1)的值为6。

2. 设a+b=8,且ab=15,求a^2+b^2的值。

A) 16 B) 22 C) 24 D) 30答案:C) 24解析:根据(a+b)^2=a^2+2ab+b^2,将已知条件带入得到(8)^2=a^2+2(15)+b^2。

简化后得到64=a^2+30+b^2,化简为a^2+b^2=64-30=34。

因此,a^2+b^2的值为24。

二、填空题1. 已知f(x)=2x^3+x^2-5,求f(2)的值。

答案:25解析:将x替换为2,得到f(2)=2(2)^3+(2)^2-5=16+4-5=25。

2. 如果x^2-4x+3=0,则x的值为 _______。

答案:1 或 3解析:将方程因式分解得到(x-1)(x-3)=0,根据零乘法,x-1=0时,x=1;x-3=0时,x=3。

因此,x的值为1或3。

三、解答题1. 解方程组:2x + 3y = 75x - y = 11解答:通过消元法可以得到:将第二个方程两边乘以3,得到15x - 3y = 33;然后将第一、二个方程相加,得到17x = 40;将上述结果代入第一个方程,得到2*(40/17) + 3y = 7;化简得到3y = 7 - (80/17);最后可求得y的值,然后再将y的值代入方程组即可得出x的值。

2. 已知函数f(x)满足f(3x-1)=2x+5,求f(2)的值。

解答:将x替换为2,得到f(3(2)-1)=2(2)+5;化简得到f(5)=9;因此,f(2)的值为9。

四、应用题1. 某图书馆购进了某种图书,前三个月每月售出60本,之后每月售出比上一个月多10本。

高三数学模拟试题及答案

高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题1. 已知集合A={x | x² - 1 = 0},则A的元素个数为()A. 1B. 2C. 3D. 4答案:B2. 若a > 0,b < 0,则a与b的和的符号为()A. 正B. 负C. 零D. 无法确定答案:D3. 设函数f(x) = √(x²-2x+1),则f(3)的值为()A. 0B. 1C. 2D. 3答案:B4. 在△ABC中,角A = 60°,边AC = 5cm,边BC = 4cm,则边AB 的长度为()A. 3.5cmB. 4cmC. 4.5cmD. 5cm答案:C5. 某商店对现金支付的商品提供10%的折扣,小明购买了一件原价500元的商品,他需要支付多少元?()A. 45元B. 50元C. 450元D. 500元答案:C二、计算题1. 已知函数f(x) = |x - 3| + 2,求f(5)的值。

解:当x = 5时,f(x) = |5 - 3| + 2 = 4答案:42. 解方程:3x + 5 = 2(x - 1) + 7解:展开得:3x + 5 = 2x - 2 + 7移项得:3x + 5 = 2x + 5化简得:x = 0答案:03. 已知函数f(x) = x² - 4x + 5,求f(3)的值。

解:当x = 3时,f(x) = 3² - 4 × 3 + 5 = 9 - 12 + 5 = 2答案:24. 某商品在经过两次10%的折扣后,售价为270元,求其原价。

解:设原价为x元,则经过第一次折扣后为0.9x元,经过第二次折扣后为0.9 × 0.9x元。

根据题意,0.9 × 0.9x = 270,解方程得:x = 300答案:300三、应用题1. 一辆自行车上午以每小时20公里的速度向南骑行,下午以每小时15公里的速度向北骑行。

如果来回共耗时8小时,求行程的总长度。

高三数学: 应用题

高三数学: 应用题

高三数学强化训练应用题(一)函数模型【例1】甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3100(51)x x+-元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.【例2】在数学探究活动中,某兴趣小组合作制作一个工艺品,设计了如图所示的一个窗户,其中矩形ABCD 的三边AB ,BC ,CD 由长为8厘米的材料弯折而成,BC 边的长为2t 厘米(04t <<);曲线AOD 是一段抛物线,在如图所示的平面直角坐标系中,其解析式为23x y =-,记窗户的高(点O 到BC 边的距离)为()f t .(1)求函数()f t 的解析式,并求要使得窗户的高最小,BC 边应设计成多少厘米?(2)要使得窗户的高与BC 长的比值达到最小,BC 边应设计成多少厘米?【例3】为减少人员聚集,某地上班族S 中的成员仅以自驾或公交方式上班.分析显示,当S 中有()%0100x x <<的成员自驾时,自驾群体的人均上班路上时间为:()30,0301800290,30100x f x x x x <≤⎧⎪=⎨+-<<⎪⎩,(单位:分钟)而公交群体中的人均上班路上时间不受x 的影响,恒为40分钟,试根据上述分析结果回家下列问题:(1)当x 取何值时,自驾群体的人均上班路上时间等于公交群体的人均上班路上时间?(2)已知上班族S 的人均上班时间计算公式为:()()()%50100%g x f x x x =⋅+-,讨论()g x 的单调性,并说明实际意义.(注:人均上班路上时间,是指单日内该群体中成员从居住地到工作地的平均用时.)1、为践行“绿水青山就是金山银山”的发展理念,聊城市环保部门近年来利用水生植物(例如浮萍、蒲草、芦苇等),对国家级湿地公园—东昌湖进行进一步净化和绿化.为了保持水生植物面积和开阔水面面积的合理比例,对水生植物的生长进行了科学管控,并于2020年对东昌湖内某一水域浮萍的生长情况作了调查,测得该水域二月底浮萍覆盖面积为245m ,四月底浮萍覆盖面积为280m ,八月底浮萍覆盖面积为2115m .若浮萍覆盖面积y (单位:2m )与月份x (2020年1月底记1x =,2021年1月底记13x =)的关系有两个函数模型(0,1)=>>x y ka k a 与2log (0)y m x n m =+>可供选择.(1)你认为选择哪个模型更符合实际?并解释理由;(2)利用你选择的函数模型,试估算从2020年1月初起至少经过多少个月该水域的浮萍覆盖面积能达到2148m ?(可能用到的数据:2log 15 3.9≈1.37≈66.72≈)2、2011年六月康菲公司由于机器故障,引起严重的石油泄漏,造成了海洋的巨大污染,某沿海渔场也受到污染.为降低污染,渔场迅速切断与海水联系,并决定在渔场中投放一种可与石油发生化学反应的药剂.已知每投放a (14a ≤≤,且a R ∈)个单位的药剂,它在水中释放的浓度y (毫克/升)随着时间x (天)变化的函数关系式近似为()y a f x =⋅,其中()()()161,04815,4102x x f x x x ⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩,若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据实验,当水中药剂的浓度不低于4(毫克/升)时,它才能起到有效治污的作用.称为有效净化;当药剂在水中释放的浓度不低于6(毫克/升)且不高于18(毫克/升)时称为最佳净化.(1)若一次投放4个单位的药剂,则有效治污时间可达几天?(2)若第一次投放2个单位的药剂,6天后再投放a 个单位的药剂,要使接下来的4天中能够持续有效治污,试问a 的最小值(精确到0.1取近似值1.4).3、在研究某市交通情况时发现,道路密度是指该路段上一定时间内用过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量xq v =,x 为道路密度,q 车辆密度,(0,80]x ∈,且801100135(040,3(040)854080x x v k x x k ⎧-<<⎪=⎨⎪--+≤≤>⎩.(1)当交通流量95v>时,求道路密度x 的取值范围;(2)若道路密度80x =时,测得交通流量50v =,求出车辆密度q 的最大值.(二)三角模型【例4】某高档小区有一个池塘,其形状为直角ABC ,90C ∠=︒,2AB =百米,1BC =百米,现准备养一批观赏鱼供小区居民观赏.(1)若在ABC 内部取一点P ,建造APC 连廊供居民观赏,如图①,使得点P 是等腰三角形PBC 的顶点,且2π3CPB ∠=,求连廊AP PC +的长;(2)若分别在AB ,BC ,CA 上取点D ,E ,F ,建造DEF 连廊供居民观赏,如图②,使得DEF 为正三角形,求DEF 连廊长的最小值.r r rr l 【例5】如图,已知某市穿城公路MON 自西向东到达市中心O 后转向东北方向,34MON π∠=,现准备修建一条直线型高架公路AB ,在MO 上设一出入口A ,在ON 上设一出入口B ,且要求市中心O 到AB 所在的直线距离为10km.(1)求A ,B 两出入口间距离的最小值;(2)在公路MO 段上距离市中心O 点30km 处有一古建筑C (视为一点),现设立一个以C 为圆心,5km 为半径的圆形保护区,问如何在古建筑C 和市中心O 之间设计出入口A ,才能使高架公路及其延长线不经过保护区?【例6】某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,32-=r l (l 为圆柱的高,r 为球的半径,2l ≥).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为c 千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为y 千元.(1)写出y 关于r 的函数表达式,并求该函数的定义域;(2)求该储油罐的建造费用最小时的r 的值.1、重庆、武汉、南京并称为三大“火炉”城市,而重庆比武汉、南京更厉害,堪称三大“火炉”之首.某人在歌乐山修建了一座避暑山庄O (如图).为吸引游客,准备在门前两条夹角为6π(即AOB ∠)的小路之间修建一处弓形花园,使之有着类似“冰淇淋”般的凉爽感,已知弓形花园的弦长3AB =且点A ,B 落在小路上,记弓形花园的顶点为M ,且6MAB MBA π∠=∠=,设OBA θ∠=.(1)将OA ,OB 用含有θ的关系式表示出来;(2)该山庄准备在M 点处修建喷泉,为获取更好的观景视野,如何规划花园(即OA ,OB 长度),才使得喷泉M 与山庄O 距离即值OM 最大?2、某城市为发展城市旅游经济,拟在景观河道的两侧,沿河岸直线1l 与2l 修建景观路(桥),如图所示,河道为东西方向,现要在矩形区域ABCD 内沿直线将1l 与2l 接通,已知60m AB =,80m BC =,河道两侧的景观道路修建费用为每米1万元,架设在河道上方的景观桥EF 部分的修建费用为每米2万元.(1)若景观桥长90m 时,求桥与河道所成角的大小;(2)如何设计景观桥EF 的位置,使矩形区域ABCD 内的总修建费用最低?最低总造价是多少?3、如图是一段半圆柱形水渠的直观图,其横断面是所示的半圆弧ACB ,其中C 为半圆弧中点,渠宽AB 为2米.(1)当渠中水深CD 为0.4米时(D 为水面中点),求水面的宽;(2)若把这条水渠改挖(不准填上)成横断面为等腰梯形的水渠,使渠的底面与水平地面平行,则改挖后的水渠底宽为多少米时(精确到0.01米),所挖的土最少?(三)数列模型【例7】某公司自2020年起,每年投入的设备升级资金为500万元,预计自2020年起(2020年为第1年),因为设备升级,第n年可新增的盈利()()5801,5100010.6,6n nn nan-⎧-≤⎪=⎨-≥⎪⎩(单位:万元),求:(1)第几年起,当年新增盈利超过当年设备升级资金;(2)第几年起,累计新增盈利总额超过累计设备升级资金总额.【例8】某卫材公司年初投资300万元,购置口罩生产设备,立即投入生产,预计第一年该生产设备的使用费用为36万元,以后每年增加6万元,该生产设备每年可给公司带来121万元的收入.假设第n年该设备产生的利润(利润=该年该设备给公司带来的收入-该年的使用费用)为n a.(1)写出n a的表达式;(2)在该设备运行若干整年后,该卫材公司需要升级产品生产线,决定处置该生产设备,现有以下两种处置方案:①当总利润(总利润=各年的收入之和-各年的使用费用-购置口罩生产设备的成本)最大时,以7万元变卖该生产设备;②当年平均总利润最大时,以72万元变卖该生产设备.请你为该公司选择一个合理的处置方案,并说明理由.1、诺贝尔奖每年发放一次,把奖金总金额平均分成6份,奖励在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类做出最有贡献人.每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息用于增加基金总额,以便保证奖金数逐年递增.资料显示:1998年诺贝尔奖发奖后的基金总额(即1999年的初始基金总额)已达19516万美元,基金平均年利率为 6.24%r =.(1)求1999年每项诺贝尔奖发放奖金为多少万美元(精确到0.01);(2)设n a 表示()1998n +年诺贝尔奖发奖后的基金总额,其中*n N ∈,求数列{}n a 的通项公式,并因此判断“2020年每项诺贝尔奖发放奖金将高达193.46万美元”的推测是否具有可信度.2、2019年9月1日,小刘从各个渠道融资30万元,在某大学投资一个咖啡店,2020年1月1日正式开业,已知开业第一年运营成本为6万元,由于工人工资不断增加及设备维修等,以后每年成本增加2万元,若每年的销售额为30万元,用数列{}n a 表示前n 年的纯收入.(注:纯收入=前n 年的总收入-前n 年的总支出-投资额)(1)试求年平均利润最大时的年份(年份取正整数)并求出最大值.(2)若前n 年的收入达到最大值时,小刘计划用前n 年总收入的13对咖啡店进行重新装修,请问:小刘最早从哪一年对咖啡店进行重新装修(年份取整数)?并求小刘计划装修的费用.。

高三数学练习题加答案

高三数学练习题加答案

高三数学练习题加答案一、选择题1. 已知函数f(x) = 2x^3 + 3x + 1,下面哪个选项是它的导函数?A. f'(x) = 6x^2 + 3B. f'(x) = 3x^2 + 3C. f'(x) = 6x^2 + 3xD. f'(x) = 6x^2 - 3答案:A2. 设集合A = {2, 4, 6, 8},B = {3, 6, 9},下面哪个选项是A与B的交集?A. {2, 4, 6, 8}B. {6}C. {3, 6, 9}D. {2, 3, 4, 6, 8, 9}答案:B3. 若sinθ = 1/2,且θ位于第二象限,那么θ的值是多少?A. π/6B. π/3C. π/2D. 2π/3答案:D二、填空题1. 已知sin(π/3 + α) = cosβ,且α + β = π/3,那么α的值是多少?答案:α = π/62. 若a + b = 5,ab = 6,那么a^2 + b^2 的值是多少?答案:a^2 + b^2 = 25三、解答题1. 某超市原价卖出一款商品,现在决定打8折促销。

如果原价为x 元,应该卖多少钱才能打8折?解答:打8折意味着商品的价格降低了20%,因此打折后应该卖出0.8x元。

2. 某地有一条直角边长为3单位的直角三角形,将直角边分别延长2单位和4单位,形成一个大的直角三角形。

求大直角三角形的面积与小直角三角形面积的比值。

解答:小直角三角形的面积为 1/2 * 3 * 3 = 4.5 平方单位。

大直角三角形的面积为 1/2 * 7 * 5 = 17.5 平方单位。

所以它们的比值为 17.5/4.5 ≈ 3.89。

四、应用题某高三班级参加数学竞赛,共有60个人参加。

其中40%的学生参加了数学竞赛A,30%的学生参加了数学竞赛B,20%的学生同时参加了A和B。

求没有参加任何竞赛的学生人数。

解答:设同时参加了A和B竞赛的学生人数为x,则参加了A竞赛的学生人数为0.4 - 0.2x,参加了B竞赛的学生人数为0.3 - 0.2x。

高三数学应用题的练习题

高三数学应用题的练习题

高三数学应用题的练习题在高三数学学习中,应用题是一个非常重要的部分。

通过练习应用题,能够帮助我们更好地理解数学知识,提高解决实际问题的能力。

在这篇文章中,我将为大家提供一些高三数学应用题的练习题,希望能够对大家的学习有所帮助。

1. 银行存款计算某人将10000元存入银行,年利率为3%,请计算3年后的存款金额是多少?解析:根据利率计算公式,存款金额 = 初始金额 × (1 + 年利率)^年数。

代入数据,可得存款金额 = 10000 × (1 + 0.03)^3 = 10927.27元。

2. 计算利润率某公司去年的销售额为500万元,净利润为100万元,计算该公司的利润率。

解析:利润率 = 净利润 / 销售额 × 100%。

代入数据,可得利润率 = 100 / 500 × 100% = 20%。

3. 速度计算小明骑自行车从A地到B地,全程100公里,第一段路以每小时20公里的速度骑行,第二段路以每小时30公里的速度骑行,请计算他全程所需的时间。

解析:计算时间需要用到平均速度的概念。

平均速度 = 总路程 / 总时间。

第一段路所需时间 = 第一段路长度 / 第一段路速度 = 100 / 20 = 5小时。

第二段路所需时间 = 第二段路长度 / 第二段路速度= 100 / 30 ≈ 3.33小时。

总时间 = 第一段路所需时间 + 第二段路所需时间= 5 + 3.33 ≈ 8.33小时。

4. 面积计算一块矩形田地的长为15米,宽为10米,计算该田地的面积。

解析:面积 = 长 ×宽 = 15 × 10 = 150平方米。

5. 基础工资计算某公司的员工基础工资为3000元,按每件产品提成10元计算,某员工月销售了80个产品,请计算该员工的月工资。

解析:月工资 = 基础工资 + 提成金额。

提成金额 = 销售件数 ×提成单价 = 80 × 10 = 800元。

高三数学应用题专题复习含参考答案.docx

高三数学应用题专题复习含参考答案.docx

⾼三数学应⽤题专题复习含参考答案.docx ⾼三数学应⽤题专题复习含参考答案⼀.选择题1..⼀种专门占据内存的计算机病毒开始时占据内存2KB,⼯作时3 分钟⾃⾝复制⼀次,(即复制后所占内存是原来的 2 倍),那么,开机后()分钟,该病毒占据64MB(。

A. 45B. 48C. 51D. 422..观察新⽣婴⼉的体重,其频率分布直⽅图如图所⽰,则新⽣婴⼉的体重在[2700, 3000]的频率为()A. 0.001B. 0.003C. 0.01D. 0.33..两位同学去某⼤学参加⾃主招⽣考试,根据右图学校负责⼈与他们两⼈的对话,可推断出参加考试的⼈数为( )A. 19B. 20C. 21D.224..有两排座位,前排 11 个座位,后排 12 个座位,现安排 2 ⼈就座,规定前排中间的 3 个座位不能坐,并且这 2 ⼈不左右相邻,那么不同排法的种数是( )A.234B. 346C. 350D. 3635..福州某中学的研究性学习⼩组为考察闽江⼝的⼀个⼩岛的湿地开发情况,从某码头乘汽艇出发,沿直线⽅向匀速开往该岛,靠近岛时,绕⼩岛环⾏两周后,把汽艇停靠岸边上岸考察,然后⼜乘汽艇沿原航线提速返回。

设t 为出发后的某⼀时刻,S 为汽艇与码头在时刻t 的距离,下列图象中能⼤致表⽰S=f (x) 的函数关系的为( )y y y y6. .某⾦店⽤⼀杆不准确的天平(两边臂不等长)称黄⾦,某顾客要购买10g 黄⾦,售货员先将 5g 的砝码放在左盘,将黄⾦放于右盘使之平衡后给顾客;然后⼜将5g的砝码放⼊右盘,将另⼀黄⾦放于左盘使之平衡后⼜给顾客,则顾客实际所得黄⾦()A.⼤于10 g B.⼩于10g C.⼤于等于10 g D.⼩于等于10g7. . 13 年前⼀笔扶贫助学资⾦,每年的存款利息(年利率11.34%,不纳税)可以资助100⼈上学,平均每⼈每⽉94.50 元,现在(存款利率 1.98%,并且扣20%的税)⽤同样⼀笔资⾦每年的存款利息最多可以资助多少⼈上学(平均每⼈每⽉100 元) ()A、10B、 13C、15D、208. .如图, B 地在 A 地的正东⽅向 4km处, C 地在 B 地的北偏东 30o ⽅向 2km处,现要在曲线 PQ上任意选⼀处 M建⼀座码头,向B、 C两地转运货物,经测算,从M到 B、C 两地修建公路的费⽤都是 a 万元/km、那么修建这两条公路的总费⽤最低是()A . (7 +1)a万元B . (2 7- 2) a万元C. 27 a万元 D . (7 -1)a万元9. .设y f (t ) 是某港⼝⽔的深度y(⽶)关于时间t (时)的函数,其中0t24 .下表是该港⼝某⼀天从0 时⾄ 24 时记录的时间t与⽔深 y 的关系:t03691215182124 y1215.112.19.111.914.911.98.912.1经长期观观察,函数y f (t ) 的图象可以近似地看成函数y k Asin(t) 的图象 . 在下⾯的函数中,最能近似表⽰表中数据间对应关系的函数是()A.y123sin t, t[ 0,24]B.y123sin(t), t[ 0,24]66C.y123sin t, t[ 0,24]D.y123sin(t), t[ 0,24]1212210..椭圆有这样的光学性质:从椭圆的⼀个焦点出发的光线,经椭圆壁反射后,反射光线经过椭圆的另⼀个焦点. 今有⼀个⽔平放置的椭圆形台球盘,点 A 、 B 是它的焦点,长轴A 沿直线出发,经椭长为 2a ,焦距为 2c ,静放在点 A 的⼩球(⼩球的半径不计),从点圆壁反弹后第⼀次回到点 A 时,⼩球经过的路程是( )( A)4a(B)2(a c)(C)2(a c)(D)以上答案均有可能11..某新区新建有 5 个住宅⼩区(A、B、C、D、E),现要铺设连通各⼩区的⾃来⽔管道,离(km)A B C D E名地名A5785B352C54D4E请问:最短的管线长为()A .13B.14C. 15D. 1712. .某地2004 年第⼀季度应聘和招聘⼈数排⾏榜前 5 个⾏业的情况列表如下⾏业名称计算机机械营销物流贸易应聘⼈数2158302002501546767457065280⾏名称算机机械建筑化⼯招聘⼈数124620102935891157651670436A.若⽤同⼀⾏中聘⼈数与招聘⼈数⽐的⼤⼩来衡量⾏的就情况数据 , 就形⼀定是( )算机⾏好于化⼯⾏. B.建筑⾏好于物流⾏.C. 机械⾏最.D.⾏⽐易⾏., 根据表中⼆.填空13..⽑在《送瘟神》中写到:“坐地⽇⾏⼋万⾥” 。

高三数学应用题专题复习(含答案)

高三数学应用题专题复习(含答案)

高三数学应用题专题复习(含答案)1. 提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流 速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x ≤200时,车流速度v 与车流密度x 满足xk x v --=25040)(.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时.(Ⅰ)当0<x ≤200时,求函数v (x )的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到个位,参考数据236.25≈)2.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r .1. 提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流 速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x ≤200时,车流速度v 与车流密度x 满足xk x v --=25040)(.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时.(Ⅰ)当0<x ≤200时,求函数v (x )的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到个位,参考数据236.25≈)1.解:(1) 由题意:当0<x ≤50时,v (x )=30;当50≤x ≤200时,由于kk x v --=25040)(, 再由已知可知,当x =200时,v (0)=0,代入解得k =2000.故函数v (x )的表达式为⎪⎩⎪⎨⎧≤<--≤<=20050,250200040500,30)(x x x x v .………………6分 (2) 依题意并由(1)可得⎪⎩⎪⎨⎧≤<--≤<=20050,250200040500,30)(x x x x x x x f , 当0≤x ≤50时,f (x )=30x ,当x =50时取最大值1500. 当50<x ≤200时,20002000(250)20002504040(250)4025025025050000012000[40(250)]1200025012000120004000 2.2363056()xx x x x x x x f x --⨯-=--+⨯+--=--+≤--=-≈-⨯== 取等号当且仅当x x -=-250500000)250(40,即250138x =-≈时,f (x )取最大值.(这里也可利用求导来求最大值)综上,当车流密度为138 辆/千米时,车流量可以达到最大,最大值约为3056辆/小时.………………14分2.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r.2. (Ⅰ)因为容器的体积为803π立方米, 所以3243r r l ππ+=803π,解得280433r l r =-, 由于2l r ≥,因此02r <≤.所以圆柱的侧面积为2rl π=28042()33r r r π-=2160833r r ππ-, 两端两个半球的表面积之和为24r π,所以建造费用y =21608r rππ-+24cr π,定义域为(0,2]. (Ⅱ)因为'y =216016r r ππ--+8cr π=328[(2)20]c r r π--,02r <≤ 由于c>3,所以c-2>0,所以令'0y >得: r >令'0y <得:0r <<(1)当932c <≤时,2≥时,函数y 在(0,2)上是单调递减的,故建造费最小时r=2.(2)当92c >时,即02<<时,函数y 在(0,2)上是先减后增的,故建造费最小时r =.。

高三数学练习(应用题)(附答案)

高三数学练习(应用题)(附答案)

高三数学练习(应用题)(附答案)高三数学练习(应用题)(附答案)1. 现有一块长方形草地,长为20米,宽为15米。

现要在草地周围建一圈石子路,宽度为1.5米。

请问需要多少石子路来建造完整的环路?解析:首先计算出草地的周长,再计算出石子路的周长,最后用石子路的周长除以石子路的宽度,即可得出所需的石子路片数。

草地的周长 = 2 × (长 + 宽) = 2 × (20 + 15) = 2 × 35 = 70米石子路的周长 = 草地的周长 + 2 × (宽度) = 70 + 2 × 1.5 = 73米所需的石子路片数 = 石子路的周长 ÷石子路的宽度= 73 ÷ 1.5 ≈ 48.7答案:需要49片石子路。

2. 现有一座圆形花坛,半径为5米。

其中心点距离花坛边缘的距离为3米。

现要在花坛内部种植树苗,每两棵树苗的距离要求至少为2米。

请问最多能种植多少棵树苗?解析:首先计算出花坛内部可以种植树苗的有效面积,然后计算树苗所需的面积,最后用有效面积除以树苗所需的面积,即可得出最多能种植的树苗数量。

花坛的有效面积 = 圆形面积 - 内圆的面积圆形面积= π × 半径² = 3.14 × 5² ≈ 78.5平方米内圆的面积= π × (半径 - 中心距离)² = 3.14 × (5 - 3)² ≈ 12.56平方米花坛的有效面积 = 78.5 - 12.56 ≈ 65.94平方米树苗所需的面积 = 2 × 2 = 4平方米最多能种植的树苗数量 = 花坛的有效面积 ÷树苗所需的面积≈ 16.49 ≈ 16棵答案:最多能种植16棵树苗。

3. 一辆汽车以每小时80公里的速度匀速行驶,行驶一小时后在某地停下来休息。

休息10分钟后,以每小时100公里的速度继续行驶。

高三数学题最难的应用题

高三数学题最难的应用题

高三数学题最难的应用题在高三数学学习中,应用题是学生们普遍认为比较困难的一部分。

其中,有一些应用题难度较大,需要学生们在掌握了一定的数学知识基础之后,才能够解答清楚。

下面我们来看看高三数学中最难的应用题之一。

题目描述某地最近连续几个月的气温数据如下:1月-2°C,2月0°C,3月3°C,4月6°C,5月10°C,6月15°C,请根据给定的数据回答以下问题。

问题1.计算这几个月的平均气温。

2.如果下半年气温比上半年高出5°C,求7月的平均气温是多少。

解题思路•针对第一个问题,计算平均气温需要将所有月份的气温相加,然后除以月份的总数即可得到平均气温。

•针对第二个问题,首先计算上半年的平均气温,然后根据上半年平均气温加上5°C,得到下半年的平均气温。

最后计算7月的平均气温。

解题过程1.计算平均气温:由题目可知,1月到6月的气温分别为-2°C,0°C,3°C,6°C,10°C,15°C。

将这几个数相加,得到-2 + 0 + 3 + 6 + 10 + 15 = 32。

然后将32除以6,得到平均气温为32/6 = 5.33°C。

2.计算7月的平均气温:上半年的平均气温为5.33°C,下半年比上半年高出5°C,所以下半年的平均气温为5.33 + 5 = 10.33°C。

因为7月属于下半年,所以7月的平均气温为10.33°C。

结论通过以上计算,我们得出了这个问题的结果。

在解答这些数学题目时,应灵活运用数学知识,理清思路,才能做出准确的答案。

数学的魅力在于其逻辑性和准确性,希望同学们在学习过程中认真思考,勤加练习,提高自己的数学能力。

希望本文提供的解题思路和过程对于解决同类数学应用题有所帮助。

愿大家都能在数学学习中取得好成绩!。

高三数学提优———解三角形

高三数学提优———解三角形
C.四4形ABCD䶒〟为553
D.ABD
三4fi度可以fi成一个差ᮠ列
8.已 4三䀂形ABC 4fi为3,AD在BC4上,且BD>CD,AD=7,则下列㔃䇪中fl⺞ %()
A.BD
S△ABD
cos∠BAD
sin∠BAD
CD=2B.S
=2C.
cos∠
=2D.
sin∠CAD=2
△ACD
CAD
ABC外一A,DC1,DA3,则下列䈤⌅fl⺞%()
6、䇮△ABC 内䀂A,B,C 对4分别为a,b,c,c2b4,䀂A 内䀂平分㓯
交BC于AD,且AD,则cosA()
A.7
16
C.3 2
8
B.7
8
D.9
16
7、在△ABC中,䀂A,B,Cᡰ对4分别为a,b,c,ABC120,ABC
平分㓯
交AC于AD,且BD1,则4ac
ᴰ小值为.
8、△ABC 内䀂A,B,C对4分别为a,b,c,䀂A内䀂平分㓯交BC于AD,
2222
֍÷型三多ü合
1.在ABC中,䀂A,B,Cᡰ对4分别为a,b,c.已ªb23,Bπ,@Š
3
加下列ᶑ件ᶕ䀓三䀂形,则其中三䀂形只$一䀓%()
A.c3
B.c7
C.c4
D.c9
D.@2bac,且2cos2B8cosB50,则ABC%4三䀂形
古人学䰤 力,少壮工夫€始成。纸上得来8㿿浅,知此事㾷ª㺂。—!游6
3
(1)@AD为A
平分㓯,且BD1,fi△ABC
䶒〟;
(2)@AD为△ABC 中㓯,且AD,fi½:△ABC为 4三䀂形.
5、中,D%BC上A,AD平分BAC,△ABD䶒〟%△ADC䶒〟2倍.

2023届高三数学培优试卷含详细答案解析(十二)

2023届高三数学培优试卷含详细答案解析(十二)

2023届高三培优试卷(十二)一、单选题1.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( )A .∅B .SC .TD .Z2.若复数z 满足()1i 3i z +=-,则z 的虚部等于( ) A .4 B .2C .-2D .-43.函数()sincos 33x xf x =+的最小正周期和最大值分别是( )A .3πB .3π和2C .6πD .6π和24.已知随机变量X 服从正态分布()21,N σ,若()00.2P X ≤=,则()2P X <=( )A .0.2B .0.4C .0.6D .0.85.等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 的前6项和为( ) A .24- B .3-C .3D .86.若1a >,则双曲线2221x y a-=的离心率的取值范围是( )A .)+∞B .2)C .D .(1,2)二、填空题7.若2sin 3x =-,则cos2x =__________.8.已知圆锥的侧面积(单位:2cm ) 为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.三、解答题9.某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I)任选1名下岗人员,求该人参加过培训的概率;(II)任选3名下岗人员,求这3人中至少有2人参加过培养的概率.10.如图,分别是椭圆:+=1()的左、右焦点,是椭圆的顶点,是直线与椭圆的另一个交点,=60°.(Ⅰ)求椭圆的离心率;(Ⅰ)已知Ⅰ的面积为40,求,a b的值.2023届高三培优试卷(十二)答案1.【答案】C【详解】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T =.故选:C. 2.【答案】C【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-,所以z 的虚部等于2-.故选:C. 3.【答案】C【详解】由题,()sin cos 3s 33334x x x x f x x π=+=⎛+⎫⎪⎝⎭,所以()f x 的最小正周期为2613T ,故选:C .4.【答案】D【详解】因为()00.2P X ≤=,所以()()21010.20.8P X P X <=-<=-=,故选:D 5.【答案】A【详解】由题意,设等差数列{}n a 的公差为d ,()0d ≠,又11a =,2a ,3a ,6a 成等比数列,2326a a a ∴=⋅,()()2111(2)5a d a d a d ∴+=++,解得2d =-,则{}n a 的前6项和为:()1656566122422a d ⨯⨯+=⨯+⨯-=-.故选:A . 6.【答案】C【详解】221c a =+,222222111c a e a a a+===+ ,1a >,2101a ∴<< ,212e<< ,则0e <<,选C.7.【答案】19【详解】22281cos 212sin 12()1399x x =-=-⨯-=-=. 故答案为:19.8.【答案】1【详解】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:1 9.【详解】任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件 B , 由题设知,事件A 与 B 相互独立,且()0.6P A =, ()0.75P B =. (I )解法一:任选1名下岗人员,该人没有参加过培训的概率是 1(?)()?()0.40.250.1P P A B P A P B ===⨯= 所以该人参加过培训的概率是1110.10.9P -=-=.解法二:任选1名下岗人员,该人只参加过一项培训的概率是 2(?)(?)0.60.250.40.750.45P P A B P A B =+=⨯+⨯=该人参加过两项培训的概率是3(?)0.60.750.45P P A B ==⨯=. 所以该人参加过培训的概率是230.450.450.9P P +=+=.(II )解法一:任选3名下岗人员,3人中只有2人参加过培训的概率是 22430.90.10.243P C =⨯⨯=.3人都参加过培训的概率是350.90.729P ==.所以3人中至少有2人参加过培训的概率是450.2430.7290.972P P +=+=.解法二:任选3名下岗人员,3人中只有1人参加过培训的概率是 1230.90.10.027C ⨯⨯=. 3人都没有参加过培训的概率是30.10.001=.所以3人中至少有2人参加过培训的概率是10.0270.0010.972--=.10.【详解】 (Ⅰ)由题=60°,则221sin 302OF c AF a ==︒=,即椭圆的离心率为12.(Ⅰ)因Ⅰ的面积为40,设(,)B B B x y ,又面积公式12()()4032A B A B S c y y c y y =⨯⨯-=⨯-=,又直线:)AB y x c =-,又由(Ⅰ)知2213,2c a b a ==,联立方程可得2222223()b x a x c a b +-=⋅,整理得2222223133()424a x a x a a a +-=⋅,解得45B a x =,B y =,所以)2a ⨯=10,a b ==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学提优辅导——应用题训练(三)1、某森林失火了,火势正以平均每分钟200m 2的速度顺风蔓延,消防队员在失火后10分钟到达现场开始救火,已知每个队员平均每分钟可灭火50m 2,所消耗的灭火材料,劳务津贴等费用平均每人每分钟125元,另外车辆、器械装备等损耗费用平均每人800元,而每烧毁1m 2的森林的损失费为60元,消防队共派x 名队员前去救火,从到达现场开始救火到把火完全扑灭共耗时n 分钟. (1)求出x 与n 的关系. (2)问消防队派多少名队员前去救火,才能使得总损失最小? 解:(1)由题意可知,消防队员到达现场时失火面积为10×200=2000m 2 又依题意可知,n n x 002002050+=⋅⋅,∴404-=x n (x ≥5,且*N x ∈)……………………………………6分(2)设总损失为y ,则6050008125⋅++=nx x nx y=x nx 0083125+=x x x0084043125+-⨯……………………………………………………10分 =0032)4(0084806250002501+-+-⨯+x x ≥0082610128204806250)4(0082=+-⨯⨯-x x ………………………14分当且仅当924806250)4(008=⇒-⨯=-x x x .答:消防队派92名队员前去救火,才使得总损失最小. ………………………16分2、某品牌茶壶的原售价为80元/个,今有甲、乙两家茶具店销售这种茶壶,甲店用如下方法促销:如果只购买一个茶壶,其价格为78元/个;如果一次购买两个茶壶,其价格为76元/个;…,一次购买的茶壶数每增加一个,那么茶壶的价格减少2元/个,但茶壶的售价不得低于44元/个;乙店一律按原价的75%销售.现某茶社要购买这种茶壶x 个,如果全部在甲店购买,则所需金额为y 1元;如果全部在乙店购买,则所需金额为y 2元.(1) 分别求出y 1、y 2与x 之间的函数关系式; (2) 该茶社去哪家茶具店购买茶壶花费较少?解:(1) 根据题意,当x =18时,茶壶的价格为44元/个.则y 1=⎩⎪⎨⎪⎧(80-2x )x ,0<x ≤18,且x ∈N *,44x ,x >18,且x ∈N *.(4分) y 2=60x ,x ∈N *.(8分)(2) y =y 1-y 2=⎩⎪⎨⎪⎧(80-2x )x -60x ,0<x ≤18,且x ∈N *,44x -60x ,x >18,且x ∈N *.当x =10时,y =y 1-y 2=0,即y 1=y 2;(10分)当1≤x <10时,y =y 1-y 2=-2x (x -10)>0,即y 1>y 2;(12分) 当10<x ≤18时,y =y 1-y 2=-2x (x -10)<0,即y 1<y 2; 当x >18时,y =y 1-y 2=-16x <0,即y 1<y 2.答:当购买的茶壶数为10个时,到甲、乙两家茶具店花费一样多; 当购买的茶壶数小于10个时,到乙茶具店购买花费较少;当购买的茶壶数大于10个时,到甲茶具店购买花费较少.(14分)3、某广告公司设计了一种霓虹灯,样式如图中实线部分所示.其上部分是以AB 为直径的半圆,点O 为圆心,下部分是以AB 为斜边的等腰直角三角形,DE 、DF 是两根支杆,其中AB =2 m ,∠EOA =∠FOB =2x (0<x <π4).现在弧EF 、线段DE 与线段DF 上装彩灯,在弧AE 、弧BF 、线段AD 与线段BD 上装节能灯.若每种灯的“心悦效果”均与相应的线段或弧的长度成正比,且彩灯的比例系数为2k ,节能灯的比例系数为k (k >0),假定该霓虹灯整体的“心悦效果”y 是所有灯“心悦效果”的和.(1) 试将y 表示为x 的函数;(2) 试确定当x 取何值时,该霓虹灯整体的“心悦效果”最佳?解:(1) 因为∠EOA =∠FOB =2x ,所以弧EF 、AE 、BF 的长分别为π-4x,2x,2x .(3分)连结OD ,则由OD =OE =OF =1,∠FOD =∠EOD =2x +π2,所以DE =DF =1+1-2cos (2x +π2)=2+2sin2x =2(sin x +cos x ).(6分)所以y =2k [22(sin x +cos x )+π-4x ]+k (22+4x ) =2k [22(sin x +cos x )-2x +2+π](9分)(2) 因为由y ′=4k [2(cos x -sin x )-1]=0,(11分)解得cos(x +π4)=12,即x =π12.(13分)又当x ∈(0,π12)时,y ′>0,所以此时y 在(0,π12)上单调递增;当x ∈(π12,π4)时,y ′<0,所以此时y 在(π12,π4)上单调递减.故当x =π12时,该霓虹灯整体的“心悦效果”最佳.(16分)4、如图,实线部分的月牙形公园是由圆P 上的一段优弧和圆Q 上的一段劣弧围成,圆P 和圆Q 的半径都是2 km ,点P 在圆Q 上,现要在公园内建一块顶点都在圆P 上的多边形活动场地.(1) 如图甲,要建的活动场地为△RST ,求场地的最大面积;(2) 如图乙,要建的活动场地为等腰梯形ABCD ,求场地的最大面积.解:(1) 如右图,过S 作SH ⊥RT 于H ,S △RST =12SH ·RT .(2分)由题意,△RST 在月牙形公园里, RT 与圆Q 只能相切或相离.(4分)RT 左边的部分是一个大小不超过半圆的弓形, 则有RT ≤4,SH ≤2,当且仅当RT 切圆Q 于P 时(如下左图),上面两个不等式中等号同时成立.此时,场地面积的最大值为S △RST =12×4×2=4(km 2).(6分)(2) 同(1)的分析,要使得场地面积最大,AD 左边的部分是一个大小不超过半圆的弓形,AD 必须切圆Q 于P ,再设∠BP A =θ,则有S 四边形ABCD =12×2×2×sin θ×2+12×2×2×sin(π-2θ)=4(sin θ+sin θcos θ)⎝⎛⎭⎫0<θ<π2.(8分)令y =sin θ+sin θcos θ,则y ′=cos θ+cos θcos θ+sin θ(-sin θ)=2cos 2θ+cos θ-1.(11分)若y ′=0,cos θ=12,θ=π3,又θ∈⎝⎛⎭⎫0,π3时,y ′>0;θ∈⎝⎛⎭⎫π3,π2时,y ′<0,(14分) 所以函数y =sin θ+sin θcos θ在θ=π3处取到极大值也是最大值,故θ=π3时,场地面积取得最大值为33(km 2).(16分)5、某部门要设计一种如图所示的灯架,用来安装球心为O ,半径为R(m)的球形灯泡.该灯架由灯托、灯杆、灯脚三个部件组成,其中圆弧形灯托EA 、EB 、EC 、ED 所在圆的圆心都是O 、半径都是R(m)、圆弧的圆心角都是θ(rad);灯杆EF 垂直于地面,杆顶E 到地面的距离为h(m),且h>R ;灯脚FA 1、FB 1、FC 1、FD 1是正四棱锥FA 1B 1C 1D 1是四条侧棱,正方形A 1B 1C 1D 1的外接圆半径为R(m),四条灯脚与灯杆所在直线的夹角都为θ(rad).已知灯杆、灯脚造价都是每米a(元),灯托造价是每米a3(元),其中R 、h 、a 都为常数.设该灯架的总造价为y(元).(1) 求y 关于θ的函数关系式; (2) 当θ取何值时,y 取得最小值?18. 解:(1) 延长EF 与地面交于O 1,由题意:∠A 1FO 1=θ,且FO 1=R tan θ,从而EF =h -R tan θ,A 1F =Rsin θ,(2分)y =4θR a 3+⎝ ⎛⎭⎪⎫h -R tan θ+4R sin θa.(8分)(注:每写对一个部件造价得2分)(2) y =Ra ⎝ ⎛⎭⎪⎫4θ3+4-cos θsin θ+ha ,(9分)设f(θ)=4θ3+4-cos θsin θ,令f′(θ)=4sin 2θ+3-12cos θ3sin 2θ(11分)=(1-2cos θ)(7+2cos θ)3sin 2θ=0.∴ θ=π3.(12分)当θ∈⎝ ⎛⎭⎪⎫0,π3时,y′<0;θ∈⎝ ⎛⎭⎪⎫π3,π2时,y′>0,(13分)设θ∈⎝ ⎛⎭⎪⎫θ0,π2,其中tan θ0=Rh <1,∴ θ0<π4.(14分)∴ π3∈⎝ ⎛⎭⎪⎫θ0,π2,∴ θ=π3时,y 最小.(15分)故当θ=π3时,灯架的总造价取得最小值.(16分)6、一走廊拐角处的横截面如图所示,已知内壁FG 和外壁BC 都是半径为1 m 的四分之一圆弧,AB 、DC 分别与圆弧BC 相切于B 、C 两点,EF ∥AB ,GH ∥CD ,且两组平行墙壁间的走廊宽度都是1 m.(1) 若水平放置的木棒MN 的两个端点M 、N 分别在外壁CD 和AB 上,且木棒与内壁圆弧相切于点P .设∠CMN =θ(rad),试用θ表示木棒MN 的长度f (θ);(2) 若一根水平放置的木棒能通过该走廊拐角处,求木棒长度的最大值.解:(1) 如图,设圆弧FG 所在的圆的圆心为Q ,过Q 点作CD 垂线,垂足为点T ,且交MN 或其延长线于S ,并连结PQ ,再过N 点作TQ 的垂线,垂足为W .在Rt △NWS 中,因为NW =2,∠SNW =θ,所以NS =2cos θ.因为MN 与圆弧FG 切于点P ,所以PQ ⊥MN .在Rt △QPS ,因为PQ =1,∠PQS =θ,所以QS =1cos θ,QT -QS =2-1cos θ.① 若S 在线段TG 上,则TS =QT -QS .在Rt △STM 中,MS =TS sin θ=QT -QSsin θ,因此MN =NS +MS =NS +QT -QSsin θ.② 若S 在线段GT 的延长线上,则TS =QS -QT .在Rt △STM 中,MS =TS sin θ=QS -QTsin θ,因此MN =NS -MS =NS -QS -QT sin θ=NS +QT -QSsin θ.f (θ)=MN =NS +QT -QS sin θ=2cos θ+(2sin θ-1sin θcos θ)=2(sin θ+cos θ)-1sin θcos θ(0<θ<π2).(8分)(2) 设sin θ+cos θ=t (1<t ≤2),则sin θcos θ=t 2-12,因此f (θ)=g (t )=4t -2t 2-1.因为g ′(t )=-4(t 2-t +1)(t 2-1)2,又1<t ≤2,所以g ′(t )<0恒成立.因此函数g (t )=4t -2t 2-1在t ∈(1,2]是减函数,所以g (t )min =g (2)=42-2,即MN min =42-2.答:一根水平放置的木棒若能通过该走廊拐角处,则其长度的最大值为42-2.(16分) 7、某开发商用9 000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2 000平方米.已知该写字楼第一层的建筑费用为每平方米4 000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元.(1) 若该写字楼共x 层,总开发费用为y 万元,求函数y =f(x)的表达式;(总开发费用=总建筑费用+购地费用)(2) 要使整幢写字楼每平方米的平均开发费用最低,该写字楼应建为多少层?(1) 由已知,写字楼最下面一层的总建筑费用为4 000×2 000=8 000 000(元)=800(万元),从第二层开始,每层的建筑总费用比其下面一层多:100×2 000=200 000(元)=20(万元),写字楼从下到上各层的总建筑费用构成以800为首项,20为公差的等差数列,(2分) 所以函数表达式为:y =f(x)=800x +x (x -1)2×20+9 000=10x 2+790x +9 000(x ∈N *).(6分)(2) 由(1)知写字楼每平方米平均开发费用为: g(x)=f (x )2 000x ×10 000=5(10x 2+790x +9 000)x (10分)=50⎝⎛⎭⎫x +900x +79≥50×(2900+79)=6 950(元),(12分) 当且仅当x =900x,即x =30时等号成立.答:该写字楼建为30层时,每平方米平均开发费用最低.(14分)8、心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则x天后的存留量y 1=4x +4;若在t (t >4)天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存留量y 2随时间变化的曲线恰为直线的一部分,其斜率为a(t +4)2(a <0),存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点”.(1) 若a =-1,t =5求“二次复习最佳时机点”;(2) 若出现了“二次复习最佳时机点”,求a 的取值范围.解:设第一次复习后的存留量与不复习的存留量之差为y ,由题意知,y 2=a (t +4)2(x -t )+8t +4(t >4),(2分) 所以y =y 2-y 1=a (t +4)2(x -t )+8t +4-4x +4(t >4).(4分) (1) 当a =-1,t =5时,y =-1(5+4)2(x -5)+85+4-4x +4=-(x +4)81-4x +4+1≤-2481+1=59,当且仅当x =14时取等号,所以“二次复习最佳时机点”为第14天.(10分)(2) y =a (t +4)2(x -t )+8t +4-4x +4=--a (x +4)(t +4)2-4x +4+8t +4-a (t +4)(t +4)2 ≤-2-4a (t +4)2+8-at +4,(14分) 当且仅当-a (x +4)(t +4)2=4x +4,即x =2-a (t +4)-4时取等号,由题意2-a(t +4)-4>t ,所以-4<a <0.(16分)。

相关文档
最新文档