[精品]七年级上期末数学试卷含答案
七年级上册期末数学试卷3套(含答案详细解析)
19.计算:
(1)
(2)
20.对于有理数a,b,c,d,我们规定 =ad﹣bc,如 =1×4﹣2×3=﹣2.若 =﹣2,求x的值.
21.完成下面的证明
如图,端点为P的两条射线分别交两直线l1、l2于A、C、B、D四点,已知∠PBA=∠PDC,∠l=∠PCD,求证:∠2+∠3=180°.
证明:∵∠PBA=∠PDC()
七年级上册期末数学试卷解析
一、选择题
1.若一个数的相反数是3,则这个数是( )
A.﹣ B. C.﹣3D.3
【答案】C
【解析】
【分析】
两数互为相反数,它们的和为0.
【详解】设3的相反数为x,
则x+3=0,x=﹣3.
故选:C.
【点睛】本题考查的是相反数的概念,两数互为相反数,它们的和为0.
2.下列图形中线段PQ的长度表示点P到直线a的距离的是( )
A. B. C. D.
5. 的平方根是( )
A.±2B.2C.±4D.4
6.下列图形中,不能折叠成一个正方体的是()
A. B. C. D.
7.下列各数中,3.14159,﹣ ,0.131131113…,﹣π, ,无理数的个数是( )
A.1个B.2个C.3个D.4个
8.多项式8x2﹣3x+5与3x3﹣4mx2﹣5x+7多项式相加后,不含二次项,则m的值是( )
A.1682×108B.16.82×109C.1.682×1011D.0.1682×1012
11.估算 的运算结果应在( )
A.3到4之间B.4到5之间C.5到6之间D.6到7之间
12.请通过计算推测32018的个位数是( )
A 1B.3C.7D.9
七年级数学上册期末考试卷及答案【完整版】
七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .46.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定8.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是________.4.已知x =3是方程2x a -—2=x —1的解,那么不等式(2—5a )x <13的解集是________.5.若不等式组2x b 0{x a 0-≥+≤的解集为3≤x ≤4,则不等式ax+b <0的解集为________.6.若13a +与273a -互为相反数,则a=________. 三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩2.已知m ,n 互为相反数,且m n ≠,p ,q 互为倒数,数轴上表示数a 的点距原点的距离恰为6个单位长度。
七年级数学(上册)期末试卷及答案(完美版)
七年级数学(上册)期末试卷及答案(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.下列说法不正确的是( )A .过任意一点可作已知直线的一条平行线B .在同一平面内两条不相交的直线是平行线C .在同一平面内,过直线外一点只能画一条直线与已知直线垂直D .直线外一点与直线上各点连接的所有线段中,垂线段最短3.下列图形中,是轴对称图形的是( )A .B .C .D .4.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85°5.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b< 6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°8.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150°9.设42a ,小数部分为b ,则1a b-的值为( ) A .2- B 2C .21+ D .21 10.把代数式244ax ax a -+分解因式,下列结果中正确的是( ).A .()22a x -B .()22a x +C .()24a x -D .()()22a x x +-二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.3.已知点A (0,1),B (0 ,2),点C 在x 轴上,且2ABC S ∆=,则点C 的坐标________.4.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =________.5.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.6.近似数2.30万精确到________位.三、解答题(本大题共6小题,共72分)1.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩ (2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D ,(1)求证:AB=CD ;(2)若AB=CF ,∠B=30°,求∠D 的度数.4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.5.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、C5、D6、C7、A8、D9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、12、a+c3、(4,0)或(﹣4,0)4、40或805、76、百三、解答题(本大题共6小题,共72分)1、(1)12xy=⎧⎨=-⎩(2)2345xy⎧=-⎪⎪⎨⎪=⎪⎩2、(x﹣y)2;1.3、(1)略;(2)∠D=75°.4、(1)65°(2)证明略5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
七年级(上)期末数学试卷含答案
七年级(上)期末数学试卷一、精挑细选,火眼金睛(每小题3分,共30分)1.(3分)如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B2.(3分)若|b+2|与(a﹣3)2互为相反数,则b a的值为()A.﹣b B.C.﹣8 D.83.(3分)下列说法中,正确的是()A.单项式的系数是﹣2,次数是3B.单项式a的系数是0,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式的次数是2,系数为4.(3分)下列说法正确的是()A.近似数4.60与4.6的精确度相同B.近似数5千万与近似数5000万的精确度相同C.近似数4.31万精确到0.01D.1.45×104精确到百位5.(3分)某校对学生上学方式进行一次抽样调查,并根据调查结果绘制了不完整的扇形统计图,其中其他部分对应的圆心角是36°,则步行部分所占百分比是()A.10% B.35% C.36% D.40%6.(3分)某商品的进价是500元,标价是750元,商店要求以利润率为5%的售价打折出售,售货员可以打几折出售此商品()A.5 B.6 C.7 D.87.(3分)下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程t=,未知数系数化为1,得t=1D.方程﹣=1化成3x=68.(3分)如图,直线AB、CD交于O,OE是∠BOC的平分线且∠BOE=50度,那么∠AOE=()度.A.80 B.100 C.130 D.1509.(3分)若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式B.四次多项式或单项式C.七次多项式D.四次七项式10.(3分)∠α与∠β的度数分别是2m﹣67和68﹣m,且∠α与∠β都是∠γ 的补角,那么∠α与∠β的关系是()A.互余但不相等B.互为补角C.相等但不互余D.互余且相等二、认真填写,试一试自己的身手(每小题3分,共18分)11.(3分)在式子:、、、﹣、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2中,其中多项式有个.12.(3分)3x m+5y2与x3y n是同类项,则m n的值是.13.(3分)如果2x﹣4的值为5,那么4x2﹣16x+16的值是.14.(3分)若(a﹣1)x|a|+3=﹣6是关于x的一元一次方程,则a=;x=.15.(3分)如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA=,∠BOC的补角=.16.(3分)已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度.三、认真解答,一定要细心(本大题共9小题,满分72分,要写出必要计算解答过程)17.(6分)化简并求值:﹣6(a2﹣2ab+b2)+2(2a2﹣3ab+3b2),其中a=1,b=.18.(10分)解方程:(1)x+5(2x﹣1)=3﹣2(﹣x﹣5)(2)﹣2=﹣19.(8分)已知多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,单项式6x2n y5﹣m的次数与这个多项式的次数相同,求m+n的值.20.(8分)线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰好是AB中点,求DE的长?(2)若AC=4cm,求DE的长.21.(8分)已知多项式3x2+my﹣8与多项式﹣nx2+2y+7的差与x、y的值无关,求n m+mn的值.22.(8分)一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x2﹣2x+7,已知B=x2+3x﹣2,求正确答案.23.(8分)某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.24.(8分)期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章.已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟.为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?25.(8分)如图,已知OE是∠AOC的角平分线,OD是∠BOC的角平分线.(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE的度数.参考答案与试题解析一、精挑细选,火眼金睛(每小题3分,共30分)1.(3分)如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B【考点】IC:线段的性质:两点之间线段最短.【分析】根据线段的性质,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B,据此解答即可.【解答】解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.【点评】此题主要考查了线段的性质,要熟练掌握,解答此题的关键是要明确:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.2.(3分)若|b+2|与(a﹣3)2互为相反数,则b a的值为()A.﹣b B.C.﹣8 D.8【考点】1F:非负数的性质:偶次方;16:非负数的性质:绝对值.【分析】先依据非负数的性质求得a、b的值,然后再利用乘方法则求解即可.【解答】解:∵|b+2|与(a﹣3)2互为相反数,∴|b+2|+(a﹣3)2=0,∴b+2=0,a﹣3=0,解得:b=﹣2,a=3.∴b a=(﹣2)3=﹣8.故选:C.【点评】本题主要考查的是偶次方的性质,依据非负数的性质求得a、b的值是解题的关键.3.(3分)下列说法中,正确的是()A.单项式的系数是﹣2,次数是3B.单项式a的系数是0,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式的次数是2,系数为【考点】42:单项式;43:多项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:A、单项式的系数是﹣,次数是3,系数包括分母,错误;B、单项式a的系数是1,次数是1,当系数和次数是1时,可以省去不写,错误;C、﹣3x2y+4x﹣1是三次三项式,常数项是﹣1,每一项都包括这项前面的符号,错误;D、单项式的次数是2,系数为,符合单项式系数、次数的定义,正确;故选:D.【点评】本题考查的知识点为:单项式中的数字因数叫做这个单项式的系数.单项式中,所有字母的指数和叫做这个单项式的次数;多项式里次数最高项的次数叫做这个多项式的次数.单独的一个字母的系数和次数都是1.4.(3分)下列说法正确的是()A.近似数4.60与4.6的精确度相同B.近似数5千万与近似数5000万的精确度相同C.近似数4.31万精确到0.01D.1.45×104精确到百位【考点】1L:科学记数法与有效数字;1H:近似数和有效数字.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.【解答】解:A、近似数4.60精确到百分位,4.6精确到十分位,故错误;B、近似数5千万精确到千万位,近似数5000万精确到万位,故错误;C、近似数4.31万精确到百位.故错误;D、正确.故选:D.【点评】此题的目的在于考查学生对近似数有效数字的理解,必须掌握近似数有效数字的概念:从一个数的左边第一个非零数字起,到精确到的数位止,所有数字都是这个数的有效数字.5.(3分)某校对学生上学方式进行一次抽样调查,并根据调查结果绘制了不完整的扇形统计图,其中其他部分对应的圆心角是36°,则步行部分所占百分比是()A.10% B.35% C.36% D.40%【考点】VB:扇形统计图.【分析】先根据“其他”部分所对应的圆心角是36°,算出“其他”所占的百分比,再计算“步行”部分所占百分比,即可解答.【解答】解:∵其他部分对应的百分比为×100%=10%,∴步行部分所占百分比为1﹣(35%+15%+10%)=40%,故选:D.【点评】本题考查的是扇形统计图,熟知从扇形图上可以清楚地看出各部分数量和总数量之间的关系是解答此题的关键.6.(3分)某商品的进价是500元,标价是750元,商店要求以利润率为5%的售价打折出售,售货员可以打几折出售此商品()A.5 B.6 C.7 D.8【考点】8A:一元一次方程的应用.【分析】设售货员可以打几折出售此商品,根据售价﹣进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设售货员可以打x折出售此商品,根据题意得:750×﹣500=500×5%,解得:x=7.答:售货员可以打7折出售此商品.故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.(3分)下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程t=,未知数系数化为1,得t=1D.方程﹣=1化成3x=6【考点】86:解一元一次方程.【分析】根据解一元一次方程的一般步骤对各选项进行逐一分析即可.【解答】解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故本选项错误;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故本选项错误;C、方程t=,未知数系数化为1,得t=,故本选项错误;D、方程﹣=1化成3x=6,故本选项正确.故选:D.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.8.(3分)如图,直线AB、CD交于O,OE是∠BOC的平分线且∠BOE=50度,那么∠AOE=()度.A.80 B.100 C.130 D.150【考点】J2:对顶角、邻补角;IJ:角平分线的定义.【分析】先由角平分线的定义得出∠BOC=100°,再根据∠AOC与∠BOC互为邻补角即可求解.【解答】解:∵OE平分∠BOC,∠BOE=50°,∴∠BOC=2∠BOE=100°,∴∠AOC=180°﹣∠BOC=80°.∴∠AOE=∠AOC+∠COE=80°+50°=130°,故选:C.【点评】本题考查了角平分线的定义,邻补角的定义与性质,是需要熟记的内容.9.(3分)若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式B.四次多项式或单项式C.七次多项式D.四次七项式【考点】43:多项式.【分析】根据合并同类项法则和多项式的加减法法则可做出判断.【解答】解:多项式相加,也就是合并同类项,合并同类项时只是把系数相加减,字母和字母的指数不变,由于多项式的次数是“多项式中次数最高的项的次数”,B是一个四次多项式,因此A+B一定是四次多项式或单项式.故选:B.【点评】要准确把握合并同类项的法则,合并同类项时只是把系数相加减,字母和字母的指数不变,多项式的次数是“多项式中次数最高的项的次数”.10.(3分)∠α与∠β的度数分别是2m﹣67和68﹣m,且∠α与∠β都是∠γ 的补角,那么∠α与∠β的关系是()A.互余但不相等B.互为补角C.相等但不互余D.互余且相等【考点】IL:余角和补角.【分析】根据补角的性质,可得∠α=∠β,根据解方程,可得答案.【解答】解:∠α与∠β都是∠γ的补角,得∠α=∠β,即2m﹣67=68﹣m,解得m=45,2m﹣67=68﹣m=23.故选:C.【点评】本题考查了余角和补角,关键是熟悉补角的性质:等角的补角相等.二、认真填写,试一试自己的身手(每小题3分,共18分)11.(3分)在式子:、、、﹣、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2中,其中多项式有3个.【考点】43:多项式.【分析】根据几个单项式的和叫做多项式进行分析即可.【解答】解:1﹣x﹣5xy2、6xy+1、a2﹣b2是多项式,共3个,故答案为:3.【点评】此题主要考查了多项式,关键是掌握多项式定义.12.(3分)3x m+5y2与x3y n是同类项,则m n的值是4.【考点】34:同类项.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出关于m和n的方程,解出即可得出m和n的值,继而代入可得出m n的值.【解答】解:∵3x m+5y2与x3y n是同类项,∴m+5=3,n=2,解得:m=﹣2,n=2,∴m n=(﹣2)2=4.故答案为:4.【点评】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握:同类项:所含字母相同,并且相同字母的指数也相同,难度一般.13.(3分)如果2x﹣4的值为5,那么4x2﹣16x+16的值是25.【考点】4C:完全平方公式.【分析】根据完全平方公式,转化为已知条件平方即可求解.【解答】解:∵2x﹣4=5,∴4x2﹣16x+16=(2x﹣4)2=25.【点评】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.14.(3分)若(a﹣1)x|a|+3=﹣6是关于x的一元一次方程,则a=﹣1;x=.【考点】84:一元一次方程的定义;87:含绝对值符号的一元一次方程.【分析】根据一元一次方程的特点求出a的值,代入即可求出x的值.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.【解答】解:由一元一次方程的特点得,解得:a=﹣1,将a=﹣1代入方程得﹣2x+3=6,解得:x=.故答案为:﹣1,.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.15.(3分)如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA= 72°,∠BOC的补角=162°.【考点】J3:垂线;IL:余角和补角.【分析】直接利用垂直的定义结合,∠BOC与∠BOA的度数之比得出答案.【解答】解:∵BO⊥AO,∠BOC与∠BOA的度数之比为1:5,∴∠COA=×90°=72°,则∠BOC=18°,故∠BOC的补角=180°﹣18°=162°.故答案为:72°,162°.【点评】此题主要考查了垂直的定义以及互补的定义,正确得出∠COA的度数是解题关键.16.(3分)已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=35度.【考点】J2:对顶角、邻补角;IL:余角和补角.【分析】根据对顶角相等可得∠BOD=∠AOC,∠AOC的度数可由余角的定义求得.【解答】解:∵OE⊥AB,∴∠AOE=90°∵∠1=55°,∴∠AOC=90°﹣55°=35°,∴∠BOD=∠AOC=35°(对顶角相等).【点评】主要利用了余角的定义和对顶角相等的性质.三、认真解答,一定要细心(本大题共9小题,满分72分,要写出必要计算解答过程)17.(6分)化简并求值:﹣6(a2﹣2ab+b2)+2(2a2﹣3ab+3b2),其中a=1,b=.【考点】45:整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=﹣6a2+12ab﹣6b2+4a2﹣6ab+6b2=﹣2a2+6ab,当a=1、b=时,原式=﹣2×12+6×1×=﹣2+3=1.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.18.(10分)解方程:(1)x+5(2x﹣1)=3﹣2(﹣x﹣5)(2)﹣2=﹣【考点】86:解一元一次方程.【分析】(1)根据解一元一次方程的步骤依次:去括号、移项、合并同类项、系数化为1即可得;(2)根据解一元一次方程的步骤依次:去分母、去括号、移项、合并同类项、系数化为1即可得.【解答】解:(1)去分母,得:x+10x﹣5=3+2x+10,移项,得:x+10x﹣2x=3+10+5,合并同类项,得:9x=18,系数化为1,得:x=2;(2)去分母,得:5(x+3)﹣20=﹣2(2x﹣2),去括号,得:5x+15﹣20=﹣4x+4,移项,得:5x+4x=4﹣15+20,合并同类项,得:9x=9,系数化为1,得:x=1.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.19.(8分)已知多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,单项式6x2n y5﹣m的次数与这个多项式的次数相同,求m+n的值.【考点】43:多项式.【分析】根据已知得出方程2+m+1=6,求出m=3,根据已知得出方程2n+5﹣m=6,求出方程的解即可.【解答】解:∵多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,∴2+m+1=6,∴m=3,∵单项式26x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,∴2n=1+3=4,∴n=2.∴m+n=3+2=5.【点评】本题考查了多项式的有关内容的应用,注意:多项式中次数最高的项的次数叫多项式的次数.20.(8分)线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰好是AB中点,求DE的长?(2)若AC=4cm,求DE的长.【考点】ID:两点间的距离.【分析】(1)根据题意和图形可以求得DC和CE的长,从而可以求得DE的长;(2)根据题意和图形可以求得DC和CE的长,从而可以求得DE的长.【解答】解:(1)∵AB=12cm,点C恰好是AB中点,∴AC=BC=6cm,∵点D、E分别是AC和BC的中点,∴CD=3cm,CE=3cm,∴DE=CD+CE=6cm,即DE的长是6cm;(2)∵AB=12cm,AC=4cm,∴CB=8cm,∵点D、E分别是AC和BC的中点,∴DC=2cm,CE=4cm,∴DE=DC+CE=6cm,即DE的长是6cm.【点评】本题考查两点间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8分)已知多项式3x2+my﹣8与多项式﹣nx2+2y+7的差与x、y的值无关,求n m+mn的值.【考点】44:整式的加减.【分析】根据题意列出关系式,由题意确定出m与n的值,代入原式计算即可求出值.【解答】解:根据题意得:3x2+my﹣8+nx2﹣2y﹣7=(3+n)x2+(m﹣2)y﹣15,由题意得:m=2,n=﹣3,则原式=9﹣6=3.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.(8分)一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x2﹣2x+7,已知B=x2+3x﹣2,求正确答案.【考点】44:整式的加减.【分析】本题考查整式的加减运算灵活运用,先求出A表示的多项式,然后再求出2A+B,“要根据题意列出整式,再去括号,然后合并同类项进行运算.【解答】解:根据题意得A=9x2﹣2x+7﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=(9﹣2)x2﹣(2+6)x+4+7=7x2﹣8x+11.所以2A+B=2(7x2﹣8x+11)+x2+3x﹣2=14x2﹣16x+22+x2+3x﹣2=15x2﹣13x+20.【点评】本题考查整式的加减,整式的加减的实质就是去括号、合并同类项,这是各地中考的常考点.23.(8分)某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.【考点】8A:一元一次方程的应用.【分析】设甲队整治了x天,则乙队整治了(20﹣x)天,由两队一共整治了360m 为等量关系建立方程求出其解即可.【解答】解:设甲队整治了x天,则乙队整治了(20﹣x)天,由题意,得24x+16(20﹣x)=360,解得:x=5,∴乙队整治了20﹣5=15天,∴甲队整治的河道长为:24×5=120m;乙队整治的河道长为:16×15=240m.答:甲、乙两个工程队分别整治了120m,240m.【点评】本题是一道工程问题,考查了列一元一次方程解实际问题的运用,设间接未知数解应用题的运用,解答时设间接未知数是解答本题的关键.24.(8分)期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章.已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟.为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?【考点】8A:一元一次方程的应用.【分析】设总工作量为1,小贝加入后打x分钟完成任务,则小宝完成任务的,小贝完成任务的,据此列方程即可求解.【解答】解:能.设小贝加入后打x分钟完成任务,根据题意得:,解这个方程得:x=7.5,则小宝完成共用时37.5分,∵37.5<40,∴他能在要求的时间内打完.【点评】本题考查了理解题意列方程的能力,解决本题的关键是“设总工作量为1”.25.(8分)如图,已知OE是∠AOC的角平分线,OD是∠BOC的角平分线.(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE的度数.【考点】IK:角的计算;IJ:角平分线的定义.【分析】(1)直接利用角的计算方法以及角平分线的定义计算得出答案;(2)直接利用角的计算方法以及角平分线的定义计算得出答案.(1)∵OE是∠AOC的角平分线,OD是∠BOC的角平分线,∠AOC=120°,【解答】解:∠BOC=30°,∴∠EOC=60°,∠DOC=15°,∴∠DOE=∠EOC﹣∠DOC=60°﹣15°=45°;(2))∵OE是∠AOC的角平分线,OD是∠BOC的角平分线,∠AOB=90°,∠BOC=α,∴∠EOC=(90°﹣α),∠DOC=α,∴∠DOE=∠EOC﹣∠DOC=(90°﹣α)﹣α=45°.【点评】此题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。
(共8套)七年级上册数学试卷都附答案
08-09学年度第一学期期末测验题)(1)七年级数学(备用卷)一、选择题(本大题有12个小题,每小题4分,共48分)在以下的每个小题中给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1、比-2小3的数是( ) A. 1B. 5C.-5D. -12、我国西部地区约占我国国土面积的23,我国国土面积约960万平方千米,若用科学记数法表示,则我国西部地区的面积为( ) A. 464010⨯平方千米 B. 56410⨯平方千米 C. 76.410⨯平方千米D. 66.410⨯平方千米3、下列说法错误的是( )A.若x a =,则x a =±B. 0a ≥C.若a a =-,则0a <D. 若1aa=-,则0a < 4、在数轴上,原点和原点右边的点所表示的数是( ) A. 正数B. 负数C. 非正数D. 非负数5、下列判断的语句正确的是( ) A. 等式的两边可以同时乘以或除以同一个数 B. 在自然数范围内,方程340x -=无解 C. 方程31x -=的解是3x =- D. 方程41x=是一元一次方程 6、一个几何体恰好能通过如右图所示 的两个小孔,这个几何体可能是( )A. 圆锥B.三棱锥 C. 四棱柱 D. 三棱柱7、有理数a 、b 在数轴上的对应点的位置如图.则下列大小关系正确的是( )A .b a ->-B. b a > C .b a >- D. a b >-8、按下列线段的长度,点A 、B 、C 一定在同一条直线上的是( )A. 2,2,2AB cm BC cm AC cm ===B. 1,1,2AB cm BC cm AC cm ===C. 2,1,2AB cm BC cm AC cm ===D. 3,1,3AB cm BC cm AC cm ===9、下图中,直线PQ 、射线AB 、线段MN 能相交的是( )A B C D10、与方程5126x x --=的解相同的方程是( ) A. 3512x y --=B. 6(51)2x x --=C. 6(51)12x x --=D. (51)12x x --=11、下列考察适合普查的是( )A. 了解我市初中学生的环保意识B. 了解某校兰球队队员的身高C. 考察某品牌电脑的使用寿命D.了解一个鱼塘里所养的鱼的平均重量12、观察下列算式1234567822;24;28;216;232;264;2128;2256========根据上述算式中的规律,你认为20072的末位数字是( )A. 2B. 4C. 6D. 8二、填空题(本大题有10个小题,每小题4分,共40分)请将答案直接填在题后的横线上.13、如果向东运动8m 记作+8m ,那么向西运动5m 应记作 m. 14、48416923''︒+︒= .15、“用一个扩大3倍的放大镜去看一个角,这个角的度数会扩大3倍”这句话是 (填“正确”或“错误”)的.16、若1x =是方程27x a -=的解,则a = .17、甲看乙的方向为北偏东30︒,那么乙看甲的方向是 . 18、0.02079保留三个有效数字约为 .19、已知点B 在直线AC 上,AB=8cm ,AC=18cm ,P 、Q 分别是AB 、AC 的中点,则PQ=__ _. 20、一件商品提价25%后发现销路不是很好,若恢复原价,则应降价 %.表扬建议房产建筑道路交通其他投诉奇闻铁事40%35%30%25%20%10%5%21、如图,数轴上有6个点,且相邻两点间的距离都相等,则与D 点所表示的数最接近的整数是 .22、如图,是某晚报“百姓热线” 一周内接到的热线电话的统计图,其 中有关环境保护问题最多,共有70个, 请回答下列问题:(1)本周“百姓热线”共接到热线电话______个; (2)有关交通问题的电话有_______个.三、解答题(本大题有3个小题,每小题6分,共18分)以下各题,要求写出必要的计算步骤.23、计算:132()34---24、21112(12)(324-+-⨯-÷25、解方程:2(21)3(2)(6)x x x +=+-+四、解答题(本大题有5个小题,共44分)以下各题,要求写出必要的步骤.26、(8分)如图所示,C 是线段AB 的中点,D 是线段AC 的中点,已知图中所有线段的长度之和为39,求线段AC 的长度.ADCB27、(8分)已知1∠与2∠互为补角,并且1∠比2∠大20︒,求1∠与2∠的大小.28、(8分)一个学生用每小时5千米的速度步行,可以按时从家里返回学校,他走了全程的13后,搭上速度为每小时20千米的公共汽车,因此早到1小时,问他家距学校多远?29、(8分)某校七年级(二)班学生为了解观众对2006年春节晚会节目安排的欢迎程度,对本班学生进行问卷调查(每人都必须且只能选一项最喜欢的节目),将数据收集整理后绘制出下面的统计表.(1)请根据图表中的数据求出a 、b 、c 的值.(2)这样的统计数据能代表所有观众对2006年春节晚会节目安排的欢迎程度吗?试谈谈你的想法.30、(12分)某同学在两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元: (1)求该同学看中的随身听和书包的单价各是多少元?(2)某天,该同学上街恰好赶上商场促销,超市A 所有的商品八折销售,超市B 一次购物满100元返30元购物券(不足100元不返券,购物券全场通用,购物金额以单件计).但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他在哪一家买更省钱吗?08-09学年度第一学期期末测验题)(1)七年级数学参考答案一、CDCDB AABDC BD二、13.5-;14.1184'︒;15. 错误;16. 5-;17. 西偏南30︒;18. 0.0208;19. 5cm 或13cm ;20. 20;21. 2;22. (1)200 (2)40. 三、23. 1312;24. 4 ;25. 1x =-; 四、26. 6;27.1100,280∠=︒∠=︒ 28.10千米,29. (1)12,24%,50a b C ===(2)不能,调查对象不具有代表性,不能代表所有观众对2006年春晚的欢迎程度.30. (1)360元,92元(2)在超市A 买更省钱.2008-2009第一学期期末测验题)(2)(时间:90分钟)一、选择题(每小题3分,共计30分) 1.设a 是实数,则a a -的值( )A .可以是负数B .不可能是负数C .必是正数D .可以是正数也可以是负数2.无论a 取何值,则下列代数式总是有意义的是( )A .a1B .a 221 C .2aD .112-a 3.单项式z y x 323π-的系数和次数分别是( )A .5,π- B .61,- C .63,π- D .73,- 4.c b a -+-的相反数为( )A .c b a ++B .c b a +-C .c b a -+D .b a c --5.将多项式y y x x x y 322333-+-写成两个二项式的差,下列写法错误的是( )A .⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-y x yx x y 223333B .()()y x y x y x 322333+-+ C .()()y y x x x y 322333+--D .()()x y x y y x 332233---6.形如b a dc 的式子叫做二阶行列式(该定义将在大学阶段学习),它的运算法则用公式表示为b a dc =bc ad -,依此法则计算32-41的结果为( ),A .5B .-11C .-2D .117.某数a 经四舍五入得到的近似数是2.70,则a 的范围是( )A .705.2695.2<≤aB .75.265.2<≤aC .705.2695.2≤<aD .75.265.2≤<a8.下列说法中,正确的个数是( )个.①若my mx =,则0=-my mx②若my mx =,则y x = ③若my mx =,则my my mx 2=+ ④若y x =,则my mx = A .1B .2C .3D .49.如果823=+x ,那么16+x 的值为( )A .11B .26C .13D .-1110.学校到县城的路程是28千米,某同学上学除乘公共汽车外,还需步行一段路程,若公共汽车的速度为36干米/时,步行的速度为4干米/时,全程共需1小时,则步行所用的时间是( )小时. A .61B .51C .41D .31 二、填空题(每题3分,共计30分) 11.代数式b a 2+读作:________.12.已知多项式32292++--b b a m m ab 为5次多项式,则m =________. 13.若b a y x 2-与b a 527的和是单项式,则多项式y x 235121-的值为________. 14.威海市统计局初步核算,上年我市实现地区生产总值1583.45亿元,这个数据用科学记数法表示约为________元(保留3个有效数字) .15.已知A 、B 、C 三点在同一条直线上,M 、N 分别为线段AB 、BC 的中点,且AB=60,BC=40,则MN 的长为________.16.若方程()m m x m =+--221是关于x 的一元一次方程,则m =________. 17.有一个计算程序如下图,当输入a 的数值为-3时,最后输出的结果是________.18.已知关于x 的方程234=-m x 的解是m x =,则m 的值是________.19.若要买40瓶单价为2.8元的可口可乐,估算一下,需要________张面值为20元的人民币,这里我们取2.8的________估计值.20.如下图是某班学生外出乘车、步行、骑车的人数条形统计图和扇形统计图,该班共有________名学生.三.解答题(共60分) 21.(6分)把汽油注入容积为100升的油罐内,已知注入的油量Q (升)与注入的时间t (秒)有下面表格中所列的数量关系:(1)请把表中的空格填入适当的数据:(2)试写出注入的油量Q (升)与注入的时间t (秒)之间的关系式. 22.(8分) 王聪在解方程31213-=-+x a x 去分母时,方程左边的-1没有乘3,因而求得方程的解为2=x ,你能正确求出原先这个方程的解吗? 23.(8分) 已知1522+-=-=a B a A a ,. (1)化简:3A-2B+2;(2)当21-=a 时,求3A-2B+2的值.24.(8分)某班有50名学生,其中有26名男生和24名女生.在某次劳动时该班分成甲、乙两个组,甲组30人,乙纽20人.小亮是一名爱动脑筋的学生,他说无论男女如何划分,甲组中的男生总比乙组中的女生多6人.他说的对吗?为什么?25.(10分)初一(2)班共有学生42人,在一次考试中,数学得优的有30人,语文得优的有28人,两门功课都没有得优的有2人,问数学、语文都得优的有几人?26.(10分)京、津两地开通城际铁路,预计列车在两地间单程运行时间为半小时.某次试车时,列车由北京到天津的运行时间比预计时间多用6分钟,由天津返回北京的运行时间和预计时间相同.如果这次试车时,由天津返回北京比北京去天津时平均每小时多行驶40千米,那么试车时由北京到天津的平均速度是多少? 27.(10分)课本习题研究:课本122页有一道题是这样的:有一台“造数”的机器,它的加工方式是“对输入的数加上2”后输出一个新数,然后再将输出的新数输入“造数”的机器,又“造”出一个新数,依次进行下去(如图所示)。
七年级数学上册期末考卷(含答案)
七年级数学上册期末考卷(含答案)一、选择题(每题4分,共40分)1. 下列数中,最小的无理数是()A. √2B. √3C. πD. √52. 已知a=3,b=2,则a+b的值是()A. 1B. 5C. 5D. 13. 下列各式中,正确的是()A. (x+y)² = x² + y²B. (x+y)² = x² + 2xy + y²C. (xy)² = x² y²D. (xy)² = x² 2xy y²4. 下列关于单项式的说法,错误的是()A. 单项式中的数字因数叫做单项式的系数B. 单项式中的所有字母的指数和叫做单项式的次数C. 单项式是数或字母的积组成的式子D. 单项式中不含加减号5. 下列各式中,多项式的是()A. 5x² + 3x 2B. √x + 1C. 2x³ 4x² + 5D. 1/a + 3a²6. 已知一个等差数列的首项为2,公差为3,第五项是()A. 14B. 16C. 18D. 207. 下列关于平行线的说法,正确的是()A. 同位角相等B. 内错角相等C. 同旁内角互补8. 下列图形中,既是中心对称图形又是轴对称图形的是()A. 线段B. 等腰三角形C. 正方形D. 梯形9. 已知直角三角形的两条直角边分别为3和4,则斜边的长度是()A. 5B. 6C. 7D. 810. 下列关于概率的说法,错误的是()A. 概率是0到1之间的数B. 必然事件的概率为1C. 不可能事件的概率为0D. 随机事件的概率一定大于0二、填空题(每题4分,共40分)11. 已知|x|=3,则x的值为______。
12. 若3x6=0,则x的值为______。
13. 已知a²=9,则a的值为______。
14. 若(x2)(x+2)=0,则x的值为______。
七年级上册数学期末考试卷【含答案】
七年级上册数学期末考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个正方形的边长是4厘米,那么它的面积是:A. 16平方厘米B. 8平方厘米C. 12平方厘米D. 4平方厘米2. 下列哪个数是质数?A. 22B. 23C. 24D. 253. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是:A. 22厘米B. 32厘米C. 42厘米D. 52厘米5. 如果a=2,b=3,那么a²+b²的值是:A. 13B. 14C. 15D. 16二、判断题(每题1分,共5分)1. 两个等腰直角三角形的面积一定相等。
()2. 任何两个奇数相加的和都是偶数。
()3. 1千克等于1000克。
()4. 圆的周长和它的直径成正比例。
()5. 任何一个正方形的对角线都相等。
()三、填空题(每题1分,共5分)1. 如果一个圆的半径是5厘米,那么这个圆的直径是____厘米。
2. 1千克等于____克。
3. 如果一个三角形的两个内角分别是45度和45度,那么这个三角形是____三角形。
4. 2的平方根是____。
5. 如果一个数的平方是36,那么这个数是____。
四、简答题(每题2分,共10分)1. 请简述等腰三角形的性质。
2. 请简述质数的定义。
3. 请简述平行四边形的性质。
4. 请简述因数分解的定义。
5. 请简述比例尺的定义。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2. 一个等边三角形的边长是6厘米,求这个三角形的周长。
3. 如果a=3,b=4,求a²+b²的值。
4. 一个圆的半径是4厘米,求这个圆的面积。
5. 如果一个数的平方是81,求这个数。
六、分析题(每题5分,共10分)1. 已知一个等腰三角形的底边长是8厘米,腰长是10厘米,求这个三角形的面积。
七年级数学(上册)期末试卷及答案(完整)
七年级数学(上册)期末试卷及答案(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.方程13153520052007x x x x ++++=⨯的解是x =( ) A .20062007 B .20072006 C .20071003D .10032007 2.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .43 3.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为( )A .180B .182C .184D .1864.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.将长方形ABCD 纸片沿AE 折叠,得到如图所示的图形,已知∠CED'=70°,则∠EAB 的大小是( )A.60°B.50°C.75°D.55°6.观察下列图形,是中心对称图形的是( )A.B. C. D.7.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13208.如图,在数轴上,点A、B、C对应的数分别为a、b、c,若以下三个式子:b c<①,0a c②+<,0a b+<③都成立,则原点在()A.点A的左侧 B.点A和点B之间 C.点B和点C之间 D.点C的左侧9.已知实数a、b满足a+b=2,ab=34,则a﹣b=()A.1 B.﹣52C.±1 D.±5210.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:34x x-=________.2.若关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,则关于a、b的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是________. 3.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 _________.4.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.5.已知不等式组2123x a x b -<⎧⎨->⎩的解集为11x -<<,则()()11a b +-的值是________. 6.如图,直线12l l //,120︒∠=,则23∠+∠=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x ﹣1)=15 (2)71132x x -+-=2.已知,x 无论取什么值,式子35ax bx ++必为同一定值,求a b b +的值.3.如图是一块长方形的空地,长为x 米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为;(用含x的代数式表示)(2)若设丙地的面积为S平方米,求出S与x的关系式;x 时,求S的值.(3)当2004.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500销售获利(元/台)260190120()1购买丙型设备台(用含,x y的代数式表示) ;()2若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?()3在第()2题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、B5、D6、D7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x (x +2)(x ﹣2).2、3212a b ⎧=⎪⎪⎨⎪=-⎪⎩3、44、40°5、6-6、200°三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、853、(1)(0)12x -米 (2)(120)(240)S x x =-- (3)32004、(1)证明略;(2)证明略.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.--; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5 6、(1) 60x y台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。
七年级(上)期末数学试卷(含解析)
七年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列是一元一次方程的是()A.x+1B.x+1=y C.2x+1=﹣1D.x+1=x22.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.已知a=b,下列变形不一定成立的是()A.a﹣n=b﹣n B.an=bn C.a2=b2D.=14.已知x=1是关于x的一元一次方程2x﹣a=0的解,则a的值为()A.﹣1B.﹣2C.1D.25.下列运算正确的是()A.﹣2(a﹣b)=﹣2a﹣b B.﹣2(a﹣b)=﹣2a+bC.﹣2(a﹣b)=﹣2a﹣2b D.﹣2(a﹣b)=﹣2a+2b6.如图是正方体的一个平面展开图,则原正方体上与“周”相对的面上的字是()A.七B.十C.华D.诞7.某车间28名工人生产螺栓螺母,每人每天平均生产螺栓12个或螺母18个.现有x名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1:2配套,为求x列的方程是()A.12x=18(28﹣x)B.12x=2×18(28﹣x)C.2×18x=18(28﹣x)D.2×12x=18(28﹣x)8.如图,一直线段AB:BC:CD=3:2:4,点E、F分别是AB、CD的中点,且EF=22cm,则线段BC的长为()cm.A.8B.9C.11D.129.不相等的有理数a,b,c在数轴上的对应点分别是A、B、C,如果|a﹣b|+|b﹣c|=|a﹣c|,那么点B()A.在A、C点的左边B.在A、C点的右边C.在A、C点之间D.上述三种均可能10.如图,射线OB、OC在∠AOD的内部,下列说法:①若∠AOC=∠BOD=90°,则与∠BOC互余的角有2个;②若∠AOD+∠BOC=180°,则∠AOC+∠BOD=180°;③若OM、ON分别平分∠AOD,∠BOD,则∠MON=∠AOB;④若∠AOD=150°、∠BOC=30°,作∠AOP=∠AOB、∠DOQ=∠COD,则∠POQ=90°其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,共18分)11.若|a|=2,则a=.12.一个角的补角是它本身的3倍,则这个角的度数为.13.在同一平面内,三条直线两两相交,交点的个数为.14.若关于x的方程mx|m+1|﹣2=0是一元一次方程,则m=.15.一文具店在某一时间以每件30元的价格卖出两个笔袋,其中一个盈利25%,另一个亏损25%.卖这两个笔袋总的盈亏情况是元(填盈利或亏损多少)16.如图,数轴上线段AB及可移动的线段CD(点A在点B的左侧,点C在点D的左侧),已知线段AB覆盖8个整数点(数轴上对应整数的点),线段CD覆盖2个整数点,点M,点N分别为AC、BD的中点,则线段MN覆盖个整数点.三、解答题(共8题,共72分)17.(8分)计算:(1)48°39′+67°31′(2)18.(8分)解方程:19.(8分)先化简,再求值:,其中x=﹣3,y=2.20.(8分)整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?21.(8分)已知a、b、c在数轴上对应的点如图所示,(1)化简:2|b﹣c|﹣|b+c|+|a﹣c|﹣|a﹣b|;(2)若(c+4)2与|a+c+10|互为相反数,且b=|a﹣c|,求(1)中式子的值.22.(10分)为了支持囤货,大智路某手机卖场本月计划用9万元购进某国产品牌手机,从卖场获知该品牌3中不同型号的国产手机的进价及售价如下表:若该手机卖场同时购进两种不同型号的手机共50台,9万元刚好用完.(1)请你确定该手机卖场的进货方案,并说明理由;(2)该卖场老板准备把这批手机销售的利润的50%捐给公益组织,在同时购进两种不同型号的手机方案中,为了使捐款最多,你选择哪种方案?23.(10分)已知,直线l上线段AB=8、线段CD=4(点A在点B的左侧,点C在点D的左侧)(1)若线段BC=2,则线段AD=;(2)如图2,点P、Q分别为AD、BC的中点,求线段PQ的长度;(3)若线段CD从点B开始以1个单位/秒的速度向右运动,同时,点M从点A开始以2个单位/秒的速度向右运动,点N是线段BD的中点,若MN=2DN,求线段CD运动的时间.24.(12分)已知∠AOB、∠COD,射线OE平分∠AOD(1)如图1,已知∠AOB=180°、∠COD=90°,若∠DOB=40°,则∠COE=度;(2)∠AOB、∠COD的位置如图所示,已知∠AOB=2∠COD,求的值;(3)射线OC、OD在直线OA的右侧按顺时针方向分布,已知∠COD=30°,OF为∠AOD的三等分线且靠近射线OD,设∠COF=α,将∠COD绕点O顺时针旋转,满足45°<∠AOD<135°且∠AOD≠90°,若∠BOD=3α,求∠AOB(可用α表示)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】依次分析各个选项,选出符合一元一次方程定义的选项即可.【解答】解:A.属于整式,不符合一元一次方程的定义,即A项错误,B.属于二元一次方程,不符合一元一次方程的定义,即B项错误,C.符合一元一次方程的定义,是一元一次方程,即C项正确,D.属于一元二次方程,不符合一元一次方程的定义,即D项错误,故选:C.【点评】本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.2.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【分析】分别利用等式的基本性质判断得出即可.【解答】解:由等式a=b,可得:a﹣n=b﹣n,an=bn,a2=b2,但b=0时,无意义,故选:D.【点评】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或整式)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数(或整式),结果仍得等式是解题关键.4.【分析】把x=1代入方程2x﹣a=0得到关于a的一元一次方程,解之即可.【解答】解:把x=1代入方程2x﹣a=0得:2﹣a=0,解得:a=2,故选:D.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.5.【分析】分别根据去括号法则整理得出判断即可.【解答】解:A、﹣2(a﹣b)=﹣2a+2b,故此选项错误;B、﹣2(a﹣b)=﹣2a+2b,故此选项错误;C、﹣2(a﹣b)=﹣2a+2b,故此选项错误;D、﹣2(a﹣b)=﹣2a+2b,故此选项正确.故选:D.【点评】此题主要考查了去括号法则,正确去括号得出是解题关键.6.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“十”与“年”是相对面,“七”与“诞”是相对面,“周”与“华”是相对面.故原正方体上与“周”相对的面上的字是华.故选:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.【分析】要列方程首先要根据题意找出题中存在的等量关系:每天生产的螺母=每天生产的螺栓的2倍,从而列出方程.【解答】解:设x名工人生产螺栓,则生产螺母的工人为28﹣x名.每天生产螺栓12x个,生产螺母18×(28﹣x);根据“恰好每天生产的螺栓和螺母按1:2配套”,得出方程:2×12x=18(28﹣x)故选:D.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.8.【分析】设AB=3x,BC=2x,CD=4x,由线段和差关系列出方程,可求解.【解答】解:∵AB:BC:CD=3:2:4,∴设AB=3x,BC=2x,CD=4x,∵点E、F分别是AB、CD的中点,∴BE=AB=x,CF=CD=2x,∵EF=BE+BC+CF=x+2x+2x=22cm∴x=4cm∴BC=2x=8cm故选:A.【点评】本题考查了两点间距离,线段中点的定义,熟练运用线段和差关系求线段的长度是本题的关键.9.【分析】根据|a﹣b|+|b﹣c|表示数b的点到a与c两点的距离的和,|a﹣c|表示数a与c两点的距离即可求解.【解答】解:∵|a﹣b|+|b﹣c|=|a﹣c|,∴点B在A、C点之间.故选:C.【点评】本题主要考查了绝对值的定义,就是表示两点之间的距离.10.【分析】根据余角和补角的定义和角平分线的定义即可得到结论.【解答】解:①∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴与∠BOC互余的角有2个;正确;②∵∠AOD+∠BOC=∠AOB+∠BOC+∠COD+∠BCO=∠AOC+∠BOD=180°,∴∠AOC+∠BOD=180°;故正确;③如图1,∵OM、ON分别平分∠AOD,∠BOD,∴∠DOM=∠AOD,∠DON=∠BOD,∴∠MON=∠DOM﹣∠DON=(∠AOD﹣∠BOD)=∠AOB,故正确;④如图2,∵∠AOD=150°、∠BOC=30°,∴∠AOB+∠COD=150°﹣30°=120°,∵∠AOP=∠AOB、∠DOQ=∠COD,∴∠AOP+∠DOQ=(∠AOB+∠COD)=60°,∴∠POQ=150°﹣60°=90°,如图3,∵∠AOD=150°、∠BOC=30°,∴∠AOB+∠COD=150°﹣30°=120°,∵∠AOP=∠AOB、∠DOQ=∠COD,∴∠AOP+∠DOQ=(∠AOB+∠COD)=60°,∴∠POQ=150°+60°=210°,综上所述,∠POQ=90°或210°,故错误.故选:C.【点评】本题考查了余角和补角,角平分线的定义,正确的识别图形是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】理解绝对值的意义:一个数的绝对值表示在数轴上表示这个数的点到原点的距离.显然根据绝对值的意义,绝对值等于2的数有两个,为2或﹣2.【解答】解:∵|a|=2,∴a=±2.故本题的答案是±2.【点评】理解绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.【分析】首先根据补角的定义,设这个角为x°,则它的补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角的度数为x,则它的补角为(180°﹣x),依题意,得180°﹣x=3x,解得x=45°答:这个角的度数为45°.故答案为:45°.【点评】本题考查的是余角和补角的定义,如果两个角的和是一个直角,那么称这两个角互为余角.如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角.13.【分析】分三点共线和三点不共线两种情况作出图形即可.【解答】解:如图,三条不同的直线两两相交交点个数有1或3个.故答案为:1或3个【点评】本题考查了直线、射线、线段,作出图形,利用数形结合的思想求解更加简便.14.【分析】根据一元一次方程的定义,得到关于m的方程,结合m≠0,即可得到答案.【解答】解:根据题意得:|m+1|=1,即m+1=1或m+1=﹣1,解得:m=0或﹣2,∵m≠0,∴m=﹣2,故答案为:﹣2.【点评】本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.15.【分析】尽管是同样的价格卖出,但是由于两个笔袋的成本不一样,所以这是解决问题的出发点,于是分别设两个笔袋的成本来列式计算,求出成本即可.【解答】解:设两个笔袋的成本分别为a元、b元,由题意可知a(1+25%)=30,b(1﹣25%)=30解得a=24,b=40∴30×2﹣(24+40)=﹣4故答案为亏损了4元.【点评】本题考查的是一元一次方程在利润计算上的应用,计算利润问题抓住成本是关键,此题应该注意盈利25%与亏损25%的基数不一样.16.【分析】分析AB,CD,MN三者之间的关系,在通过长度推算整点的个数的范围【解答】解:MN=CB﹣CM﹣BN=CB﹣CA﹣BD=(2BC﹣CA﹣BD)=(CD+AB)∵线段AB覆盖8个整数点,7≤AB<9,∵线段CD覆盖2个整数点,1≤CD<3,4≤(CD+AB)<6,则线段MN覆盖个整数点为4,5,6故答案:4,5,6【点评】这题的难度较大,综合考察了线段的运算和线段覆盖的整点问题,一个典型的压轴题三、解答题(共8题,共72分)17.【分析】(1)根据角度的计算方法计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=115°70′=116°10′;(2)原式=×(﹣)×÷=﹣×=﹣.【点评】本题主要考查角度的计算和有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.【分析】依次去分母、去括号、移项、合并同类项、系数化为1即可得.【解答】解:2(x﹣1)﹣4=x+1,2x﹣2﹣4=x+1,2x﹣x=1+2+4,x=7.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.19.【分析】首先计算乘除,再合并同类项,将整式化为最简形式,然后把x的值代入即可.【解答】解:原式=x﹣=x+3,当x=﹣3时,原式=×(﹣3)+3=.【点评】本题考查了整式的混合运算﹣化简求值.先按运算顺序把整式化简,再把对应字母的值代入求整式的值.20.【分析】由一个人做要40小时完成,即一个人一小时能完成全部工作的,就是已知工作的速度.本题中存在的相等关系是:这部分人4小时的工作+增加2人后8小时的工作=全部工作.设全部工作是1,这部分共有x人,就可以列出方程.【解答】解:设应先安排x人工作,根据题意得:解得:x=2,答:应先安排2人工作.【点评】本题考查了一元一次方程的应用,是一个工作效率问题,理解一个人做要40小时完成,即一个人一小时能完成全部工作的,这一个关系是解题的关键.21.【分析】(1)通过数轴判断a,c,b的相对大小,从而确定绝对值里代数式的值的符号,再去掉绝对值,最后实现化简;(2)两个非负数互为相反数,只能各自为零.求出a、b、c的值再计算代数式的值.【解答】(1)解:观察数轴可知a<c<0<b,且|a|>|c|>|b|∴b﹣c>0,b+c<0,a﹣c<0a﹣b<0∴原式=2(b﹣c)+(b+c)+(c﹣a)+(a﹣b)=2b故化简结果为2b.(2)解:∵(c+4)2与|a+c+10|互为相反数,∴(c+4)2+|a+c+10|=0∴c+4=0,a+c+10=0∴c=﹣4,a=﹣6而b=|a﹣c|,∴b=2∴2b=4故(1)式的值为4.【点评】本题考查的是利用数轴比较数的大小,并进行化简,利用数轴判断绝对值内代数式的符号是解题关键.22.【分析】(1)分成三种分案进行讨论,列出一元一次方程组,即可求出方案;(2)根据(1)的方案算出每一种方案的利润,然后计算出捐出给工艺的钱,即可求出方案.【解答】解:(1)①当购进A和B两种品牌手机时,设买进A品牌手机a台时,则买进B品牌手机(50﹣a)台时,根据题意:1500a+2100(50﹣a)=90000,解得a=25,故可购进A品牌手机25台时,则买进B品牌手机25台.②当购进B和C两种品牌手机时,设买进B品牌手机b台时,则买进C品牌手机(50﹣b)台时,根据题意:2100b+2500(50﹣b)=90000,解得b=87.5>50,故舍去;③当购进A和C两种品牌手机时,设买进C品牌手机c台时,则买进A品牌手机(50﹣c)台时,根据题意:1500(50﹣c)+2500c=90000,解得c=15,故可购进C品牌手机15台时,则买进A品牌手机35台.故有两种进货方案,方案一:可购进A品牌手机25台时,则买进B品牌手机25台;方案二:可购进C品牌手机15台时,则买进A品牌手机35台.(2)方案一的利润:25(1650﹣1500)+25(2300﹣2100)=8750元,捐款数额:8750×50%=4375元;方案二的利润:15(2750﹣2500)+35(1650﹣1500)=9000元,捐款数额:9000×50%=4500元;故选择方案二,即可购进C品牌手机15台时,则买进A品牌手机35台.【点评】本题考查了一元一次方程的应用题,根据已知问题,列出一元一次方程使解答此题的关键.23.【分析】(1)①当点C在点B的左侧时,②当点C在点B的右侧时,根据线段的和差即可得到结论;(2)设BC=x,则AD=AB+BC+CD=12+x,根据线段中点的定义得到PD=AD=6+x,CQ=x,于是得到结论;(3)线段CD运动的时间为t,则AM=2t,BC=t,列方程即可得到结论.【解答】解:(1)①当点C在点B的左侧时,∵AB=8,BC=2,CD=4,∴AC=6,∴AD=AC+CD=10,②当点C在点B的右侧时,∵AB=8,BC=2,CD=4,∴AD=AB+BC+CD=14,故线段AD=10或14;故答案为:10或14;(2)设BC=x,则AD=AB+BC+CD=12+x,∵点P、Q分别为AD、BC的中点,∴PD=AD=6+x,CQ=x,∴PQ=PD﹣CD﹣CQ=6+x﹣4﹣x=2;(3)线段CD运动的时间为t,则AM=2t,BC=t,∴BM=AB﹣AM=8﹣2t,BD=BC+CD=t+4,∵点N是线段BD的中点,∴DN=BN=BD=t+2,∵MN=2DN,∴8﹣2t+t+2=2(t+2),解得:t=,故线段CD运动的时间为s.【点评】本题主要考查了两点间的距离,解决问题的关键是依据线段的和差关系列方程.24.【分析】(1)先求出∠AOD,然后计算出∴∠DOE,即可求出∠COE=∠COD﹣∠DOE;(2)通过设出已知角∠COD,∠BOC,然后根据题意,表示出∠COE和∠DOB;(3)分情况讨论,当OB在OD下方和OB在OD上方,进行计算.【解答】解:(1)∵∠AOB=180°,∠DOB=40°,∴∠AOD=140°,∵射线OE平分∠AOD,∴∠DOE=∠AOD=70°,∵∠COD=90°,∴∠COE=∠COD﹣∠DOE=20°,故答案为:20;(2)∵∠AOB=2∠COD,∴设∠COD=x,∠BOC=y,则∠AOB=2x,∴∠BOD=x﹣y,∠AOD=3x﹣y,∵射线OE平分∠AOD,∴∠DOE=∠AOD=(3x﹣y),∴∠COE=∠DOE﹣∠COD=(3x﹣y)﹣x=(x﹣y),∴==;(3)由题意可知:∠DOF=30°﹣α,=20,此时,当OB在OD下方时,此时;当OB在OD上方时,此时.【点评】本题主要考查学生在学习过程中对角度关系及运算的灵活运用和掌握.此类题目的练习有利于学生更好的对角的理解.。
初中七年级数学上册期末考试卷及答案【完整版】
初中七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,△ABC ≌△ADE ,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A .40°B .45°C .35°D .25°9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30° 10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc +++结果是________. 2.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个. 3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE(1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、A2、C3、D4、A5、C6、D7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、23、4332a ≤≤ 4、50°5、246、7三、解答题(本大题共6小题,共72分)1、(1)711=y (2)x=0 2、353、(1)证明见解析;(2)∠FAE=135°;4、(1)OF ⊥OD ,证明详略;(2)∠EOF =60°.5、(1)作图见解析;(2)120.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。
七年级数学上册期末试卷【含答案】
七年级数学上册期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长为10厘米,腰长为12厘米,则该三角形的周长是?A. 22厘米B. 32厘米C. 42厘米D. 52厘米3. 下列哪个数是偶数?A. 101B. 111C. 121D. 1314. 一个长方体的长、宽、高分别是8厘米、6厘米和4厘米,则该长方体的体积是?A. 192立方厘米B. 200立方厘米C. 208立方厘米D. 216立方厘米5. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10二、判断题(每题1分,共5分)1. 两个质数相乘,其积一定是合数。
()2. 等边三角形的三条边都相等。
()3. 一个数的倍数一定比这个数大。
()4. 两个长方体的体积相等,则它们的长、宽、高一定相等。
()5. 分子和分母相同的分数是最简分数。
()三、填空题(每题1分,共5分)1. 1千米等于______米。
2. 一个等腰三角形的底边长为10厘米,腰长为12厘米,则该三角形的周长是______厘米。
3. 下列哪个数是偶数?______4. 一个长方体的长、宽、高分别是8厘米、6厘米和4厘米,则该长方体的体积是______立方厘米。
5. 下列哪个分数是最简分数?______四、简答题(每题2分,共10分)1. 请简述质数的定义。
2. 请简述等腰三角形的性质。
3. 请简述偶数的定义。
4. 请简述长方体的体积公式。
5. 请简述最简分数的定义。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求该长方形的面积。
2. 一个等边三角形的边长是12厘米,求该三角形的周长。
3. 两个质数相乘,其积一定是合数。
请举例说明。
4. 一个数的倍数一定比这个数大。
请举例说明。
5. 分子和分母相同的分数是最简分数。
请举例说明。
七年级数学上册期末试卷(附含答案)
七年级数学上册期末试卷(附含答案)(满分: 120分考试时间: 120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数: 0 −5 −(−7) −|−8| (−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+a<0 aa<0 则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6a时水位变化记为+6a 那么水位下降6a时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1 −2 0 3中最小的数是()A.−1B.−2C.0D.37. 若a和a都是4次多项式则a+a一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段aa 则aa盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()/A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a a的点在数轴上的位置如图所示下列结论错误的是()/A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −112的倒数是________ ________的绝对值是1 ________的立方是8.12. 在月球表面白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a.则月球表面昼夜的温差为________∘a.13. 若|a|=5 a=−2 且aa>0 则a+a=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负): (+4, −8) (−5, +6) (−3, +2) (+1, −7) 则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下: +8 −3 +12 −7 −10 −3 −8 +1 0 +10.1这10名同学中最高分数是多少?最低分数是多少?2这10名同学的平均成绩是多少.(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆3本周实际销售总量达到了计划数量没有?4该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为: (单位: 海里)+80 −40 +60 +75 −65 −80 此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18.(10分)请画一条数轴然后在数轴上把下列各数表示出来: 312−4 −2120 −1 1 并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20.(10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位: 元)分别为+2 −3 +2 +1 −2 −1 0 −2. 当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线aa分别交a轴a轴于点aa,0和点a0,a且a a满足a2+4a+4+|2a+a|=0./(1)a=________ a=________.(2)点a在直线aa的右侧且∠aaa=45∘:①若点a在a轴上则点a的坐标为_________②若△aaa为直角三角形求点a的坐标.22.(10分)问: 该服装店在售完这30件a恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解: ∵0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∴负数共有2个.故选a.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据aa<0 结合乘法法则易知a a异号而a+a<0 根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解: ∵aa<0a a b异号又a a+b<0∴负数的绝对值大于正数的绝对值.故选a.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解: 1958000用科学记数法可表示为1.958×106.故选a.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6a时水位变化记作−6a.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2 a正确3的倒数是3a正确(−3)−(−5)=−3+5=2 a正确−11 0 4这三个数中最小的数是−11 a错误.故选a.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1 |−2|=2 根据负数的绝对值越大这个数就越小得到−2<−1 而0大于任何负数小于任何正数则有理数−1 −2 0 3的大小关系为−2<−1<0<3.【解答】解: ∵|−1|=1 |−2|=2a −2<−1∴有理数−1 −2 0 3的大小关系为−2<−1<0<3.故选a.7.【答案】C【考点】多项式的项与次数【解析】若a和a都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解: 若a和a都是4次多项式则a+a的结果的次数一定是次数不高于4次的整式.故选a.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段aa 则线段aa盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段aa起点在整点时覆盖16个数②当线段aa起点不在整点即在两个整点之间时覆盖15个数.故选a.9.【答案】C【考点】有理数大小比较数轴【解析】根据a a两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解: ∵a a两点在数轴上的位置可知: −1<a<0 a>1 |a|<|a|a a−b<0a+b>0b−1>0故a a a错误故a正确.故选a.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a −1 0 1 a的大小关系然后根据正实数都大于0 负实数都小于0 正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解: 根据实数a a在数轴上的位置可得a<−1<0<1<aa 1<|a|<|b|a 选项A错误a 1<−a<ba 选项B正确a 1<|a|<ba 选项C正确a −b<a<−1∴选项D正确.故选D.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−2,±1,23【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解. 【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解: 白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a所以月球表面昼夜的温差为:127∘a−(−183∘a)=310∘a.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5 a=−2 且aa>0 可知a=−5 代入原式计算即可.【解答】解: ∵|a|=5 a=−2 且aa>0∴a+a=−5−2=−7.故答案为: −7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解: 由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为: 12.三解答题(本题共计8 小题共计78分)15.【答案】解:1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:14−3−5+300=296.故答案为: 296.221+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解: 如图:/用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:/用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解: (1)原式=0.75+0.25+18+78=1+1=2. (2)原式=−8+6+2+15=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解: (1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解: (+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法: 同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值. 相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质: 偶次方非负数的性质: 绝对值【解析】解: (1)由题意得得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+a=0解得a=−2 a=4. 故答案为:−2 4.【解答】解:(1)由题意得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+b=0解得a=−2 a=4.故答案为: −2 4.(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).22.【答案】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答: 该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。
七年级(上)期末数学试卷(含答案解析)
七年级(上)期末数学试卷(含答案解析)一、选择题(本大题共10小题,共30.0分)1.在下列有理数:-5,-(-3)3,|-|,0,-22中,负数有()A. 1个B. 2个C. 3个D. 4个2.随着北京公交车票价调整,乘客在乘车时可以通过新版公交站牌计算乘车费用,新版站牌每一个站名上方都有一个相应的数字,将上下车站站名称对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参考票制规则计算票价,具体来说:另外,一卡通刷卡实行8折优惠,小明用一卡通乘车上车时站名上对应的数字是5,下车时站名上对应的数字是20,那么小明乘车的费用是()A. 1.6元B. 2元C. 2.4元D. 3.2元3.下列各组中,不是同类项的是()A. 52与25B. -ab与baC. 0.2a2b与-a2bD. a2b3与-a3b24.下列说法:①倒数等于本身的数只有1;②若a、b互为相反数,那么a、b的商必定等于-1;③对于任意实数x,|x|+x一定是非负数;④两个负数,绝对值小的反而大,其中正确的个数是()A. 0个B. 1个C. 2个D. 3个5.在有理数-32,3.5,-(-3),|-2|、(-)2,-3.1415926中,负数的个数是()A. 1个B. 2个C. 3个D. 4个6.数18000用科学记数法表示为()A. 0.18×104B. 1.8×104C. 18×104D. 1.8×1057.下列各组数中,相等的一组是()A. (-2)3与-23B. (-2)2与-22C. (-3×2)3与3×(-2)3D. -32与(-3)+(-3)8.如图几何体的俯视图是()A.B.C.D.9.要使多项式不含的项,则的值是A. B. C. D.10.如图,已知AD∥BC,∠B=32°,DB平分∠ADE,则∠DEC=()A. 64°B. 66°C. 74°D. 86°二、填空题(本大题共10小题,共40.0分)11.单项式-4πa3b的系数是______.12.如图,数a,b,c所表示的数如图所示:化简代数式的结果为:|a+b-c|-2|b-a|+|2c|=______.13.已知有理数a、b在数轴上的位置如图所示,化简|a-b|+|a+b|的结果为______.14.已知a、b互为相反数,m、n互为倒数,x的绝对值为2,则-2mn+-x=______.15.将直角三角形按如图放置,直角顶点重合,则∠AOB+∠COD=______.16.若∠A的补角等于116°,则∠A= .17.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和相等,则a+b+c的值为______.18.如图.AC,BD交于点O.图中共有______ 条线段,它们分别是______ .19.废纸回收能减少树木的砍伐量,保持森林覆盖率,有利于封山育林减少水土流失,有利于生态环境,能减少化学原料的运用与排放,减少污染,有利于环境维护和降低消费本钱.若回收废纸1kg,可生产(结再生纸0.6kg,小明和小亮每学期分别能回收讲义等废纸a kg,b kg,这些废纸可生产再生纸______kg.果用含a,b的代数式表示)20.若x2=9,则x= ______ ;若x3=-27,x= ______ ;已知|x|=9,则x= ______ .三、计算题(本大题共1小题,共5.0分)21.先化简,再求值:5a2-[a2-(2a-5a2)-2(a2-3a)],其中a=4.四、解答题(本大题共7小题,共45.0分)22.某一出租车一天下午以菜市场为出发地在东西方向营运, 约定向东为正,向西为负,行车里程(单位:千米)依先后次序记录如下: +8,-3,-4,+2,-8,+13,-2(1)将最后一名乘客送到目的地,出租车离出发点菜市场多远?在菜市场的什么方向?(2)若每千米耗油0.2升,问从出发地出发到收工时共耗油多少升?23.有理数a,b,c在数轴上的位置如图所示,且|a|=|b|,化简|c-a|+|c-b|+|a+b|.24.由角的旋转的定义可知,平角的两边成一条直线,能不能说直线就是平角?周角两边重合成同一条射线,能不能说周角就是射线?为什么?25.如图,已知∠1+∠2=180°,∠3=∠B,对DE∥BC说明理由.理由:∵∠1+∠2=180°(已知)且∠1+______=180°(邻补角定义),∴∠2=______,∴BD∥EF (______),∴∠3=______(两直线平行,内错角相等),又∵∠3=∠B(已知)∴______=______(等量代换),∴DE∥BC (______).26.如图,点P是∠AOB的边OB上的一点,过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到______的距离,______是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是______(用“<”号连接)27.已知长方形的长为a,宽为b.(1)求阴影部分的面积.(用a、b字母表示)(2)当a=5,b=3时,求阴影部分的面积.28.已知直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠PAB、∠CDP、∠APD之间的数量关系为______.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠PAN+∠PAB=∠APD,求∠AND的度数.答案和解析1.【答案】B【解析】解:∵-(-3)3=27,|-|=,-22=-4,∴-5,-(-3)3,|-|,0,-22中,负数有-5,-22,故选B.首先化简各数,根据负数的定义分别进行判断,从而得出负数的个数即可.本题主要考查了正数和负数以及绝对值和乘方等知识,正确化简各数是解题关键.2.【答案】C【解析】解:小明乘车|20-5|=15(站),对应的票价为3元,3×80%=2.4(元),故选:C.先计算出小明乘车是15站,对照表格,对应的票价是3元,根据一卡通刷卡实行8折优惠,即可计算出费用.本题考查了有理数的减法,绝对值,根据题意求出小明乘车路程,对照表格,得出对应的票价,这是解题的关键.3.【答案】D【解析】解:A.52与25是同类项,故此选项不符合题意;B.-ab与ba所含字母相同,相同字母的指数相同,是同类项,故此选项不符合题意;C.0.2a2b与-a2b所含字母相同,相同字母的指数相同,是同类项,故此选项不符合题意;Da2b3与-a3b2所含字母相同,但相同字母的指数不同,不是同类项,故此选项符合题意.故选:D.根据同类项的定义(所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项)即可作出判断.本题考查了同类项,掌握同类项的定义是解答本题的关键.4.【答案】C【解析】解:①倒数等于本身的数只有1,错误,还有-1;②若a、b互为相反数,那么a、b的商必定等于-1,错误,a,b不能等于0;③对于任意实数x,|x|+x一定是非负数,正确;④两个负数,绝对值小的反而大,正确.故选:C.直接利用倒数以及绝对值和相反数的性质分别分析得出答案.此题主要考查了倒数以及绝对值和相反数的性质,正确把握相关性质是解题关键.5.【答案】B【解析】解:-32=-9,-(-3)=3,|-2|=2,,∴-32,-3.1415926是负数,一共2个,故选:B.根据有理数的乘方法则、相反数的概念、绝对值的性质计算,根据负数的概念判断即可.本题考查的是有理数的乘方、绝对值的性质、正数和负数,掌握有理数的乘方法则、绝对值的性质是解题的关键.6.【答案】B【解析】解:18000=1.8×104.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【答案】A【解析】解:A.(-2)3=-8,-23=-8,相等,此选项符合题意;B.(-2)2=4,-22=-4,不相等,此选项不符合题意;C.(-3×2)3=(-6)3=-216,3×(-2)3=3×(-27)=-81,不相等,此选项不符合题意;D.-32=-9,(-3)+(-3)=-6,不相等,此选项不符合题意;故选:A.根据乘方的定义和有理数混合运算顺序逐一计算即可判断.本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.8.【答案】C【解析】解:从上面看,是一个矩形,矩形内部是一个由虚线围成的小矩形.故选:C.找到从几何体的上面看所得到图形即可.此题主要考查了简单几何体的三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.注意所看到的线都要用实线表示出来.9.【答案】D【解析】由题意得,,,,故选D。
七年级上册数学期末考试卷及答案
七年级第一学期数学期末试卷(答案附后)一、选择题(每小题3分,共30分)1.如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26%2.如果2()13⨯-=,则“”内应填的实数是( ) A .32B .23C .23-D .32-3. 实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1ab< D .0a b -<4. 下面说法中错误的是( ). A .368万精确到万位B .2.58精确到百分位C .0.0450有4个有效数字D .10000保留3个有效数字为1.00×104 5.如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ( )A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱6.如果a <0,-1<b <0,则a ,ab ,2ab 按由小到大的顺序排列为( ) A .a <ab <2ab B .a <2ab <abbC .ab <2ab <aD .2ab <a <ab7.在解方程5113--=x x 时,去分母后正确的是( ) A .5x =15-3(x -1) B .x =1-(3 x -1) C .5x =1-3(x -1)D .5 x =3-3(x -1)8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于( )A .4x -1B .4x -2C .5x -1D .5x -29. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2mD .2n图1 图2 从正南方向看 从正西方向看第7题 第8题 10.若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这 个几何体最多可由多少个这样的正方体组成?( )A .12个B .13个C .14个D .18个二、填空题:(每小题3分,共24分)11.多项式132223-+--x xy y x x 是_______次_______项式12.三视图的平面图都是同一平面图形的几何体mnnn有 、 .(写两种即可)13.若ab ≠0,则等式a b a b +=+成立的条件是______________. 14.多项式223368x kxy y xy --+-不含xy 项,则k = ;15.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 .(用含m ,n 的式子表示)16.有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果是________________.17.一个角的余角比它的补角的32还少40°,则这个角为 度. 18.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品 三、解答题(共46分)19.计算:(1)(-10)÷551⨯⎪⎭⎫ ⎝⎛- (2)()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯--.AB mnx20.解方程:(1)13421+=-x x (2)0.10.20.02x --10.5x += 3.21.先化简 (本题8分):-5a 2+(3a 2-2a)-(-3a 2-7),然后选择一个自己喜欢的数求值。
初中七年级数学上册期末考试及答案【完整版】
初中七年级数学上册期末考试及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠44.下列图形具有稳定性的是( )A .B .C .D .5.两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”.为了便于记忆,同学们可仿照图用双手表示“三线八角”(两大拇指代表被截直线,食指代表截线).下列三幅图依次表示( )A .同位角、同旁内角、内错角B .同位角、内错角、同旁内角C .同位角、对顶角、同旁内角D .同位角、内错角、对顶角6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A.5个B.4个C.3个D.2个7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定8.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°9.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm 10.下列四个不等式组中,解集在数轴上表示如图所示的是()A.23xx≥⎧⎨>-⎩B.23xx≤⎧⎨<-⎩C.23xx≥⎧⎨<-⎩D.23xx≤⎧⎨>-⎩二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC'=________.3.因式分解:2218x-=______.4.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是________.5.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=34°,则∠BOD为________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32316x yx y-=⎧⎨+=⎩(2)25528x yx y-=⎧⎨+=⎩2.解不等式组:2(3)47{22x xxx+≤++>并写出它的所有整数解.3.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为小时;(3)乙从出发起,经过小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?4.如图,已知∠A=∠ADE.(1)若∠EDC=3∠C,求∠C的度数;(2)若∠C=∠E.求证:BE∥CD.5.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小組.要求每人必须参加.并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据);(2)________, ________;m n ==(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?6.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 、B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元.(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过11800万元,地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校改扩建资金分别为每所300万元和500万元,请问共有哪几种改扩建方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、A5、B6、B7、B8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、a≥22、53、2(x+3)(x﹣3).4、40°5、AC=DF(答案不唯一)6、56°三、解答题(本大题共6小题,共72分)1、(1)5{2xy==;(2)21xy=⎧⎨=-⎩.2、原不等式组的解集为122x-≤<,它的所有整数解为0,1.3、(1)10;(2)1;(3)3;(4)不一样,理由略;4、(1)45°;(2)详略.5、(1)150;补图见解析;(2)36,16;(3)选择“围棋”课外兴趣小组的人数为192人.6、(1)1200万元、1800万元;(2)共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.。
七年级上册数学期末试卷(含答案)
七年级上册数学期末试卷(含答案)一、选择题1.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数. 2.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)33.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠4.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°5.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm6.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+57.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +18.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=69.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱10.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB11.3的倒数是( ) A .3B .3-C .13D .13-12.下列方程的变形正确的有( ) A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x =13.下列变形中,不正确的是( )A .若x=y ,则x+3=y+3B .若-2x=-2y ,则x=yC .若x ym m =,则x y = D .若x y =,则x y m m= 14.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .15.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人二、填空题16.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.17.已知x=5是方程ax ﹣8=20+a 的解,则a= ________18.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 19.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.20.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.219________22.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________23.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.24.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.25.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.26.若∠1=35°21′,则∠1的余角是__.27.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示). 28.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.29.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______. 30.用度、分、秒表示24.29°=_____.三、压轴题31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小. 32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.33.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看: 边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.34.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.35.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数36.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.37.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值38.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB . (1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题解析:A ∵0的绝对值是0,故本选项错误. B ∵互为相反数的两个数的绝对值相等,故本选项正确. C 如果一个数是正数,那么这个数的绝对值是它本身. D ∵0的绝对值是0,故本选项错误. 故选C .2.A解析:A 【解析】 【分析】根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.3.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.4.A解析:A 【解析】 【分析】延长CD 交直线a 于E .由∠ADC =∠AED +∠DAE ,判断出∠ADC >70°即可解决问题. 【详解】解:延长CD 交直线a 于E .∵a ∥b , ∴∠AED =∠DCF , ∵AB ∥CD ,∴∠DCF =∠ABC =70°, ∴∠AED =70°∵∠ADC =∠AED +∠DAE , ∴∠ADC >70°, 故选A . 【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.C解析:C 【解析】 【分析】应考虑到A 、B 、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论. 【详解】①如图1所示,当点C 在点A 与B 之间时,∵线段AB=10cm ,BC=4cm , ∴AC=10-4=6cm . ∵M 是线段AC 的中点, ∴AM=12AC=3cm , ②如图2,当点C 在点B 的右侧时, ∵BC=4cm , ∴AC=14cmM 是线段AC 的中点, ∴AM=12AC=7cm . 综上所述,线段AM 的长为3cm 或7cm . 故选C . 【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.6.A解析:A 【解析】试题分析:设段数为x ,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n 时,x=4n+1.故选A . 考点:探寻规律.7.C解析:C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负, 指数为从第3开始的奇数,所以指数部分规律为21n , ∴第n 个单项式是 (-1)n -1x 2n +1 , 故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.8.C解析:C 【解析】【分析】方程两边都乘以分母的最小公倍数即可.【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.9.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C .【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.10.D解析:D【解析】A. ∵∠AOC =∠BOC ,∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误;B. ∵∠AOB =2∠BOC =∠AOC +∠BOC ,∴∠AOC =∠BOC ,∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误;C. ∵∠AOC =12∠AOB , ∴∠AOB =2∠AOC =∠AOC +∠BOC ,∴∠AOC =∠BOC ,∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误;D. ∵∠AOC +∠BOC =∠AOB ,∴假如∠AOC =30°,∠BOC =40°,∠AOB =70°,符合上式,但是OC 不是∠AOB 的角平分线,故本选项正确.故选D.点睛: 本题考查了角平分线的定义,注意:角平分线的表示方法,①OC 是∠AOB 的角平分线,②∠AOC =∠BOC ,③∠AOB =2∠BOC (或2∠AOC ),④∠AOC (或∠BOC )=12∠AOB . 11.C解析:C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】 本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 13.D解析:D【解析】【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可.【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x y m m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确;D. 当m=0时,x y =两边同除以m 无意义,则x y m m=不成立,故D 选项错误; 故选:D .【点睛】 本题考查等式的变形,熟记等式的基本性质是解题的关键.14.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D .【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.15.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题16.8【解析】【分析】根据从一个n 边形的某个顶点出发,可以引(n-3)条对角线,把n 边形分为(n-2)的三角形作答.【详解】设多边形有n 条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.17.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.18.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.19.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.20.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】,3;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.22.-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a 与b的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x取值解析:-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即可得出结果.【详解】解:根据题意得:2261-++-+=(a-1)x2+(b-6)x+1,x bx ax x由结果与x取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x的取值无关”的意义是解本题的关键.23.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠A CB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.24.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.25.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若解析:26,5,4 5【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x +1=131,解得x =26;若经过二次输入结果得131,则5(5x +1)+1=131,解得x =5;若经过三次输入结果得131,则5[5(5x +1)+1]+1=131,解得x =45; 若经过四次输入结果得131,则5{5[5(5x +1)+1]+1}+1=131,解得x =−125(负数,舍去);故满足条件的正数x 值为:26,5,45. 【点睛】 本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x 的值.26.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.27.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.28.8【解析】【分析】把x=﹣2代入方程2x+a ﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a=8. 故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x =﹣2代入方程2x +a ﹣4=0求解即可.【详解】把x =﹣2代入方程2x +a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a =8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x =﹣2代入方程2x +a ﹣4=0求解. 29.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.30.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′解析:241724︒'"【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.三、压轴题31.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.32.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.33.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.34.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.35.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.。
七年级(上学期)期末数学试卷(含答案)
七年级(上学期)期末数学试卷(含答案)题号一二三四总分得分一、选择题(本大题共12小题,共36.0分)1.在代数式-2x2,3xy,,-,0,mx-ny中,整式的个数为()A. 2B. 3C. 4D. 52.比4的相反数小3的数是()A. -7B. 7C. ±7D. 03.下列化简过程,正确的是()A. 3x+3y=6xyB. x+x=x2C. -9y2+6y2=-3D. -6xy2+6y2x=04.下列各图中,可以是一个正方体的平面展开图的是()A. B. C. D.5.下列各式添括号正确的是:( )A. -x+y=-(y-x)B. x-y=-(x+y)C. 2a-3b-c= 2 a-(3b-c)D. 3 -2 a= -( 2 a-3)6.如果与-2x3y2b-1是同类项,那么a,b的值分别是()A. B. C. D.7.下列等式从左到右的变形正确的是()A. B. C. D.8.在数轴上点A表示数-3,如果把原点O向负方向移动1个单位,那么此时点A表示的数是()A. -4B. -3C. -2D. -19.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A. 69°B. 111°C. 141°D. 159°10.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A. 13x=12(x+10)+60B. 12(x+10)=13x+60C. D.11.一个数x的相反数的绝对值为3,则这个数是()A. 3B. -3C. |-x|D. ±312.如图所示,点M,N是线段AB上的两个点,且M是AB的中点,N是MB的中点,若AB=a,NB=b,下列结论:①AM=a②AN=a-b③MN=a-b④MN=a.其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共24.0分)13.健康成年人的心脏全年流过的血液总量为2540000000毫升,将2540000000用科学记数法表示应为______.14.小贝认为:若|a|>|b|,则a>b.小贝的观点正确吗?(填“正确”或不正确”),请说明理由______.15.已知∠α=65°14'15″,那么∠α的余角等于______.16.若x=4是方程-a=4的解,则a=______.17.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为______千米/时.18.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行每一竖列上的3个数之和都相等,则这个方阵图中x的值为______.19.已知A,B,M,N在同一直线上,点M是AB的中点,并且NA=8,NB=6,则线段MN= ______ .20.有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、…猜猜第100个数是______ .三、计算题(本大题共2小题,共16.0分)21.计算:.22.先化简,再求值:2 xy-(4xy-8x2y2)+2(3xy-5x2y2);其中x、y满足(x-1)2+|y+2|=0.四、解答题(本大题共4小题,共44.0分)23.解方程:(1)2x-3(2x-3)=x+4;(2).24.如图,直线AB,CD,EF相交于点O,OG⊥CD.(1)已知∠AOC=38°12',求∠BOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.25.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?26.(本题8分,共计8分)(1)、分别用A,B,C,D,E,在数轴上表示下列各数,,,,,,(2)、从小到大的顺序用“<”把这些数连接起来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年平顶山市宝丰县七年级(上)期末数学试卷一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.1 B.C.0 D.﹣12.(3分)钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()A.44×105B.0.44×105C.4.4×106D.4.4×1053.(3分)下列四个几何体中,俯视图为四边形的是()A.B.C.D.4.(3分)已知|x|=5,|y|=2,且|x+y|=﹣x﹣y,则x﹣y的值为()A.±3 B.±3或±7 C.﹣3或7 D.﹣3或﹣75.(3分)下列方程中,解是x=4的是()A.2x+4=9 B.C.﹣3x﹣7=5 D.5﹣3x=2(1﹣x)[学。
科。
6.(3分)一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元7.(3分)一个班有40名学生,在期末体育考核中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角是()A.144°B.162°C.216°D.250°8.(3分)已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是()A.B.C.D.二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)若|a﹣3|与(a+b)2互为相反数,则代数式﹣2ab2的值为10.(3分)如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为.11.(3分)如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.12.(3分)若点A为数轴上表示﹣2的点,则距A点4个单位长度的点表示为.13.(3分)如图,已知∠MOQ是直角,∠QON是锐角,OR平分∠QON,OP平分∠MON,则∠POR的度数为.14.(3分)在对某年级500名学生关于某一现象调查结果的扇形统计图中,有一部分所在扇形圆心角的度数为108°,则这部分学生有人.15.(3分)一根长n米的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,则剪到第六次后剩余的绳子长米.三、解答题(本大题共8个小题,共75分)16.(8分)计算(1)(﹣2)3×0.5﹣(﹣1.6)2÷(﹣2)2(2)23÷[(﹣2)3﹣(﹣4)]17.(8分)解方程(1)12(2﹣3x)=4+4x(2)﹣=18.(8分)已知|a﹣1|与(b+2)2互为相反数,求﹣a2b+3(3ab2﹣a2b)﹣2(2ab2﹣a2b)值.19.(10分)如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE 的长.20.(9分)甲、乙两人相距5千米,分别以2千米/时,4千米/时的速度相向而行,同时一只小狗以12千米/时的速度从甲处奔向乙处,遇到乙后立即掉头奔向甲,遇甲后又奔向乙…直到甲、乙相遇,求小狗所走的路程.(用方程解)21.(10分)画出下列几何体的主视图和左视图.22.(11分)一个检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,某天行车里程(单位:千米)依先后次序记录如下:﹣4,+7,﹣9,+8,+6,﹣5,﹣2.(1)请问收工时检修小组离A地多远?在A地的什么方向?(2)若每千米耗油0.1升,请问这天共耗油多少升?23.(11分)“最美女教师”张莉莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出计算过程;(3)该班平均每人捐款多少元?参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分)1.【解答】解:选项中的4个数,最小的是﹣1.故选:D.2.【解答】解:将4400000用科学记数法表示为:4.4×106.[]故选:C.3.【解答】解:A、三棱锥的俯视图是,故此选项错误;B、六棱柱的俯视图是六边形,故此选项错误;C、正方体俯视图是正方形,故此选项正确;D、圆锥的俯视图是有圆心的圆,故此选项错误,故选:C.4.【解答】解:∵|x|=5,|y|=2,∴x=±5、y=±2,又|x+y|=﹣x﹣y,∴x+y<0,则x=﹣5、y=2或x=﹣5、y=﹣2,所以x﹣y=﹣7或﹣3,故选:D.5.【解答】解:A、把x=4代入方程的左边=2x+4=12≠9,故x=4不是此方程的解,故此选项错误;B、把x=4代入方程的左边=×4+2=8,右边=3×4﹣4=8,左边=右边,故x=4是此方程的解,故此选项正确;C、把x=4代入方程的左边=﹣3×4﹣7=﹣19≠5,故x=4不是此方程的解,故此选项错误;D、把x=4代入方程的左边=5﹣3×4=﹣7,右边=2(1﹣4)=﹣6,左边≠右边,故x=4不是此方程的解,故此选项错误;故选:B.6.【解答】解:设这件服装的进价为x元,依题意得:(1+20%)x=200×60%,解得:x=100,则这件服装的进价是100元.故选:A.7.【解答】解:圆心角的度数是:×360°=162°,故选B.8.【解答】解:∵1=;;;∴第n个数是:故选:B.二、填空题(本大题共7小题,每小题3分,共21分)9.【解答】解:∵|a﹣3|与(a+b)2互为相反数,∴|a﹣3|+(a+b)2=0,∴a﹣3=0,a+b=0,解得a=3,b=﹣3,∴﹣2ab2=﹣2×3×(﹣3)2=﹣6×9=﹣54.故答案为:﹣54.10.【解答】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=70°,可得∠B′OG+∠BOG=110°∴∠B′OG=×110°=55°.11.【解答】解:如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是圆锥.故答案为:圆锥.12.【解答】解:点A为数轴上表示﹣2的点,将点A向左移4个单位长度得﹣2+(﹣4)=﹣6,向右平移4个单位:﹣2+4=2,则距A点4个单位长度的点表示为:2和﹣6.故答案为:2和﹣6.13.【解答】解:∵∠MOQ是直角,∠QON是锐角,OP平分∠MON,∴∠PON=(∠MOQ+∠QON)=(90°+∠QON)=45°+∠QON,∵OR平分∠QON,∴∠NOR=∠QON,∴∠POR=∠PON﹣∠NOR=45°+∠QON﹣∠QON=45°.故答案是:45°.14.【解答】解:根据题意知此部分学生人数占总人数的比例为=,则这部分学生的人数为500×=150(人),故答案为:15015.【解答】解:剪到第六次后剩余的绳子长米.三、解答题(本大题共8个小题,共75分)16.【解答】解:(1)原式=﹣8×0.5﹣2.56÷4=﹣4﹣0.64=﹣4.64;(2)原式=23÷(﹣8+4)=23÷(﹣4)=﹣17.【解答】解:(1)24﹣36x=4+4x,﹣36x﹣4x=4﹣24,﹣40x=﹣20,x=0.5;(2)3(x﹣3)﹣2(x+1)=1,3x﹣9﹣2x﹣2=1,3x﹣2x=1+9+2,x=12.18.【解答】解:由题意可得|a﹣1|+(b+2)2=0,∴a=1,b=﹣2,∴﹣a2b+3(3ab2﹣a2b)﹣2(2ab2﹣a2b)=﹣a2b+9ab2﹣3a2b﹣4ab2+2a2b=5ab2﹣2a2b,当a=1,b=﹣2时,原式=5ab2﹣2a2b=5×1×(﹣2)2﹣2×1×(﹣2)=20+4=24.19.【解答】解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.20.【解答】解:设甲、乙两人x小时相遇.2x+4x=56x=5解得x=12×=10(千米)答:小狗走的路程为10千米.21.【解答】解:如图所示:.22.【解答】解:(1)根据正负数的运算法则,把一天行驶记录相加即可得到收工时检修小组离A地的距离,在A地的哪个方向,即﹣4+7﹣9+8+6﹣5﹣2=1,故收工时检修小组离A地1千米,在A地的东方.(2)每次记录的绝对值的和×0.2就是这天中的耗油量,即|﹣4|+|7|+|﹣9|+|8|+|6|+|﹣5|+|﹣2|=41千米,41×0.1=4.1升.故这辆汽车共耗油4.1升.23.【解答】解:(1)该班的总人数为14÷28%=50人;(2)捐款10元的人数为50﹣(9+14+7+4)=16人,补全图形如下:(3)(5×9+10×16+14×15+7×20+4×25)÷50=(45+160+210+140+100)÷50=655÷50=13.1(元)答:平均每人捐13.1元.。