苏科版8年级数学寒假作业1
八年级上册数学寒假作业
八年级上册数学寒假作业初二数学寒假作业(1)一、精心选一选1.下列各组条件中,不能判定△ABC与△DEF全等的是()A。
AB=DE,∠B=∠E,∠C=∠FB。
AC=DF,BC=DE,BA=EFC。
AB=EF,∠A=∠E,∠B=∠FD。
∠A=∠F,∠B=∠E,AC=EF2.判定两个三角形全等必不可少的条件是()A。
至少有一边对应相等B。
至少有一角对应相等C。
至少有两边对应相等D。
至少有两角对应相等3.在△ABC和△DEF中,已知AB=DE,∠A=∠D,还需具备什么条件①AC=DF;②BC=EF;③∠B=∠E;④∠C=∠F,才能推出△ABC≌△DEF,其中符合条件有()A。
1个B。
2个C。
3个D。
4个二、细心填一填3.如图1,AO平分∠BAC,AB=AC,图中有BD=CE对三角形全等.图略)5.如图2,在△ABC中,∠C=90,AD是∠BAC的平分线,交BC于D,BC=16,DC:DB=3:5,则点D到AB的距离是$\frac{24}{5}$.图略)三、用心做一做6.如图,已知AD=AE,AC=AB,∠A=40°,∠B=35°,求∠EOC的度数。
图略)7.如图,已知∠1=∠2,∠3=∠4,AB与CD相等吗?请你说明理由。
图略)初二数学寒假作业(2)一、精心选一选1.下列说法中正确的是()A。
三个角对应相等的两个三角形全等。
B。
面积相等的两个三角形全等。
C。
全等三角形的面积相等。
D。
两边和一角对应相等的两个三角形全等。
2.在ΔABC和ΔA′B′C′中,AB=A′B′,∠B=∠B′,补充一个条件后仍不一定能保证ΔABC与ΔA′B′C′全等,则补充的这个条件是()A。
BC=B′C′B。
∠A=∠A′C。
AC=A′C′D。
∠C=∠C′3.在△XXX和ΔA′B′C′中,AB=A′B′,∠A=∠A′,∠C=∠C′,可推出(1)∠B=∠B′;(2)∠B的平分线与∠B′的平分线相等;(3)BC边上的高与B′C′边上的高相等;(4)BC边上的中线与BC边上的中线相等。
八年级上数学寒假作业1
八年级数学寒假作业(一)一元一次不等式和一元一次不等式组一、填空题:(每小题2分,共20分) 1、若x <y ,则x -2 y -2。
(填“<、>或=”号) 2、若93aa -<-,则b 3a 。
(填“<、>或=”号) 3、不等式7-x >1的正整数解为: 。
4、当y _______时,代数式423y-的值至少为1。
5、不等式6-12x <0的解集是_________。
6、若一次函数y =2x -6,当x _____时,y >0。
7、若方程m x x -=+33 的解是正整数,则m 的取值范围是:_________。
8、x 的53与12的差不小于6,用不等式表示为__________________。
9、从小明家到学校的路程是2400米,如果小明早上7点离家,要在7点30分到40分之间到达学校,设步行速度为x 米/分,则可列不等式组为__________________,小明步行的速度范围是_________。
10、若关于x 的方程组⎩⎨⎧-=++=+134123p y x p y x 的解满足x >y ,则P 的取值范围是_________。
1、若>,则下列不等式中正确的是:( )A 、a -b <0B 、b a 55-<-C 、a +8< b -8D 、44ba < 2、在数轴上表示不等式x ≥-2的解集,正确的是( )A B C D3、已知两个不等式的解集在数轴上如图表示,那么这个解集为( ) A 、x ≥-1 B 、x >1 C 、-3<x ≤-1 D 、x >-34、如果不等式组⎩⎨⎧>-<+nx x x 737的解集是4>x ,则n 的取值范围是( )A 、4≥nB 、4≤nC 、4=nD 、4<n5、下列不等式求解的结果,正确的是( )A 、不等式组353-≤⎩⎨⎧-≤-≤x x x 的解集是 B 、不等式组445-≥⎩⎨⎧-≥->x x x 的解集是 C 、不等式组无解⎩⎨⎧-<>75x x D 、不等式组103310≥≤-⎩⎨⎧->≤x x x 的解集是6、不等式2x +1<8的最大整数解是( )A 、4B 、3C 、2D 、17、若⎪⎩⎪⎨⎧<<><<c x b x a x x c b a 的不等式组则关于,的解集是( )A 、a <x <bB 、a <x <cC 、b <x <cD 、无解8、使代数式129+-x 的值不小于代数式131-+x 的值,则x 应为( )A 、x >17B 、x ≥17C 、x <17D 、x ≥279、已知032)2(2=--+-m y x x 中,y 为正数,则m 的取值范围是( )A 、m <2B 、m <3C 、m <4D 、m <510、一次函数323+-=x y 的图象如图所示,当-3<y <3时,x 的 取值范围是( )A 、x >4B 、0<x <2C 、0<x <4D 、2<x <4 三、解下列不等式(组),并把解集在数轴上表示出来:(每小题6分,共24分) 1、4352+>-x x 2、)1(2)3(410-≤--x x3、 ⎩⎨⎧+≥--≥+x x x x 22365234、⎪⎩⎪⎨⎧->+≥--13214)2(3x x x x五、(6分)x 为何值时,代数式5123--+x x 的值是非负数?六、(6分)已知:关于x 的方程m x m x =--+2123的解的非正数,求m 的取值范围. 七、(7分)我市移动通讯公司开设了两种通讯业务,A 类是固定用户:先缴50元基础费,然后每通话1分钟再付话费0.4元;B 类是“神州行”用户:使用者不缴月租费,每通话1分钟会话费0.6元(这里均指市内通话)。
苏科版八年级上数学寒假作业含解析
八年级数学寒假作业一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个2.在平面直角坐标系中,下列哪个点在第四象限()A.(1,2) B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)3.下列说法正确的是()A.4的平方根是±2 B.8的立方根是±2C.D.4.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E5.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC:AC:AB=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:56.如图,数轴上点P表示的数可能是()A.B.C. D.7.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.)9.的算术平方根是.10.点A(﹣3,1)关于x轴对称的点的坐标为.11.函数y=中,自变量x的取值范围是.12.写出一个图象位于第二、四象限的正比例函数的表达式是.13.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.14.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x<ax+4的解为.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=2cm,过点E作EF⊥AC 交CD的延长线于点F.若AE=3cm,则EF= cm.16.在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为.17.在△ABC中,AB=AC=5,BC=6,若点P在边AB上移动,则CP的最小值是.18.一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过分钟,容器中的水恰好放完.三、解答题(本大题共有9小题,共66分.)19.计算: +﹣﹣82.(2)已知(2x+1)3+1=0,求x的值.20.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.21.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.22.一次函数y=y=﹣2x﹣4的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.(1)请写出A,B两点坐标并在方格纸中画出函数图象与等腰Rt△ABC;(2)求过B、C两点直线的函数关系式.23.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.24.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过的时间x(小时)之间的函数关系图象.(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?25.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.(1)求证:BE=DE.(2)若四边形ABCD的面积为9,求BE的长.26.白天鹅大酒店按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费3400元.从元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业处理的这两种垃圾数量与相比没有变化,就要多支付垃圾处理费5100元.(1)该酒店处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划将上述两种垃圾处理总量减少到160吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则该酒店最少需要支付这两种垃圾处理费共多少元?27.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.-学年江苏省盐城市亭湖新区八年级数学寒假作业参考答案与试题解析一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个是中心对称图形,也是轴对称图形;第二个不是中心对称图形,是轴对称图形;第三个不是中心对称图形,是轴对称图形;第四个既是中心对称图形又是轴对称图形.综上可得,共有2个符合题意.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.在平面直角坐标系中,下列哪个点在第四象限()A.(1,2) B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【考点】点的坐标.【分析】平面坐标系中点的坐标特点为:第一象限(+,+),第二象限(﹣,+),第三象限(﹣,﹣),第四象限(﹣,+);根据此特点可知此题的答案.【解答】解:因为第四象限内的点横坐标为正,纵坐标为负,各选项只有B符合条件,故选B.【点评】此题考查了平面坐标系中点的横纵坐标的特点,准确记忆此特点是解题的关键.3.下列说法正确的是()A.4的平方根是±2 B.8的立方根是±2C.D.【考点】立方根;平方根;算术平方根.【分析】根据平方根、立方根、算术平方根的定义求出每个的值,再选出即可.【解答】解:A、4的平方根是±2,故本选项正确;B、8的立方根是2,故本选项错误;C、=2,故本选项错误;D、=2,故本选项错误;故选A.【点评】本题考查了对平方根、立方根、算术平方根的定义的应用,主要考查学生的计算能力.4.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理进行判断即可.【解答】解:A、根据SAS即可推出△ABC≌△DEF,故本选项错误;B、不能推出△ABC≌△DEF,故本选项正确;C、根据AAS即可推出△ABC≌△DEF,故本选项错误;D、根据ASA即可推出△ABC≌△DEF,故本选项错误;故选B.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC:AC:AB=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理可判定A、B,由三角形内角和可判定C、D,可得出答案.【解答】解:A、当BC=1,AC=2,AB=时,满足BC2+AB2=1+3=4=AC2,所以△ABC为直角三角形;B、当BC:AC:AB=3:4:5时,设BC=3x,AC=4x,AB=5x,满足BC2+AC2=AB2,所以△ABC为直角三角形;C、当∠A+∠B=∠C时,且∠A+∠B+∠C=90°,所以∠C=90°,所以△ABC为直角三角形;D、当∠A:∠B:∠C=3:4:5时,可设∠A=3x°,∠B=4x°,∠C=5x°,由三角形内角和定理可得3x+4x+5x=180,解得x=15°,所以∠A=45°,∠B=60°,∠C=75°,所以△ABC为锐角三角形,故选D.【点评】本题主要考查直角三角形的判定方法,掌握直角三角形的判定方法是解题的关键,主要有①勾股定理的逆定理,②有一个角为直角的三角形.6.如图,数轴上点P表示的数可能是()A.B.C. D.【考点】实数与数轴;估算无理数的大小.【分析】根据被开方数越大算术平方根越大,数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:由<<3<4<,点P表示的数大于3小于4,故C符合题意.故选:C.【点评】本题考查了估算无理数的大小,利用了被开方数越大算术平方根越大,数轴上的点表示的数右边的总比左边的大.7.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【专题】数形结合.【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.8.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程的增加幅度会变大一点.据此即可选择.【解答】解:由题意知,前1小时路程随时间增大而增大,1小时后路程的增加幅度会变大一点.故选:C.【点评】本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.二、填空题(本大题共有10小题,每小题3分,共30分.)9.的算术平方根是.【考点】算术平方根.【分析】直接根据算术平方根的定义求解即可.【解答】解:∵()2=,∴的算术平方根是,即=.故答案为.【点评】本题考查了算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.10.点A(﹣3,1)关于x轴对称的点的坐标为(﹣3,﹣1).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点A(﹣3,1)关于x轴对称的点的坐标为(﹣3,﹣1).故答案为:(﹣3,﹣1).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.函数y=中,自变量x的取值范围是x≥0且x≠1 .【考点】函数自变量的取值范围.【专题】函数思想.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.写出一个图象位于第二、四象限的正比例函数的表达式是y=﹣x(答案不唯一).【考点】正比例函数的性质.【专题】开放型.【分析】先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.【解答】解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=﹣x(答案不唯一).故答案为:y=﹣x(答案不唯一).【点评】本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k<0时函数的图象经过二、四象限.13.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是(﹣4,3).【考点】坐标与图形变化-旋转.【分析】过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,根据旋转的性质可得OA=OA′,利用同角的余角相等求出∠OAB=∠A′OB′,然后利用“角角边”证明△AOB和△OA′B′全等,根据全等三角形对应边相等可得O B′=AB,A′B′=OB,然后写出点A′的坐标即可.【解答】解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为:(﹣4,3).【点评】本题考查了坐标与图形变化﹣旋转,熟记性质并作辅助线构造出全等三角形是解题的关键,也是本题的难点.14.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x<ax+4的解为x<.【考点】一次函数与一元一次不等式.【分析】把(m,3)代入y=2x即可求得m的值,然后根据函数的图象即可写出不等式的解集.【解答】解:把A(m,3)代入y=2x,得:2m=3,解得:m=;根据图象可得:不等式2x<ax+4的解集是:x<.故答案是:x<.【点评】本题考查了一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=2cm,过点E作EF⊥AC 交CD的延长线于点F.若AE=3cm,则EF= 5 cm.【考点】全等三角形的判定与性质.【分析】由CD⊥AB,EF⊥AC就可以得出∠FEC=∠ADC=90°,就有∠A=∠F,就可以得出△ABC≌△FCE,就有EF=AC而求出结论.【解答】解:∵CD⊥AB,EF⊥AC,∴∠FEC=∠ADC=∠ACB=90°,∴∠ACD+∠A=∠ACD+∠F=90°,∴∠A=∠F.∵BC=EC=2cm,在△ABC和△FCE中,∴△ABC≌△FCE(SAS),∴AC=FE.∵AC=AE+EC,∴FE=AE+EC.∵EC=2cm,AE=3cm,∴FE=2+3=5cm.故答案为:5【点评】本题考查了垂直的性质的运用,直角三角形的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.16.在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为.【考点】正方形的性质.【分析】答题时首先证明△BEO≌△OFC,故得BE=FC,故知AE=BF,在Rt△BEF中解得EF.【解答】解:根据题意可知OB=OC,∠OBE=∠OCF,∵OE⊥OF,∴∠EOB+∠BOF=90°,∵∠BOF+∠COF=90°,∴∠EOB=∠COF,∴△BEO≌△OFC,∴BE=CF,∴Rt△BEF中,EF=5.故选B.【点评】解答本题要充分利用正方形的特殊性质解决三角形全等等问题,注意在正方形中的特殊三角形的应用.17.在△ABC中,AB=AC=5,BC=6,若点P在边AB上移动,则CP的最小值是 4.8 .【考点】等腰三角形的性质;垂线段最短;三角形的面积;勾股定理.【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【解答】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,∴S△ABC=AB•PC=BC•AF=×5CP=×6×4得:CE=4.8故答案为4.8.【点评】本题考查了等腰三角形、勾股定理及三角形的面积的知识,特别是利用面积相等的方法求一边上的高的方法一定要掌握.18.一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过8 分钟,容器中的水恰好放完.【考点】函数的图象;一次函数的应用.【分析】由0﹣4分钟的函数图象可知进水管的速度,根据4﹣12分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.【解答】解:进水管的速度为:20÷4=5(升/分),出水管的速度为:5﹣(30﹣20)÷(12﹣4)=3.75(升/分),∴关停进水管后,出水经过的时间为:30÷3.75=8分钟.故答案为:8.【点评】本题考查利用函数的图象解决实际问题.正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.三、解答题(本大题共有9小题,共66分.)19.(1)计算: +﹣﹣82.(2)已知(2x+1)3+1=0,求x的值.【考点】实数的运算;平方根.【专题】计算题.【分析】(1)方程利用平方根及立方根定义计算即可得到结果;(2)方程变形后,利用立方根定义开立方即可求出解.【解答】解:(1)原式=9﹣4﹣17﹣64=﹣76;(2)方程变形得:(2x+1)3=﹣1,开立方得:2x+1=﹣1,解得:x=﹣1.【点评】此题考查了实数的运算,以及平方根,熟练掌握运算法则是解本题的关键.20.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.【考点】全等三角形的判定与性质;等腰三角形的判定.【专题】证明题.【分析】(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可证出BC=AD,(2)根据Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.【解答】证明:(1)∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,(2)∵Rt△ABC≌Rt△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形.【点评】本题考查了全等三角形的判定及性质;用到的知识点是全等三角形的判定及性质、等腰三角形的判定等,全等三角形的判定是重点,本题是道基础题,是对全等三角形的判定的训练.21.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.【考点】作图—复杂作图;全等三角形的判定.【分析】(1)根据AB∥CD,∠ACD=114°,得出∠CAB=66°,再根据AM是∠CAB的平分线,即可得出∠MAB的度数.(2)根据∠CAM=∠MAB,∠MAB=∠CMA,得出∠CAM=∠CMA,再根据CN⊥AD,CN=CN,即可得出△ACN ≌△MCN.【解答】(1)解:∵AB∥CD,∴∠ACD+∠CAB=180°,又∵∠ACD=114°,∴∠CAB=66°,由作法知,AM是∠CAB的平分线,∴∠MAB=∠CAB=33°;(2)证明:∵AM平分∠CAB,∴∠CAM=∠MAB,∵AB∥CD,∴∠MAB=∠CMA,∴∠CAM=∠CMA,又∵CN⊥AM,∴∠ANC=∠MNC,在△ACN和△MCN中,,∴△ACN≌△MCN(AAS).【点评】此题考查了作图﹣复杂作图,用到的知识点是全等三角形的判定、平行线的性质、角平分线的性质等,解题的关键是证出∠CAM=∠CMA.22.一次函数y=y=﹣2x﹣4的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.(1)请写出A,B两点坐标并在方格纸中画出函数图象与等腰Rt△ABC;(2)求过B、C两点直线的函数关系式.【考点】待定系数法求一次函数解析式;一次函数的图象;等腰直角三角形.【专题】计算题.【分析】(1)根据坐标轴上点的坐标特征求A点和B点坐标;然后画图;(2)过C点作CD⊥x轴,如图,再证明△AOB≌△CDA,得到AO=CD=2,BO=AD=4,则C(2,2,),然后利用待定系数法求直线BC的解析式.【解答】解:(1)当y=0时,﹣2x﹣4=0,解得x=﹣2,则A(﹣2,0);当y=0时,y=﹣2x﹣4=﹣4,则B(0,﹣4);(2)过C点作CD⊥x轴,如图,∵Rt△ABC是等腰三角形,∴AB=AC,∵∠BAO+∠CAD=90∘,∠BAO+∠ABO=90°,∴∠CAD=∠ABO,在△AOB和△CDA中,∴△AOB≌△CDA,∴AO=CD=2,BO=AD=4,∴OD=2,∴C(2,2,),设直线BC的解析式为y=kx+b,把B(0,﹣4)、C(2,2)分别代入得,解得,∴直线BC的解析式为y=3x﹣4.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了等腰直角三角形的性质.23.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.【考点】翻折变换(折叠问题);勾股定理.【分析】(1)利用翻折变换的性质得出DE垂直平分AB,进而得出∠1=∠2=∠A即可得出答案;(2)利用勾股定理得出CE的长,即可得出CD的长.【解答】解:(1)∵折叠使点A与点B重合,折痕为DE.∴DE垂直平分AB.∴AE=BE,∴∠A=∠1,又∵DE⊥AB,∠C=90°,DE=CE,∴∠1=∠2,∴∠1=∠2=∠A.由∠A+∠1+∠2=90°,解得:∠A=30°;(2)设CE=x,则AE=BE=8﹣x.在Rt△BCE中,由勾股定理得:BC2+CE 2=BE2.即 62+x2=(8﹣x)2,解得:x=,即CE=.【点评】此题主要考查了翻折变换的性质以及勾股定理,根据已知熟练应用勾股定理得出是解题关键.24.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过的时间x(小时)之间的函数关系图象.(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?【考点】一次函数的应用.【分析】(1)首先设y与x之间的函数关系式为y=kx+b,根据图象可得直线经过(1.5,90),(3,0),利用待定系数法把此两点坐标代入y=kx+b,即可求出一次函数关系式;(2)利用甲从B地返回A地的过程中,y与x之间的函数关系式算出y的值,即可得到108分钟时骑电动车所行驶的路程,再根据路程与时间算出电动车的速度,再用总路程90千米÷电动车的速度可得乙从A地到B地用了多长时间.【解答】解:(1)设甲从B地返回A地的过程中,y与x之间的函数关系式为y=kx+b,根据题意得:,解得,所以y=﹣60x+180(1.5≤x≤3);(2)∵当x==1.8时,y=﹣60×1.8+180=72,∴骑电动车的速度为72÷1.8=40(千米/时),∴乙从A地到B地用时为90÷40=2.25(小时)=135分钟.【点评】此题主要考查了一次函数的应用,关键是看懂图象所表示的意义,利用待定系数法求出甲从B地返回A地的过程中,y与x之间的函数关系式.25.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.(1)求证:BE=DE.(2)若四边形ABCD的面积为9,求BE的长.【考点】全等三角形的判定与性质;矩形的判定与性质.【分析】(1)作BF⊥DC于F,先证出四边形BEDF是矩形,得出DE=BF,再证出△CBF≌△ABE,证出BF=BE即可;(2)由四边形ABCD的面积等于正方形BEDF的面积即可求出BE的长.【解答】(1)证明:作BF⊥DC,交DC的延长线于F;如图所示:则∠F=90°,∵BE⊥AD,∴∠AEB=∠BED═90°.∵∠CDA=90°,∴四边形BEDF为矩形.∴DE=BF,∠EBF=90°.∴∠CBF+∠CBE=90°,∵∠ABE+∠CBE=90°∴∠CBF=∠ABE,在△CBF和△ABE中,∴△CBF≌△ABE(AAS).∴BF=BE,∴BE=DE.(2)∵△CBF≌△ABE,∴BF=BE,∴四边形BEDF是正方形,∴S正方形BEDF=S四边形ABCD=9=BE2,∴BE=3.【点评】本题考查了全等三角形的判定与性质以及矩形的判定与性质;证明三角形全等是解决问题的关键.26.2014年白天鹅大酒店按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费3400元.从2015年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业2015年处理的这两种垃圾数量与2014年相比没有变化,就要多支付垃圾处理费5100元.(1)该酒店2014年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2015年将上述两种垃圾处理总量减少到160吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2015年该酒店最少需要支付这两种垃圾处理费共多少元?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设该酒店2014年处理的餐厨垃圾x吨,建筑垃圾y吨,根据条件建立方程组求出其解即可;(2)设该酒店2015年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共w元,先求出x的取值范围,在求出w与x的关系式由一次函数的性质就可以得出结论.【解答】解:(1)设该酒店2014年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得答:该酒店2014年处理的餐厨垃圾40吨,建筑垃圾150吨;(2)设该酒店2015年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共w元,根据题意得,,解得x≥40.w=100x+30(160﹣x)=70x+4800,∴k=70>0,∴w的值随x的增大而增大,∴当x=40时,w值最小,最小值=70×40+4800=7600(元).答:2015年该酒店最少需要支付这两种垃圾处理费共7600元.【点评】本题考查了一次函数的运用,列二元一次方程组解实际问题的运用,一元一次不等式的运用,解答时求出函数的解析式是关键.27.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.【考点】全等三角形的判定与性质;等边三角形的性质;等腰直角三角形;旋转的性质.【专题】压轴题.【分析】(1)求出∠ABC的度数,即可求出答案;(2)连接AD,CD,ED,根据旋转性质得出BC=BD,∠DBC=60°,求出∠ABD=∠EBC=30°﹣α,且△BCD为等边三角形,证△ABD≌△ACD,推出∠BAD=∠CAD=∠BAC=α,求出∠BEC=α=∠BAD,证△ABD≌△EBC,推出AB=BE即可;(3)求出∠DCE=90°,△DEC为等腰直角三角形,推出DC=CE=BC,求出∠EBC=15°,得出方程30°﹣α=15°,求出即可.【解答】(1)解:∵AB=AC,∠A=α,∴∠ABC=∠ACB=(180°﹣∠A)=90°﹣α,∵∠ABD=∠ABC﹣∠DBC,∠DBC=60°,即∠ABD=30°﹣α;(2)△ABE是等边三角形,证明:连接AD,CD,ED,∵线段BC绕B逆时针旋转60°得到线段BD,则BC=BD,∠DBC=60°,∵∠ABE=60°,∴∠ABD=60°﹣∠DBE=∠EBC=30°﹣α,且△BCD为等边三角形,在△ABD与△ACD中∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD=∠BAC=α,∵∠BCE=150°,∴∠BEC=180°﹣(30°﹣α)﹣150°=α=∠BAD,在△ABD和△EBC中∴△ABD≌△EBC(AAS),∴AB=BE,∴△ABE是等边三角形;(3)解:∵∠BCD=60°,∠BCE=150°,∴∠DCE=150°﹣60°=90°,∵∠DEC=45°,∴△DEC为等腰直角三角形,∴DC=CE=BC,∵∠BCE=150°,∴∠EBC=(180°﹣150°)=15°,∵∠EBC=30°﹣α=15°,∴α=30°.【点评】本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰直角三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.。
八年级上册数学寒假作业答案苏科版2017
(3)①y 会员卡=0.35+15
精心整理 y 租书卡=0.5x ②若 y 会员卡〈y 租书卡 则 0.35x+15 x>100 租书超过 100 天,会员卡比租书卡更合算 (4)设 A(m,n) 1/2x4xm=6 m=3 n=2 A(-3,-2) y=2/3x,y=-2/3x-4
精心整理
八年级上册数学寒假作业答案苏科版 2017
第 1 页—第 3 页 1.选择题 1A2D3A4C 2.填空 (1)T=20-6h20,6Thh (2)Q=6x105-pt6x105pQt0≤t≤6x105/p (3)S=1.5b(4)0≤x≤70≤y≤550 3.解答题 (1)y=Q/a-x–Q/a(0≤x≤a) (2)y=80-2x 20(3)①-2≤x≤3 ②当 x=3,y 有最小值为 1/2 ③当-2≤x≤0,y 随 x 的增大而增大,当 0≤x≤3,y 随 x 的增大 而减小
精心整理 (3)①表示 y 与 x 的关系,x 为自变量 ②10 时离家 10km13 时离家 30km ③12 时-13 时,离家 30km ④13km ⑤2 时-13 时 ⑥15km/h 第 9 页—第 11 页 1.选择题 (1)A(2)C(3)C 2.填空 (1)y=-2x(2)my1(5)y=-2x+10025(6)9 3.解答题 (1)①Q=200+20t②(0≤t≤30) (2)①y=80(0≤x≤50) y=1.9x-15(50≤x≤100) ②y=1.6x ③选择方式一
精心整理 (4)①`v=800-50t ②0≤t≤16 ③当 t=8 时,v=800-50x8=400 ④当 v=100 时,100=800-50t T=14 第 5 页—第 7 页 选择题 1B2C3C4B5B6A7B8D 填空 (1)1(2)y=2x+1-1(3)m
八年级数学寒假作业1苏科版含答案
八年级数学寒假作业1(苏科版含答案)八年级数学寒假作业1(苏科版含答案)一、选择题。
1、若=0,则等于()A.5B.-5C.3D.-32.当m,n为自然数时,多项式的次数应当是()A.mB.nC.m,n中较大的D.m+n3.当x分别等于2或-2时,代数式的值()A.相等B.互为相反数C.互为倒数D.互为相反数4.设是一个负数,则数轴上表示数-的点在().A.原点的左边B.原点的右边B.原点的左边和原点的右边D.无法确定5.下列图形中,表示南偏西60°的射线是().aABCD6.下列图形中,能够折叠成正方体的是()7.如图,OB平分∠AOC,OD平分∠EOC,∠1=20°,∠AOE=88°,则∠3为()A.24°B.68°C.28°D.都不对8.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是().A.95元B.90元C.85元D.80元9.解方程,去分母正确的是().A.B.C.D.10.有一些分别标有6,10,14,18的卡片,后一张卡片上的数比前一张卡片上的数大4,小红拿到了相邻的3张卡片,且这些上的数字之和为282,那么小红拿到的3张卡片为()A.88,92,96B.100,104,108C.90,94,98D.88,98,106二、填空题.11.-3,-(-1),+(-5),-2.15,0,,-中整数有个,正整数有个,负数有个。
12.用一个平面去截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是。
13,若的值是7,则代数式的值是。
14.若│x+2│+(y-3)2=0,则xy=____.15.一个多项式与的和是,则这个多项式是。
16.下图是某几何体分别从正面左面及上面看到的平面图形,则这个几何体是。
17.一家商店将某种服装按成本价提高40%标价,又以8.5折优惠卖出,结果每件仍获利12元,若设每件服装的成本为x元,则可列方程。
苏科版八年级数学上寒假作业(共8份)
第6题图图2A B F D E C 第7题图 第8题图 第9题图 初二数学寒假作业1(全等三角形)一、填空与选择1.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F 的度数为( ) A 、 30° B、 50° C、 80° D、 100°2.已知图中的两个三角形全等,则α∠的度数是( )A .72°B .60°C .58°D .50°3.如图,∠E=∠F=90°,∠B=∠C ,AE=AF ,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN,其中正确的结论有( )A 、1个B 、2个C 、3个D 、4个4.△ABC 是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC 全等且有一条公共边的格点三角形(不含△ABC)的个数是( )A 、1个B 、2个C 、3个D 、4个5.如图,AC 、BD 相交于点0,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是 (填出一个即可).6.已知,如图:∠ABC =∠DEF,AB =DE ,要说明△ABC ≌△DEF: 1)若以“SAS”为依据,还要添加的条件为______________; 2)若以“ASA”为依据,还要添加的条件为______________; 3)若以“AAS”为依据,还要添加的条件为______________.7.如图∠ACB =∠DFE ,BC =EF ,根据“ASA”,应补充一个直接条件___________,根据“AAS”,那么补充的条件为____________,才能使△ABC ≌△DEF .8.如图,在Rt△ABC 中,∠C=90°,AC=10,BC=5,线段PQ=AB ,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AO 上运动,当AP= 时,△ABC 和△PQA 全等.9.如右图示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为 。
苏版数学初二寒假作业解析参考
苏版数学初二寒假作业解析参考除了课堂上的学习外,平常的积存与练习也是学生提高成绩的重要途径,本文为大伙儿提供了数学八年级寒假作业答案,祝大伙儿阅读愉快。
1. 选择题1A 2D 3A 4C2. 填空(1)T=20-6h 20,6 T h h(2)Q=6x105-pt 6x105 p Q t 06x105/p(3)S=1.5b (4) 07 05 5 03.解答题(1)y= Q/a-x Q/a (0a)(2)y=80-2x20(3) ①-23②当x=3,y有最小值为1/2③当-20,y随x的增大而增大,当03,y随x的增大而减小(4)①`v=800-50t②016③当t=8时,v=800-50x8=400④当v=100时,100=800-50tT=14第5页第7页选择题1B 2C 3C 4B 5B 6A 7B 8D填空(1)1 (2)y=2x+1 -1 (3)m3 (4)y=-3x+3(5)y=x+3 (6)y=64x+48 (7)S=2n+1 (8)y=1/5 x-6 30解答题(1) 设y=kx+b-4k+b=156k+b= -5k= -2 b=7y= -2x+7(2)略(3)①表示y与x的关系,x为自变量②10时离家10km 13时离家30km③12时-13时,离家30km④13km⑤2时-13时⑥15km/h第9页第11页1. 选择题(1)A (2)C (3)C2.填空(1)y=-2x (2)m2 (3)y=5x+3 (4)y2y1 (5)y=-2x+100 25(6)9 3.解答题(1) ①Q=200+20t②(030)(2) ①y=80 (050)y=1.9x-15 (50100)②y=1.6x③选择方式一(3)①在同一直线上y=25/72x②当x=72时,y=25当x=144时,y=50当x=216时,y=75y=25/72 x (0345.6)③当x=158.4时,y=25/72x158.4=552x-33/2②当x2时,2x4则2x-31即y1(3) ①y会员卡=0.35+15y租书卡=0.5x②若y会员卡〈y租书卡则0.35x+150.5xx100租书超过100天,会员卡比租书卡更合算(4)设A(m,n)1/2x4xm=6m=3n=2A ( -3, -2)y=2/3x , y= -2/3x -4(5) ①y甲=0.8x1.5X+900=1.2x+900 (x500)Y乙=1.5x+900x0.6=1.5x+540 (x500)单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
江苏省句容市2017-2018学年八年级数学上学期寒假作业一(无答案) 苏科版
本文档仅供文库使用。
百度文库是百度发布的供网友在线分享文档的平台。
百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。
网友可以在线阅读和下载这些文档。
百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。
百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。
当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt文件格式。
练习一班级:姓名:一、慧眼选一选1.如图所示图形中,是轴对称图形的为()A.B. C.D.2.在下列实数中:1.57,﹣6,π,,﹣3.030030003…,无理数有()A.1个B.2个 C.3个D.4个3.一只小虫从点A(﹣2,1)出发,先向右跳4个单位,再向下跳3个单位,到达点B处,则点B 的坐标是()A.(﹣5,5)B.(2,﹣2)C.(1,5)D.(2,2)4.一次函数y=kx﹣m,y随x的增大而减小,且km<0,则在坐标系中它的大致图象是()A.B.C.D.5.下列命题中①无理数都是无限小数;②的平方根是±4;③无理数与数轴上的点一一对应;④﹣<﹣;正确的语句个数是()A.1个 B.2个C.3个D.4个6.如图,在平面直角坐标系中,点P的坐标为(0,2),直线y=与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为()A.3 B.4 C.5 D.6二、专心填一填7.化简:= ; |﹣2|= .8.将数14920用科学记数法表示并精确到千位为.9.如图,在△A BC中,AB=AC,D为BC中点,∠BAD=36°,则∠BAC的度数为,∠C的度数为.第9题11.已知点A(3,﹣5)在直线y=kx+1上,则此直线经过第象限,y随x的增大而.12.在平面直角坐标系中,点P关于x轴的对称点坐标为(﹣2,3),则点P的坐标为.13.若函数y=2x+3与y=3x﹣2m的图象交y轴于同一点,则m的值为.14.已知直角三角形的两直角边a、b满足+|b﹣12|=0,则斜边c上的中线长为.三、解答题15.计算:(1)已知:(x+3)2﹣36=0,求x的值(2)计算:(﹣2)2﹣﹣(﹣3)0+()﹣2.16.已知:如图,AB∥CD,E是AB的中点,CE=DE.(1)求证:∠AED=∠BEC;(2)连接AC、BD,求证:AC=BD.17.已知直线l1:y1=x+m与直线l2:y2=nx+3相交于点A(1,2).(1)求m、n的值;(2)设l1交x轴于点B,l2交x轴于点C,若点D与点A,B,C能构成平行四边形,请直接写出D 点坐标;(3)请在所给坐标系中画出直线l1和l2,并根据图象回答问题:当x满足时,y1>2;当x满足时,0<y2≤3;当x满足时,y1<y2.18.如图,△ABC中,∠C=90°.(1)在BC边上作一点P,使得点P到点C的距离与点P到边AB的距离相等(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=8,BC=6,求CP的长.本文档仅供文库使用。
江苏省盐城市亭湖新区实验学校八年级数学上学期寒假作业(含解析) 苏科版
2015-2016学年江苏省盐城市亭湖新区实验学校八年级数学寒假作业一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个2.在平面直角坐标系中,下列哪个点在第四象限()A.(1,2) B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)3.下列说法正确的是()A.4的平方根是±2 B.8的立方根是±2C.D.4.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E5.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC:AC:AB=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:56.如图,数轴上点P表示的数可能是()A.B.C. D.7.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.)9.的算术平方根是.10.点A(﹣3,1)关于x轴对称的点的坐标为.11.函数y=中,自变量x的取值范围是.12.写出一个图象位于第二、四象限的正比例函数的表达式是.13.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.14.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x<ax+4的解为.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=2cm,过点E作EF⊥AC交CD的延长线于点F.若AE=3cm,则EF= cm.16.在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为.17.在△ABC中,AB=AC=5,BC=6,若点P在边AB上移动,则CP的最小值是.18.一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过分钟,容器中的水恰好放完.三、解答题(本大题共有9小题,共66分.)19.计算: +﹣﹣82.(2)已知(2x+1)3+1=0,求x的值.20.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.21.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.22.一次函数y=y=﹣2x﹣4的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.(1)请写出A,B两点坐标并在方格纸中画出函数图象与等腰Rt△ABC;(2)求过B、C两点直线的函数关系式.23.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.24.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过的时间x(小时)之间的函数关系图象.(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?25.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.(1)求证:BE=DE.(2)若四边形ABCD的面积为9,求BE的长.26. 2014年白天鹅大酒店按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费3400元.从2015年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业2015年处理的这两种垃圾数量与2014年相比没有变化,就要多支付垃圾处理费5100元.(1)该酒店2014年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2015年将上述两种垃圾处理总量减少到160吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2015年该酒店最少需要支付这两种垃圾处理费共多少元?27.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.2015-2016学年江苏省盐城市亭湖新区实验学校八年级数学寒假作业参考答案与试题解析一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个是中心对称图形,也是轴对称图形;第二个不是中心对称图形,是轴对称图形;第三个不是中心对称图形,是轴对称图形;第四个既是中心对称图形又是轴对称图形.综上可得,共有2个符合题意.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.在平面直角坐标系中,下列哪个点在第四象限()A.(1,2) B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【考点】点的坐标.【分析】平面坐标系中点的坐标特点为:第一象限(+,+),第二象限(﹣,+),第三象限(﹣,﹣),第四象限(﹣,+);根据此特点可知此题的答案.【解答】解:因为第四象限内的点横坐标为正,纵坐标为负,各选项只有B符合条件,故选B.【点评】此题考查了平面坐标系中点的横纵坐标的特点,准确记忆此特点是解题的关键.3.下列说法正确的是()A.4的平方根是±2 B.8的立方根是±2C.D.【考点】立方根;平方根;算术平方根.【分析】根据平方根、立方根、算术平方根的定义求出每个的值,再选出即可.【解答】解:A、4的平方根是±2,故本选项正确;B、8的立方根是2,故本选项错误;C、=2,故本选项错误;D、=2,故本选项错误;故选A.【点评】本题考查了对平方根、立方根、算术平方根的定义的应用,主要考查学生的计算能力.4.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理进行判断即可.【解答】解:A、根据SAS即可推出△ABC≌△DEF,故本选项错误;B、不能推出△ABC≌△DEF,故本选项正确;C、根据AAS即可推出△ABC≌△DEF,故本选项错误;D、根据ASA即可推出△ABC≌△DEF,故本选项错误;故选B.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC:AC:AB=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理可判定A、B,由三角形内角和可判定C、D,可得出答案.【解答】解:A、当BC=1,AC=2,AB=时,满足BC2+AB2=1+3=4=AC2,所以△ABC为直角三角形;B、当BC:AC:AB=3:4:5时,设BC=3x,AC=4x,AB=5x,满足BC2+AC2=AB2,所以△ABC为直角三角形;C、当∠A+∠B=∠C时,且∠A+∠B+∠C=90°,所以∠C=90°,所以△ABC为直角三角形;D、当∠A:∠B:∠C=3:4:5时,可设∠A=3x°,∠B=4x°,∠C=5x°,由三角形内角和定理可得3x+4x+5x=180,解得x=15°,所以∠A=45°,∠B=60°,∠C=75°,所以△ABC为锐角三角形,故选D.【点评】本题主要考查直角三角形的判定方法,掌握直角三角形的判定方法是解题的关键,主要有①勾股定理的逆定理,②有一个角为直角的三角形.6.如图,数轴上点P表示的数可能是()A.B.C. D.【考点】实数与数轴;估算无理数的大小.【分析】根据被开方数越大算术平方根越大,数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:由<<3<4<,点P表示的数大于3小于4,故C符合题意.故选:C.【点评】本题考查了估算无理数的大小,利用了被开方数越大算术平方根越大,数轴上的点表示的数右边的总比左边的大.7.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【专题】数形结合.【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0, ∴图象过第一、二、四象限, ∴图象不经过第三象限. 故选:C .【点评】本题考查的是一次函数的性质,即一次函数y=kx+b (k ≠0)中,当k <0时,函数图象经过第二、四象限,当b >0时,函数图象与y 轴相交于正半轴.8.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s (千米)与行驶的时间t (时)的函数关系的大致图象是( )A .B .C .D .【考点】函数的图象.【分析】汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程的增加幅度会变大一点.据此即可选择. 【解答】解:由题意知,前1小时路程随时间增大而增大,1小时后路程的增加幅度会变大一点. 故选:C .【点评】本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.二、填空题(本大题共有10小题,每小题3分,共30分.)9.的算术平方根是 .【考点】算术平方根.【分析】直接根据算术平方根的定义求解即可. 【解答】解:∵()2=,∴的算术平方根是,即=.故答案为.【点评】本题考查了算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.10.点A(﹣3,1)关于x轴对称的点的坐标为(﹣3,﹣1).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点A(﹣3,1)关于x轴对称的点的坐标为(﹣3,﹣1).故答案为:(﹣3,﹣1).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.函数y=中,自变量x的取值范围是x≥0且x≠1 .【考点】函数自变量的取值范围.【专题】函数思想.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.写出一个图象位于第二、四象限的正比例函数的表达式是y=﹣x(答案不唯一).【考点】正比例函数的性质.【专题】开放型.【分析】先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.【解答】解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=﹣x(答案不唯一).故答案为:y=﹣x(答案不唯一).【点评】本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k<0时函数的图象经过二、四象限.13.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是(﹣4,3).【考点】坐标与图形变化-旋转.【分析】过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,根据旋转的性质可得OA=OA′,利用同角的余角相等求出∠OAB=∠A′OB′,然后利用“角角边”证明△AOB和△OA′B′全等,根据全等三角形对应边相等可得OB′=AB,A′B′=OB,然后写出点A′的坐标即可.【解答】解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为:(﹣4,3).【点评】本题考查了坐标与图形变化﹣旋转,熟记性质并作辅助线构造出全等三角形是解题的关键,也是本题的难点.14.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x<ax+4的解为x<.【考点】一次函数与一元一次不等式.【分析】把(m,3)代入y=2x即可求得m的值,然后根据函数的图象即可写出不等式的解集.【解答】解:把A(m,3)代入y=2x,得:2m=3,解得:m=;根据图象可得:不等式2x<ax+4的解集是:x<.故答案是:x<.【点评】本题考查了一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=2cm,过点E作EF⊥AC交CD的延长线于点F.若AE=3cm,则EF= 5 cm.【考点】全等三角形的判定与性质.【分析】由CD⊥AB,EF⊥AC就可以得出∠FEC=∠ADC=90°,就有∠A=∠F,就可以得出△ABC≌△FCE,就有EF=AC而求出结论.【解答】解:∵CD⊥AB,EF⊥AC,∴∠FEC=∠ADC=∠ACB=90°,∴∠ACD+∠A=∠ACD+∠F=90°,∴∠A=∠F.∵BC=EC=2cm,在△ABC和△FCE中,∴△ABC≌△FCE(SAS),∴AC=FE.∵AC=AE+EC,∴FE=AE+EC.∵EC=2cm,AE=3cm,∴FE=2+3=5cm.故答案为:5【点评】本题考查了垂直的性质的运用,直角三角形的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.16.在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为.【考点】正方形的性质.【分析】答题时首先证明△BEO≌△OFC,故得BE=FC,故知AE=BF,在Rt△BEF中解得EF.【解答】解:根据题意可知OB=OC,∠OBE=∠OCF,∵OE⊥OF,∴∠EOB+∠BOF=90°,∵∠BOF+∠COF=90°,∴∠EOB=∠COF,∴△BEO≌△OFC,∴BE=CF,∴Rt△BEF中,EF=5.故选B.【点评】解答本题要充分利用正方形的特殊性质解决三角形全等等问题,注意在正方形中的特殊三角形的应用.17.在△ABC中,AB=AC=5,BC=6,若点P在边AB上移动,则CP的最小值是 4.8 .【考点】等腰三角形的性质;垂线段最短;三角形的面积;勾股定理.【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【解答】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,∴S△ABC=AB•PC=BC•AF=×5CP=×6×4得:CE=4.8故答案为4.8.【点评】本题考查了等腰三角形、勾股定理及三角形的面积的知识,特别是利用面积相等的方法求一边上的高的方法一定要掌握.18.一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过8 分钟,容器中的水恰好放完.【考点】函数的图象;一次函数的应用.【分析】由0﹣4分钟的函数图象可知进水管的速度,根据4﹣12分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.【解答】解:进水管的速度为:20÷4=5(升/分),出水管的速度为:5﹣(30﹣20)÷(12﹣4)=3.75(升/分),∴关停进水管后,出水经过的时间为:30÷3.75=8分钟.故答案为:8.【点评】本题考查利用函数的图象解决实际问题.正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.三、解答题(本大题共有9小题,共66分.)19.(1)计算: +﹣﹣82.(2)已知(2x+1)3+1=0,求x的值.【考点】实数的运算;平方根.【专题】计算题.【分析】(1)方程利用平方根及立方根定义计算即可得到结果;(2)方程变形后,利用立方根定义开立方即可求出解.【解答】解:(1)原式=9﹣4﹣17﹣64=﹣76;(2)方程变形得:(2x+1)3=﹣1,开立方得:2x+1=﹣1,解得:x=﹣1.【点评】此题考查了实数的运算,以及平方根,熟练掌握运算法则是解本题的关键.20.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.【考点】全等三角形的判定与性质;等腰三角形的判定.【专题】证明题.【分析】(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可证出BC=AD,(2)根据Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.【解答】证明:(1)∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,(2)∵Rt△ABC≌Rt△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形.【点评】本题考查了全等三角形的判定及性质;用到的知识点是全等三角形的判定及性质、等腰三角形的判定等,全等三角形的判定是重点,本题是道基础题,是对全等三角形的判定的训练.21.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.【考点】作图—复杂作图;全等三角形的判定.【分析】(1)根据AB∥CD,∠ACD=114°,得出∠CAB=66°,再根据AM是∠CAB的平分线,即可得出∠MAB的度数.(2)根据∠CAM=∠MAB,∠MAB=∠CMA,得出∠CAM=∠CMA,再根据CN⊥AD,CN=CN,即可得出△ACN ≌△MCN.【解答】(1)解:∵AB∥CD,∴∠ACD+∠CAB=180°,又∵∠ACD=114°,∴∠CAB=66°,由作法知,AM是∠CAB的平分线,∴∠MAB=∠CAB=33°;(2)证明:∵AM平分∠CAB,∴∠CAM=∠MAB,∵AB∥CD,∴∠MAB=∠CMA,∴∠CAM=∠CMA,又∵CN⊥AM,∴∠ANC=∠MNC,在△ACN和△MCN中,,∴△ACN≌△MCN(AAS).【点评】此题考查了作图﹣复杂作图,用到的知识点是全等三角形的判定、平行线的性质、角平分线的性质等,解题的关键是证出∠CAM=∠CMA.22.一次函数y=y=﹣2x﹣4的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.(1)请写出A,B两点坐标并在方格纸中画出函数图象与等腰Rt△ABC;(2)求过B、C两点直线的函数关系式.【考点】待定系数法求一次函数解析式;一次函数的图象;等腰直角三角形.【专题】计算题.【分析】(1)根据坐标轴上点的坐标特征求A点和B点坐标;然后画图;(2)过C点作CD⊥x轴,如图,再证明△AOB≌△CDA,得到AO=CD=2,BO=AD=4,则C(2,2,),然后利用待定系数法求直线BC的解析式.【解答】解:(1)当y=0时,﹣2x﹣4=0,解得x=﹣2,则A(﹣2,0);当y=0时,y=﹣2x﹣4=﹣4,则B(0,﹣4);(2)过C点作CD⊥x轴,如图,∵Rt△ABC是等腰三角形,∴AB=AC,∵∠BAO+∠CAD=90∘,∠BAO+∠ABO=90°,∴∠CAD=∠ABO,在△AOB和△CDA中,∴△AOB≌△CDA,∴AO=CD=2,BO=AD=4,∴OD=2,∴C(2,2,),设直线BC的解析式为y=kx+b,把B(0,﹣4)、C(2,2)分别代入得,解得,∴直线BC的解析式为y=3x﹣4.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了等腰直角三角形的性质.23.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.【考点】翻折变换(折叠问题);勾股定理.【分析】(1)利用翻折变换的性质得出DE垂直平分AB,进而得出∠1=∠2=∠A即可得出答案;(2)利用勾股定理得出CE的长,即可得出CD的长.【解答】解:(1)∵折叠使点A与点B重合,折痕为DE.∴DE垂直平分AB.∴AE=BE,∴∠A=∠1,又∵DE⊥AB,∠C=90°,DE=CE,∴∠1=∠2,∴∠1=∠2=∠A.由∠A+∠1+∠2=90°,解得:∠A=30°;(2)设CE=x,则AE=BE=8﹣x.在Rt△BCE中,由勾股定理得:BC2+CE 2=BE2.即 62+x2=(8﹣x)2,解得:x=,即CE=.【点评】此题主要考查了翻折变换的性质以及勾股定理,根据已知熟练应用勾股定理得出是解题关键.24.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过的时间x(小时)之间的函数关系图象.(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?【考点】一次函数的应用.【分析】(1)首先设y与x之间的函数关系式为y=kx+b,根据图象可得直线经过(1.5,90),(3,0),利用待定系数法把此两点坐标代入y=kx+b,即可求出一次函数关系式;(2)利用甲从B地返回A地的过程中,y与x之间的函数关系式算出y的值,即可得到108分钟时骑电动车所行驶的路程,再根据路程与时间算出电动车的速度,再用总路程90千米÷电动车的速度可得乙从A地到B地用了多长时间.【解答】解:(1)设甲从B地返回A地的过程中,y与x之间的函数关系式为y=kx+b,根据题意得:,解得,所以y=﹣60x+180(1.5≤x≤3);(2)∵当x==1.8时,y=﹣60×1.8+180=72,∴骑电动车的速度为72÷1.8=40(千米/时),∴乙从A地到B地用时为90÷40=2.25(小时)=135分钟.【点评】此题主要考查了一次函数的应用,关键是看懂图象所表示的意义,利用待定系数法求出甲从B地返回A地的过程中,y与x之间的函数关系式.25.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.(1)求证:BE=DE.(2)若四边形ABCD的面积为9,求BE的长.【考点】全等三角形的判定与性质;矩形的判定与性质.【分析】(1)作BF⊥DC于F,先证出四边形BEDF是矩形,得出DE=BF,再证出△CBF≌△ABE,证出BF=BE即可;(2)由四边形ABCD的面积等于正方形BEDF的面积即可求出BE的长.【解答】(1)证明:作BF⊥DC,交DC的延长线于F;如图所示:则∠F=90°,∵BE⊥AD,∴∠AEB=∠BED═90°.∵∠CDA=90°,∴四边形BEDF为矩形.∴DE=BF,∠EBF=90°.∴∠CBF+∠CBE=90°,∵∠ABE+∠CBE=90°∴∠CBF=∠ABE,在△CBF和△ABE中,∴△CBF≌△ABE(AAS).∴BF=BE,∴BE=DE.(2)∵△CBF≌△ABE,∴BF=BE,∴四边形BEDF是正方形,∴S正方形BEDF=S四边形ABCD=9=BE2,∴BE=3.【点评】本题考查了全等三角形的判定与性质以及矩形的判定与性质;证明三角形全等是解决问题的关键.26. 2014年白天鹅大酒店按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费3400元.从2015年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业2015年处理的这两种垃圾数量与2014年相比没有变化,就要多支付垃圾处理费5100元.(1)该酒店2014年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2015年将上述两种垃圾处理总量减少到160吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2015年该酒店最少需要支付这两种垃圾处理费共多少元?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设该酒店2014年处理的餐厨垃圾x吨,建筑垃圾y吨,根据条件建立方程组求出其解即可;(2)设该酒店2015年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共w元,先求出x的取值范围,在求出w与x的关系式由一次函数的性质就可以得出结论.【解答】解:(1)设该酒店2014年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得答:该酒店2014年处理的餐厨垃圾40吨,建筑垃圾150吨;(2)设该酒店2015年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共w元,根据题意得,,解得x≥40.w=100x+30(160﹣x)=70x+4800,∴k=70>0,∴w的值随x的增大而增大,∴当x=40时,w值最小,最小值=70×40+4800=7600(元).答:2015年该酒店最少需要支付这两种垃圾处理费共7600元.【点评】本题考查了一次函数的运用,列二元一次方程组解实际问题的运用,一元一次不等式的运用,解答时求出函数的解析式是关键.27.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.【考点】全等三角形的判定与性质;等边三角形的性质;等腰直角三角形;旋转的性质.【专题】压轴题.【分析】(1)求出∠ABC的度数,即可求出答案;(2)连接AD,CD,ED,根据旋转性质得出BC=BD,∠DBC=60°,求出∠ABD=∠EBC=30°﹣α,且△BCD为等边三角形,证△ABD≌△ACD,推出∠BAD=∠CAD=∠BAC=α,求出∠BEC=α=∠BAD,证△ABD≌△EBC,推出AB=BE即可;(3)求出∠DCE=90°,△DEC为等腰直角三角形,推出DC=CE=BC,求出∠EBC=15°,得出方程30°﹣α=15°,求出即可.【解答】(1)解:∵AB=AC,∠A=α,∴∠ABC=∠ACB=(180°﹣∠A)=90°﹣α,∵∠ABD=∠ABC﹣∠DBC,∠DBC=60°,即∠ABD=30°﹣α;(2)△ABE是等边三角形,证明:连接AD,CD,ED,∵线段BC绕B逆时针旋转60°得到线段BD,则BC=BD,∠DBC=60°,∵∠ABE=60°,∴∠ABD=60°﹣∠DBE=∠EBC=30°﹣α,且△BCD为等边三角形,在△ABD与△ACD中∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD=∠BAC=α,∵∠BCE=150°,∴∠BEC=180°﹣(30°﹣α)﹣150°=α=∠BAD,在△ABD和△EBC中∴△ABD≌△EBC(AAS),∴AB=BE,∴△ABE是等边三角形;(3)解:∵∠BCD=60°,∠BCE=150°,∴∠DCE=150°﹣60°=90°,∵∠DEC=45°,∴△DEC为等腰直角三角形,∴DC=CE=BC,∵∠BCE=150°,∴∠EBC=(180°﹣150°)=15°,∵∠EBC=30°﹣α=15°,∴α=30°.【点评】本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰直角三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.。
数学初二年级寒假作业答案苏科版
数学初二年级寒假作业答案苏科版【导语】学习,是每个学生每天都在做的事情,学生们从学习中获得大量的知识,但是,如果问起他们为什么要学习?为谁而学习?估计大多数学生都不知怎么回答,当你问一个高材生为什么让读书时,他也许会说为了不让别人看不起;当你问起一个学习成绩一般的学生,他也许会说为了不被父母责骂,也有可能会说为了不让父母失望;当你问起一个学习成绩不理想的学生,他有可能会说考得好可以得到父母的奖励……祝你学习进步!以下是xx为您整理的《数学初二年级寒假作业答案苏科版》,供大家学习参考。
【篇一】1.3和64°2.80°3.△BCE≌△CBD△BFE≌CFDAAS△ADB≌△AEC4.BC=EF5.90°6.D7.D8.B9.同时∵△EBC≌△DBA(证明略)10.(1)∵AD⊥BC∴∠ADB=∠ADC在△ABD和△ACD中∠B=∠C1/ 3∠1=∠2AD=AD∴△ABD≌△ACDAB=AC(2)不成立SSA不能证明(3)作BC边上中线AD∴BD=CD在△ABD和△ACD中AB=ACAD=ADBD=CD△ABD≌△ACD∠B=∠C11.(5+7)X2=24cm【篇二】1.2对3对DCBD平分∠ABCDE⊥ABDC⊥BC8282.3cm3.HLBC∠C4.B5.C6.A【篇三】1.MNAB2/ 32.(2,-3)3.等边三角形4.60°5.60°6.B7.B8.C9.找到B点的对称点,连接A,找到与河岸的交点,把d平移到交点处。
10.成立连接APBPCP1/2×h1×AB+1/2×h2×BC+1/2×h3×BC=1/2×h×BCh1+h2+h3=h不成立h1+h2+h3>h11.见18页【篇四】选择题1B2C3C4B5B6A7B8D填空(1)1(2)y=2x+1-1(3)m数学初二年级寒假作业答案苏科版.3/ 3。
江苏省盐城市亭湖新区实验学校八年级数学上学期寒假作业(含解析) 苏科版
2015-2016学年江苏省盐城市亭湖新区实验学校八年级数学寒假作业一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个2.在平面直角坐标系中,下列哪个点在第四象限()A.(1,2) B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)3.下列说法正确的是()A.4的平方根是±2 B.8的立方根是±2C.D.4.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E5.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC:AC:AB=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:56.如图,数轴上点P表示的数可能是()A.B.C. D.7.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.)9.的算术平方根是.10.点A(﹣3,1)关于x轴对称的点的坐标为.11.函数y=中,自变量x的取值范围是.12.写出一个图象位于第二、四象限的正比例函数的表达式是.13.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.14.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x<ax+4的解为.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=2cm,过点E作EF⊥AC交CD的延长线于点F.若AE=3cm,则EF= cm.16.在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为.17.在△ABC中,AB=AC=5,BC=6,若点P在边AB上移动,则CP的最小值是.18.一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过分钟,容器中的水恰好放完.三、解答题(本大题共有9小题,共66分.)19.计算: +﹣﹣82.(2)已知(2x+1)3+1=0,求x的值.20.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.21.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.22.一次函数y=y=﹣2x﹣4的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.(1)请写出A,B两点坐标并在方格纸中画出函数图象与等腰Rt△ABC;(2)求过B、C两点直线的函数关系式.23.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.24.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过的时间x(小时)之间的函数关系图象.(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?25.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.(1)求证:BE=DE.(2)若四边形ABCD的面积为9,求BE的长.26. 2014年白天鹅大酒店按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费3400元.从2015年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业2015年处理的这两种垃圾数量与2014年相比没有变化,就要多支付垃圾处理费5100元.(1)该酒店2014年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2015年将上述两种垃圾处理总量减少到160吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2015年该酒店最少需要支付这两种垃圾处理费共多少元?27.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.2015-2016学年江苏省盐城市亭湖新区实验学校八年级数学寒假作业参考答案与试题解析一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个是中心对称图形,也是轴对称图形;第二个不是中心对称图形,是轴对称图形;第三个不是中心对称图形,是轴对称图形;第四个既是中心对称图形又是轴对称图形.综上可得,共有2个符合题意.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.在平面直角坐标系中,下列哪个点在第四象限()A.(1,2) B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【考点】点的坐标.【分析】平面坐标系中点的坐标特点为:第一象限(+,+),第二象限(﹣,+),第三象限(﹣,﹣),第四象限(﹣,+);根据此特点可知此题的答案.【解答】解:因为第四象限内的点横坐标为正,纵坐标为负,各选项只有B符合条件,故选B.【点评】此题考查了平面坐标系中点的横纵坐标的特点,准确记忆此特点是解题的关键.3.下列说法正确的是()A.4的平方根是±2 B.8的立方根是±2C.D.【考点】立方根;平方根;算术平方根.【分析】根据平方根、立方根、算术平方根的定义求出每个的值,再选出即可.【解答】解:A、4的平方根是±2,故本选项正确;B、8的立方根是2,故本选项错误;C、=2,故本选项错误;D、=2,故本选项错误;故选A.【点评】本题考查了对平方根、立方根、算术平方根的定义的应用,主要考查学生的计算能力.4.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理进行判断即可.【解答】解:A、根据SAS即可推出△ABC≌△DEF,故本选项错误;B、不能推出△ABC≌△DEF,故本选项正确;C、根据AAS即可推出△ABC≌△DEF,故本选项错误;D、根据ASA即可推出△ABC≌△DEF,故本选项错误;故选B.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC:AC:AB=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理可判定A、B,由三角形内角和可判定C、D,可得出答案.【解答】解:A、当BC=1,AC=2,AB=时,满足BC2+AB2=1+3=4=AC2,所以△ABC为直角三角形;B、当BC:AC:AB=3:4:5时,设BC=3x,AC=4x,AB=5x,满足BC2+AC2=AB2,所以△ABC为直角三角形;C、当∠A+∠B=∠C时,且∠A+∠B+∠C=90°,所以∠C=90°,所以△ABC为直角三角形;D、当∠A:∠B:∠C=3:4:5时,可设∠A=3x°,∠B=4x°,∠C=5x°,由三角形内角和定理可得3x+4x+5x=180,解得x=15°,所以∠A=45°,∠B=60°,∠C=75°,所以△ABC为锐角三角形,故选D.【点评】本题主要考查直角三角形的判定方法,掌握直角三角形的判定方法是解题的关键,主要有①勾股定理的逆定理,②有一个角为直角的三角形.6.如图,数轴上点P表示的数可能是()A.B.C. D.【考点】实数与数轴;估算无理数的大小.【分析】根据被开方数越大算术平方根越大,数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:由<<3<4<,点P表示的数大于3小于4,故C符合题意.故选:C.【点评】本题考查了估算无理数的大小,利用了被开方数越大算术平方根越大,数轴上的点表示的数右边的总比左边的大.7.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【专题】数形结合.【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C .【点评】本题考查的是一次函数的性质,即一次函数y=kx+b (k ≠0)中,当k <0时,函数图象经过第二、四象限,当b >0时,函数图象与y 轴相交于正半轴.8.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s (千米)与行驶的时间t (时)的函数关系的大致图象是( )A .B .C .D .【考点】函数的图象.【分析】汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程的增加幅度会变大一点.据此即可选择.【解答】解:由题意知,前1小时路程随时间增大而增大,1小时后路程的增加幅度会变大一点. 故选:C .【点评】本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.二、填空题(本大题共有10小题,每小题3分,共30分.)9.的算术平方根是 . 【考点】算术平方根. 【分析】直接根据算术平方根的定义求解即可.【解答】解:∵()2=,∴的算术平方根是,即=.故答案为.【点评】本题考查了算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.10.点A(﹣3,1)关于x轴对称的点的坐标为(﹣3,﹣1).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点A(﹣3,1)关于x轴对称的点的坐标为(﹣3,﹣1).故答案为:(﹣3,﹣1).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.函数y=中,自变量x的取值范围是x≥0且x≠1 .【考点】函数自变量的取值范围.【专题】函数思想.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.写出一个图象位于第二、四象限的正比例函数的表达式是y=﹣x(答案不唯一).【考点】正比例函数的性质.【专题】开放型.【分析】先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.【解答】解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=﹣x(答案不唯一).故答案为:y=﹣x(答案不唯一).【点评】本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k<0时函数的图象经过二、四象限.13.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是(﹣4,3).【考点】坐标与图形变化-旋转.【分析】过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,根据旋转的性质可得OA=OA′,利用同角的余角相等求出∠OAB=∠A′OB′,然后利用“角角边”证明△AOB和△OA′B′全等,根据全等三角形对应边相等可得OB′=AB,A′B′=OB,然后写出点A′的坐标即可.【解答】解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为:(﹣4,3).【点评】本题考查了坐标与图形变化﹣旋转,熟记性质并作辅助线构造出全等三角形是解题的关键,也是本题的难点.14.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x<ax+4的解为x<.【考点】一次函数与一元一次不等式.【分析】把(m,3)代入y=2x即可求得m的值,然后根据函数的图象即可写出不等式的解集.【解答】解:把A(m,3)代入y=2x,得:2m=3,解得:m=;根据图象可得:不等式2x<ax+4的解集是:x<.故答案是:x<.【点评】本题考查了一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=2cm,过点E作EF⊥AC交CD的延长线于点F.若AE=3cm,则EF= 5 cm.【考点】全等三角形的判定与性质.【分析】由CD⊥AB,EF⊥AC就可以得出∠FEC=∠ADC=90°,就有∠A=∠F,就可以得出△ABC≌△FCE,就有EF=AC而求出结论.【解答】解:∵CD⊥AB,EF⊥AC,∴∠FEC=∠ADC=∠ACB=90°,∴∠ACD+∠A=∠ACD+∠F=90°,∴∠A=∠F.∵BC=EC=2cm,在△ABC和△FCE中,∴△ABC≌△FCE(SAS),∴AC=FE.∵AC=AE+EC,∴FE=AE+EC.∵EC=2cm,AE=3cm,∴FE=2+3=5cm.故答案为:5【点评】本题考查了垂直的性质的运用,直角三角形的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.16.在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为.【考点】正方形的性质.【分析】答题时首先证明△BEO≌△OFC,故得BE=FC,故知AE=BF,在Rt△BEF中解得EF.【解答】解:根据题意可知OB=OC,∠OBE=∠OCF,∵OE⊥OF,∴∠EOB+∠BOF=90°,∵∠BOF+∠COF=90°,∴∠EOB=∠COF,∴△BEO≌△OFC,∴BE=CF,∴Rt△BEF中,EF=5.故选B.【点评】解答本题要充分利用正方形的特殊性质解决三角形全等等问题,注意在正方形中的特殊三角形的应用.17.在△ABC中,AB=AC=5,BC=6,若点P在边AB上移动,则CP的最小值是 4.8 .【考点】等腰三角形的性质;垂线段最短;三角形的面积;勾股定理.【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【解答】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,∴S△ABC=AB•PC=BC•AF=×5CP=×6×4得:CE=4.8故答案为4.8.【点评】本题考查了等腰三角形、勾股定理及三角形的面积的知识,特别是利用面积相等的方法求一边上的高的方法一定要掌握.18.一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过8 分钟,容器中的水恰好放完.【考点】函数的图象;一次函数的应用.【分析】由0﹣4分钟的函数图象可知进水管的速度,根据4﹣12分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.【解答】解:进水管的速度为:20÷4=5(升/分),出水管的速度为:5﹣(30﹣20)÷(12﹣4)=3.75(升/分),∴关停进水管后,出水经过的时间为:30÷3.75=8分钟.故答案为:8.【点评】本题考查利用函数的图象解决实际问题.正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.三、解答题(本大题共有9小题,共66分.)19.(1)计算: +﹣﹣82.(2)已知(2x+1)3+1=0,求x的值.【考点】实数的运算;平方根.【专题】计算题.【分析】(1)方程利用平方根及立方根定义计算即可得到结果;(2)方程变形后,利用立方根定义开立方即可求出解.【解答】解:(1)原式=9﹣4﹣17﹣64=﹣76;(2)方程变形得:(2x+1)3=﹣1,开立方得:2x+1=﹣1,解得:x=﹣1.【点评】此题考查了实数的运算,以及平方根,熟练掌握运算法则是解本题的关键.20.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.【考点】全等三角形的判定与性质;等腰三角形的判定.【专题】证明题.【分析】(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可证出BC=AD,(2)根据Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.【解答】证明:(1)∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,(2)∵Rt△ABC≌Rt△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形.【点评】本题考查了全等三角形的判定及性质;用到的知识点是全等三角形的判定及性质、等腰三角形的判定等,全等三角形的判定是重点,本题是道基础题,是对全等三角形的判定的训练.21.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.【考点】作图—复杂作图;全等三角形的判定.【分析】(1)根据AB∥CD,∠ACD=114°,得出∠CAB=66°,再根据AM是∠CAB的平分线,即可得出∠MAB的度数.(2)根据∠CAM=∠MAB,∠MAB=∠CMA,得出∠CAM=∠CMA,再根据CN⊥AD,CN=CN,即可得出△ACN ≌△MCN.【解答】(1)解:∵AB∥CD,∴∠ACD+∠CAB=180°,又∵∠ACD=114°,∴∠CAB=66°,由作法知,AM是∠CAB的平分线,∴∠MAB=∠CAB=33°;(2)证明:∵AM平分∠CAB,∴∠CAM=∠MAB,∵AB∥CD,∴∠MAB=∠CMA,∴∠CAM=∠CMA,又∵CN⊥AM,∴∠ANC=∠MNC,在△ACN和△MCN中,,∴△ACN≌△MCN(AAS).【点评】此题考查了作图﹣复杂作图,用到的知识点是全等三角形的判定、平行线的性质、角平分线的性质等,解题的关键是证出∠CAM=∠CMA.22.一次函数y=y=﹣2x﹣4的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.(1)请写出A,B两点坐标并在方格纸中画出函数图象与等腰Rt△ABC;(2)求过B、C两点直线的函数关系式.【考点】待定系数法求一次函数解析式;一次函数的图象;等腰直角三角形.【专题】计算题.【分析】(1)根据坐标轴上点的坐标特征求A点和B点坐标;然后画图;(2)过C点作CD⊥x轴,如图,再证明△AOB≌△CDA,得到AO=CD=2,BO=AD=4,则C(2,2,),然后利用待定系数法求直线BC的解析式.【解答】解:(1)当y=0时,﹣2x﹣4=0,解得x=﹣2,则A(﹣2,0);当y=0时,y=﹣2x﹣4=﹣4,则B(0,﹣4);(2)过C点作CD⊥x轴,如图,∵Rt△ABC是等腰三角形,∴AB=AC,∵∠BAO+∠CAD=90∘,∠BAO+∠ABO=90°,∴∠CAD=∠ABO,在△AOB和△CDA中,∴△AOB≌△CDA,∴AO=CD=2,BO=AD=4,∴OD=2,∴C(2,2,),设直线BC的解析式为y=kx+b,把B(0,﹣4)、C(2,2)分别代入得,解得,∴直线BC的解析式为y=3x﹣4.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了等腰直角三角形的性质.23.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.【考点】翻折变换(折叠问题);勾股定理.【分析】(1)利用翻折变换的性质得出DE垂直平分AB,进而得出∠1=∠2=∠A即可得出答案;(2)利用勾股定理得出CE的长,即可得出CD的长.【解答】解:(1)∵折叠使点A与点B重合,折痕为DE.∴DE垂直平分AB.∴AE=BE,∴∠A=∠1,又∵DE⊥AB,∠C=90°,DE=CE,∴∠1=∠2,∴∠1=∠2=∠A.由∠A+∠1+∠2=90°,解得:∠A=30°;(2)设CE=x,则AE=BE=8﹣x.在Rt△BCE中,由勾股定理得:BC2+CE 2=BE2.即 62+x2=(8﹣x)2,解得:x=,即CE=.【点评】此题主要考查了翻折变换的性质以及勾股定理,根据已知熟练应用勾股定理得出是解题关键.24.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过的时间x(小时)之间的函数关系图象.(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?【考点】一次函数的应用.【分析】(1)首先设y与x之间的函数关系式为y=kx+b,根据图象可得直线经过(1.5,90),(3,0),利用待定系数法把此两点坐标代入y=kx+b,即可求出一次函数关系式;(2)利用甲从B地返回A地的过程中,y与x之间的函数关系式算出y的值,即可得到108分钟时骑电动车所行驶的路程,再根据路程与时间算出电动车的速度,再用总路程90千米÷电动车的速度可得乙从A地到B地用了多长时间.【解答】解:(1)设甲从B地返回A地的过程中,y与x之间的函数关系式为y=kx+b,根据题意得:,解得,所以y=﹣60x+180(1.5≤x≤3);(2)∵当x==1.8时,y=﹣60×1.8+180=72,∴骑电动车的速度为72÷1.8=40(千米/时),∴乙从A地到B地用时为90÷40=2.25(小时)=135分钟.【点评】此题主要考查了一次函数的应用,关键是看懂图象所表示的意义,利用待定系数法求出甲从B地返回A地的过程中,y与x之间的函数关系式.25.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.(1)求证:BE=DE.(2)若四边形ABCD的面积为9,求BE的长.【考点】全等三角形的判定与性质;矩形的判定与性质.【分析】(1)作BF⊥DC于F,先证出四边形BEDF是矩形,得出DE=BF,再证出△CBF≌△ABE,证出BF=BE即可;(2)由四边形ABCD的面积等于正方形BEDF的面积即可求出BE的长.【解答】(1)证明:作BF⊥DC,交DC的延长线于F;如图所示:则∠F=90°,∵BE⊥AD,∴∠AEB=∠BED═90°.∵∠CDA=90°,∴四边形BEDF为矩形.∴DE=BF,∠EBF=90°.∴∠CBF+∠CBE=90°,∵∠ABE+∠CBE=90°∴∠CBF=∠ABE,在△CBF和△ABE中,∴△CBF≌△ABE(AAS).∴BF=BE,∴BE=DE.(2)∵△CBF≌△ABE,∴BF=BE,∴四边形BEDF是正方形,∴S正方形BEDF=S四边形ABCD=9=BE2,∴BE=3.【点评】本题考查了全等三角形的判定与性质以及矩形的判定与性质;证明三角形全等是解决问题的关键.26. 2014年白天鹅大酒店按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费3400元.从2015年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业2015年处理的这两种垃圾数量与2014年相比没有变化,就要多支付垃圾处理费5100元.(1)该酒店2014年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2015年将上述两种垃圾处理总量减少到160吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2015年该酒店最少需要支付这两种垃圾处理费共多少元?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设该酒店2014年处理的餐厨垃圾x吨,建筑垃圾y吨,根据条件建立方程组求出其解即可;(2)设该酒店2015年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共w元,先求出x的取值范围,在求出w与x的关系式由一次函数的性质就可以得出结论.【解答】解:(1)设该酒店2014年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得答:该酒店2014年处理的餐厨垃圾40吨,建筑垃圾150吨;(2)设该酒店2015年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共w元,根据题意得,,解得x≥40.w=100x+30(160﹣x)=70x+4800,∴k=70>0,∴w的值随x的增大而增大,∴当x=40时,w值最小,最小值=70×40+4800=7600(元).答:2015年该酒店最少需要支付这两种垃圾处理费共7600元.【点评】本题考查了一次函数的运用,列二元一次方程组解实际问题的运用,一元一次不等式的运用,解答时求出函数的解析式是关键.27.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.【考点】全等三角形的判定与性质;等边三角形的性质;等腰直角三角形;旋转的性质.【专题】压轴题.【分析】(1)求出∠ABC的度数,即可求出答案;(2)连接AD,CD,ED,根据旋转性质得出BC=BD,∠DBC=60°,求出∠ABD=∠EBC=30°﹣α,且△BCD为等边三角形,证△ABD≌△ACD,推出∠BAD=∠CAD=∠BAC=α,求出∠BEC=α=∠BAD,证△ABD≌△EBC,推出AB=BE即可;(3)求出∠DCE=90°,△DEC为等腰直角三角形,推出DC=CE=BC,求出∠EBC=15°,得出方程30°﹣α=15°,求出即可.【解答】(1)解:∵AB=AC,∠A=α,∴∠ABC=∠ACB=(180°﹣∠A)=90°﹣α,∵∠ABD=∠ABC﹣∠DBC,∠DBC=60°,即∠ABD=30°﹣α;(2)△ABE是等边三角形,证明:连接AD,CD,ED,∵线段BC绕B逆时针旋转60°得到线段BD,则BC=BD,∠DBC=60°,∵∠ABE=60°,∴∠ABD=60°﹣∠DBE=∠EBC=30°﹣α,且△BCD为等边三角形,在△ABD与△ACD中∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD=∠BAC=α,∵∠BCE=150°,∴∠BEC=180°﹣(30°﹣α)﹣150°=α=∠BAD,在△ABD和△EBC中∴△ABD≌△EBC(AAS),∴AB=BE,∴△ABE是等边三角形;(3)解:∵∠BCD=60°,∠BCE=150°,∴∠DCE=150°﹣60°=90°,∵∠DEC=45°,∴△DEC为等腰直角三角形,∴DC=CE=BC,∵∠BCE=150°,∴∠EBC=(180°﹣150°)=15°,∵∠EBC=30°﹣α=15°,∴α=30°.【点评】本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰直角三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.。
苏科版初二数学寒假作业答案参考
苏科版初二数学寒假作业答案参考【导语】下面是xx为您整理的苏科版初二数学寒假作业答案参考,仅供大家查阅。
第21页—第23页1.选择题(1)B(2)B(3)C(4)B2.填空(1)20%30%25%25%(2)扁形36%115.2度(3)4113解答题(1)县ABCDEF人口(万)9015722737771百分比12.9%2.1%10.3%39.1%11.0%24.5%圆心角度数46.47.737.1140.839.788.2(2)图略(3)身高(cm)频数154.5~159.52159.5~164.54164.5~169.56169.5~174.510174.5~179.55179.5~184.53(4)图略结论:只有少数人对自己工作不满。
5)①200.16②略第25页—第27页1.选择题(1)B(2)C(3)A(4)C(5)B(6)C2.填空(1)∠D∠CDCODOC(2)DECDE∠D600(3)∠CADCD(4)50010108(5)ADECAE3解答题(1)①△DCE可以看作是△ABF平移旋转得到的②AF不一定与DE平行,因为∠AFE不一定等于∠D(2)∠ABC=1800x5/18=500∠C=1800x3/18=300∠B’CB=∠A+∠ABC=800∵△ABC≌△A’B’C’∴∠A’=∠A=300∠B’=∠ABC=500∠B’BC=1800-∠B’-∠B’CB=500(3)①略②分别取各边中点,两两连接即可.(4)延长AD至E,使AD=DE,连接BE∴AD=ED∵D为BC的中点在△BDE和△CDA中BD=CD∠ADC=∠BDEDE=DA∴△BDE≌△CDA∴BE=ACAE∴AD第29页—第31页选择题(1)D(2)B(3)B(4)C2.填空(1)6(2)200(3)BO=CO(4)AB=DC∠ACB=∠DBC 3.解答题(1)∵AE=CF∴AE+EF=CF+EF∴AF=CE∵CD=ABDE=BFCE=AF∴△CDE≌△ABF∴∠DEC=∠AFB∴DE‖BF(2)△ABE≌△ACG△ABD≌△ACF∵AB=AC∴∠ABC=∠ACB∵BD平分∠ABC,CF平分∠ACB∴∠ABD=∠ACF∵∠BAF=∠BAFAB=AC∴△ABD≌△ACF(3)BA=BC∵AB=BC∠B=∠BBE=BD∴△BEA≌△BDC。
苏版初二数学寒假作业解析参考
苏版初二数学寒假作业解析参考同学们,骏马是跑出来的,强兵是打出来的。
期望大伙儿在玩耍的同时不要忘了学习,预祝同学们来年取得更加优异的成绩。
查字典数学网初中频道为大伙儿提供了八年级数学寒假作业答案参考,期望对大伙儿有所关心。
1. 选择题1A 2D 3A 4C2. 填空(1)T=20-6h 20,6 T h h(2)Q=6x105-pt 6x105 p Q t 06x105/p(3)S=1.5b (4) 07 05 5 03.解答题(1)y= Q/a-x Q/a (0a)(2)y=80-2x20(3) ①-23②当x=3,y有最小值为1/2③当-20,y随x的增大而增大,当03,y随x的增大而减小(4)①`v=800-50t②016③当t=8时,v=800-50x8=400④当v=100时,100=800-50tT=14第5页第7页选择题1B 2C 3C 4B 5B 6A 7B 8D填空(1)1 (2)y=2x+1 -1 (3)m3 (4)y=-3x+3(5)y=x+3 (6)y=64x+48 (7)S=2n+1 (8)y=1/5 x-6 30解答题(1) 设y=kx+b-4k+b=156k+b= -5k= -2 b=7y= -2x+7(2)略(3)①表示y与x的关系,x为自变量②10时离家10km 13时离家30km③12时-13时,离家30km④13km⑤2时-13时⑥15km/h第9页第11页1. 选择题(1)A (2)C (3)C2.填空(1)y=-2x (2)m2 (3)y=5x+3 (4)y2y1 (5)y=-2x+100 25(6)9 3.解答题(1) ①Q=200+20t②(030)(2) ①y=80 (050)y=1.9x-15 (50100)②y=1.6x③选择方式一(3)①在同一直线上y=25/72x②当x=72时,y=25当x=144时,y=50当x=216时,y=75y=25/72 x (0345.6)③当x=158.4时,y=25/72x158.4=55(4) ①y甲=2x+180y乙=2.5x+140②当x=100时,y甲=200+180=380 Y乙=140+250=390380〈390租甲车更活算第13页第15页1.选择题(1)D (2)C (3)C2.填空(1)x=2y=3(2)x=2 x2(3)-3 -2 x= -5/8 y= -1/8(4)1/2 0 x=2y=3(5)y=5/4 x2. 解答题3. (1)略(2)①依题意-k+b= -52k+b=1解得k=2 b= -3y=2x+3当y0 时2x-33/2②当x2时,2x4则2x-31即y1(3) ①y会员卡=0.35+15y租书卡=0.5x②若y会员卡〈y租书卡则0.35x+150.5xx100租书超过100天,会员卡比租书卡更合算(4)设A(m,n)1/2x4xm=6m=3n=2A ( -3, -2)y=2/3x , y= -2/3x -4(5) ①y甲=0.8x1.5X+900=1.2x+900 (x500)语文课本中的文章差不多上精选的比较优秀的文章,还有许多名家名篇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版八年级数学寒假作业 1
一、选择题(每题4分共32分)
1、下列实数中属于无理数的是( ) A
3
π
0.3∙
D 3.14
2
) A 9± B 9 C 3- D 3
3、若点P (-2+a,3)与点Q (1,b )关于x 轴对称,则a+b 的值是( ) A 1 B 0 C -1 D-2
4、下列图形中,既是轴对称图形,又是中心对称图形的是().
5、有下列函数:()()()()41;2;3;4214
x y x y y y x x
==
=
=+.其中一次函数的个
数是( ) A 1 B 2 C 3 D 4
6、下面四条直线,其中直线上每个点的坐标都是二元一次方程x –2y =2的解的是
( )
A B
C D
7、顺次连结矩形四边中点所得的四边形一定是( )
A.正方形
B.矩形
C.菱形
D.等腰梯形
8、两个一次函数y=ax+b 与y=bx+a 在同一直角坐标系中的图象可能是( )
二、填空题(每题4分,共36分)
9
_______________ 10
、函数y =
中,自变量x 的取值范围是_____________
11、一次函数y=-x+2 的图象不经过第____________象限.
12、一次函数y=kx+b 的图象与正比例函数y=2x 的图象平行且经过点A (1,﹣2),则kb= _______ 13、等腰三角形的周长是20,底边长y 与腰长x 的函数关系式是__________________________ (要写出x 的取值范围) 14、若函数()2
1k
y k x
=-是正比例函数,则k=_________________
15、当m= ___________时,直线y=3x+m 与直线y=4-2x 的交点在x 轴上.
16、我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.....。
现有一个对角线分别为6cm 和8cm 的菱形,它的中点四边形的对角线长是 ______ .
17.观察下列图形:
它们是按一定规律排列的,依照此规律,第n 个图形共有 __________________ 个★.
18、(5分)计算
19、(10分)解下列方程 (1)()3
1640x +-= 2
(2)(1)25x -=
20、(6分)已知2y -3与3x +1成正比例,且x=2时,y=5,
(1)求y 与x 之间的函数关系式,并指出它是什么函数; (2)若点(a ,2)在这个函数的图象上,求a .
21、(8分)小颖准备到甲、乙两商场去应聘,图中的l
1,l 2分别表示了甲、乙两商场每月付给员工工资
y 1,y 2(元)与销售商品的件数x (件)的关系. (1)根据图象分别求出y 1,y 2与x 的函数关系式; (2)根据图象直接回答:如果小颖决定应聘,她可能选择甲商场还是乙商场?
22、(10分)在△ABC 中,AB=AC ,D 为边BC 上一点,以AB,BD 为邻边作平行四边形ABDE ,连接AD ,EC .
(1)求证:△ADC ≅△ECD ; (2)若BD=CD,求证四边形ADCE 是矩形.
23、(10分)直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,-2).
(1)求直线AB 的解析式; (2)若直线AB 上一点C ,且2=∆BOC S ,求点C 坐标.
24、(10分)如图,直线L :22
1+-
=x y 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点
C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动。
(1)求A 、B 两点的坐标; (2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式; (3)当t 何值时△COM ≌△AOB ,并求此时M 点的坐标。
25、(6分)某一次函数的图象与直线y=6-x 交于点A (5,k ),且与直线y=2x-3无交点,•
求此函数的关系式.
26、(8分)现从A ,B 向甲、乙两地运送蔬菜,A ,B 两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A 到甲地运费50元/吨,到乙地30元/吨;从B 地到甲运费60元/吨,到乙地45元/吨.设A 地到甲地运送蔬菜x 吨,
(1)设总运费为W 元,请写出W 与x 的函数关系式.(2)有几种调运方案 (3)怎样调运蔬菜才能使运费最少?最少运费是多少?
27、(9分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与B D 相较
于点O ,与BC 相较于N ,连接M N DN ,。
(1)求证:四边形B M D N 是菱形; (2) 若 4 , 8 ,AB AD ==求MD 的长。