emulsions-creaming phenomena
【精品PPT】乳剂(emulsions)又称乳浊液
⑶ 明胶 (gelatin)
可形成O/W型乳剂,用量为油量的 1%~2%,明胶为两性化合物,易受 溶液pH值及电解质的影响产生凝聚 作用。
使用时须加防腐剂。常与阿拉伯胶 合用。
⑷ 磷脂 (lecithin)
该种乳化剂形成的乳剂类型,决定于固体粉末与 水 相 的 接 触 角 θ , θ<90° 则 形 成 O/W 型 乳 剂 , θ>90°则形成W/O型乳剂。
常用的O/W型乳化剂有氢氧化镁、氢氧化铝、二 氧化硅、硅皂土、白陶土等,W/O型乳化剂有氢 氧化钙、氢氧化锌、硬脂酸镁、炭黑等。
4. 辅助乳化剂
混合乳化剂的选择
乳化剂混合使用必须符合油相对HLB值得 需要。
如果不知道油相所要求的HLB值,应进行 实验测定。先取可混合使用的两种乳化 剂按不同比例配成具有不同HLB值的混合 乳化剂,用一系列这类混合乳化剂制成 一系列乳剂,选出最稳定的乳剂,即可 得知该油相最适宜的HLB值。
油相
月桂酸
蜂蜡
乳乳 剂剂 的的 种种 类类
基基本本型型
复复合合型型
O/W
W /O
内相 外相 内相 外相
水包油
油包水
W /O/W O/W /O
水包油包水 油包水包油
OO//WW型型 乳乳 剂剂 和和 WW//OO型型 乳乳 剂剂 的的 区区 别别
外观 稀释 导电性 水溶性颜料 油溶性颜料
O/W型 乳 剂 乳白色
30,35,O/W型)、 聚氧乙烯聚氧丙烯共聚物类(商品名Poloxamer,
Pluronic)、
非离子型乳化剂
单甘油脂肪酸酯、三甘油脂肪酸酯、 聚甘油脂肪酸酯、蔗糖脂肪酸酯类和 单硬脂酸甘油酯等。
超声辅助美拉德反应提高大豆蛋白冻融性质
超声辅助美拉德反应提高大豆蛋白冻融性质张泽宇;张诗雨;于洁;王喜波;江连洲;徐日【摘要】为了提高大豆蛋白的冻融性质,试验采用超声辅助美拉德反应的方法改性大豆蛋白,以改性产物的乳化性质和乳析指数为考核指标,研究大豆分离蛋白与葡聚糖(SPI:D)质量比、反应温度、超声功率、反应时间对改性产物冻融性质的影响.结果表明,SPI:D为2:3、反应温度80℃、超声功率500W、反应时间40 min时,改性产物冻融稳定性较好,SPI-D接枝物与对照SPI相比,乳化活性和乳化稳定性分别提高了39.89%和43.80%,经1、2、3次冻融循环后乳析指数分别降低了57.76%、75.33%、96.20%,在1、2、3次冻融循环后乳液粒径分别降低了34.04%、42.12%、126.9%.%In order to improve the freeze-thaw stability of soybean protein isolate,the soybean protein isolate was modified by ultrasonic assisted wet glycosylation,emulsifying properties and creaming index as evaluation indexes to study the mass ratio of SPI to dextran (SPI∶ D),reaction temperature,ultrasonic power,reaction time on the freeze-thaw stability of glycosylation products.Results showed that under the condition of SPI∶ D ratio 2∶ 3,reaction temperature 80 ℃,ultrasonic power 500 W,reaction time 40 min,the freeze-thaw stability of glycosylation products attained the optimal pared with the control SPI,the emulsifying activity index and emulsifying stability index increased by 39.89% and 43.80%,the creaming index decreased by 57.76%,75.33% and 75.33%,and the particle size of emulsions decreased by 34.04%,42.12%,126.9% after the first,second and third time of freeze-thaw cycle.【期刊名称】《中国粮油学报》【年(卷),期】2017(032)006【总页数】6页(P63-68)【关键词】超声波;大豆分离蛋白;乳化性;乳析指数;粒径【作者】张泽宇;张诗雨;于洁;王喜波;江连洲;徐日【作者单位】东北农业大学食品学院,哈尔滨 150030;东北农业大学食品学院,哈尔滨 150030;东北农业大学食品学院,哈尔滨 150030;东北农业大学食品学院,哈尔滨150030;东北农业大学食品学院,哈尔滨 150030;东北农业大学食品学院,哈尔滨150030【正文语种】中文【中图分类】TS201.2大豆蛋白因具有较高营养价值和良好的功能特性在食品工业中广泛应用。
药剂专业英语词汇
AAsepticmanipulation无菌操作Absolutebioavailability绝对生物利用度Autoclave高压灭菌器Absorption吸收Autoxidation自动氧化Acacia阿拉伯胶Azone氮酮Acceleratedstability加速稳定性实验BAccumulationfactor蓄积因子Bentonite硅皂土Additive附加剂Binder粘合剂Adjuvant辅料Bioadhesivetablets生物粘附片Administration给药,用法Biocompatibility生物相容性Aerosil微粉硅胶Bioequivalence生物等效性Aerosol气雾剂Biologichalf-life生物半衰期Agar琼胶Biotransformation生物转化Aggregation聚集Buccaltablets口含片Albumin白蛋白Buccaladministration颊给药Alginate(alginateacid)海藻酸盐(海藻酸)Bulkdensity堆密度Amorphousform无定型CAmphiphilic两亲性的Capacity—limitedandnonlinearprocess Angleofrepose休止角能力有限和非线性过程Angleoffriction摩擦角Capillaryaction毛细管作用Ampoule安瓿Capping顶裂Anionexchangeresin阴离子交换树脂Carboxypolymethylene聚羧乙烯Antiseptics防腐剂;消毒剂Capsul胶囊Antioxidant抗氧化剂Carnaubawax巴西棕榈蜡Apparentfirst-orderabsorption(elimination)Carbopol卡波普表观一级吸收(消除)Carrier-mediatedtransfersystem载体转Apparentvolumeofdistribution表观分布运系统容积Cationexchangeresin阳离子交换树脂Rateconstant速度,速率Celluloseacetatephthalate(CAP)邻苯二Aromaticwaters芳香水剂甲酸醋酸纤维素1Cetylalcohol鲸蜡醇Crospovidone交联聚维酮Chelatingagent螯合剂Cyclodextrininclusioncompound环糊精Chewabletablets咀嚼片包合物Chipping裂片DChitin壳聚糖Decoction煎煮法,汤剂Chitosan脱乙酰壳聚糖Deflocculatingagent反絮凝剂Chronopharmacokinetics时辰药物动力Delayedrelease延缓释放学Dextrin糊精Clarity(test)澄明度(检查)Die模圈,冲磨Cloudpoint浊点Differentialscanningcalorimetry(DSC)差Co-solvency潜溶示扫描量热法Coagulation聚沉Differentialthermalanalysis(DTA)差示热Coating包衣分析法Cocoabutter可可豆脂Diffusioncoefficient扩散系数Cohesiveness粘着性Diluents稀释剂Colloidmill胶体磨Dimethylacetamide(DMA)二甲基乙酰胺Comminution粉碎Dimethylformamide(DMF)二甲基乙酰Complescoacervationmethod复凝聚法胺Contentuniformitytest含量均匀试验Dimethylsulfoxide(DMSO)二甲基亚砜Controlledreleasepreparation控释制剂Disinfectant消毒剂,灭菌剂Coprecipitate共沉淀物Disintegrant崩解剂Coultercounter库氏计数器Dispersibletablets分散片Cracking松片Displacementvalue置换价Creaming乳析Dissolution溶出Creatinineclearance肌酐清除率Distribution分布Criticalmicelleconcentration(cmc)临界胶Dosageform剂型束浓度Dosageregimen给药方案Croscarmellosesodium(ccna)交联羧甲基Dosinginterval给药间隔纤维素钠Drugcompatibility药物配伍2Drugdeliverysystem药物传递系统Fast禁食Drugdisposition药物处置Feedshoe饲粉靴Duration作用持续性Fillers填充剂Dustibility松散性Filmcoatedtablets薄膜衣片EFiltercandle(disk)滤棒Effervescenttablets泡腾片Firstpasseffect首过效应Elimination消除Flavoringagent矫味剂Elixirs酏剂Flocculant絮凝剂Emulsions乳剂Fluctuation波动性Emulsification乳化作用Fluidbedcoating(granulation)流化床包衣Encapsulationcoefficency包封率制粒Endocytosis内吞作用Fluidenergymill流能磨Enemas灌肠剂Fluidextracts流浸膏剂Entericcoatedtablets肠衣片Fluidmosaicmodel液体相嵌模型Enterohepaticcycle肝肠循环Foodanddrugadiministration(FDA)食品Equivalentdiameter等价径,当量直径药品管理局Drodiblematrix溶蚀型骨架Fomulation处方Ethylene-vinylacetatecopolymer(EVAC)Friability脆碎度乙烯-醋酸乙烯共聚物Fusion融合作用Ethylcellulose(EC)乙基纤维素GEudragit丙烯酸树脂Gargles漱口剂Eutecticmixture低共熔混合物Gelatin明胶Excipient赋形剂,辅料Gelatinglycerin甘油明胶Extendedrelease持续释放Gildants助流剂Extractpreparation浸出制剂Glomerularfiltration肾小球滤过Extracts浸膏剂Glycerite甘油剂Extravascularadministration血管外给药Glycerylmonostearate单硬脂酸甘油酯FGlycoprotein蛋白糖Facilitateddiffusion促进扩散Goodmanufacturingpractice(GMP)药品生3产质量管理规范Infusion浸渍,浸剂,输注Granuledensity粒密度Inhalationaerosols吸入气雾剂Greasingbases油脂性基质Injection注射剂Guestmolecule客分子Instantraneousrate瞬时速率HInterfacialpolymerization界面缩聚法Healthyvolunteer健康受试者Intrauterinedevice(IUD)宫内给药嚣High-efficiencyparticleairfilter高效空气Intravaginalring(IVR)阴道环过滤嚣Intravenousinfusion静脉滴注Horizontallaminarflow水平层流Inulin菊粉Hopper加料斗Iontophoresis离子等渗Hostmolecule主分子Irrigations灌洗剂Hydrocarbonbase烃类基质Iso-osmoticsolution等渗溶液Hydrogelmatrix水凝胶骨架Isotonicsolution等张溶液Hydrogenatedvegetableoil氢化植物油Isotonicity等张性Hydrophile-lipophilebalance(HLB)亲水亲J油平衡值TheParmacopoeiaofjapan日本药局方Hydrophilicmetrix亲水性骨架KHydroscopicity吸湿性Kidneyfunction肾功能Hydrotropicagent助溶剂Kineticsparameter动力学参数Hydroxypropylmethylcellulose(HPMC)羟L丙基甲基纤维素L-hydroxypropylcellulose(L-HPC)低取代Hydroxypropylstarch羟丙基淀粉羟丙基纤维素ILactose乳糖Implant植入剂Lagtime时滞Invitro体外Lake色淀Invivo体内Laminarflowcleanbench层流洁净工作台Inclusioncompound包合物Lamination层裂Imcompatibility配合物Leaktest(testing)漏气试验Imdustrialpharmacy工业药剂学Lecithin(e)卵磷脂4Linuistest鲎试验Microporousmembrane微孔膜Liniment涂抹油,擦剂Microvilli微绒毛Liposome脂质体Migration迁移Loadingdose负荷剂量Minimuneffectiveconcentration(level)最小Lotion洗剂有效浓度Lubricants润滑剂Minimuntoxicconcentration最小中毒浓度Lyophilic亲液的Mixer混合机Lyophilization冷冻干燥Mixtures合剂Lyophobic疏液的Moisteningagent润湿剂MMonoclonalantibody单克隆抗体Maceration浸渍Mottling色斑Macromolecularsolution高分子溶液Mucilages胶浆剂Macrovesicleliposome大多孔脂质体Multilamellar,multiplecompartment Magneticmicrospheres磁性微球liposome多室脂质体Maintenancedose维持剂量Multiplecompartmentmodel多室脂质体Matrixtablets骨架片Multipledosing多剂量给药Meanresidencetime(MRT)平均滞留时间Multipleemulsion复合型乳剂Medicinalliquor洒剂NMembraneevaporator薄膜浓缩器Nanocapsule毫微胶囊Metastable亚稳的Nanoparticles毫微粒Methylcellulose(MC)甲基纤维素Nanospheres毫微球Micelle胶团Narisdrops滴鼻剂Michaelis-mentenkineticsMM动力学Nasaladministration鼻腔给药Microcapsules微囊Nonlinearpharmacokinetics非线性药物动Microspheres微球力学Microcrystallinecellulose微晶纤维素Nationalformulary美国药局方Microemulsion微乳Nipagin(parabens)尼泊金Microencapsulation微型包囊技术OMicronise微粉化Ointment软膏剂5Oleaginousbase油性基质Pill丸剂Onecompartmentmodel单室模型Plaster硬膏剂Onset起效时间Plasticflow塑性流动Ophthalmicpreparation眼用制剂plasticizer增塑剂Optimizationtechnique优化技术Plateauconcentration(level)坪浓度Oraladministration口服给药PluronicF-68普朗尼克F-68Oralosmoticpump口服渗透泵Polishing,smoothing打光PPoloxamer泊洛沙姆Paraffin石蜡Polyacrylamide聚丙烯酰胺Partitioncoefficient分配系数Polyacrylicacid聚丙烯酸Passivediffusion被动扩散Polyethyleneglycols(PEC)聚乳酸Passivetargetpreparation被动靶向制剂Polymerization聚合Pastes糊剂Polymorphism多晶型Peeling剥落Polymethylmethacrylate聚甲基丙烯酸甲Pellet小丸酯Penetrationenhancer穿透促进剂Polyvinylalcohol(PVA)聚乙烯醇Percolation渗漉Polyvinylpyrrolidone(PVP)(povidone)聚维Percutaneousadministration经皮给药酮Permeabilitycoefficient穿透系数Porosity孔隙率PerogolO平平加OPowders散剂PH-partitiontheoryPH-分配学说Preformulation处方前工作Pharmaceutics药剂学Preagelatinizedstarch预胶化淀粉Pharmacokinetics药物动力学Prescription处方Pharmacopoeia药典Preservative防腐的Pharmacy药学Prodrug前体药物Phaseseparation-coacervation相分享凝Propellants抛射剂聚法Pseudoplasticflow伪一级反应Phasetransitiontemperature相变温度PulsedandregulateddrugdeliversystemPicking粘连伪塑性流动6Pulverization脉冲式和自调式释药系统Sonicationdispersionmethod超声分散法Punch粉碎Spans司盘类Pyrogen冲头Specificacid-basecatalysis特殊酸碱催化RSpecification规格,说明书Ratemethod冲率法Spermacetewax鲸蜡Rate-limitingstep限速步骤Spirits醑剂Rectaldosageform直肠给药剂型Spray喷雾剂Relativebioavailability相对生物利用度Stability稳定性Residualsmethod殘数法Starch淀粉Rheology流动学Statisticalmoment统计矩SSteady-state稳态Sedimentation沉降Stearylalcohol十八醇Semipermeablemembrane半透膜Sterilization灭菌Shellac虫胶Sterilizer消毒器Sieve筛(子),筛(分)Sticking粘冲Sigma-minusmethod总量减去法Sublingualtablet舌下片Silicone硅酮Sugarcoatedtablet糖衣片Simplecoacervationmethod单凝聚法Superdisintegrants超级崩解剂Single-punchpress单冲压片机Suppositories栓剂Sinteredglassfilter垂熔玻璃滤品Surfactant表面活性剂SodiumcarboxylmethylcelluloseSuspendingagent助悬剂(CMC-Na)羧甲基纤维素钠Suspensions混悬剂Sodiumcarboxylmethylstarch(CMS-Na)Sustainedreleasepreparation缓释制剂羧甲基淀粉纳Sweetingagent甜味剂Sodiumlaurylsulfate十二烷基硫酸钠Syrups糖浆剂Soliddispersion固体分散体Systemicclearance总清除率Solidification固化TSolubilization增溶作用Tablets片剂Solvate溶剂化物Talc滑石粉7WORD格式Targeteddrugdeliverysystem(TDDS)靶向Untrafiltration超滤给药系统Unilamellar,singlecompartmentliposomeTerylene涤纶薄膜单室脂质体TheareaundertheplasmaUrinaryexcretion尿排泄concentration-timecurve血浓时间曲线下Thepharmacopeiaofunitedstates(usp)美面积国药典Theextrapharmacopoeia药学大全VTheinternationalpharmacopoeia国际药典Vaseline(e)凡士林Themembraneofepithelialcell上皮细胞Verticallaminarflow垂直层流膜WTherateofgastricemptying胃排空速率Waterforinjection注射用水Theobromeoil可可豆油Wettability可湿性Therapeuticconcentrationrange治疗浓度Wettingagent润湿剂范围ZTherapeuticequivalence治疗等效性Zein玉米朊Thixotropy触变性Timecourse经时过程Tincture酊剂Tragacanth西黄芪胶Transdermaltherapeuticsystem(TTS)透皮治疗系统Transport转运Trapezoidalrule梯形法则Truedensity真密度Tubularreabsorption肾小管重吸收Tubularsecretion肾小管分泌Tweens吐温类U8专业资料整理。
超声波处理对酪蛋白酸钠-大豆油预乳化液乳化稳定性的影响
超声波处理对酪蛋白酸钠-大豆油预乳化液乳化稳定性的影响赵颖颖1,李可1,王鹏2,康壮丽3,徐幸莲2,*,白艳红1(1.郑州轻工业学院食品与生物工程学院,食品生产与安全河南省协同创新中心,河南郑州 450001;2.南京农业大学国家肉品质量安全控制工程技术研究中心,江苏南京 210095;3.河南科技学院食品学院,河南新乡 453003)摘 要:为改善预乳化液的乳化稳定性,本研究应用超声波技术制备酪蛋白酸钠-大豆油预乳化液,研究不同时间(0、3、6、9、12 min)超声波处理(20 kHz,450 W)对预乳化液的pH值、电导率、乳液分层指数、液滴粒度分布和平均粒径大小以及黏度的影响。
结果表明,不同超声波处理时间对酪蛋白酸钠-大豆油预乳化液pH值和电导率没有显著影响(P>0.05)。
在0 h时,各超声波处理组和对照组的乳析率差异不显著(P>0.05),在贮藏12、24、36 h时,各超声波处理组的乳析率显著低于对照组(P<0.05)。
超声波时间对预乳化液的粒径分布范围和粒径大小影响显著(P<0.05),随着超声波时间的延长,D4,3、D3,2和D50显著变小(P<0.05)。
在剪切速率0.1 s-1时,超声波时间对酪蛋白酸钠-植物油预乳化液的黏度有显著影响,各组超声波预乳化液的黏度均显著高于对照组(P<0.05)。
因此,应用超声波处理酪蛋白酸钠-大豆油预乳化液,可以延长贮藏期,减小乳化液粒径,提高黏度,有效改善乳化稳定性。
关键词:超声波;预乳化;乳化稳定性;粒度分布Effect of Ultrasound Treatment on the Emulsion Stability of Pre-emulsified Soybean Oil with Sodium CaseinateZHAO Yingying1, LI Ke1, WANG Peng2, KANG Zhuangli3, XU Xinglian2,*, BAI Yanhong1(1. Collaborative Innovation Center for Food Production and Safety, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; 2. National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China; 3. School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China) Abstract: The objective of this study was to use ultrasound treatment to improve the emulsion stability of pre-emulsified soybean oil with sodium caseinate. The effect of ultrasound irradiation at 20 kHz and 450 W for different times (0, 3, 6,9 and 12 min) on pH, conductivity, creaming index, mean droplet diameters and size distribution and viscosity of pre-emulsified soybean oil was investigated. Our results illustrated that there was no significant difference in pH or conductivity among all treatment groups (P > 0.05). All treatment groups showed no significant difference in terms of creaming index at 0 h of storage (P > 0.05); however, they were significantly lower than the control at 12, 24 and 36 h (P < 0.05). With prolonged ultrasound irradiation, D4,3, D3,2 and D50 of soybean oil emulsion droplets decreased, and viscosity at a shear rate of0.1 s-1 increased significantly (P < 0.05). These findings showed that the application of ultrasound treatment to pre-emulsified soybean oil with sodium caseinate could extend the storage period, reduce the particle size, increase the viscosity, and thus improve the emulsion stability.Key words: ultrasound; pre-emulsified; emulsion stability; size distributionDOI:10.7506/spkx1002-6630-201703013中图分类号:TS251.1 文献标志码:A文章编号:1002-6630(2017)03-0075-06引文格式:赵颖颖, 李可, 王鹏, 等. 超声波处理对酪蛋白酸钠-大豆油预乳化液乳化稳定性的影响[J]. 食品科学, 2017, 38(3): 75-80. DOI:10.7506/spkx1002-6630-201703013. ZHAO Yingying, LI Ke, WANG Peng, et al. Effect of ultrasound treatment on the emulsion stability of pre-emulsified soybean oil with sodium caseinate[J]. Food Science, 2017, 38(3): 75-80. (in Chinese with English abstract) DOI:10.7506/ spkx1002-6630-201703013. 收稿日期:2016-03-23基金项目:国家自然科学基金青年科学基金项目(31601492);河南省高等学校重点科研计划项目(16A550006);郑州轻工业学院博士科研启动基金项目(2015BSJJ038);河南省高校科技创新人才支持计划项目(15HASTIT033)作者简介:赵颖颖(1988—),女,助理实验师,硕士,研究方向为肉品加工与质量安全控制。
乳化油(Emulsion Oil)
Two liquids can form different types of emulsions. As an example, oil and water can form, first, an oil-in-water emulsion, wherein the oil is the dispersed phase, and water is the dispersion medium. Second, they can form a water-in-oil emulsion, wherein water is the dispersed phase and oil is the external phase. Multiple emulsions are also possible, including a "water-in-oil-in-water" emulsion and an "oil-in-water-inoil" emulsion 两种液体可形成不同类型的乳液。作为一个例子,油和水可以形成, 第一,水包油乳液,其中油为分散相,水为分散介质。第二,他们可 以形成油包水乳液,其中,水为分散相,油是外部相。多重乳液也是 可能的,包括油中“在水中的油包水”的乳液和水“在油中的水包油” 乳液
Two special classes of emulsions – microemulsions and nanoemulsions, with droplet sizes below 100 nm – appear translucent.[4] This property is due to the fact that lightwaves are scattered by the droplets only if their sizes exceed about one-quarter of the wavelength of the incident light. Since the visible spectrum of light is composed of wavelengths between 390 and 750 nanometers (nm), if the droplet sizes in the emulsion are below about 100 nm, the light can penetrate through the emulsion without being scattered.[5] Due to their similarity in appearance, translucent nanoemulsions and microemulsions are frequently confused. Unlike translucent nanoemulsions, which require specialized equipment to be produced, microemulsions are spontaneously formed by “solubilizing” oil molecules with a mixture of surfactants, cosurfactants, and co-solvents.The required surfactant concentration in a microemulsion is, however, several times higher than that in a translucent nanoemulsion, and significantly exceeds the concentration of the dispersed phase. Because of many undesirable side-effects caused by surfactants, their presence is disadvantageous or prohibitive in many applications. In addition, the stability of a microemulsion is often easily compromised by dilution, by heating, or by changing pH levels. 两类特殊的微乳乳液和纳米乳液,在液滴尺寸低于100纳米时呈现半透明的。此属性是由于光波仅仅在液 滴大小大于入射光的波长的四分乊一才収生散射的事实。由于可见光光谱是由390和750纳米乊间的波长 组成,如果在乳液中的液滴大小是低于约100 nm,光可以穿透乳液而不散射。由于其相似的外表,透明 的纳米乳液和微乳液经常被混淆。不像需要专门设备才能生产的半透明的纳米乳剂,微乳液是自収的通 过“增溶”有表面活性剂,助表面活性剂和助溶剂的混合物的油分子自収的形成的。无论如何,在微乳 液中,所需的表面活性剂的浓度是比在半透明的纳米乳液高出好几倍,大大超过分散相的浓度。由于表 面活性剂引起的许多不期望的副作用,它的存在在许多应用中是不利的或是被禁止的。此外,微乳液的 稳定性往往是容易被稀释,通过加热,或通过改变pH值儿易受破坏。
药剂学英语名词
第一章绪论剂型dosage form药物制剂pharmaceutical preparation制剂学pharmaceutical engineering药剂学pharmaceutics缓释sustained-release控释controlled-release靶向给药系统targeting drug delivery system, TDDS 药典pharmacopoeia药品生产质量管理规范good manufacturing practice, GMP 药物非临床研究质量管理规范good laboratory practice, GLP药物临床试验管理规范good clinical practice, GCP第四章液体制剂液体制剂liquid preparation防腐剂preservative矫味剂flavoring agent表面活性剂surfactant/surface active agent胶束micell临界胶束浓度critical micell concentration, CMC亲水亲油平衡值hydrophile-lipophile balance, HLB增溶/增溶剂solubilizer/solubilization助溶剂hydrotropy agent潜溶/潜溶剂cosolvency/cosolvent溶液剂solutions糖浆剂syrups芳香水剂aromatic waters醑剂spirits盐析salting out溶胶剂sol双电层electric double layerζ-电位zeta-potential丁达尔效应Tyndall effect布朗运动Brown movement混悬剂suspensions絮凝/絮凝剂flocculation/flocculating agents反絮凝/反絮凝剂deflocculation/deflocculating agents 润湿剂wetters/wetting agents助悬剂suspending agent乳剂emulsions普通乳emulsions亚微乳submicron emulsions微乳microemulsions乳化膜emulsifying layer乳化剂emulsifier/emulsifying agent分层creaming合并coalescence破裂breaking第五章注射剂与滴眼剂注射剂injections热原pyrogens等渗iso-osmotic等张isotonic输液intravenous infusion冷冻干燥freezing drying滴眼剂eye drops灭菌sterilization防腐antiseptic消毒disinfectionF值& F0值第六章散剂、颗粒剂、胶囊剂和丸剂散剂powders颗粒剂granules胶囊剂capsules基质吸附率base adsorption丸剂pills第七章片剂片剂tablets辅料excipients/adjuvants填充剂fillers微晶纤维素microcrystalline cellulose, MCC 黏合剂adhesives润湿剂moistening羧甲基纤维素钠CMC-Na羟丙基纤维素HPC甲基/乙基纤维素MC/EC聚维酮PVP崩解剂disintegrants羧甲基淀粉钠CMS-Na交联聚维酮PVPP交联羧甲基纤维素钠CCNa泡腾崩解剂effervescent disintegrants润滑剂lubricants助流剂glidants抗黏剂antiadherent包衣coating溶出度/释放度dissolution/release rate第八章栓剂栓剂suppositories置换价displacement value第九章软膏剂、眼膏剂、凝胶剂和膜剂软膏剂ointments乳膏剂cream基质bases眼膏剂eye ointments凝胶剂gels卡波姆carbomer膜剂films第十章气雾剂、喷雾剂与粉雾剂气雾剂aerosol抛射剂propellents。
06_emulsion
Emulsions encountered in everyday life!
Pesticide
Asphalt
Skin cream
Ice cream Metal cutting oils Margarine Stability of emulsions may be engineered to vary from seconds to years depending on application
Emulsions are Kinetically Stable!
Rate of coalescence – measure of emulsion stability. It depends on: (a) Physical nature of the interfacial surfactant film For Mechanical stability, surfactant films are characterized by strong lateral intermolecular forces and high elasticity (Analogous to stable foam bubbles) Mixed surfactant system preferred over single surfactant. (Lauryl alcohol + Sodium lauryl sulfate: hydrophobic interactions) NaCl added to increase stability (electrostatic screening)
Mayonnaise: Oil in Water emulsion
Outline
• • • • • • • Introduction Types of emulsions Emulsifying agents Tests for emulsion types Emulsion Stability Phase Inversion, Creaming Emulsion Breaking
乳剂
(二)絮凝(flocculation)
• 荷电的液滴彼此聚集形成疏松的聚集体, 经振摇即能恢复成均匀的乳剂的现象, 称为乳剂的絮凝。 • 乳剂中的电解质和离子型乳化剂的存在 是产生絮凝的主要原因。絮凝状态仍保 持乳滴及乳化膜的完整性,但絮凝状态 进一步发展可能引起乳滴的合并,所以 絮凝状态的出现意味着稳定性已经降低, 可视为乳剂破裂的前奏。
(1)阿拉伯胶 • 为O/W型乳化剂,因乳化能力较弱,常与明胶、琼 脂等混合使用,主要用于内服乳剂。
(2)磷脂 • 本品能显著降低油-水界面张力,为O/W型乳化剂, 可供内服或外用,精制品可供静注。
(3)明胶 • O/W型乳化剂,常与阿拉伯胶合用。 (4)胆固醇 • 为W/O型乳化剂。
2.表面活性剂类
(三)乳剂的用途
• 内服、外用、注射用及药物控释 给药系统。
二、乳剂稳定的学说
(一)界面张力学说 • 乳剂属于热力学不稳定的分散体系,为 保持乳剂的分散状态和稳定性,因此, 必须加入降低表面张力的乳化剂。
(二)界面吸附膜学说
1.单分子乳化膜 • 表面活性剂类乳化剂形成的膜称为单分子乳化膜, 可使乳剂稳定。 • 若乳化剂是离子型表面活性剂,那么形成的单分子 乳化膜是离子化的,乳化膜本身带有电荷,由于电 荷相互排斥,阻止乳滴的合并使乳剂更加稳定。 2.多分子乳化膜 • 亲水性高分子化合物类乳化剂,在乳剂形成时被吸 附于乳滴的表面,形成多分子乳化剂层,称为多分 子乳化膜。如阿拉伯胶作乳化剂就能形成多分子乳 化膜。
大豆蛋白与多糖复合物乳化性质的研究
复旦大学硕士学位论文大豆蛋白与多糖复合物乳化性质的研究姓名:***申请学位级别:硕士专业:高分子化学与物理指导教师:***20090527中文摘要在食品中,蛋白质经常被用作乳化剂。
用蛋白稳定的O/W乳液的稳定性取决于乳滴表面的蛋白吸附层的密度和结构。
蛋白吸附层能够阻止乳滴间的聚结从而稳定乳液。
然而,由蛋白稳定的乳液对环境因素例如pH、离子强度和温度的影响极其敏感。
当乳液的pH接近蛋白的等电点或者离子强度很高的时候,蛋白层间的静电排斥力降低,从而发生聚结和分层。
为了灭菌或者消毒而对乳液进行热处理时,由于蛋白的热变性使得乳滴连接在一起而产生了聚集。
在酸性pH环境中,植物蛋白不能有效地发挥功能作用,这是由于在接近其等电点时蛋白发生沉淀。
大多数食品和饮料都是酸性的。
因此,乳液在等电点处的稳定性降低限制了蛋白在食品和饮料行业中的应用。
在植物蛋白中,大豆蛋白是大豆油产业的副产物,产量很高而且便宜。
由于大豆蛋白是食品的重要成分并具有很高的营养价值和很好的乳化性能,因此在食品加工中得到了广泛的应用。
但是,据我们所了解,在酸性条件下,具有长期稳定性的由大豆蛋白所稳定的乳液还没有被报道过。
本论文工作是对大豆酸溶蛋白.葡聚糖共价复合物在中性pH的乳化性质进行了研究。
我们利用Maillard反应中的Amadori重排制备了天然大分子大豆酸溶蛋白和葡聚糖的共价复合物。
研究了二者在不同质量比条件下,反应时间对反应产物的影响。
通过十二烷基磺酸钠.聚丙烯酰胺凝胶电泳(SDS.PAGE)、浊度和光散射等分析方法确定了制备复合物的条件,发现共价复合物能够有效地提高大豆酸溶蛋白在酸性条件下的溶解性和分散性,为大豆酸溶蛋白乳化能力的提高提供了基础。
我们利用超声乳化的方法,确定了乳化的条件。
利用动态光散射考察了各种环境因素,例如pH、离子强度、加热、储藏等对乳状液的影响,发现由大豆酸溶蛋白与葡聚糖质量比为1:9所制备的共价复合物可以形成液滴尺寸为亚微米的稳定乳状液,即乳状液可以在酸性、盐溶液和加热以后长时间保持稳定。
乳剂
水包油型
6
油包水型
emulsions Company Logo
乳剂的类型 根据乳滴大小: 根据乳滴大小: 100μm 普通乳(emulsion):1-100μm,乳白色不透明液体 0.1-0.5μm, 亚微乳(Submicroemulsion): 0.1-0.5μm,常作为胃 肠外给药的载体。静脉注射乳剂。 肠外给药的载体。静脉注射乳剂。 纳米乳(nanoemulusion):<0.1μm
12
emulsions Company Logo
乳化剂的种类
(3)固体微粒乳化剂
S小、颗粒细微固体粉末,乳化时可被吸附于油水界面 颗粒细微固体粉末, 形成乳剂类型(θ角决定) 形成乳剂类型( 角决定) 氢氧化镁、氢氧化铝、 O/W型:氢氧化镁、氢氧化铝、二氧化硅 氢氧化钙、氢氧化锌、 W/O型:氢氧化钙、氢氧化锌、硬脂酸镁
14
emulsions Company Logo
乳化剂的选用原则
根据乳剂的类型选择 根据乳剂的类型选择 类型 根据乳剂给药途径 给药途径选择 根据乳剂给药途径选择 根据乳化剂性能 性能选择 根据乳化剂性能选择 混合乳化剂的选择
15
emulsions Company Logo
11
emulsions Company Logo
乳化剂的种类
(2)表面活性剂类
具有较强的亲水性亲油性,乳化能力强, 具有较强的亲水性亲油性,乳化能力强,容易在 乳滴周围形成单分子乳化膜 性质较稳定。 单分子乳化膜, 乳滴周围形成单分子乳化膜,性质较稳定。 非离子型表面活性剂: 非离子型表面活性剂: 聚山梨酯(tween) 脂肪酸山梨坦类(span) 聚山梨酯(tween) 脂肪酸山梨坦类(span) 泊洛沙姆 卖泽 苄泽 阴离子型表面活性剂: 阴离子型表面活性剂: 硬脂酸钠/ 油酸钠/ 硬脂酸钠/钾 十二烷基硫酸钠 油酸钠/油酸钾
Emulsions乳剂
Section 10EmulsionsBy Drs. Pardeep K. Gupta, Clyde M. Ofner and Roger L. SchnaareTable of Contents Emulsions (1)Table of Contents (1)Introduction and Background (3)Definitions (3)Types of Emulsions (3)Formation of an Emulsion (4)Determination of Emulsion Type (4)Miscibility or Dilution Test (4)Staining or Dye Test (4)Electrical Conductivity Test (4)Physical State of Emulsions (5)Pharmaceutical Application of Emulsions (5)Formulations (6)Typical Ingredients (6)Drug (6)Oil Phase (6)Aqueous Phase (6)Thickening Agents (6)Sweeteners (6)Preservative (6)Buffer (7)Flavor (7)Color (7)Sequestering Agents (7)Humectants (7)Antioxidants (7)Emulsifiers (7)Guidelines (7)Type of Emulsion Desired (7)Toxicity (8)Method of Preparation (8)Typical Formulas (8)Cod Liver Oil Emulsion (polysaccharide emulsifier) (8)Protective Lotion (divalent soap emulsifier) (8)Benzoyl Benzoate Emulsion (emulsifying wax emulsifier) (8)Barrier Cream (soap emulsifier) (9)Cold Cream (soap emulsifier) (9)All Purpose Cream (synthetic surfactant emulsifier) (9)Emulsifiers (10)Natural Products (10)Polysaccharides (10)Sterols (10)Phospholipids (10)Surfactants (10)Anionic Surfactants (11)Soaps (11)Detergents (11)Cationic Surfactants (11)Nonionic Surfactants (11)Finely Divided Solids (12)Methods to Prepare Emulsions (13)Classical Gum Methods (13)Dry Gum Method (13)Wet Gum Method (13)“In Situ” Soap Method (13)Lime Water/Vegetable Oil Emulsions (13)Other Soaps (13)With Synthetic Surfactants (13)Required HLB of the Oil Phase (14)HLB of Surfactant Mixtures (14)Emulsion Stability (15)Sedimentation or Creaming (15)Factors - Stoke’s Law (15)Droplet Size (15)Density Difference (15)The Gravitational Constant, g (15)Viscosity (15)Breaking or Cracking (16)Thermodynamics of Emulsions (17)Microemulsions (18)References (19)Selected Readings (19)Introduction and BackgroundDefinitionsEmulsions are pharmaceutical preparations consisting of at least two immiscible liquids.Due to the lack of mutual solubility, one liquid is dispersed as tiny droplets in the other liquid to form an emulsion. Therefore,emulsions belong to the group of prepara-tions known as disperse systems.The USP also defines several dosage forms that are essentially emulsions but historically are referred to by other names. For example;Lotions are fluid emulsions orsuspensions intended for external application.Creams are viscous liquid or semi-solid emulsions of either an oil-in-water (O/W) or the water-in-oil (W/O) type. They are ordinarily used topically. The term cream is applied most frequently to soft, cosmetically acceptable types of preparations.Microemulsions are emulsions withextremely small droplet sizes and usually require a high concentration of surfactant for stability. They can also be regarded as isotropic, swollen micellar systems.Multiple emulsions are emulsions that have been emulsified a second time,consequently containing three phases. They may be water-in-oil-in-water (W/O/W) or oil-in-water-in-oil (O/W/O).Fluid emulsions are generally composed of discrete, observable liquid droplets in a fluid media, while semi-solid emulsions generally have a complex, more disorganized structure.The liquid which is dispersed as droplets iscalled as the dispersed , discontinuous or internal phase, and the liquid in which thedispersion is suspended is the dispersion medium or the continuous or external phase.For example, if olive oil is shaken with water,it breaks up into small globules andbecomes dispersed in water. In this case the oil is the internal phase, and water is the external phase.The dispersed particles or globules can range in size from less than 1 µm up to 100 µm. An emulsion is rarely a monodis-perse system, e.g., all the particles are rarely of the same size. A typical emulsion contains a distribution of many sizes, making it a polydisperse system.Types of EmulsionsBased on the nature of the internal (or exter-nal) phase, emulsions are of two types; oil-in-water (O/W) and water-in-oil (W/O). In an O/W type the oil phase is dispersed in the aqueous phase, while the opposite is true in W/O emulsions. Figure 1 depicts these two types of emulsions.Figure 1: Representation of Two Types of EmulsionsO/W Emulsion W/O Emulsion (water black)(oil white)When two immiscible phases are shaken together, either type of emulsion can result.However, this result is not random, but is dependent primarily on two factors; most importantly the type of emulsifier used and secondly the relative ratio of the aqueous and oil phases (phase volume ratio). The emulsifiers and their role in the type of emulsion are discussed in detail later in this chapter.In terms of the phase volume ratio, the percent of the internal phase is generally less than 50%, although emulsions can have internal phase volume percent as high as 75%. Uniform spheres, when packed in a rhombohedral geometry occupy approxi-mately 75% of the total volume. Phase volumes higher than 75% require that the droplets of dispersed phase be distorted into geometric shapes other than perfect spheres. Although it is rare to find emulsions with higher than 75% internal volume, phase volumes of over 90% have been reportedin literature.Formation of an EmulsionWhen two immiscible liquids are placedin contact with each other, they form two separate layers. The liquid with higher density forms the lower layer and the one with lower density forms the upper layer. When this two-layer system is shaken vigorously, one of the layers disperses in the other liquid forming an unstable emul-sion. If left unstirred, the dispersed phase comes together and coalesces into larger drops until the layers become separate again. If no other ingredient is added, this process of separation is usually completein a matter of a few minutes to a few hours. Therefore, a liquid dispersion is inherently an unstable system.However, when an emulsifier is present in the system, it reduces the interfacial tension between the two liquids and forms a physical barrier between droplets, hence lowers the total energy of the system(see discussion on Thermodynamics of Emulsions), thereby reducing the tendency of the droplets to come together and coalesce. Consequently, the globules ofthe internal phase may remain intact for long periods of time, forming a “stable”emulsion. It should be noted, however,that even with an emulsifier, an emulsionis a thermodynamically unstable system and will eventually revert to bulk phases. The time required for this process is determined by kinetics.Determination of Emulsion TypeSeveral tests can be used to determine whether a given emulsion is an O/W or W/O type. These are as follows:Miscibility or Dilution TestThis method is based on the fact that an emulsion can be diluted freely with a liquid of the same kind as its external phase. Typically, a small amount of the emulsion is added to a relatively large volume of water and the mixture is stirred. If the emulsion disperses in water, it is considered to bean O/W type emulsion. If, however, the emulsion remains undispersed, it is a W/O type emulsion.Staining or Dye TestThis test is based on the fact that if a dye is added to an emulsion and the dye is soluble only in the internal phase, the emulsion contains colored droplets dispersed inthe colorless external phase. This can be confirmed by observing a drop of emulsion under a low power microscope. An example of such a dye is scarlet red, which is an oil soluble dye. When added to an O/W type emulsion, followed by observation under the microscope, bright red colored oil drops in an aqueous phase can be seen clearly. Electrical Conductivity TestThis test is based on the fact that onlythe aqueous phase can conduct electrical current. Thus, when a voltage is applied across a liquid, a significant amount of electrical current will flow only when the path of the current is through a continuous aqueous phase. Since oil is a non-conductor of electricity, when tested for conductivity, a W/O type emulsion will show insignificant current flow.Often times a single test may not be conclu-sive. In such circumstances, more than one test may need to be carried out to confirm the emulsion type.Physical State of EmulsionsMost emulsions are either liquid or semi-solid at room temperature. In general, due to their high viscosity, the semi-solid emulsions are relatively more physically stable. Liquid emulsions are more commonly compounded for internal use, while semisolids are usually for external use or for use in body cavities (rectal or vaginal).Other terms commonly used to describe emulsions are lotion and cream . The term lotion refers to a disperse system that flows freely under the force of gravity. A cream is a product that does not flow freely under the force of gravity. It should be noted, however,that these terms are meaningful only when the product is at room temperature. A cream product may behave like a lotion with a temperature increase of a few degrees. The physical state of the final product is also influenced by its intended use. For example suntan lotions are dispensed as lotions instead of creams because they need to be applied on large body surface. Lotion form makes it easy to pour and spread the product. For application over a small portion of skin, a cream is the preferred form of an emulsion.Pharmaceutical Applications of Emulsions There are several reasons for formulation of a product as an emulsion. These include the following:•To disguise the taste or smell of oils or oil soluble drugs. These emulsions are normally O/W types with the aqueous phase containing sweeteners and flavoring agents to mask the poor taste of oils. An O/W type of emulsionalso makes it easy to rinse off the residual dose from the mouth and does not leave an oily taste. Mineral oil and cod liver oil are emulsified for this reason.•To improve the absorption of poorly soluble drugs. Oil soluble drugs may not be soluble enough to be absorbed efficiently. An example of such a drug is cyclosporin, which is dispensed as a microemulsion. •To deliver nutrients and vitamins by intravenous injection. Intralipid is an emulsion product for administering an oil by the IV route.•To serve as a vehicle for the topical administration of a variety of drugs.Kb is the binding constant of the preservative with the surfactantSweeteners are added to emulsions to produce a more palatable preparation, toand sorbitol.AntioxidantsAntioxidants are often added to prevent oxidation of vegetable oils and/or the active drug.Table 1. Typical AntioxidantsEmulsifiersEmulsifiers are substances that have the ability to concentrate at the surface of a liquid or interface of two liquids, many of them reducing the surface or interfacial tension. Those emulsifiers that reduce surface tension are also called surfactants .Emulsifiers in general are discussed inmore detail in a later section of this chapter.GuidelinesBefore selecting a formula for an emulsion,one needs to consider several factors.These are listed below.Type of Emulsion DesiredSince O/W emulsions are more pleasant to touch and swallow, they are generally preferred. Preparations for internal use are almost always O/W type products.Externally used emulsions may be of either type. Creams and lotions that are used primarily to provide oil to the skin need to be W/O due to high concentration of oils in these preparations.The equation shows that the effective concentration in the aqueous phase will always be a fraction of the total concentration.Solvents such as alcohol, glycerin and propylene glycol are often used as apreservative at concentrations approaching 10%. See Table 5, Typical Preservatives in Section 9 of this manual.BufferMany chemical buffer systems have been used in emulsions to control the pH. The optimal pH is chosen to ensure activity of the emulsifier, control stability of the drug and to ensure compatibility and stability of other ingredients.FlavorFlavoring agents enhance patient accept-ance of the product, which is particularly important for pediatric patients.ColorColorants are intended to provide a more aesthetic appearance to the final product.Emulsions are generally not colored with the exception of some topical products. Sequestering AgentsSequestering agents may be necessary to bind metal ions in order to control oxidative degradation of either the drug or other ingredients. HumectantsHumectants are water soluble polyols that prevent or hinder the loss of water from semi-solid emulsions, i.e., topical creams.They also contribute to the solvent proper-ties of the aqueous phase and contribute to the sweetness of oral preparations. The most common are glycerin, propylene glycolToxicityMost emulsifiers are not suitable for internal use. For orally given emulsions, acacia is commonly used as an emulsifying agent.Taste is another factor in selection ofingredients. In this regard, most polysaccha-rides are tasteless and, hence, suitable from a taste standpoint.Method of PreparationSoaps and acacia are excellent forextemporaneous preparations. While soaps allow the preparation to be made by simply mixing the ingredients and shaking, acacia can be used in a pestle and mortar to prepare emulsions.Typical FormulasCod Liver Oil Emulsion (polysaccharide emulsifier)Preparationing a ratio of 4:2:1 for oil, water and gums(both combined), prepare a primary emulsion by dry gum method. (See Methods to Prepare Emulsions on page 13.)2.Dilute with water to a flowable consistency andpour in a measuring device.3.Add alcohol diluted with equal volume of water,followed by the benzaldehyde and saccharin sodium.4.Dilute to volume (200 mL) with waterPreparation1.Add benzyl benzoate to the wax in a beakerand heat in a water bath until the wax melts and the temperature reaches 60°C.2.In a separate beaker, add an appropriate volumeof water and heat to the same temperature.3.Add the water to the oil phase with continuousstirring.4.Continue to stir until the mixture begins tothicken and cools to room temperature.Preparation1.Mix the two powders in a mortar and trituratewell, taking care that all the lumps and large particles have been reduced.2.Then add oil slowly with constant trituration untilall the oil has been added. Triturate to form a smooth paste.3.Then add the limewater and triturate briskly toform the emulsion.Note: The emulsifier, calcium oleate (from limewater and olive oil), preferentially forms O/W emulsions.Protective Lotion (divalent soap emulsifier)Benzyl Benzoate Emulsion (emulsifying wax emulsifier)Preparation1.Mix the paraffins, cetostearyl alcohol andstearic acid in a beaker and heat in a water bath to about 60°C.2.Heat water and chlorocresol together to thesame temperature.3.Add the aqueous phase to the oil phase andstir until congealed and cooled to room temperature.Note:The emulsifier is triethanolamine stearate formed in situ.Preparation1.Melt the sorbitan monostearate and stearicacid in the liquid paraffin and cool to 60°C. 2.Mix the sorbitol solution, preservatives,polysorbate 60 and water and heat to the temperature of the oil mixture.3.Add the aqueous solution to the oil phase andstir until it has congealed and cooled to room temperature.Note:Propylene glycol serves as a solvent for the preservatives.Preparation1.Mix and melt the wax and paraffin together.2.Dissolve borax in water and heat both containerson a water bath to 70°C.3.Add the aqueous phase to the oil phase andstir until it has congealed and cooled to room temperature.Note:The fatty acid in white beeswax reacts with borax (sodium borate) to make a sodium soap which acts as an W/O type emulsifier.Barrier Cream (soap emulsifier)All Purpose Cream (synthetic surfactant emulsifier)Cold Cream (soap emulsifier)Surfactants or surface active agents are molecules that consist of two distinct parts,a hydrophobic tail and a hydrophilic head group. They are generally classified based on the hydrophilic properties of the head group (ionic charge, polarity, etc.). Since the hydrophobic chains do not vary much in their properties, the nature of surfactants is dependent mainly on the head group structure.A common problem with sterol-containing emulsifiers is that being complex mixtures of natural substances, they are prone to variability in their quality and, hence, performance. Also, these agents usually contain some degree of an odor, which varies with the purity and source. Some semi-synthetic substitutes are available that seek to overcome some of the problems associated with these agents.There are of basically three types of emulsifiers: natural products, surface active agents (surfactants), and finely divided solids. Based on whether a stable emulsion can be produced, emulsifiers are also classified either as primary emulsifying agents which produce stable emulsions by themselves, or secondary emulsifying agents (stabilizers) which help primary emulsifiers to form a more stable emulsion.of cholesterol. Cholesterol itself is a very efficient emulsifier and produces W/O type emulsions. Consequently, its use is limited to topical preparations such as Hydrophilic Petrolatum USP which readily absorbs water forming a W/O cream. Woolfat or lanolin contains a considerable amount of choles-terol esters and can absorb up to 50% of its own weight of water.This group of emulsifiers, which numbers in the hundreds, contain a polyoxyethylene chain as the polar head group. They arenonionic and, thus, are compatible with ionic compounds and are less susceptible to pH changes. There are several such surfactants official in the USP/NF , typified by sorbitan monooleate (a partial ester of lauric acid with sorbitol), polysorbate 80(polyoxyethyl-ene 20 sorbitan monooleate) which contains 20 oxyethylene units copolymerized sorbitanAmine soaps consist of an amine, such as triethanolamine, in the presence of a fatty acid. These surfactants are viscous solutions and produce O/W type emulsions. They offer the advantage that the final pH of the preparations is generally close to neutral,and, therefore, allows their use on skin for extended periods of time.monooleate) and polyoxyl 40 stearate(a mixture of stearic acid esters with mixed poloxyethylene diols equivalent to about40 oxyethylene units).The large number of nonionic emulsifiers results from the large number of possible combinations of various alkyl groups with polyoxyethylene chains of varying lengths. Compounds with saturated and/or large alkyl groups, such as stearyl, tend to be solids or semisolids while oleyl (also large, but unsaturated) compounds tend to be liquids. Also, the longer the polyoxyethylene chain, the higher the melting point.To characterize such a large number of compounds, they are each assigned an HLB number. The HLB number or hydrophile-lipophile balance, is a measure of the relative hydrophilic vs lipophilic character of the molecule as determined by the relative size of the polyoxyethylene chain vs the alkyl group. HLB numbers range from 0 for a pure hydrocarbon to 20 for a pure poly-oxyethylene chain. Some typical valuesare listed in Table 3.Ionic surfactants, such as sodium lauryl sulfate, were not included in the original definition of the HLB system but have been included as the HLB system was developed. The HLB number of 40 for sodium lauryl sulfate is outside of the range of 0 to 20 and simply means that sodium lauryl sulfate is much more soluble or hydrophilic thana pure polyoxyethylene chain.Table 3. Typical HLB Numbersof EmulsifiersFinely Divided SolidsFinely divided solids function as emulsifiers because of their small particle size. Fine particles tend to concentrate at a liquid-liquid interface, depending on their wetability, and form a particulate film around the dispersed droplets. They are seldom used as the primary emulsifier.phase. The emulsion type will depend on the type of soap formed.Basically the formula is divided into anoil phase and an aqueous phase with the ingredients dissolved in their proper phases (oil or water). The surfactant(s) is added to the phase in which it is most soluble. The oil phase is then added to the aqueous phase with mixing, and the coarse mixture passed through an homogenizer.When waxes or waxy solids are included in the formulation, the use of heat is necessary,as described above.Required HLB of the Oil Phase.It has been found that various oils and lipid materials form stable emulsions withsurfactants that have a certain HLB value.This HLB value is called the required HLB of the oil or lipid. Theoretically, any surfac-tant with the required HLB would produce a stable emulsion with the indicated oil or lipid. Some examples are given in Table 4.Table 4. Required HLB Values for Typical Oils and LipidsHLB of Surfactant MixturesIt may be difficult to find a surfactant with the exact HLB number required for a given oil phase in an emulsion. Fortunately, the HLB numbers have been shown to be additive for a mixture of surfactants. Thus, if one required a surfactant with a HLB of 10, one could use a mixture of sorbitan monooleate (HLB = 4.7) and polysorbate 80 (HLB = 15.6). Such a mixture can be calculated on the basis of a simple weighted average as follows.Suppose 5 g of surfactant mixture is required. Let = the g of sorbitanmonooleate, then 5 = the g of polysorbate 80 required.(4.7)+(5- )(15.6) = 10(5)4.7 + 78.0- 15.6= 10(5)10.9= 28= 2.57 and 5- = 2.43Thus a mixture of 2.57 g of sorbitanmonooleate and 2.43 g of polysorbate 80would have a HLB of 10.Griffin 2described an experimental approach for the formulation of emulsions using synthetic emulsifiers.1.Group the ingredients on the basis of theirsolubilities in the aqueous and oil phases.2.Determine the type of emulsion required andcalculate an approximate required HLB value.3.Blend a low HLB emulsifier and a high HLBemulsifier to the required HLB.4.Dissolve the oil soluble ingredients and the lowHLB emulsifier in the oil phase. Heat, if necessary,to approximately 5 to 10°over the melting point of the highest melting ingredient or to a maximum temperature of 70 to 80°C.5.Dissolve the water soluble ingredients (exceptacids and salts) in a sufficient quantity of water.6.Heat the aqueous phase to a temperature whichis 3 to 5°higher than that of the oil phase.7.Add the aqueous phase to the oil phase withsuitable agitation.8.If acids or salts are employed, dissolve them inwater and add the solution to the cold emulsion.9.Examine the emulsion and make adjustments inthe formulation if the product is unstable. It may be necessary to add more emulsifier, change to an emulsifier with a slightly higher or lower HLB value or to use an emulsifier with different chemical characteristics.In addition to chemical degradation of various components of an emulsion, which can happen in any liquid preparation, emulsions are subject to a variety of physical instabilities. Sedimentation or Creaming Factors - Stoke’s LawCreaming usually occurs in a liquid emulsion since the particle size is generally greater than that of a colloidal dispersion. The rate is described by Stoke’s Law for a single particle settling in an infinite container under the force of gravity as follows:d =d 2(2- 1)gdt 18where:d /d t= the sedimentation rate in distance/time d = droplet diameter 2= droplet density1= emulsion medium density g = acceleration due to gravity = viscosity of the emulsion mediumSince for most oil phases, 2< 1, then sedimentation will be negative, i.e., the oil droplets will rise forming a creamy whitelayer. While Stoke’s Law does not describe creaming quantitatively in an emulsion, it does provide a clear collection of factors and their qualitative influence on creaming.Droplet SizeReducing droplet size can have a significant effect on creaming rate. Since the diameter is squared in Stoke’s Law, a reduction in size by ¹⁄₂will reduce the creaming rate by (¹⁄₂)2or a factor of 4.Emulsion StabilityDensity DifferenceIf the difference in density between the emulsion droplet and the external phase can be matched, the creaming rate could be reduced to zero. This is almost impossi-ble with most oils and waxy solids used in emulsions.The Gravitational Constant, gThis parameter is not of much interest since it can not be controlled or changed unless in space flight.ViscosityViscosity turns out to be the most readily controllable parameter in affecting the creaming rate. While the viscosity in Stoke’s Law refers to the viscosity of the fluid through which a droplet rises, in reality the viscosity that controls creaming is the viscosity of the entire emulsion. Thus, doubling the viscosity of an emulsion will decrease the creaming rate by a factor of 2.There are three major ways to increase the viscosity of an emulsion:•Increase the concentration of the internal phase•Increase the viscosity of the internal phase by adding waxes and waxy solids to the oil phase.•Increase the viscosity of the external phase by adding a viscosity building agent. Most of the suspending agents described in the Suspensions Section in this manual have been used for this purpose.Creaming does not usually occur in a semi-solid emulsion.Breaking or CrackingThis problem arises when the dispersed globules come together and coalesce to form larger globules. As this process continues, the size of the globules increases, making it easier for them to coalesce. This eventually leads to separation of the oil and water phases. For cracking to occur, the barrier that normally holds globules apart has to break down. Some of the factorsthat contribute to cracking are as follows:•Insufficient or wrong kind of emulsifier in the system.•Addition of ingredients that inactivate the emulsifier. Incompatible ingredients may show their effect over a period of time.An example of such an incompatibilitywill be to use large anions in thepresence of cationic emulsifier.•Presence of hardness in water. The calcium and magnesium present in hard water can replace a part of the alkalisoap with divalent soap. Since thesesoaps form different kinds of emulsions, phase inversion usually takes place.•Low viscosity of the emulsion •Exposure to high temperatures can also accelerate the process of coalescence.This is due to the fact that at an elevated temperature, the collisions between theglobules can overcome the barrier tocoalescence, thereby increasing thechance that a contact between twoparticles will lead to their fusion.Temperature may have an adverse effect on the activity of emulsifiers, particularly if these are proteinaceous in nature.However, this usually happens at temper-atures higher than 50°C. Conversely, areduction in temperature to the point that the aqueous phase freezes also will break the emulsion.•An excessive amount of the internal phase makes an emulsion inherently less stable because there is a greater chance of globules coming together.Cracking is the most serious kind of physical instability of an emulsion. Cracking of an emulsion usually renders it useless. In creams, the problem of cracking may show up as tearing. This is a process where one phase separates and appears like drops on top of the cream.The basic difference between creamingand cracking is that the globules in creaming do not coalesce to form larger particles. Therefore, creaming is a less serious problem and most preparations that show creaming can be shaken to redisperse the internal phase to its original state. A com-mon example of creaming is the formation of cream on top of whole milk due to collection of emulsified fat of the milk. This problem is solved by homogenizing the milk to reduce the particle size of dispersed fat, thereby reducing the rate at which they travel tothe surface.。
乳状液稳定性分析
2020年第02期学术专业人文茶趣作者简介:王晓烨(1982-),女,内蒙古呼和浩特人,硕士,讲师,研究方向:营养与食品卫生。
收稿日期:2020年1月21日。
1乳状液、中性乳饮料的稳定性乳状液是一种液体以极小的液珠形式分散在另一种与它不相混溶的液体中而形成的多相分散体系,它的相界面积大、表面自由能高,是一种热力学不稳定体系[1]。
乳状液分水包油型(油分散在水中)、油包水型(水分散在油中)和多重型三类。
界面膜的形成和膜强度是影响乳状液稳定性的主要因素。
不同的乳状液稳定性差别较大。
从应用角度看,所谓“稳定性”一般是指乳状液中被分散的液滴抗聚结的能力[2]。
中性乳饮料主要以水、牛乳或其他乳蛋白为原料,加入其他风味辅料果汁、茶、植物提取液等,调香配制而成的饮用牛乳,其蛋白质含量均不低于1.0%。
中性乳饮料是客观不稳定的分散体系,同时含有由蛋白质形成的悬浮液、由脂肪形成的乳浊液和由糖类、盐类形成的真溶液[3]。
在商业产品中,时常发生脂肪上浮、蛋白质沉淀、色素凝聚等问题。
2导致乳状液失稳的原因导致乳状液失稳的原因主要有:(1)分层或沉降(creaming or sedimentation)(2)絮凝(flocculation)(3)聚结(coalescence)(4)破乳(demulsification or breakdown)(5)变型或相转变(inversion or phase inversion)(6)熟化(Ostwald ripening),如下图1所示[4]图1乳状液不稳定性的几种表现形式Source :Adsorption of protein and the stability of emulsions.D.G.Dalgleish.Trends in Food Science &Technology ,1997,8(1),1-6.3提高乳状液稳定性的几种方法提高乳状液稳定性的方法有:(1)降低油水表面张力:有一些亲水胶体和乳化剂能起到表面活性剂的作用,可以显著降低的液-液界面的界面张力,使系统的表面吉布斯函数降低,以达到乳化稳定的功能(2)增加水相粘度:如阿拉伯胶和明胶就可以被体系吸附后在界面上形成牢固的界面膜,以阻止或减弱分散的油粒小球发生迁移和聚合。
液体制剂-3 乳剂-精品医学课件
-西黄蓍胶 粘度高,乳化力较差,常与 阿拉伯胶合用
-磷脂 指卵磷脂或大豆磷脂。用量为 1~3%,乳化能力强,形成O/W型乳剂。可内 服或外用,纯品可作注射用
明胶 (gelatin)
可形成O/W型乳剂,用量为油量的 1%~2%,明胶为两性化合物,易受 溶液pH值及电解质的影响产生凝聚 作用。
影响乳剂类型的因素
������ 油水两相的比例 (相体积比或相体积分数,用φ表示) -理论上,分散相的最大体积分数φ为
74% 实际上,φ一般为25% -60%
乳剂的稳定性
分层(delamination)
乳剂放置后出现分散相粒子上浮或下沉现
象,称为分层(又称乳析creaming)。为
2. 形成牢固的乳化膜
������ 乳化剂可吸附在乳滴周围,在乳 滴表面定向排列,形成乳化膜 (emulsifying layer),阻止乳滴合 并
影响乳剂类型的因素
乳化剂的性质(HLB值)
������
两种互不混溶液体中,凡与乳化剂 亲和力较大,即界面张力较小的一 相构成外相,界面张力较高的一相 形成内相
鱼肝油乳剂
制备过程
1、阿拉伯胶、西黄蓍胶、鱼肝油→略研→加 250ml蒸馏水→用力研磨至初乳形成
2、加糖精钠、挥发杏仁油、羟苯乙酯醇液→ 添加蒸馏水至全量
水中乳化剂法(湿胶法)
������ 适用于含粘稠成分药物 ������ 胶粉分散于水中制成胶浆→按比例加
油(同干胶法) →研磨至初乳形成→加水稀 释至全量
合剂中可加入适宜的附加剂, 如防腐剂、稳定剂等
二、搽剂和涂剂
药剂学之液体制剂-乳剂相关知识
药剂学之液体制剂相关知识1药剂学:乳剂的基础理论概述乳剂(emulsions)系指互不相溶的两相液体混合,其中一相液体以液滴状态分散于另一相液体中形成的非均匀分散的液体制剂。
形成液滴的液体称为分散相(disperse phase)、内相(internal phase)或非连续相(discontinuous phase),另一相液体则称为分散介质(disperse medium)、外相(external phase)或连续相(continuous phase)。
1丨乳剂的基本组成乳剂由水相(用W表示)、油相(用O表示)和乳化剂组成,三者缺一不可。
根据乳化剂的种类、性质及相体积比(φ)形成水包油(O/W)或油包水(W/O)型。
也可制备成复乳(multiple emulsions),如W/O/W或O/W/O。
O/W与W/O型乳剂的鉴别方法见表9-2表9-2 水包油(O/W)型与油包水(W/O)型乳剂的简易鉴别法鉴别方法水包油(O/W)型油包水(W/O)型外观通常为乳白色接近油的颜色稀释性可用水稀释可用油稀释导电性导电不导电或几乎不导电水溶性染料外相染色内相染色油溶性染料内相染色外相染色2丨乳剂的分类根据乳滴的大小,乳剂可分为普通乳剂、亚微乳、纳米乳。
(1)普通乳剂(emulsions):普通乳剂液滴大小一般在1~100um之间,普通乳剂一般为乳白色、不透明液体。
(2)亚微乳(submicron emulsions):亚微乳的粒径大小一般在0.1~1um之间,常用作非胃肠道给药的载体。
如静脉注射用亚微乳的粒径一般控制在0.25~0.4um范围。
(3)纳米乳(nanoemulsions):纳米乳的粒径大小一般在10~100nm之间。
当乳滴粒子小于100nm时,其粒径小于可见光波长(380~780nm),纳米乳剂处于胶体分散系粒径范围内,此时光线通过纳米乳时不产生折射而是透过,用肉眼观察纳米乳为透明液体。
有些文献报道将纳米乳称为微乳(microemulsions)或毫微乳(millimicroemulsions)。
液体类制剂生产技术
加入电解质→双电层变薄→ ξ-电位降低→稳定 性下降
ξ-电位降至一定值,粒子开始絮凝,但不结块, 振摇即可重新分散。
液体类制剂生产技术
第14页
3、混悬微粒润湿
固体药品亲水性强弱,能否被水润湿,与混 悬剂制备易难、质量高低及稳定性大小关系 很大。
测定F值。口服混悬剂(包含干混 悬剂)F值应不低于0.9。
t 沉降曲线
液体类制剂生产技术
第25页
二 乳剂
(一)、概述 1、含义 乳剂*(emulsions)系指互不相溶两相液体
混合,其中一相液体以液滴状态分散于另 一相液体中形成、通常供口服非均相液体 制剂。 两相中通常一相是水或水溶液,称为水相, 用W表示;另一相是油或与水不相溶其它有 机液体,称为油相,用O表示。
HLB值为3~8者为W/O型乳化剂 (司盘)
HLB值为8~16者为O/W型乳化剂 (吐温)
液体类制剂生产技术
第33页
(3)固体微粒乳化剂:这类乳化剂为不溶 性固体微粉,可聚集于油水界面上形成固 体微粒膜而起乳化作用。
一类如氢氧化镁、氢氧化铝、二氧化硅、 皂土等易被水湿润,故是O/W型乳化剂
亲水性药品,制备时则易被水润湿,易于分 散,而且制成混悬剂较稳定。
疏水性药品,不能为水润湿,较难分散,可 加入润湿剂改进疏水性药品润湿性,从而使 混悬剂易于制备并增加其稳定性。如加入甘 油研磨制得微粒,不但能使微粒充分润湿, 而且还易于均匀混悬于分散媒中。
液体类制剂生产技术
第15页
4、絮凝与反絮凝
可用水稀释 导电
外相染色 内相染色
W/O型乳剂
油状色近似
可用油稀释 不导电或
几乎不导电 内相染色
药剂学课件非均相液体体系及其稳定性
气相色谱法〔薄层,HPLC〕:一组HLB值 的表面活性剂做固定液,测定乙醇:乙烷= 1:1液中乙醇或乙烷的出峰时间,由HLB值 对时间作图,可得一直线。将X做固定液, 测定两者出峰时间,从直线上即可找出X
含聚氧乙烯型非离子表面活性剂的乳剂随温 度升高易转型,聚氧乙烯链分布越宽,PIT 越高,乳剂稳定性越大
PIT与HLB值呈直线关系,PIT随HLB增加而 增加
PITab=〔PITaWa+PITbWb〕/〔Wa+Wb〕
其他:铺展系数法、界面张力法、搅拌离心 法、介电常数法、水值法等
b.理论计算法 皂化值法:仅适合于多元醇脂肪酸酯非离子表面活
冷却:避免急剧冷却,一般以间歇式冷却或 连续式缓慢冷却为宜,冷却时不宜高速搅 拌,防止聚集
4、稳定性 〔1〕不稳定性的表现 分层:可逆
(creaming) 聚集:范德华力,可再分散,但有可能进一
步聚结
(aggregation) 聚结:不可逆,导致粒径增加,数量减少,
被破坏
(coalescence)
增加粘度
b. O的种类及体积比 O/W时,油的CH链增加,非极性增加,那
么聚集减少
两相体积相差越大,稳定性越大,一般分散 相小于26%,但O/W具更明显的扩散双电 层,在相同条件下,O/W稳定性高于W/O, 可能允许O体积增加,而W/O中W比例应 小于40%
c.添加剂与乳化剂的相互作用 水溶性高分子,脂肪醇、酸、胺等可增加界面膜强
〔3〕制备 同乳剂,多用转相乳化法或PIT法
药剂学名词解释
Good manufacturing practice(GMP) 药品生产质量管理规范Standard operating procedure(SOP) 标准操作规范Good laboratory practice(GLP) 药物非临床研究质量管理规范Good clinical practice(GCP) 药物临床试验管理规范Glycerin 甘油Dimethyl sulfoxide(DMSO) 二甲亚砜Polyethylene glycol(PEG) 聚乙二醇Liquid paraffin 液状石蜡Flavouring agents 矫味剂Coloring agents 着色剂Phase volume ratio 相容积比:油水两相的容积之比。
High pressure homogenizer 乳匀机Colloid mill 胶体磨Ultrasonic homogenizer 超声波乳化器Sterility assurance level(SAL) 无菌保证水平(≤10-6)Heat sterilization 热力灭菌法Medium filtration 介质过滤Cake filtration 滤饼过滤Ray sterilization 射线灭菌法Intracutaneous injection 皮内注射Subcutaneous injection 皮下注射Intramuscular injection 肌内注射Intravenous injection 静脉注射Additives for injection 注射剂的附加剂Rabbit test 家兔法(热原检测)Limulus lysate test 鲎试剂法(热原检测)Electrolyte infusions 电解质输液Nutrition infusions 营养输液Colloid infusions 胶体Drug-containing infusions 含药输液Sterile powder for injection 注射用无菌粉末Ophthalmic preparation 眼用制剂Dry granulation 干法制粒Solid bridge 固体桥Mechanical interlocking bonds 机械镶嵌Pregelatinized starch 预胶化淀粉Microcrystalline cellulose(MCC)微晶纤维素Carboxymethylcellulose sodium(CMC-Na) 羧甲基纤维素钠Sodium carboxymethyl starch(CMS-Na) 羧甲基淀粉钠Low-subsituted hydroxypropylcellulose(L-HPC) 低取代羟丙基纤维素Croscarmellose sodium(CCMC-Na) 交联羧甲基纤维素钠Polyvinylpolypyrrolidone(PVPP) 交联聚维酮Effervescent disintegrants 泡腾崩解剂:碳酸氢钠与枸橼酸混合物Magnesium stearate 硬脂酸镁Silica gel 微粉硅胶T alc 滑石粉Hydrogenated vegetable oil 氢化植物油Sodium lauryl sulfate 十二烷基硫酸钠Laminating tablets 裂片Enteric capsules 肠溶胶囊Dimethyl ether(DME) 二甲醚Foaming agents 起泡剂Foam stabilizer 稳泡剂Antifoaming agents 消泡剂Stress testing 强化试验:即影响因素试验Accelerated testing 加速试验Long-term testing 长期试验Lead optimization 先导化合物的优化Candidate selection 确定候选化合物Current Good Manufacture Practice(cGMP)Life cycle management 药品的生命周期管理Therapeutic index 治疗指数T arget product profile(TPP)目标产品特征T arget product quality profile(TPQP)目标产品质量特征Fraction of absorption(F a)口服吸收分数Physiologically based gastrointestinal model 胃肠道生理模型Bioavailability classification system(BCS)生物药剂学分类系统Decoction 煎煮法Maceration 浸渍法Percolation 渗漉法Vapor distillation 水蒸气蒸馏法Ultrasound-assisted extraction(UAE)超声波提取法Medicinal liquor 酒剂Separation by sedimentation 沉降分离法Separation by centrifuge 离心分离法Separation by filtering 过滤分离法Cyclodextrin(CD)环糊精Nanoemulsion 纳米乳Submicroemulsion 亚微乳Spray drying 喷雾干燥法Spray congealing 喷雾凝结法Fluidized bed coating 流化床包衣法Multiorfice-centrifugal process 多孔离心法Spinning disk atomization 转碟法Unilamellar vesicles 单层脂质体Multilamellar vesicles(MLVs) 多层脂质体Endocytosis/phagocytosis 内吞Encapsulation efficiency(EE) 包封率Loading efficiency(LE) 载药率Erodible matrix tablets 溶蚀性骨架片Osmotic pressure active ingredients 渗透压活性物质Gastric floating retention 胃内漂浮滞留Gastric adhesives retention 胃壁黏附滞留1 绪论1.Pharmaceutics (Pharmacy) 药剂学:是研究药物制剂的基本理论,处方设计,制备工艺,质量控制,合理使用等内容的综合性应用技术科学。
药剂学-液体制剂第六章- 乳剂
2. 天然乳化剂
天然乳化剂亲水性强,在水中粘度大,对乳化液有较强的 稳定作用,宜新鲜配制使用或加入防腐剂。 (1)阿拉伯胶(acacia gum) : 为阿拉伯酸的钙、镁、钾等盐的混合物,适用于乳化植物油、 挥发油形成O/W型乳剂,作为内服乳剂的乳化剂,常用浓度为 5%~15%。 在pH4~10范围内乳液较稳定,单用时易分层,常与西黄蓍胶、 果胶、琼脂等合用。该胶含有氧化酶,易使其酸败,故用前 应在80℃加热30min以破坏之。
具有较强的乳化能力,并能在乳滴周围形成牢固的乳化膜; 有一定的生理适应能力:无毒,无刺激性,可以口服、外用或注射给药; 受各种因素的影响小:酸、碱、辅助乳化剂等; 稳定性好。
上述条件可作为选择或评价乳化剂的标准。
(二)乳化剂的种类
1. 表面活性剂类乳化剂
2. 天然高分子乳化剂
⑤复乳可作为药物超剂量或误服引起中毒的解毒系统。
根据乳滴大小分类
普通乳(emulsion):1~100m,乳白色不透明液体。 亚纳米乳(subnanoemulsion):又称亚微乳,0.1~1.0m,常 作为胃肠外给药的载体,静脉注射乳剂应为亚微乳,如环孢 菌素静脉注射脂肪乳。 纳米乳(nanoemulsion):又称微乳,10~100nm。
①单分子乳化膜
表面活性剂类乳化剂被吸附于乳滴表面,有规律地 定向排列,形成单分子乳化膜,明显降低了表面张 力,防止液滴合并,增加了乳剂的稳定性。 离子型表面活性剂作乳化剂所形成的单分子乳化膜 是离子化的,由于同种电荷相互排斥使乳剂更加稳 定。 非离子型表面活性剂作乳化剂所形成的单分子乳化 膜,由于从溶液中吸附离子,也可以带电使乳剂更 加稳定。
复乳的特点
食品科学与工程——专业英语
多用单词:Emulsifying乳化的 Biotin生物素 Choline胆碱 Phytochemicals 植物素 caramelization焦糖化反应 Preventing spoilage防止变质Monosaccharides单糖 Oligosaccharide 低聚糖Polysaccharides 多糖pyrolysis热解fudge软糖gelatinization凝胶化irreversible swelling不可逆溶胀hemi-cellulose半纤维素Xylan木聚糖,arabinogalactan, 阿拉伯半乳聚糖galactoglucomannan半乳葡甘露聚糖 pectin果胶agar琼脂 algin 藻胶 xanthan gum黄原胶 Glycogen糖原 trypsin 胰蛋白酶 pepsin 胃蛋白酶 ovalbumin卵清蛋白 ferritin铁蛋白hemoglobin血红蛋白 lipoproteins脂蛋白 actin and myosin肌动蛋白和肌球蛋白thrombin凝血酶 insulin胰岛素 collagen胶原keratin角蛋白elastin粘性蛋白Membranes细胞膜Thiamin硫胺素vb1 Riboflavin核黄素vb2 alpha tocopherol生育酚 Niacin烟酸Pantothenic acid泛酸 Folic acid.叶酸 coenzyme辅酶 osmosis 渗透作用 amylose直链淀粉 amylopectin支链 rancidity酸败bran麸皮 pyramid金字塔 glycerol甘油 preservatives防腐剂constipation便秘diverticular憩室的hemorrhoids痔疮Diabetes糖尿病Osteoporosis骨质疏松症Cardiovascular diseases心血管疾病 anthocyanidin花青素 polyphenol多元酚pigments色素 spectrophotometers分光光度计 astringency涩味Nitrogen氮purines嘌呤, pyrimidines嘧啶porphyrin卟啉adenosine triphosphate三磷酸腺苷linoleic acid亚油酸Thyroid function甲状腺功能citric柠檬酸 isocitric异柠檬酸 malic苹果酸 Oxalic草酸, tartaric酒石酸, succinic acids.琥珀酸esters酯类 alcohols醇类 ethers醚类, ketones.酮类 Heat denaturation热变性sterilization灭菌 sanitizing消毒membrane processing膜处理microfiltration微过滤sediment沉淀物ultrafiltration超滤 carotene胡萝卜素 hydrophobic疏水性hydrophilic亲水性 hydrogel水凝胶chiral手性的D-glycerose D-甘油醛 heteroglycan杂聚糖polyunsaturated 多不饱和键的catalyst 催化剂翻译句型:Although metals are crystalline solids, this is not immediately apparent when they are examined under a microscope.虽然金属是晶体,但是当在显微镜下观察时,并不是立刻就那么明显。
液体制剂介绍
(一)乳化剂的种类 1、表面活性剂类乳化剂: (1)阴离子形乳化剂:硬脂酸钠、硬脂酸钾、油 酸钠、油酸钾、硬脂酸钙(W/O)、 (2)非离子型乳化剂:单甘油脂肪酸酯(O/W)、 三甘油酸酯(O/W)、span、tween 2、天然乳化剂:能形成O/W型乳剂。(1) 阿拉伯胶 (2)西黄蓍胶(3)明胶(4)杏树胶(5)卵胶
水溶固体:先少量水溶解 ②.用具:洁净; (三)制备糖浆剂应注意: 难溶固体:适宜溶媒溶解 ③.原料:质纯、药用; 液体药物:直接加入 1、药物加入的方法: ④.加热:用蒸气; 含乙醇药注意事项:
混合法系将药物与糖浆均匀混合制备而 成的。 ①.环境:避菌;
液
固
体
体
1、内服液体制剂 2、外用液体制剂 (1)皮肤用液体制剂 (2)五官科用液体制剂 (3)直肠、阴道、尿道用液体制剂
一、常用溶剂 1.极性溶剂:水;甘油;二甲基亚砜 2.半极性溶剂:乙醇;丙二醇;聚乙二醇 3.非极性溶剂:脂肪油;液体石蜡;乙酸乙酯
(一)增溶剂 (二)助溶剂 (三)潜溶剂
液体制剂介绍
一、液体制剂的特点和质量要求 (一)液体制剂的特点 1、液体制剂的优点: ①吸收快,迅速发挥药效。 ②服用方便,易分剂量。 ③能减少某些药物的刺激性。 ④生物利用度较高。 2、液体制剂的缺点: ①稳定性较差(降解、霉变、沉淀)。 ②运输、贮存不便。
1.澄明或分散均匀 2.浓度准确 3.外观良好、口感适宜 4.无刺激性 5.性质稳定、无霉变 6.携带和使用方便
[处方]磷酸可待因 5g 蒸馏水 15ml 单糖浆 加至1000ml
[制备]取磷酸可待因溶于蒸馏水中,加 单糖浆至全量,即得.
四、醑剂
醑剂(spirits)系指挥发性药物制成的 浓乙醇溶液。醑剂中乙醇浓度一般为60 %~90%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Current Opinion in Colloid & Interface Science 5 (2000) 265-272
www.elsevier.nl/locate/cocis
Emulsions - creaming phenomena*
Margaret M. Robins”
creaming behaviour of emulsions in order to assess the value of the various techniques for measuring creaming, and to put the published data into context. The composition of an emulsion dictates its creaming behaviour. In the simplest case, if the droplets are monodisperse and are highly charged or coated with an effective surfactant, they repel each other and they cream as individual particles. At infinite dilution, the creaming rate is described by the well-known Stokes' terminal velocity V,, proportional to the square of the droplet diameter and density difference, and inversely proportional to the background viscosity. However, where there is a significant the number of other droplets of volume fraction presence of neighbouring droplets and the consequent backflow of continuous phase against the droplet movement causes a reduction in the terminal velocity of the droplets, so that they cream at a velocity I/= V,.f(+). The hindrance factor f(+) < 1 and, in the ideal case, depends only on the local concentration of droplets. When the droplets reach the top of the emulsion they form a uniform cream layer of volume fraction 4,. Fig. l a shows a schematic diagram of oil volume fraction profiles during the creaminenoted type IM. Ini-
*Late article, Emulsions, Gels and Foams, Curr Opin Colloid Interf Sci 5/3-4 (2000). * Tel.: + 44-1603-255209; fax: + 44-1603-507723. E-mail address: margaret.robins@ (M.M. Robins).
a.
...... .....
!";
! ! !
I
I
I
I
I
!
height
Institute of Food Research, Nonvich Research Park, Colney, Nonvich NR4 7UA, UK
Abstract
Recent years have seen advances in the monitoring of emulsion stability, particularly multiple-point techniques using optical, ultrasonic and NMR sensors. In parallel, there has been interest in the mechanisms of creaming and phase separation, leading to progress in the theoretical interpretation of the process. 0 2000 Elsevier Science Ltd. All rights reserved.
Keywords: Emulsions; Creaming; Stability; Flocculation; Phase separation
1. Introduction
Creaming is the process by which buoyant emulsion droplets tend to rise to the top of a container. It is the same process as sedimentation, but in the opposite direction. The commercial importance of creaming is very high, and it is estimated that 40% of the cost of developing a new food emulsion is incurred in shelflife testing, where the major criterion is the onset of visual non-uniformity. Despite its commercial importance, emulsion creaming does not feature highly in food science literature. Many of the reported studies on emulsions are addressed at formulation issues where the performance of specific components, usually proteins, is examined empirically as an aid to commercial application. Yet there are questions still to be answered on the basic mechanisms of creaming in food emulsions. In order to obtain insights into the physics of the processes, particularly where droplets are flocculated by polymeric ‘stabilisers’, one must access the colloid science and chemical engineering
literature. Here, at least, there are models of phase behaviour and mass-balance, offering quantitative analyses that can be used as a framework for empirical studies. Emulsions can undergo a number of different instabilities. Those that involve the changes in primary droplet size, viz. coalescence, disproportionation (ripening), inversion and breaking, are not considered here, although they have knock-on effects on the creaming behaviour. Flocculation (aggregation) and creaming both involve the spatial rearrangement of droplets with respect to each other and with respect to an external frame of reference. In many food emulsions, the creaming behaviour is dominated by the flocculation of droplets, and both aspects are considered in this article. This review is intended to highlight the published research on creaming over the past 3-4 years. In particular, advances have been made in the instrumental measuring of creaming (Section 2), and in the elucidation of the physical mechanisms involved in the process (Section 3). In Section 4, some specific applications are given to demonstrate the systems of current interest to food scientists. Finally, I have attempted to identify the aspects where future work is needed. The remainder of this section aims to classify the