2011届高考物理第一轮复习万有引力定律及其应用检测题2
高考物理万有引力定律的应用试题(有答案和解析)
高考物理万有引力定律的应用试题( 有答案和分析 )一、高中物理精讲专题测试万有引力定律的应用1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018 ”.比如,我国将进行北斗组网卫星的高密度发射,整年发射 18 颗北斗三号卫星,为“一带一路”沿线及周边国家供给服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星构成.图为此中一颗静止轨道卫星绕地球飞翔的表示图.已知该卫星做匀速圆周运动的周期为 T,地球质量为 M、半径为 R,引力常量为 G.(1)求静止轨道卫星的角速度ω;(2)求静止轨道卫星距离地面的高度h1;(3)北斗系统中的倾斜同步卫星,其运行轨道面与地球赤道面有必定夹角,它的周期也是T,距离地面的高度为h2.视地球为质量散布平均的正球体,请比较h1和 h2的大小,并说出你的原因.【答案】( 1)=2π3GMT 212;( 2)h1=4 2R( 3) h = h T【分析】【剖析】(1)依据角速度与周期的关系能够求出静止轨道的角速度;(2)依据万有引力供给向心力能够求出静止轨道到地面的高度;(3)依据万有引力供给向心力能够求出倾斜轨道到地面的高度;【详解】(1)依据角速度和周期之间的关系可知:静止轨道卫星的角速度= 2πTMm2π2(2)静止轨道卫星做圆周运动,由牛顿运动定律有:G2= m( R h1 )( )(R h1 )T 解得:h =3GMT 2R124π( 3)以下图,同步卫星的运行轨道面与地球赤道共面,倾斜同步轨道卫星的运行轨道面与地球赤道面有夹角,可是都绕地球做圆周运动,轨道的圆心均为地心.因为它的周期也是 T ,依据牛顿运动定律,GMm2=m(R h 2 )(2) 2( R h 2 )T解得: h 2 = 3 GMT 2R42所以 h 1= h 2.1) =2π GMT2R (3) h 1= h 2故此题答案是:(;( 2) h 1 =3T4 2【点睛】关于环绕中心天体做圆周运动的卫星来说,都借助于万有引力供给向心力即可求出要求的物理量.2. 一宇航员站在某质量散布平均的星球表面上沿竖直方向以初速度 v 0 抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为,引力常量为 ,求:R G(1)该星球表面的重力加快度; (2)该星球的密度;(3)该星球的 “第一宇宙速度 ”.【答案】 (1) g2v 0 (2) 3v 0 (3) v2v 0 Rt2πRGtt【分析】(1) 依据竖直上抛运动规律可知,小球上抛运动时间2v 0tg可得星球表面重力加快度: g2v 0 .t(2)星球表面的小球所受重力等于星球对小球的吸引力,则有:GMm mgR 2gR 2 2v 0 R 2得: MGtG4 R 3因为 V3则有:M3vV2πRGt2(3)重力供给向心力,故mg m v R该星球的第一宇宙速度v gR2v0Rt【点睛】此题主要抓住在星球表面重力与万有引力相等和万有引力供给圆周运动向心力,掌握竖直上抛运动规律是正确解题的重点.3.a、 b 两颗卫星均在赤道正上方绕地球做匀速圆周运动, a 为近地卫星, b 卫星离地面高度为 3R,己知地球半径为 R,表面的重力加快度为g,试求:(1) a、 b 两颗卫星周期分别是多少?(2) a、 b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时经过赤道同 --点的正上方,则起码经过多长时间两卫星相距最远?【答案】(1)2R,16R( 2)速度之比为 2 ;8R g g7g【分析】【剖析】依据近地卫星重力等于万有引力争得地球质量,而后依据万有引力做向心力争得运动周期;卫星做匀速圆周运动,依据万有引力做向心力争得两颗卫星速度之比;由依据相距最远时相差半个圆周求解;解:( 1)卫星做匀速圆周运动,F引F向,Mm对地面上的物体由黄金代换式G mgGMm 4 2Ra 卫星2m2R T a解得 T a2R gb 卫星GMmm 4 2·4R (4R)2T b2解得 T b16R g(2)卫星做匀速圆周运动,F引F 向,GMm mv a2 a 卫星R2RGM解得v aRMmv 2b卫星 b卫星G(4 R)2m 4R解得 v bGM4R所以 V a 2V b22( 3)最远的条件 T a T b解得 t8R 7g4. 如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程能够筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽视不计),经过轨道上 P 点时点火加快,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地址为圆轨道Ⅰ上的P 点,远地址为同步圆轨道Ⅲ上的Q点.抵达远地址Q时再次点火加快,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为 R ,飞船质量为 m ,同步轨道距地面高度为h .当卫星距离地心的距离为 r 时,地球与卫星构成的系统的引力势能为E pGMm(取无量远处的引力势能为r零),忽视地球自转和喷气后飞船质量的変化,问:( 1)在近地轨道Ⅰ上运行时,飞船的动能是多少?( 2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能互相转变.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为 v 1 ,则经过 Q 点时的速率 v 2 多大?( 3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能离开地球引力范围(即探测器能够抵达离地心无量远处),则探测器走开飞船时的速度v 3 (相关于地心)起码是多少?(探测器走开地球的过程中只有引力做功,动能转变成引力势能)【答案】( 1) GMm( 2) v 12 2GM2GM ( 3) 2GM2RR hR R【分析】【剖析】( 1)万有引力供给向心力,求出速度,而后依据动能公式进行求解;( 2)依据能量守恒进行求解即可;(3)将小探测器射出,并使它能离开地球引力范围,动能所有用来战胜引力做功转变成势能;【详解】(1)在近地轨道(离地高度忽视不计)Ⅰ 上运行时,在万有引力作用下做匀速圆周运动mM v2即:G mR2R则飞船的动能为E k 1 mv2GMm ;22R(2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能互相转变.由能量守恒可知动能的减少许等于势能的増加量:1mv121mv22GMm( GMm ) 22R h R若飞船在椭圆轨道上运行,经过P 点时速率为v1,则经过Q点时速率为:v2v122GM2GM ;R h R(3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能离开地球引力范围(即探测器离地心的距离无量远),动能所有用来战胜引力做功转变成势能即: G Mm1mv32 R2则探测器走开飞船时的速度(相关于地心)起码是:v32GM.R【点睛】此题考察了万有引力定律的应用,知道万有引力供给向心力,同时注意应用能量守恒定律进行求解.5.以下图是一种丈量重力加快度g 的装置。
高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)及解析
高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期.【答案】(1) R=m M M +L, r=m Mm+L,(2)()3L G M m +【解析】(1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+两星做圆周运动时的向心力由万有引力提供,则有:2222244mM G mR Mr L T Tππ==可得 RMr m=,又因为L R r =+ 所以可以解得:M R L M m =+,mr L M m=+; (2)根据(1)可以得到:2222244mM MG m R m L L T T M m ππ==⋅+则:()()23342L L T M m GG m M π==++ 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.3.如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,不考虑月球的自转.求:(1)月球的质量M ;(2)轨道舱绕月飞行的周期T .【答案】(1)GgR M 2=(2)2r rT R gπ=【解析】 【分析】月球表面上质量为m 1的物体,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期; 【详解】解:(1)设月球表面上质量为m 1的物体,其在月球表面有:112Mm Gm g R = 112Mm G m g R = 月球质量:GgR M 2=(2)轨道舱绕月球做圆周运动,设轨道舱的质量为m由牛顿运动定律得: 22Mm 2πG m r r T ⎛⎫= ⎪⎝⎭222()Mm G m r r T π= 解得:2rr T R gπ=4.如图所示是一种测量重力加速度g 的装置。
高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析
高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT T πππ-= 解得87R t gπ=2.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】 【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.3.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w1,w2.根据题意有w1=w2 ① (1分)r1+r2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分)G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解4.“天舟一号”货运飞船于2017年4月20日在海南文昌航天发射中心成功发射升空,完成了与天宫二号空间实验室交会对接。
高考物理万有引力定律的应用试题(有答案和解析)
一、高中物理精讲专题测试万有引力定律的应用
1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同
一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤 是从高度为 h 处下落,经
时间 t 落到月球表面.已知引力常量为 G,月球的半径为 R.
好又为 0,引力常量 G 6.671011 N m2 / kg2.试求:
(1)该星球的质量大约是多少? (2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算 结果均保留二位有效数字)
【答案】(1) M 2.41024 kg (2)6.0km/s
【解析】
【详解】
(1)假设星球表面的重力加速度为 g,小物块在力 F1=20N 作用过程中,有:F1-mgsinθμmgcosθ=ma1 小物块在力 F2=-4N 作用过程中,有:F2+mgsinθ+μmgcosθ=ma2 且有 1s 末速度 v=a1t1=a2t2 联立解得:g=8m/s2.
G
mM R2
解得该星球的质量为 M 2vR2 Gt
(3)当某个质量为 m′的卫星做匀速圆周运动的半径等于该星球的半径 R 时,该卫星运行
的周期
T
最小,则由牛顿第二定律和万有引力定律
G
mM R2
=
4 2mR T2
解得该卫星运行的最小周期 T=2 Rt 2v
【点睛】重力加速度 g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.本题 要求学生掌握两种等式:一是物体所受重力等于其吸引力;二是物体做匀速圆周运动其向 心力由万有引力提供.
6.如图所示是一种测量重力加速度 g 的装置。在某星球上,将真空长直管沿竖直方向放 置,管内小球以某一初速度自 O 点竖直上抛,经 t 时间上升到最高点,OP 间的距离为 h, 已知引力常量为 G,星球的半径为 R;求:
2011高考物理一轮复习考点演练:第4章 曲线运动 万有引力定律与航天(解析版)
第四章曲线运动万有引力定律与航天第1节曲线运动运动的合成与分解班级姓名成绩(时间:45分钟满分:100分)一、选择题(本题共10小题,每小题7分,每题只有一个答案正确,共70分)1. 关于曲线运动的性质,下列说法中正确的是( )A. 曲线运动一定是变速运动B. 曲线运动一定是变加速运动C. 圆周运动一定是匀变速运动D. 变力作用下的物体一定做曲线运动2. 一质点在xOy平面内从O点开始运动的轨迹如图所示,则质点的速度( )①若x方向始终匀速,则y方向先加速后减速②x方向始终匀速,则y方向先减速后加速③若y方向始终匀速,则x方向先减速后加速④若y方向始终匀速,则x方向先加速后减速A. ①③B. ①④C. ②③D. ②④3. (2010·广东实验中学模拟)某人游珠江,他以一定速度面部始终垂直河岸向对岸游去.江中各处水流速度相等,他游过的路程、过河所用的时间与水速的关系是( )A. 水速大时,路程长,时间长B. 水速大时,路程长,时间短C. 水速大时,路程长,时间不变D. 路程、时间与水速无关4. (2010·肇庆模拟)河水的流速随离河岸的距离的变化关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,若要使船以最短时间渡河,则( )A. 船渡河的最短时间是60 sB. 船在行驶过程中,船头始终与河岸垂直C. 船在河水中航行的轨迹是一条直线D. 船在河水中的最大速度是7 m/s5. 如图所示,在一次救灾工作中,一架沿水平直线飞行的直升飞机A,用悬索(重力可忽略不计)救助困在湖水中的伤员B. 在直升飞机A和伤员B以相同的水平速度匀速运动的同时,悬索将伤员提起,在某一段时间内,A、B之间的距离以l=H-t2(式中H 为直升飞机A 离地面的高度,各物理量的单位均为国际单位制单位)规律变化,则在这段时间内,下面判断中正确的是(不计空气作用力) ( )A. 悬索的拉力小于伤员的重力B. 悬索成倾斜直线C. 伤员做速度减小的曲线运动D. 伤员做加速度大小、方向均不变的曲线运动6. 如图所示为一个做匀变速曲线运动的质点的轨迹示意图,已知在B 点的速度与加速度相互垂直,则下列说法中正确的是 ( )A. D 点的速率比C 点的速率大B. A 点的加速度与速度的夹角小于90°C. A 点的加速度比D 点的加速度大D. 从A 到D 加速度与速度的夹角先增大后减小7. (2010·山东师大附中模拟)如图所示,小朋友在玩一种运动中投掷的游戏,目的是在运动中将手中的球投进离地面高3 m 的吊环,他在车上和车一起以2 m/s 的速度向吊环运动,小朋友抛球时手离地面1.2 m ,当他在离吊环的水平距离为2 m时将球相对于自己竖直上抛,球刚好进入吊环,他将球竖直向上抛出时的速度是(g 取10 m/s 2)()A .1.8 m/sB . 3.2 m/sC .6.8m/sD . 3.6m/s8. 一物体在光滑的水平桌面上运动,在相互垂直的x方向和y 方向上的分运动速度随时间变化的规律如图所示.关于物体的运动,下列说法正确的是 ( )①物体做曲线运动②物体做直线运动③物体运动的初速度大小是50 m/s④物体运动的初速度大小是10 m/sA. ①③B. ①④C. ②③D. ②④9. (2010·衡水模拟)民族运动会上有一个骑射项目,运动员骑在奔驶的马背上,弯弓放箭射击侧向的固定目标.假设运动员骑马奔驰的速度为v1,运动员静止时射出的弓箭速度为v2,跑道离固定目标的最近距离为d.要想命中目标且射出的箭在空中飞行时间最短,则()A. 运动员放箭处离目标的距离为dv 2/v 1B.2vC. 箭射到靶的最短时间为d/v 1D.10. 如图所示,沿竖直杆以速度v 匀速下滑的物体A 通过轻质细绳拉光滑水平面上的物体B ,细绳与竖直杆间的夹角为θ,则以下说法正确的是 ( )A. 物体B 向右匀速运动B. 物体B 向右匀加速运动C. 细绳对A 的拉力逐渐变小D. 细绳对B 的拉力逐渐变大二、计算题(本题共2小题,共30分,要有必要的文字说明和解题步骤,有数值计算的要注明单位)11. (14分)河宽d =60 m ,水流速度v1=6 m /s ,小船在静水中的速度v2=3 m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?12. (16分)如图甲所示,在一端封闭、长约1 m 的玻璃管内注满清水,水中放一个蜡烛做的蜡块,将玻璃管的开口端用胶塞塞紧.然后将这个玻璃管倒置,在蜡块沿玻璃管上升的同时,将玻璃管水平向右移动.假设从某时刻开始计时,蜡块在玻璃管内每1 s 上升的距离都是10 cm ,玻璃管向右匀加速平移,每1 s 通过的水平位移依次是2.5 cm 、7.5 cm 、12.5 cm 、17.5 cm .图乙中,y 表示蜡块竖直方向的位移,x 表示蜡块随玻璃管通过的水平位移,t=0时蜡块位于坐标原点.(1)请在图乙中画出蜡块4 s 内的轨迹.(2)求出玻璃管向右平移的加速度.(3)求t=2 s 时蜡块的速度v .第2节平抛运动及其应用班级姓名成绩(时间:45分钟满分:100分)一、选择题(本题共10小题,每小题7分,每题只有一个答案正确,共70分)1. 物体做平抛运动时,它的速度方向与水平方向的夹角α的正切tan α随时间t 变化的图象是图中的( )2. (2009·广东理科基础)滑雪运动员以20 m /s 的速度从一平台水平飞出,落地点与飞出点的高度差3.2 m.不计空气阻力,g 取10 m /s 2.运动员飞过的水平距离为s ,所用时间为t ,则下列结果正确的是( )A. s=16 m ,t=0.50 sB. s=16 m ,t=0.80 sC. s=20 m ,t=0.50 sD. s=20 m ,t=0.80 s3. 一物体从某高度以初速度v0水平抛出,落地时速度大小为v ,则它运动的时间为( )A.0v v g - B.02v v g - C.2202v v g - D.g 4. 如图所示,从一根空心竖直钢管A 的上端边缘沿直径方向向管内水平抛入一钢球,球与管壁多次相碰后落地(球与管壁相碰时间不计).若换一根等高但较粗的钢管B ,用同样方法抛入此钢球,则运动时间 ( )A. 在A 管中的球运动时间长B. 在B 管中的球运动时间长C. 在两管中的运动时间一样长D. 无法确定5. 如图所示,斜面上有a 、b 、c 、d 四个点,ab=bc=cd.从a 点正上方的O 点以速度v 0水平抛出一个小球,它落在斜面上b 点.若小球从O 点以速度2v 0水平抛出,不计空气阻力,则它会落在斜面上的 ( )A. b 与c 之间某一点B. c点C. c与d之间某一点D. d点6. 如图所示,A、B两质点以相同的水平速度v0抛出,A在竖直平面内运动,落地点为P1,B在光滑斜面上运动,落地点为P2,不计阻力,比较P1、P2在x轴方向上的远近关系是( )A. P1较远B. P2较远C. P1、P2等远D. A、B都有可能7. 甲乙两人在一幢楼的三层窗口比赛掷垒球,他们都尽力沿水平方向掷出同样的垒球,不计空气阻力.甲掷的水平距离正好是乙的两倍.若乙要想水平掷出相当于甲在三层窗口掷出的距离,则乙应( )A. 在5层窗口水平掷出B. 在6层窗口水平掷出C. 在9层窗口水平掷出D. 在12层窗口水平掷出8. 如图所示,一战斗机由东向西沿水平方向匀速飞行,发现地面目标P后,开始瞄准并投掷炸弹,若炸弹恰好击中目标P,假设投弹后,飞机仍以原速度水平匀速飞行,则(不计空气阻力) ( )①炸弹击中目标P时飞机正处在P点正上方②炸弹击中目标P时飞机是否处在P点正上方取决于飞机飞行速度的大小③飞行员听到爆炸声时,飞机正处在P点正上方④飞行员听到爆炸声时,飞机正处在P点偏西一些的位置A. ①③B. ①④C. ②③D. ②④9. (2010·苏州模拟)如图所示,取稍长的细杆,其一端固定一枚铁钉,另一端用羽毛做一个尾翼,做成A、B两只“飞镖”,将一软木板挂在竖直墙壁上作为镖靶.在离墙壁一定距离的同一处,将它们水平掷出,不计空气阻力,两只“飞镖”插在靶上的状态如图所示(侧视图).则下列说法中正确的是( )A. A镖掷出时的初速度比B镖掷出时的初速度小B. B镖插入靶时的末速度比A镖插入靶时的末速度大C. B镖的运动时间比A镖的运动时间长D. A镖的质量一定比B镖的质量大10. 如图所示,在一次空地演习中,离地H高处的飞机以水平速度v1发射一颗炮弹欲轰炸地面目标P,反应灵敏的地面拦截系统同时以速度v2竖直向上发射炮弹拦截,设拦截系统与飞机的水平距离为x,若拦截成功,不计空气阻力,则v1、v2的关系应满足()A. v 1=v 2B. v 1=2Hv x C. v 12D. v 1=2xv H二、计算题(本题共2小题,共30分,要有必要的文字说明和解题步骤,有数值计算的要注明单位)11. (14分)在一次扑灭森林大火的行动中,一架专用直升机载有足量的水悬停在火场上空320 m 高处,机身可绕旋翼轴原地旋转,机身下出水管可以从水平方向到竖直向下方向旋转90°,水流喷出速度为30 m/s ,不计空气阻力,取g=10 m/s 2,请估算能扑灭地面上火的面积.12. (16分)抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L 、网高h ,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.(设重力加速度为g)(1)若球在球台边缘O 点正上方高度为h 1处以速度v 1水平发出,落在球台的P 1点(如图实线所示),求P 1点距O 点的距离x 1.(2)若球在O 点正上方某高度处以速度v 2水平发出,恰好在最高点时越过球网落在球台的P 2点(如图虚线所示),求v 2的大小.第3节圆周运动及其应用班级姓名成绩(时间:45分钟满分:100分)一、选择题(本题共10小题,每小题7分,每题只有一个答案正确,共70分)1. 如图所示为A、B两质点做匀速圆周运动的向心加速度随半径变化的图象,其中A为双曲线的一个分支,由图可知()A. A物体运动线速度大小不变B. A物体运动角速度大小不变C. B物体运动线速度大小不变D. B物体运动角速度与半径成正比2. 如图所示,一物块沿曲线从M点向N点运动的过程中,速度逐渐减小.在此过程中物块在某一位置所受合力方向可能的是( )3. 如图所示,光滑水平面上,小球m在拉力作用下做匀速圆周运动,若小球运动到P点时,拉力F发生变化,关于小球运动情况的说法正确的是( )A.若拉力突然消失,小球将沿轨迹Pa做离心运动B.若拉力突然变小,小球将沿轨迹Pa做离心运动C.若拉力突然变大,小球将沿轨迹Pb做离心运动D.若拉力突然变小,小球将沿轨迹Pc做离心运动4. 如图所示,绳子的一端固定在O点,另一端拴一重物在水平面上做匀速圆周运动( )①周期相同时,绳长的容易断②周期相同时,绳短的容易断③线速度大小相等时,绳短的容易断④线速度大小相等时,绳长的容易断A. ①③B. ①④C. ②③D. ②④5. (2010·广州调研)如图所示,小球以初速度为v0从光滑斜面底部向上滑动,恰能到达最大高度为h的斜面顶部.图中①是内轨半径大于h的光滑轨道,②是内轨半径小于h的光滑轨道,③是内轨直径等于h的光滑轨道,④是长为1/2h 的轻杆(可绕固定点O转动,小球与杆的下端相碰后粘在一起).小球在底端时的初速度都为v0,则小球在以上四种情况中能到达高度h的有( )①②③④A. ①③B. ①④C. ②③D. ②④6. (2010·广州调研)如图所示,质量不计的轻质弹性杆P插入桌面上的小孔中,杆的另一端套有一个质量为m的小球,今使小球在水平面内做半径为R的匀速圆周运动,且角速度为ω,则杆的上端受到球对其作用力的大小为( )A. mω2RB.C. D. 条件不足,无法确定7. 申雪赵宏博在温哥华冬奥会的夺冠使双人花样滑冰得到了更大的关注.如图所示,在双人花样滑冰运动中,有时会看到男运动员拉着女运动员离开地面在空中做圆锥摆运动的精彩场面,目测体重为G的女运动员做圆锥摆运动时和水平冰面的夹角约为30°,重力加速度为g,估算该女运动员( )A.B.C.D.8. (2010·韶关调研)如图所示,光滑半球的半径为R,球心为O,固定在水平面上,其上方有一个光滑曲面轨道AB,高度为R/2.轨道底端水平并与半球顶端相切.质量为m的小球由A点静止滑下.小球在水平面上的落点为C,则( )A.小球将沿半球表面做一段圆周运动后抛至C点B.小球将从B点开始做平抛运动到达C点C.OC之间的距离为2RD. OC之间的距离为R29. 如图所示,水平的木板B托着木块A一起在竖直平面内做匀速圆周运动,从水平位置a沿逆时针方向运动到最高点b的过程中( )①B对A的支持力越来越大②B对A的支持力越来越小③B对A的摩擦力越来越大④B对A的摩擦力越来越小A. ①③B. ①④C. ②③D. ②④10. 在光滑的水平面上相距40 cm的两个钉子A和B,如图所示,长1 m的细绳一端系着质量为0.4 kg的小球,另一端固定在钉子A上,开始时,小球和钉子A、B在同一直线上,小球始终以2 m/s的速率在水平面上做匀速圆周运动.若细绳能承受的最大拉力是 4 N,那么从开始到细绳断开所经历的时间是( )A. 0.9π sB. 0.8π sC. 1.2π sD. 1.6π s二、计算题(本题共2小题,共30分,要有必要的文字说明和解题步骤,有数值计算的要注明单位)11. (14分)如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20 cm处放置一小物块A,其质量为m=2 kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求:(1)当圆盘转动的角速度ω=2 rad/s时,物块与圆盘间的摩擦力大小为多大?方向如何?(2)欲使A与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(取g=10 m/s2)12. (16分)一根轻绳一端系一小球,另一端固定在O点,在O点有一个能测量绳的拉力大小的力传感器,让小球绕O 点在竖直平面内做圆周运动,由传感器测出拉力F随时间t变化图象如图所示,已知小球在最低点A的速度v A=6 m/s,g=9.8 m/s2取π2=g,求:(1)小球做圆周运动的周期T;(2)小球的质量m;(3)轻绳的长度L.第4节万有引力与航天班级姓名成绩(时间:45分钟满分:100分)一、选择题(本题共10小题,每小题7分,每题只有一个答案正确,共70分)1. (改编题)在讨论地球潮汐成因时,地球绕太阳运行轨道与月球绕地球运行轨道可视为圆轨道.已知太阳质量约为月球质量的2.7×107倍,地球绕太阳运行的轨道半径约为月球绕地球运行的轨道半径的400倍.关于太阳和月球对地球上相同质量海水的引力,以下说法正确的是( )A. 太阳引力远小于月球引力B. 太阳引力与月球引力相差不大C. 月球对不同区域海水的吸引力大小相等D. 月球对不同区域海水的吸引力大小有差异2. 下列各组物理数据中,能够估算出月球质量的是()①月球绕地球运行的周期及月、地中心间的距离②绕月球表面运行的飞船的周期及月球的半径③绕月球表面运行的飞船的周期及线速度④月球表面的重力加速度A. ①②B. ③④C. ②③D. ①④3. (2009·广东理科基础)宇宙飞船在半径为r1的轨道上运行,变轨后的半径为r2,且知r1>r2,宇宙飞船绕地球做匀速圆周运动,则变轨后宇宙飞船的( )A. 线速度变小B. 角速度变小C. 周期变大D. 向心加速度变大4. 下列关于地球同步通信卫星的说法中,正确的是( )A. 为避免通信卫星在轨道上相撞,应使它们运行在不同的轨道上B. 通信卫星定点在地球上空某处,各个通信卫星的角速度相同,但线速度大小可以不同C. 不同国家发射通信卫星的地点不同,这些卫星轨道不一定在同一平面内D. 通信卫星只能运行在赤道上空某一恒定高度上5. 如图所示,在同一轨道平面上,绕地球做圆周运动的卫星A、B和C,某时刻恰好在同一直线上,当卫星B运转一周时,下列说法正确的有()A. 因为各卫星的角速度ωA=ωB=ωC,所以各卫星仍在原位置上B. 因为各卫星运转周期T A<T B<T C,所以卫星A超前于卫星B,卫星C滞后于卫星BC. 因为各卫星运转频率f A>f B>f C,所以卫星A滞后于卫星B,卫星C超前于卫星BD. 因为各卫星的线速度v A<v B<v C,所以卫星A超前于卫星B,卫星C滞后于卫星B6. 土星外层上有一个环,为了判断它是土星的一部分还是土星的卫星群,可以测量环中各层的线速度v与该层到土星中心的距离R之间的关系来判断.①若v ∝R,则该层是土星的一部分②若v2∝R,则该层是土星的卫星群③若v ∝1/R,则该层是土星的一部分④若v2∝1/R,则该层是土星的卫星群以上判断正确的是( )[来源: ]A. ①②B. ③④C. ②③D. ①④7. 宇宙飞船要与轨道空间站对接,飞船为了追上轨道空间站,可以采取的措施是( )A. 只能从较低轨道上加速B. 只能从较高轨道上加速C. 只能从同一空间同一高度轨道上加速D. 无论在什么轨道上,只要加速都行8. (创新题)在研究宇宙发展演变的理论中,有一种学说叫做“宇宙膨胀说”,这种学说认为引力常量G在缓慢地减小,根据这一理论,在很久很久以前,太阳系中地球的公转情况与现在相比( )A. 公转半径R较大B. 公转周期T较大C. 公转速率v较大D. 公转角速度ω较小9. (2009·福建)“嫦娥一号”月球探测器在环绕月球运行过程中,设探测器运行的轨道半径为r,运行速率为v,当探测器在飞越月球上一些环形山中的质量密集区上空时( )A. r、v都将略为减小B. r、v都将保持不变C. r将略为减小,v将略为增大D. r将略为增大,v将略为减小10. (改编题)2008年9月25日至28日我国成功实施了“神舟”七号载人航天飞行并实现了航天员首次出舱.飞船先沿椭圆轨道飞行,后在远地点343 km处点火加速,由椭圆轨道变成高度为343 km的圆轨道,在此圆轨道上飞船运行周期约为90分钟.下列判断错误的是( )A.飞船变轨后机械能增大B.飞船在圆轨道上时航天员出舱前后都处于失重状态C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度二、计算题(本题共2小题,共30分,要有必要的文字说明和解题步骤,有数值计算的要注明单位)11. (2010·北京崇文区模拟)(14分)2008年9月我国成功发射“神舟”七号载人航天飞船.如图所示为“神舟”七号绕地球飞行时的电视直播画面,图中数据显示,飞船距地面的高度约为地球半径的1/20.已知地球半径为R,地面附近的重力加速度为g,设飞船、大西洋星绕地球均做匀速圆周运动.(1)估算“神舟”七号飞船在轨运行的加速度大小;(2)已知大西洋星距地面的高度约为地球半径的6倍,估算大西洋星的速率.12. (2010·青岛模拟)(16分)宇航员在月球表面完成下面的实验:在一固定的竖直光滑圆轨道内部最低点有一静止的质量为m的小球(可视为质点),如图所示.当给小球一瞬间的速度v时,刚好能使小球在竖直平面内做完整的圆周运动,已知圆弧的轨道半径为r,月球的半径为R,引力常量为G.求:(1)若在月球表面上发射一颗环月卫星,所需最小发射速度为多大?(2)轨道半径为2R的环月卫星周期为多大?参考答案第四章第1节曲线运动运动的合成与分解1. 解析:曲线运动的速度方向发生变化,故具有加速度,其加速度可以变化也可以恒定,所以A正确BD错误;圆周运动的加速度方向发生变化,是变加速运动,故C错误.答案:A2. 解析:由轨迹图线可知,若x方向始终匀速,则开始所受合力沿-y方向,后来沿+y方向,如图甲所示,可以判断应是先减速后加速,故①错误、②正确;若y方向匀速,则受力先沿+x方向,后沿-x方向,如图乙所示,故先加速后减速,所以③错误,④正确.答案:D3. 解析:游泳者相对于岸的速度为他相对于水的速度和水流速度的合速度,水流速度越大,其合速度与岸的夹角越小,,与水速无关,故A、B、D均错误,C正确.路程越长,但过河时间t=d/v人答案:C4. 解析:当船头垂直河岸时过河时间最短,由图可看出河宽300 m,船速为3 m/s,由t=x/v可知最短时间为100 s,由于水速是变化的,故航行的轨迹是一条曲线.船速最大时v =5 m/s.答案:B5.解析:飞机和伤员水平方向以相同的速度匀速运动,A、B之间的距离以l=H-t2的规律变化,故伤员在竖直方向上做匀加速运动,伤员的合运动为匀变速曲线运动.所以A、B、C错误,D正确.答案:D6. 解析:质点做匀变速曲线运动,合力的大小方向均不变,加速度不变,故C错误;由B点速度与加速度相互垂直可知,合力方向与B点切线垂直且向下,故质点由C到D点的过程中,合力做正功,速率增大,A正确;A点的加速度方向与过A的切线即速度方向夹角大于90°,B错误;从A到D加速度与速度的夹角一直变小,D错误.答案:A7. 解析:对于小球,水平方向,x=v0t,对于竖直方向,有vt-gt2/2=H-h,将x=2 m,v0=2 m/s,H=3 m,h=1.2 m,g=10 m/s2代入前面两式并联立解得,v=6.8 m/s.答案:C8. 解析:由v-t图象可以看出,物体在x方向做匀速直线运动,在y方向做匀变速直线运动,故物体做曲线运动,①正确,②错误;物体的初速度是两个初速度的矢量和,即v0=50m/s,③正确,④错误.答案:A9. 解析:要想以箭在空中飞行的时间最短的情况下击中目标,v2必须垂直于v1,并且v1、v2的合速度方向指向目标,如图所示.故箭射到靶的最短时间为d/v2,C、D又x=v1t=v1·d/v2,故2v 错误,B 正确.答案:B10. 解析:物体A 沿绳的分速度与物体B 运动的速度大小相等,故有v B =vcos θ,随物体A 下滑,θ角减小,v B 增加,但不是均匀增加,θ越小,cos θ增加越慢,v B 增加越慢,也即B 的加速度越来越小,由F T =m B a B 可知,细绳的拉力逐渐变小,故只有C 正确.答案:C11. 解析:(1)要使小船渡河时间最短,则小船船头应垂直河岸渡河, 渡河的最短时间t=d/v 2=60/3s=20 s(2)此时v 2<v 1,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短.由几何知识可得,即以v 1的末端为圆心,以v 2的长度为半径作圆,从v 1的始端作此圆的切线,该切线方向即为最短航程的方向,如图所示.设航程最短时,船头应偏向上游河岸,与河岸成θ角,则 cos θ=v2/v1=3/6=1/2,θ=60° 最短行程s=d/cos θ=120 m即小船的船头与上游河岸成60°角时,渡河的最短航程为120 m. 12. 解析:(1)如图所示:(2)蜡块水平方向做匀加速运动 Δx=at 2a=Δx /t 2=5×10-2 m/s2. (3)竖直方向上的速度v y =y/t=0.1 m/s水平方向的速度v x =(x 2+x3)/2T=0.1 m/s 合速度=0.14 m/s.第2节平抛运动及其应用1.解析:由图可看出平抛物体速度与水平方向夹角α的正切tan α=v y/v0=gt/v0,则tan α与t成正比.答案:B2. 解析:做平抛运动的时间由高度决定,根据竖直方向做自由落体运动得根据水平方向做匀速直线运动可知s=v0t=20×0.80 m=16 m,故B正确.答案:B3. 解析:物体平抛运动的时间t=v y/g,由速度的合成与分解可知v y t=v yg选项D正确.答案:D4. 解析:物体平抛运动的时间由竖直高度决定,在A钢管中的运动利用对称性可以看成一个平抛运动的轨迹,所以C 正确.答案:C5.解析:当水平速度变为2v0时,如果作过b点的直线be,小球将落在c的正下方的直线上一点,连接O点和e点的曲线,和斜面相交于bc间的一点,故A正确.答案:A6. 解析:因为a A=g,a B=gsin θ,x=v0t,由h=1/2gt2A及h/sin θ=1/2a B t2B,可得t A B即t B>t A,可得x2>x1,B 项正确.答案:B7. 解析:由于h甲=h乙,x甲=2x乙,所以v甲=2v乙;由x=v0t,要使x甲′=x乙′,则t甲′=1/2t乙′;由h=1/2gt2得h甲′=1/4h乙′,故为使甲、乙掷出球的水平距离相等乙应在12层窗口水平掷出.答案:D8. 解析:投弹后,炸弹在水平方向的速度与飞机的速度相同,根据运动的独立性和等时性可知①正确.从击中目标到飞行员听到爆炸声需要一定时间,飞机向前运动一段位移,则④正确.答案:B9.解析:飞镖A、B都做平抛运动,由h=1/2gt2得t=B镖运动时间比A镖运动时间长,C正确;由v0=x/t知A镖掷出时的初速度比B镖掷出时的初速度大,A错误;由A、B镖插入靶时的末速度大小,B错误;也不能比较A、B镖的质量大小.答案:C10.解析:炮弹拦截成功,即两炮弹同时运动到同一位置,设此位置距地面的高度为h,则x=v1t,h=v2t-1/2gt2,H-h=1/2gt2.由以上各式联立解得:v1=xv2/H.答案:D11.解析:已知h=320 m,v0=30 m/s,当水流沿水平方向射出时,在水平地面上落地点最远,扑灭地面上火的面积最大.由平抛物体的运动规律有x=v0t,h=1/2gt2,联立以上两式并代入数据可得x=x由于水管可从水平方向到竖直方向旋转90°,所以灭火面积是半径为x的圆面积,其大小为S=πx2=3.14×2402m2≈1.81×105 m2.12. 解析:(1)如图所示,设乒乓球飞行时间为t1,根据平抛运动的规律,则h1=1/2gt21①x1=v1t1②解得x1=v(2)由题意可知水平三段应是对称的,所以开始击球点的高度恰好为网的高度h,x2=1/2L同理h=1/2gt2x2=v2t解得v2。
高考物理万有引力定律的应用及其解题技巧及练习题(含答案)含解析
高考物理万有引力定律的应用及其解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R= 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT+=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=3.探索浩瀚宇宙,发展航天事业,建设航天强国,是我国不懈追求的航天梦,我国航天事业向更深更远的太空迈进。
高中物理万有引力定律的应用及其解题技巧及练习题(含答案).docx
高中物理万有引力定律的应用及其解题技巧及练习题( 含答案 )一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为 G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g ;(3)行星的第一宇宙速度v.【答案】(1)( 2)( 3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出 :(3)在行星表面求出 :【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使 21 世纪的世界发生革命性变化,其发现者由此获得 2010 年诺贝尔物理学奖.用石墨烯超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现.科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球之间便捷的物质交换.(1)若 “太空电梯 ”将货物从赤道基站运到距地面高度为 h 1 的同步轨道站,求轨道站内质量为 m 1 的货物相对地心运动的动能.设地球自转的角速度为 ω,地球半径为 R .(2)当电梯仓停在距地面高度 h =4R 的站点时,求仓内质量m =50kg 的人对水平地板的压22力大小.取地面附近的重力加速度2-5g=10m/s ,地球自转的角速度 ω=7.3 ×10rad/s ,地球半3径 R=6.4×10km .【答案】 (1) 1m 1 2 (R h 1 )2 ;( 2)11.5N2【解析】试题分析:( 1)因为同步轨道站与地球自转的角速度相等,根据轨道半径求出轨道站的线速度,从而得出轨道站内货物相对地心运动的动能.( 2)根据向心加速度的大小,结合牛顿第二定律求出支持力的大小,从而得出人对水平地板的压力大小.解:( 1)因为同步轨道站与地球自转的角速度相等, 则轨道站的线速度 v=(R+h 1) ω,货物相对地心的动能.(2)根据,因为 a=, ,联立解得N= =≈ 11. 5N .根据牛顿第三定律知,人对水平地板的压力为11.5N .3. 探索浩瀚宇宙,发展航天事业,建设航天强国,是我国不懈追求的航天梦,我国航天事业向更深更远的太空迈进。
物理万有引力定律的应用专题练习(及答案)含解析
物理万有引力定律的应用专题练习(及答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】 【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.3.我国首个月球探测计划“嫦娥工程”将分三个阶段实施,大约用十年左右时间完成,这极大地提高了同学们对月球的关注程度.以下是某同学就有关月球的知识设计的两个问题,请你解答:(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,且把月球绕地球的运动近似看做是匀速圆周运动.试求出月球绕地球运动的轨道半径. (2)若某位宇航员随登月飞船登陆月球后,在月球某水平表面上方h 高处以速度v 0水平抛出一个小球,小球落回到月球表面的水平距离为s .已知月球半径为R 月,万有引力常量为G .试求出月球的质量M 月. 【答案】(1)r =22022=R h M Gs 月月 【解析】本题考查天体运动,万有引力公式的应用,根据自由落体求出月球表面重力加速度再由黄金代换式求解4.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间.【答案】t =或者t =【解析】 【分析】 【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有22Mm Gmr rω= 航天飞机在地面上,有2mMG R mg =联立解得ω=若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π所以t =若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π所以t =. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.5.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v =- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用6.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期.(2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?【答案】(1)36R T g =2)0133t gRω-V =【解析】 【分析】 【详解】(1)对卫星运用万有引力定律和牛顿运动定律可得()222433MmG m R T R π⋅= 地球表面的物体受到重力等于万有引力2Mmmg G R = 联立解得36R T g=; (2)以地面为参照物,卫星再次出现在建筑物上方时,建筑物随地球转过的弧度比卫星转过弧度少2π.ω1△t -ω0△t =2π,所以100222t T V ===πππωωω--;7.木星的卫星之一叫艾奥,它上面的珞珈火山喷出的岩块初速度为v 0时,上升的最大高度可达h .已知艾奥的半径为R ,引力常量为G ,忽略艾奥的自转及岩块运动过程中受到稀薄气体的阻力,求:(1)艾奥表面的重力加速度大小g 和艾奥的质量M ; (2)距艾奥表面高度为2R 处的重力加速度大小g '; (3)艾奥的第一宇宙速度v .【答案】(1)2202R v M hG =;(2)2018v g h'=;(3)v v =【解析】 【分析】 【详解】(1)岩块做竖直上抛运动有2002v gh -=-,解得22v g h=忽略艾奥的自转有2GMm mg R =,解得222R v M hG= (2)距艾奥表面高度为2R 处有2(2)GMm m g R R '''=+,解得20'18v g h=(3)某卫星在艾奥表面绕其做圆周运动时2v mg m R=,解得v v =【点睛】在万有引力这一块,涉及的公式和物理量非常多,掌握公式222224Mm v G m m r m r ma r r Tπω====在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算8.如图所示,A 是地球的同步卫星.另一卫星 B 的圆形轨道位于赤道平面内.已知地球自转角速度为0ω ,地球质量为M ,B 离地心距离为r ,万有引力常量为G ,O 为地球中心,不考虑A 和B 之间的相互作用.(图中R 、h 不是已知条件)(1)求卫星A 的运行周期A T (2)求B 做圆周运动的周期B T(3)如卫星B 绕行方向与地球自转方向相同,某时刻 A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)02A T πω=(2)32B r T GM=3)03t GM r ω∆=-【解析】 【分析】 【详解】(1)A 的周期与地球自转周期相同 02A T πω=(2)设B 的质量为m , 对B 由牛顿定律:222()BGMm m r r T π= 解得: 32B r T GM= (3)A 、B 再次相距最近时B 比A 多转了一圈,则有:0()2B t ωωπ-∆= 解得:03t GM r ω∆=- 点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.9.我国在2008年10月24日发射了“嫦娥一号”探月卫星.同学们也对月球有了更多的关注.(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,月球绕地球的运动可近似看作匀速圆周运动,试求月球绕地球运动的轨道半径.(2)若宇航员随登月飞船登陆月球后,在月球表面某处以速度0v 竖直向上抛出一个小球,经过时间t ,小球落回抛出点.已知月球半径为r ,万有引力常量为G ,试求出月球的质量M 月【答案】(2)202v r Gt . 【解析】 【详解】(1)设地球的质量为M ,月球的质量为M 月,地球表面的物体质量为m ,月球绕地球运动的轨道半径R ',根据万有引力定律提供向心力可得:222()MM GM R R T π=''月月 2Mmmg GR = 解得:R '= (2)设月球表面处的重力加速度为g ',根据题意得:02g t v '=02GM m g rm '=月 解得:202v r M Gt=月10.在某一星球上,宇航员在距离地面h 高度处以初速度v 0沿水平方向抛出一个小球,小球落到星球表面时与抛出点的水平距离为x ,已知该星球的半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度g ; (2)该星球的质量M ; (3)该星球的第一宇宙速度v 。
高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)含解析
高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+ (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:32GMvR=.【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.3.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性.(1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果.已知地球质量为M,自转周期为T,引力常量为G.将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F0.①若在北极上空高出地面h处称量,弹簧测力计读数为F1,求比值的表达式,并就h=1.0%R的情形算出具体数值(计算结果保留两位有效数字);②若在赤道表面称量,弹簧测力计读数为F2,求比值的表达式.(2)设想地球绕太阳公转的圆周轨道半径为r、太阳半径为R s和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?【答案】(1)①0.98,②23 22 041F R F GMTπ=-(2)“设想地球”的1年与现实地球的1年时间相同【解析】试题分析:(1)根据万有引力等于重力得出比值的表达式,并求出具体的数值.在赤道,由于万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力,根据该规律求出比值的表达式(2)根据万有引力提供向心力得出周期与轨道半径以及太阳半径的关系,从而进行判断.解:(1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式①②可以得出:=0.98.③由①和③可得:(2)根据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为现在的1.0%时,地球公转周期不变. 答: (1)=0.98.比值(2)地球公转周期不变.仍然为1年.【点评】解决本题的关键知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力.4.假设在半径为R 的某天体上发射一颗该天体的卫星,若这颗卫星在距该天体表面高度为h 的轨道做匀速圆周运动,周期为T ,已知万有引力常量为G ,求: (1)该天体的质量是多少? (2)该天体的密度是多少?(3)该天体表面的重力加速度是多少? (4)该天体的第一宇宙速度是多少?【答案】(1)2324()R h GT π+; (2)3233()R h GT R π+;(3)23224()R h R T π+; 2324()TR h R π+【解析】 【分析】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律列式求解; (2)根据密度的定义求解天体密度;(3)在天体表面,重力等于万有引力,列式求解; (4)该天体的第一宇宙速度是近地卫星的环绕速度. 【详解】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有:G 2()Mm R h +=m 22T π⎛⎫ ⎪⎝⎭(R+h)解得:M=2324()R h GTπ+ ① (2)天体的密度:ρ=M V =23234()43R h GT R ππ+=3233()R h GT R π+. (3)在天体表面,重力等于万有引力,故: mg=G2MmR ② 联立①②解得:g=23224()R h R T π+ ③ (4)该天体的第一宇宙速度是近地卫星的环绕速度,根据牛顿第二定律,有:mg=m 2v R④联立③④解得:v=gR =2324()R h RTπ+. 【点睛】本题关键是明确卫星做圆周运动时,万有引力提供向心力,而地面附近重力又等于万有引力,基础问题.5.在不久的将来,我国科学家乘坐“嫦娥N 号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v 0的初速度竖直上抛一物体,经过时间t 1,物体回到抛出点;在月球的“两极”处仍以大小为v 0的初速度竖直上抛同一物体,经过时间t 2,物体回到抛出点。
【物理】物理万有引力定律的应用专项习题及答案解析
【物理】物理万有引力定律的应用专项习题及答案解析一、高中物理精讲专题测试万有引力定律的应用1.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT +=. 联立得()2πR H R HV TR++=2.如图所示,P 、Q 为某地区水平地面上的两点,在P 点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO 方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P 点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),,PQ x =求空腔所引起的Q 点处的重力加速度反常;(2)若在水平地面上半径为L 的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L 的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.【答案】(1)223/2()G Vd d x ρ+(2)22/3.(1)L k V G k δρ=- 【解析】 【详解】(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力来计算,2MmGr=mΔg① 式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量.M=ρV② 而r 是球形空腔中心O 至Q 点的距离22d x +Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小。Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg′是这一改变在竖直方向上的投影 Δg′=drΔg④ 联立①②③④式得Δg′=223/2()G Vdd x ρ+⑤ (2)由⑤式得,重力加速度反常Δg′的最大值和最小值分别为 (Δg′)max =2G Vd ρ⑥ (Δg′)min =223/2()G Vdd L ρ+⑦由题设有(Δg′)max =kδ,(Δg′)min =δ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为22/32/3d .(1)1L k G k k δρ==--3.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T ,已知万有引力常量为G .求: (1)该行星的质量.(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?【答案】(1)2324r M GT π=(2)22400rg T π=【解析】(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则有:2224Mm G m r r T π=,可得2324r M GTπ= (2)由21()10MmGmg r =,则得:222400100GM r g r T π==4.木星的卫星之一叫艾奥,它上面的珞珈火山喷出的岩块初速度为v 0时,上升的最大高度可达h .已知艾奥的半径为R ,引力常量为G ,忽略艾奥的自转及岩块运动过程中受到稀薄气体的阻力,求:(1)艾奥表面的重力加速度大小g 和艾奥的质量M ; (2)距艾奥表面高度为2R 处的重力加速度大小g '; (3)艾奥的第一宇宙速度v .【答案】(1)2202R v M hG =;(2)2018v g h'=;(3)v v =【解析】 【分析】 【详解】(1)岩块做竖直上抛运动有2002v gh -=-,解得22v g h=忽略艾奥的自转有2GMm mg R =,解得222R v M hG= (2)距艾奥表面高度为2R 处有2(2)GMm m g R R '''=+,解得20'18v g h= (3)某卫星在艾奥表面绕其做圆周运动时2v mg m R=,解得v v =【点睛】在万有引力这一块,涉及的公式和物理量非常多,掌握公式222224Mm v G m m r m r ma r r Tπω====在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算5.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
高考物理万有引力定律的应用试题(有答案和解析)
高考物理万有引力定律的应用试题(有答案和解析)一、高中物理精讲专题测试万有引力定律的应用1.如图所示,P 、Q 为某地区水平地面上的两点,在P 点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO 方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P 点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),,PQ x =求空腔所引起的Q 点处的重力加速度反常;(2)若在水平地面上半径为L 的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L 的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.【答案】(1)223/2()G Vd d x ρ+(2)22/3.(1)L k V G k δρ=- 【解析】 【详解】(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力来计算,2MmGr =mΔg① 式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量.M=ρV② 而r 是球形空腔中心O 至Q 点的距离22d x +Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小。Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg′是这一改变在竖直方向上的投影 Δg′=drΔg④ 联立①②③④式得Δg′=223/2()G Vdd x ρ+⑤(2)由⑤式得,重力加速度反常Δg′的最大值和最小值分别为 (Δg′)max =2G Vdρ⑥(Δg′)min =223/2()G Vdd L ρ+⑦由题设有(Δg′)max =kδ,(Δg′)min =δ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为22/3d .(1)L k G k δρ==-2.我国首个月球探测计划“嫦娥工程”将分三个阶段实施,大约用十年左右时间完成,这极大地提高了同学们对月球的关注程度.以下是某同学就有关月球的知识设计的两个问题,请你解答:(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,且把月球绕地球的运动近似看做是匀速圆周运动.试求出月球绕地球运动的轨道半径. (2)若某位宇航员随登月飞船登陆月球后,在月球某水平表面上方h 高处以速度v 0水平抛出一个小球,小球落回到月球表面的水平距离为s .已知月球半径为R 月,万有引力常量为G .试求出月球的质量M 月. 【答案】(1)r =22022=R h M Gs 月月 【解析】本题考查天体运动,万有引力公式的应用,根据自由落体求出月球表面重力加速度再由黄金代换式求解3.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T ,已知万有引力常量为G .求: (1)该行星的质量.(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?【答案】(1)2324r M GT π=(2)22400rg Tπ= 【解析】(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则有:2224Mm G m r r T π=,可得2324r M GTπ= (2)由21()10MmGmg r =,则得:222400100GM r g r T π==4.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体P 置于弹簧上端,用力压到弹簧形变量为3x 0处后由静止释放,从释放点上升的最大高度为4.5x 0,上升过程中物体P 的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。
高考物理高考物理万有引力定律的应用及其解题技巧及练习题(含答案)
高考物理高考物理万有引力定律的应用及其解题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R= 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.2.土星是太阳系最大的行星,也是一个气态巨行星。
图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h 。
土星视为球体,已知土星质量为M ,半径为R ,万有引力常量为.G 求:()1土星表面的重力加速度g ; ()2朱诺号的运行速度v ; ()3朱诺号的运行周期T 。
高考物理万有引力定律的应用专题训练答案及解析
高考物理万有引力定律的应用专题训练答案及解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.土星是太阳系最大的行星,也是一个气态巨行星。
图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h 。
土星视为球体,已知土星质量为M ,半径为R ,万有引力常量为.G 求:()1土星表面的重力加速度g ; ()2朱诺号的运行速度v ; ()3朱诺号的运行周期T 。
高考物理万有引力定律的应用答题技巧及练习题(含答案)及解析
高考物理万有引力定律的应用答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π= 解得2a RT gπ= b 卫星2224·4(4)bGMm m R R T π= 解得16b RT gπ= (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a GMv R=b 卫星b 卫星22(4)4Mm v G m R R= 解得v 4b GM R=所以 2abV V = (3)最远的条件22a bT T πππ-= 解得87R t gπ=3.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;v t= 【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 v 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .4.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224Tπ①2Mm G r '=m′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin R r )T考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.5.如图所示,P 、Q 为某地区水平地面上的两点,在P 点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO 方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P 点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),,PQ x =求空腔所引起的Q 点处的重力加速度反常;(2)若在水平地面上半径为L 的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L 的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.【答案】(1)223/2()G Vd d x ρ+(2)22/3.(1)L k V G k δρ=- 【解析】 【详解】(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力来计算,2MmGr =mΔg① 式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量.M=ρV②而r 是球形空腔中心O 至Q 点的距离Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小。Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg′是这一改变在竖直方向上的投影 Δg′=drΔg④ 联立①②③④式得Δg′=223/2()G Vdd x ρ+⑤(2)由⑤式得,重力加速度反常Δg′的最大值和最小值分别为(Δg′)max =2G Vdρ⑥ (Δg′)min =223/2()G Vdd L ρ+⑦由题设有(Δg′)max =kδ,(Δg′)min =δ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为22/3d .(1)L k G k δρ==-6.某宇航员驾驶宇宙飞船到达某未知星球表面,他将一个物体以010m/s v =的速度从10m h =的高度水平抛出,测得落到星球表面A 时速度与水平地面的夹角为60θ=︒。
高考物理万有引力定律的应用解题技巧及练习题(含答案)含解析
高考物理万有引力定律的应用解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R= 3310m/s v gR ==⨯2.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 032πv RGt ρ=(3)02v Rv t= 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=.(2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度v ==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.3.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224T π① 2Mm G r '=m ′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin R r )T考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.4.一颗绕地球做匀速圆周运动的人造卫星,离地高度为h .已知地球半径为R ,地球表面的重力加速度为g ,万有引力常量为G .求: (1)地球的质量;(2)卫星绕地球运动的线速度.【答案】(1) 2gR G(2)g R h +【解析】 【详解】(1)地表的物体受到的万有引力与物体的重力近似相等即:2 GMmmg R= 解得:M =2gR G(2)根据22Mm v G m r r = 其中GgR M 2=,r=R+h解得gv R h=+5.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) 02v R h【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度02R v g R v h=='6.地球同步卫星,在通讯、导航等方面起到重要作用。
(物理)万有引力定律的应用练习题含答案含解析
(物理)万有引力定律的应用练习题含答案含解析一、高中物理精讲专题测试万有引力定律的应用1.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt;(3)2【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R 月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期2T π=2.石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性变化,其发现者由此获得2010年诺贝尔物理学奖.用石墨烯超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现.科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球之间便捷的物质交换.(1)若“太空电梯”将货物从赤道基站运到距地面高度为h 1的同步轨道站,求轨道站内质量为m 1的货物相对地心运动的动能.设地球自转的角速度为ω,地球半径为R . (2)当电梯仓停在距地面高度h 2=4R 的站点时,求仓内质量m 2=50kg 的人对水平地板的压力大小.取地面附近的重力加速度g=10m/s 2,地球自转的角速度ω=7.3×10-5rad/s ,地球半径R=6.4×103km . 【答案】(1)22111()2m R h ω+;(2)11.5N 【解析】试题分析:(1)因为同步轨道站与地球自转的角速度相等,根据轨道半径求出轨道站的线速度,从而得出轨道站内货物相对地心运动的动能.(2)根据向心加速度的大小,结合牛顿第二定律求出支持力的大小,从而得出人对水平地板的压力大小. 解:(1)因为同步轨道站与地球自转的角速度相等, 则轨道站的线速度v=(R+h 1)ω, 货物相对地心的动能.(2)根据,因为a=,,联立解得N==≈11.5N .根据牛顿第三定律知,人对水平地板的压力为11.5N .3.假设在半径为R 的某天体上发射一颗该天体的卫星,若这颗卫星在距该天体表面高度为h 的轨道做匀速圆周运动,周期为T ,已知万有引力常量为G ,求: (1)该天体的质量是多少? (2)该天体的密度是多少?(3)该天体表面的重力加速度是多少? (4)该天体的第一宇宙速度是多少?【答案】(1)2324()R h GT π+; (2)3233()R h GT R π+;(3)23224()R h R T π+;【解析】 【分析】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律列式求解; (2)根据密度的定义求解天体密度;(3)在天体表面,重力等于万有引力,列式求解; (4)该天体的第一宇宙速度是近地卫星的环绕速度. 【详解】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有:G 2()Mm R h +=m 22T π⎛⎫ ⎪⎝⎭(R+h) 解得:M=2324()R h GT π+ ① (2)天体的密度:ρ=M V =23234()43R h GT R ππ+=3233()R h GT R π+. (3)在天体表面,重力等于万有引力,故: mg=G2MmR ② 联立①②解得:g=23224()R h R Tπ+ ③ (4)该天体的第一宇宙速度是近地卫星的环绕速度,根据牛顿第二定律,有:mg=m 2v R④联立③④解得:【点睛】本题关键是明确卫星做圆周运动时,万有引力提供向心力,而地面附近重力又等于万有引力,基础问题.4.如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,不考虑月球的自转.求:(1)月球的质量M ;(2)轨道舱绕月飞行的周期T .【答案】(1)GgR M 2=(2)2r rT R gπ=【解析】 【分析】月球表面上质量为m 1的物体,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期; 【详解】解:(1)设月球表面上质量为m 1的物体,其在月球表面有:112Mm Gm g R = 112Mm G m g R= 月球质量:GgR M 2=(2)轨道舱绕月球做圆周运动,设轨道舱的质量为m由牛顿运动定律得: 22Mm 2πG m r r T ⎛⎫= ⎪⎝⎭222()Mm G m r r T π= 解得:2rr T R gπ=5.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
【物理】物理万有引力定律的应用练习题含答案含解析
【物理】物理万有引力定律的应用练习题含答案含解析一、高中物理精讲专题测试万有引力定律的应用1.我国发射的“嫦娥一号”探月卫星沿近似于圆形的轨道绕月飞行.为了获得月球表面全貌的信息,让卫星轨道平面缓慢变化.卫星将获得的信息持续用微波信号发回地球.设地球和月球的质量分别为M 和m ,地球和月球的半径分别为R 和R 1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r 和r 1,月球绕地球转动的周期为T .假定在卫星绕月运行的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(用M 、m 、R 、R 1、r 、r 1和T 表示,忽略月球绕地球转动对遮挡时间的影).【答案】311131cos cos Mr R R R Tt arc arc mr r r π⎛⎫-=- ⎪⎝⎭【解析】 【分析】 【详解】如图,O 和O ′分别表示地球和月球的中心.在卫星轨道平面上,A 是地月连心线OO ′与地月球面的公切线ACD 的交点,D 、C 和B 分别是该公切线与地球表面、月球表面和卫星圆轨道的交点.根据对称性,过A 点的另一侧作地月球面的公切线,交卫星轨道于E 点.卫星在上运动时发出的信号被遮挡.设探月卫星的质量为m 0,万有引力常量为G ,根据万有引力定律有:222Mm G m r r T π⎛⎫= ⎪⎝⎭①20012112mmG m r r T π⎛⎫= ⎪⎝⎭②式中T 1是探月卫星绕月球转动的周期.由①②式得2311T r M T m r ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭③ 设卫星的微波信号被遮挡的时间为t,则由于卫星绕月做匀速圆周运动,应用1t T αβπ-=④ 式,α=∠CO ′A ,β=∠CO ′B ,由几何关系得r cos α=R -R 1⑤ r 1cos β=R 1⑥由③④⑤⑥式得311131arccosarccos Mr R R R Tt mr r r π⎛⎫-=- ⎪⎝⎭2.在不久的将来,我国科学家乘坐“嫦娥N 号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v 0的初速度竖直上抛一物体,经过时间t 1,物体回到抛出点;在月球的“两极”处仍以大小为v 0的初速度竖直上抛同一物体,经过时间t 2,物体回到抛出点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3 万有引力定律及其应用章末测试题(二)
1已知某行星绕太阳运动的轨道半径为r,公转的周期为T,万有引力常量为G,则由此可求出
A某行星的质量B太阳的质量
C某行星的密度D太阳的密度
2已知下面的哪组数据,可以算出地球的质量M(引力常量G为已知) ( )
A月球绕地球运动的周期T 及月球到地球中心的距离R
B地球绕太阳运行周期T 及地球到太阳中心的距离R
C人造卫星在地面附近的运行速度V和运行周期T
D地球绕太阳运行速度V 及地球到太阳中心的距离R
3关于人造地球卫星和宇宙飞船的下列说法中,正确的是( )
A如果知道人造地球卫星的轨道半径和它的周期,再利用万有引力恒量,就可算出地球的质量
B两颗人造地球卫星,只要它们的绕行速度大小相等,不论它们的质量,形状差别有多大,它们的绕行半径和绕行周期一定是相同的
C原来在同一轨道上沿同一方向绕行的人造卫星一前一后,若要后一卫星追上前一卫星并发生相撞,只要将后者速度增大一些即可
D一只绕火星飞行的宇宙飞船,宇航员从舱内慢慢走出,并离开飞船,飞船因质量减小,所受万有引力减小
4关于人造地球卫星及其中物体的超重.失重问题,下列说法正确的是( )
A在发射过程中向上加速时产生超重现象
B 在降落过程中向下减速时产生超重现象
C 进入轨道时做匀速圆周运动, 产生失重现象
D失重是由于地球对卫星内物体的作用力减小而引起的
5同步卫星是指相对于地面不动的人造地球卫星( )
A可以在地球上任意一点的正上方,且离地心的距离可按需要选择不同的值
B可以在地球上任意一点的正上方但离地心的距离是一定的
C只能在赤道的正上方,但离地心的距离可按需要选择不同的值
D只能在赤道的正上方离地心的距离是一定的
6设想人类开发月球,不断把月球上的矿藏搬运到地球上.假设经过长时间开采后,地球仍可看成是均匀的球体,月球仍沿开采前的圆周轨道运动,则与开采前相比( )
A地球与月球间的万有引力将变大
B地球与月球间的万有引力将变小
C月球绕地球运动的周期将变长
D月球绕地球运动的周期将变短
7我们国家在1986年成功发射了一颗实用地球同步卫星,从1999年至今已几次将”神州”号宇宙飞船送入太空,在某次实验中,飞船在空中飞行了36h,环绕地球24圈.则同步卫星与飞船在轨道上正常运转相比较( )
A卫星运转周期比飞船大
B卫星运转速度比飞船大
C卫星运加转速度比飞船大
D卫星离地高度比飞船大
8宇宙飞船和空间站在同一轨道上运动,若飞船想与前面的空间站对接,飞船为了追上轨道空间站,可采取的方法是( )
A飞船加速直到追上轨道空间站,完成对接
B飞船从原轨道减速至一个较低轨道,再加速追上轨道空间站,完成对接.
C飞船加速至一个较高轨道,再减速追上轨道空间站,完成对接.
D无论飞船如何采取何种措施,均不能与空间站对接
9可以发射一颗这样的人造地球卫星,使其圆轨道( )
A与地球表面上某一纬度(非赤道)是共面的同心圆
B与地球表面上某一经线(非赤道)是共面的同心圆
C与地球表面上的赤道是共面的同心圆,且卫星相对地球表面是静止的
D与地球表面上的赤道是共面的同心圆,且卫星相对地球表面是运动的
10在绕地球做匀速圆周运动的航天飞机外表面,有一隔热陶瓷片自动脱落,则( )
A陶瓷片做平抛运动
B陶瓷片做自由落体运动
C陶瓷片按原圆轨道做匀速圆周运动
D陶瓷片做圆周运动,逐渐落后于航天飞机
11火星的球半径是地球半径的1/2,火星质量是地球质量的1/10,忽略火星的自转,如果地球上质量为60㎏的人到火星上去,则此人在火星表面的质量是_______㎏,所受的重力是______N;在火星表面由于火星的引力产生的加速度是________m/s;在地球表面上可举起60㎏杠铃的人,到火
星上用同样的力,可以举起质量_______㎏的物体
12某行星的一颗小卫星在半径为r的圆轨道上绕行星运动,运行的周期是T.已知引力常量为G,这个行星的质量M=_____________
13已知地球半径为R,质量为M,自转周期为T.一个质量为m的物体放在赤道处的海平面上,则物体受到的万有引力F=_________,重力G=__________
14已知月球的半径为r,月球表面的重力加速度为g,万有引力常量为G,若忽略月球的自转,则月球的平均密度表达式为_________
15一个登月的宇航员,能用一个弹簧秤和一个质量为m的砝码,估测出月球的质量和密度吗?写出表达式(已知月球半径R)
16已知太阳光从太阳射到地球,需要8分20秒,地球公转轨道可近似看成固定轨道,地球半径约为6.4×106 m,试估算太阳质量M与地球质量m之比M/m为多少(保留一位有效数字)
17火箭内平台上放有测试仪器,火箭从地面启动后,以加速度g/2竖值向上匀加速运动,升到某一高度时,测试仪对平台的压力为启动前压力的17/18 .已知地球半径R,求火箭此时离地面的高度.(g为地面附近的重力加速度)
参考答案1B 2AC 3AB 4ABC 5D 6BD 7AD 8B 9CD 10C 11.60 235.2 3.92 150
12. 4π2r3/GT213.GMm/R2 GMm/R2-4π2mR/T214 3g/4πRG 15 FR/Gm 3F/4GR 16 3*10517 R/2。