立体图形和平面展开图
苏教版七年级上册数学 4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图 教学课件
学生课堂行为规范的内容是: 按时上课,不得无故缺课、迟到、早退。 遵守课堂礼仪,与老师问候。 上课时衣着要整洁,不得穿无袖背心、吊带上衣、超短裙、 拖鞋等进入教室。 尊敬老师,服从任课老师管理。 不做与课堂教学无关的事,保持课堂良好纪律秩序。
谢 谢 大 家 听课时有问题,应先举手,经教师同意后,起立提问。
这是一个工件的立体图,设计师们常常画出从不同方向看 它得到的平面图形来表示它.
我们把从正面看到的图形
叫做主视图,从左面看到的图形 叫左视图,从上面看到的图形叫 做俯视图. 主视图,左视图,俯视 图合称三视图.
正方体
主视图
左视图
俯视图
正方体的三视图都 是正方形
圆柱
圆柱的主视图和 左视图都是长方
形,俯视图是圆。
正面
左面
上面
从左面看
分别画出图中几何体的主视图、左视 图和 俯视图。
从上面看
主视图
左视图
从正面看
俯视图
有些立体图形是有一些平面图形围成的,将他们的表面适当剪 开,可以展开成平面图形。这样的平面图形称为相应立体图形 的展开图
探究常见的立体图形的展开图:
圆 柱
展开
长方体
展开
棱柱
展开
圆锥
展开
将一个正方体的表面沿某些棱剪开,展成一个平面图形
主视图
左视图
俯视图
四棱锥
主视图
四棱锥的三视图下图
左视图
俯视图
说出圆锥、球的三视图各是什么图形.
一个长方体的立体图如图所 示,请画它的三视图.
解: 所求三视图如图
主注视意方向:要写上 各视图的名称
主视图 俯视图
左视图
几何体
立体图形的平面展开图教案
立体图形的平面展开图教案一、教学目标知识与技能目标:学生能够识别和理解立体图形的平面展开图,掌握常见立体图形的展开方法,并能够运用展开图制作简单的立体模型。
过程与方法目标:通过观察、实践、交流和合作,学生能够培养空间想象能力,提高解决问题的能力。
情感态度与价值观目标:激发学生对立体图形的兴趣,培养学生的创新意识和动手操作能力。
二、教学重点与难点重点:学生能够识别和理解立体图形的平面展开图,掌握常见立体图形的展开方法。
难点:学生能够运用展开图制作简单的立体模型,培养空间想象能力。
三、教学准备教师准备:立体图形卡片、展开图样品、剪刀、胶水等教学用品。
学生准备:每人一份立体图形卡片,展开图样品,剪刀,胶水等。
四、教学过程1. 导入新课:通过展示一些日常生活中的立体物体,如纸箱、易拉罐等,引导学生关注立体图形。
2. 探究与发现:学生分组讨论,观察和分析立体图形的特点,尝试将其展开成平面图形。
3. 展示与交流:每组学生展示自己的展开图,并分享探究过程和发现。
4. 讲解与示范:教师讲解立体图形的平面展开图的原理和方法,示范如何将立体图形展开。
5. 动手实践:学生根据教师提供的立体图形卡片,自己动手将其展开成平面图形。
6. 制作立体模型:学生利用剪裁和粘贴的方法,将展开图制作成简单的立体模型。
五、作业布置学生回家后,利用家庭资源,制作一个自己喜欢的立体模型,并拍摄照片或绘制图片,下节课分享给同学们。
六、教学拓展1. 学生分组讨论,探索更多立体图形的展开方法,并尝试制作复杂的立体模型。
2. 教师引导学生思考:展开图在实际生活中的应用,如包装设计、建筑模型等。
3. 学生进行课堂小游戏,通过折叠和剪裁纸张,制作出不同的立体图形,培养学生的动手能力和创新思维。
七、课堂小结2. 教师强调学生在课堂中的表现,鼓励他们在日常生活中关注立体图形,培养空间想象力。
八、评价与反思1. 学生完成自我评价,反思自己在课堂中的学习态度、动手能力和合作精神。
衡中教学课件:4.3 立体图形的表面展开图 4.4 平面图形(共31张PPT)
3.(晋江·中考)如图是正方体的展开图,则原正方 体相对两个面上的数字和最小的是( 1 4 ).
3 A. 4 答案:选B. B. 6
2 5
6
C. 7 D.8
4.(宁波· 中考) 骰子是一种特别的数字立方 体(见右图),它符合规则:相对两面的点数之 和总是7.下面四幅图中可以折成符合规则的骰 子的是(
附赠 中高考状元学习方法
前
言
高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
A. 两面的点数之和.
B.
C.
D.
【解析】选C.先判断折叠起来后相对的两面,再看相对
5.小明为班级专栏设计一个图案,如图,主题是 “我们 喜爱合作学习”,请你也尝试用圆、扇形、三角形、四边
形、直线等为环保专栏设计一个图案,并标明你的主题.
通过本节课的学习要求同学们 1.了解立体图形展开图,并能根据展开图判断和制作立体 图形.
×
√
×
×
2.下列几何图形:三角形、圆柱、长方形、 正方形、 圆、球.其中,平面图形有 ( 4 ) 个. 3.在图形中找平面图形: 有几个三角形?几个四边形?
4个 三角形
6个 四边形
1.下面是六个正方形连在一起的图形,经折叠后能
围成正方体的图形有哪几个?
A
B
C
D
E
F G
2.(本溪·中考)一个正方形的平面展开图如图所示, 将它折成正方体后,“保”字对面的字是( 环 低 碳 绿 色 A.碳 答案:选A. B.低 C.绿 D.色 保 )
立体图形平面展开图
特点
步骤
选择合适的投影面,将立体图形放置 在投影面上,保持立体图形与投影面 平行,然后按照投影规律绘制平面展 开图。
平行投影法能够保持立体图形的形状 和大小不变,适用于绘制各种立体图 形的平面展开图。
中心投影法
01 02
定义
中心投影法是一种将三维立体图形投影到二维平面的方法,通过将立体 图形放置在投影中心,光源从中心发出照射到立体图形上,然后将投影 面上的影子描绘下来。
分类
常见的立体图形包括长方体、正 方体、圆柱体、圆锥体、球体等 。
立体图形的特点
01
02
03
空间性
立体图形存在于三维空间 中,具有空间占有明确的边界和结构。
方向的明确性
立体图形在空间中具有明 确的方向性,如上下、左 右、前后等。
立体图形与平面图形的区别
05
立体图形平面展开图的 实例分析
实例一:纸盒的折叠与展开
纸盒的折叠与展开是立体图形平面展开 图最直观的实例之一。通过将纸盒折叠 成所需的立体形状,然后展开成平面图 形,可以展示立体图形与平面图形之间
的转换关系。
纸盒的展开图通常采用轴对称或中心对 称的方式,以简化制作过程并确保展开 后的平面图形与原始立体形状相匹配。
长方体的平面展开图有多种形式,包括 一字型、L型、U型和十字型等。
VS
详细描述
长方体的平面展开图是由其六个面中的四 个或五个面围成的。其中,一字型展开图 是由长方体的三组对面分别平铺而成;L 型展开图是长方体的三组对面中,两组对 面平铺,另一组对面的一个面折叠;U型 展开图是长方体的三组对面中,两组对面 的两个面平铺,另一组对面的一个面折叠 ;十字型展开图则是长方体的两组对面平 铺,另外两组对面的两个面折叠。
立体图形的展开图
THANK YOU
汇报人:XXX
添加标题
正方体的展开图可以通过折叠、剪裁等方式制作出来,也可以使用计算机软件进行设计
添加标题
正方体的展开图在工程、建筑、设计等领域有着广泛的应用,例如:在工程领域,可以 用于制作模型、结构设计等;在建筑领域,可以用于制作建筑模型、室内设计等
长方体的展开图
长方体的展开图有11种 常见的展开图有:长方形、正方形、三角形、梯形等 展开图的特点:每个面都是长方形或正方形 展开图的应用:用于包装、建筑、家具等领域
添加副标题
立体图形的展开图
汇报人:XXX
目录
PART One
立体图形的展开图 概念
PART Three
立体图形展开图的 绘制步骤
PART Five
立体图形展开图的 应用
PART Two
立体图形的展开图 类型
PART Four
立体图形展开图的 绘制技巧
立体图形的展开图 概念
展开图的定义
立体图形的展开图是指将立体图形展开成平面图形的过程
立体图形展开图可以帮助设计师确 定机械结构的受力情况,从而更好 地进行强度分析和优化设计。
在科学研究中的应用
立体图形展开图在数学、物理、化学等领域的研究中具有重要应用价值。
在数学中,立体图形展开图可以用于研究几何体的性质和结构,如体积、表面积、对称性等。
在物理中,立体图形展开图可以用于研究物体的运动和力,如力学、光学、电磁学等。
绘制展开图:根据验证结果,绘制立体图形的展开图,注意线条的流畅性和准确性。
检查和修改:绘制完成后,对展开图进行检查和修改,确保其符合立体图形的性质和特点。
立体图形的展开图(课件)
4.1.3 立体图形的展开图
立体图形的展开图
立体图形的展开图
立体图形的展开图
立体图形的展开图
1.了解立体图形可由平面图形围成,立体图形可 展开为平面图形;
2.掌握正方体的展开图,熟悉圆柱、圆锥、棱柱、 棱锥的表面展开图,能根据展开图判断立体图 形的形状.
立体图形的展开图
方
体
展
开
图
立体图形的展开图
正
第二类: "1-3-2"型
方
体
展
开
图
立体图形的展开图
正
第三类: "2-2-2"型
方
体
展
开
第四类: "3-3"型
图
立体图形的展开图
将正方体相对的面涂上颜色,你会发现什么?
对 面 相
隔
不 相 连
蓝
?
黄
立体图形的展开图
正 方 体 展 开 图
-
立体图形的展开图
自主反思:
立体图形的展开图 做个巧手活 看个妙东西 当个小帮手
立体图形的展开图
做个巧手活
1、折叠下列图形,看能不能折叠成一个立 体图形?
(1)
(2)
(3)
→经过动手折叠发现( 1 )( 3 )
可以折叠成一个( 三棱锥 )
立体图形的展开图
立体图形是平面图形围成的,把这些立 体图形的表面适当剪开,得到的平面图形称 为相应图形的展开图.
1.立体图形和平面图形之间的关系?
展开
有些立体图形
有些平面图形 折叠
平面图形 立体图形
2.常见的一些立体图形的展开图是 什么样的?正方体展开图中不能
立体图形的三视图及平面展开图
A
B
C
D
E
F
G
第6页/共18页
立体图形展开,看它的平面 展开图是什么。
第7页/共18页
圆 柱
展开
第8页/共18页
长方体
展开
第9页/共18页
棱柱
展开
第10页/共18页
圆锥
展开
第11页/共18页
练习:
第12页/共18页
下列图形能折叠成什么立体图形?
圆棱 柱柱
圆棱 锥柱
第13页/共18页
下图是一些立体图形的展开图,用它们能 围成怎样的立体图形? 先想一想,再折一折,看看得到的图形与 你想象的是否相同。
感谢您的观看!
第18页/共18页
第14页/共18页
从上面看
从左面看从ຫໍສະໝຸດ 面看主视图左视图第15页/共18页
俯视图
利用骰子,摆成下面的图形,分别从正面、 左面、上面观察这个图形,各能得到什么平 面图形?
从正面看
从上面看
第16页/共18页
从左面看
下列两组三视图分别是什么几何体?
主视图
左视图
主视图
左视图
俯视图
第17页/共18页
俯视图
第2页/共18页
第一类,中间四连方,两侧各一 个,共六种。
第3页/共18页
第二类,中间三连方,两侧各有 一、二个,共三种。
第4页/共18页
第三类,中间二连方,两侧各有二 个,只有一种。
第四类,两排各三个,只有一种。
第5页/共18页
试一试
下面六个正方形连在一起的图形,经折 叠后能围成正方体的图形有哪几个?(动手试 试)
图形与展开图(基础)知识讲解
图形与展开图(基础)知识讲解【学习目标】1.理解立体图形与平面图形的概念,并能对具体图形进行识别或判断;2. 掌握并形成正确的正视图、侧视图(左视图、右视图)、俯视图的概念,并加以描述;3. 认识立体图形与平面图形的关系,一个立体图形按不同方式展开可得不同的表面展开图;4.通过观察和动手操作,经历和体验图形的变化过程,培养实验操作的能力,发展空间观念.【要点梳理】要点一、立体图形与平面图形的概念1.立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,如圆柱,圆锥,长方体,球等,见下图.要点诠释:常见的立体图形有两种分类方法:2.平面图形:有些几何图形(如线段、角、三角形、圆等)的各部分都在同一平面内,它们是平面图形.要点诠释:(1) 常见的平面图形有圆和多边形,其中圆是由曲线围成的封闭曲线,多边形是由线段所围成的封闭图形,按着组成多边形的边的个数,多边形可分为三角形、四边形、五边形、六边形等.(2)在多边形中,三角形是最基本的图形,每一个多边形都可以分割成若干个三角形.3.几何图形:把从实物中抽象出的各种图形统称为几何图形.要点诠释:(1)几何图形是从实物中抽象得到的,只注重物体的形状、大小、位置,而不注重它的其它属性,如重量,颜色等.(2)几何图形包括立体图形和平面图形.(3)立体图形和平面图形是两类不同的几何图形,它们既有区别又有联系.要点二、立体图形的视图1. 平行投影:一般地,用光线照射物体,在某个平面(地面或墙壁等)上得到的影子,叫做物体的投影.只要有光线,有被光线照到的物体,就存在影子.太阳光线可看做平行的,像这样的光线照射在物体上,所形成的投影叫做平行投影.由此我们可得出这样两个结论:(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.2.三视图的概念(1)视图:视图是一种特殊的平行投影,从某一角度观察一个物体时,所看到的图像叫做物体的一个视图.(2)正面、水平面和侧面:用三个互相垂直的平面作为投影面,其中正对我们的面叫做正面,正面下面的面叫做水平面,右边的面叫做侧面.(3)三视图:从正面、上面和侧面(左面或右面)三个不同的方向进行平行投影,从正面得到的投影,称为主视图;从上面得到的投影,称为俯视图;从侧面得到的由左向右的投影,称为左视图.通常将主视图、俯视图与左视图称做一个物体的三视图.要点诠释:三视图之间的大小是相互联系的,遵循主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等的原则.如图(2)所示.3.由三视图想象几何体的形状由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象主体图的前面、上面和左侧面,然后综合起来考虑整体图形.要点诠释:由物体的三视图想象几何体的形状有一定的难度,可以从如下途径进行分析:(1)根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状以及几何体的长、宽、高;(2)根据实线和虚线想象几何体看得见和看不见的轮廓线;(3)熟记一些简单的几何体的三视图会对复杂几何体的想象有帮助;(4)利用由三视图画几何体与由几何体画三视图为互逆过程,反复练习,不断总结方法.要点三、立体图形的表面展开图有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.要点诠释:(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.(2)不同的立体图形可展成不同的平面图形,即同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.反过来,平面图形也可以折叠成立体图形.【典型例题】类型一、立体图形与平面图形的概念1.如图所示,请写出下列立体图形的名称.【思路点拨】可以联系生活中常见的图形及基本空间想象能力,描述各种几何体的名称.【答案与解析】解:(1)五棱柱;(2)圆锥;(3)四棱柱或长方体;(4)圆柱;(5)四棱锥.【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).举一反三:【变式】如图所示,下列各标志图形主要由哪些简单的几何图形组成?【答案】(1)由圆组成;(2)长方形和正方形;(3)菱形(或四边形);(4)由圆和圆弧组成(或由一个圆和两个小半圆组成).类型二、立体图形的视图2.如图所示的是一个三棱柱,试着把从正面、左面、上面观察所得到的图形画出来.【思路点拨】注意观察的角度和方向.【答案与解析】解:从正面观察这个三棱柱,看到的图形是长方形;从左面观察它,看到的图形是长方形;从上面观察,看到的图形是三角形.因此,从三个方向看,得到的图形如图所示.【总结升华】若要画出从不同方向观察物体所得的图形,方向、角度一定要选准.因为从不同方向观察得到的图形往往不同.举一反三:【高清课堂:多姿多彩的图形397362三视图例3】【变式1】画出下列几何体的主视图、左视图与俯视图.【答案】主视图左视图俯视图【变式2】(2012·山西)如图所示的工件的主视图是()A.B.C.D.【答案】B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.3. (浙江嘉兴)已知一个几何体的三视图如图所示,则该几何体是( )A.棱柱 B.圆柱 C.圆锥 D.球【答案】B【解析】此题可采用排除法.棱柱的三视图中不存在圆,故A不对;圆锥的主视图、左视图是三角形,故C不对;球的三视图都是圆,故D不对,因此应选B.【总结升华】平面展开图中,含有三角形,一般考虑棱锥或棱柱;如果只有两个三角形,必是三棱柱;如果含长方形,一般考虑棱柱;如果含有圆和长方形,一般考虑圆柱;如果含有扇形和圆,一般考虑圆锥.举一反三:【变式】(2012·北京)右图是某个几何体的三视图,该几何体是()A.长方体 B.正方体 C.圆柱 D.三棱柱【答案】D类型三、立体图形的表面展开图4.如图四个图形中,每个均由六个相同的小正方形组成,折叠后能围成正方体的是( )【答案】C【解析】可动手折叠发现答案.【总结升华】正方体沿着不同棱展开,把各种展开图分类,可以总结为如下11种情况:巧记正方体的展开图口诀:“一四一”“一三二”,“一”在同层可任意, “三个二”成阶梯,“二个三”“日”相连,异层必有“日”,“凹”“田”不能有,掌握此规律,运用定自如.举一反三:【变式】说出下列四个图形(如图所示)分别是由哪个立体图形展开得到的?【答案】 (1)正方体;(2)圆柱;(3)三棱柱;(4)四棱锥.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正方体的展开图有11种基本情况:
一四一型
二三一型
二二二型
三三型
练习:下列图形中可以作为一个正方体的展 开图的是( C ).
(A)
(B)
(C)
(D)
下列图形中,不是正方形的表面展开图的是( D )
练习: 如图是一个小正方体的展开图,把展开 图折叠成小正方体后 ,与有“建”字的一面相对的 那一面上的字是( D ). 建 设 和 谐
2 3 5 6 1 4
数字3对应4,其和为7
数字1对应5,其和为6
将如图所示表面带有图案的正方体沿某些棱 展开后,得到的图形是( C )
图
A B C D
如图,右边的图形 可能是下边哪个图 形的展开图?
(D)
如图,右边的图形可 能是下边哪个图形的 展开图?
(C)
课后反思:
通过本节的学习活动,你了解了 立体图形与平面图形的关系吗?
圆 柱
展开
圆锥
展开
长方体
展开
练习: 将正确答案的序号填在横线上:
(4) ;圆锥的展开图是 (6) ; 圆柱的展开图是——— ———— (3) 三棱柱的展开图是____.
下面是一些立体图形的展开图,用它们能围 成什么样的立体图形?
考考你的空间想象力:
下列图形是哪些多面体的展开图?
(1)
•(2)
大多数的立体图形可以展开为平面图形, 平面图形可以折叠成立体图形. 1.是不是所有的立体图形都 能展开图成平面图形呢?
2.圆能展开成平面图形吗? 大家试试看
c
社 会
(A)和
(B)谐
(C)社
(D)会
如图是一个立方体纸盒的展开图,使 展开图沿虚线折叠成正方体后相对面上的两 个数互为相反数,求: -7 c ____ 1 a ___, -2 b ___,
2 c
7 -1 a b
如图是正方体的展开图,则原正方体相对 两个面上数字之和的最小值是 6 . 分析: 数字2对应6,其和为8
三棱锥
长方体
(3) (4)
三棱柱
五棱锥
练习:下列图形能折叠成什么图形?
圆柱
五棱柱
圆锥
三棱柱
将一个正方体的表面沿某些棱剪开, 能展成哪些平面图形?与同伴进行交流. 友情提示: 1、沿着棱剪 2、展开后是 一个图形
可以动手剪,也 可以想着画.
1 7
2 8分一分:
要求:1、观察上面的11种正方体的展开图有没有什
这些精美的包装盒是怎么制成的?
要设计、制作 一个包装盒,除 了美术设计以外, 还要了解它展开 后的形状,根据 它的展开图来裁 剪纸张.
有些立体图形是由一些平面图形围成的,将它 们的表面适当剪开,可以展成平面图形.这样 的平面图形称为相应立体图形的展开图.
你知道吗?
下列立体图形的平面展开图 是什么?