高中物理易错题分析集锦——3圆周运动

合集下载

高中物理易错题精选(含答案有解析分章节)

高中物理易错题精选(含答案有解析分章节)

⾼中物理易错题精选(含答案有解析分章节)⾼考物理易错题精选讲解1:质点的运动错题集⼀、主要内容本章内容包括位移、路程、时间、时刻、平均速度、即时速度、线速度、⾓速度、加速度等基本概念,以及匀变速直线运动的规律、平抛运动的规律及圆周运动的规律。

在学习中要注意准确理解位移、速度、加速度等基本概念,特别应该理解位移与距离(路程)、速度与速率、时间与时刻、加速度与速度及速度变化量的不同。

⼆、基本⽅法本章中所涉及到的基本⽅法有:利⽤运动合成与分解的⽅法研究平抛运动的问题,这是将复杂的问题利⽤分解的⽅法将其划分为若⼲个简单问题的基本⽅法;利⽤物理量间的函数关系图像研究物体的运动规律的⽅法,这也是形象、直观的研究物理问题的⼀种基本⽅法。

这些具体⽅法中所包含的思想,在整个物理学研究问题中都是经常⽤到的。

因此,在学习过程中要特别加以体会。

三、错解分析在本章知识应⽤的过程中,初学者常犯的错误主要表现在:对要领理解不深刻,如加速度的⼤⼩与速度⼤⼩、速度变化量的⼤⼩,加速度的⽅向与速度的⽅向之间常混淆不清;对位移、速度、加速度这些⽮量运算过程中正、负号的使⽤出现混乱:在未对物体运动(特别是物体做减速运动)过程进⾏准确分析的情况下,盲⽬地套公式进⾏运算等。

例1 汽车以10 m/s 的速度⾏使5分钟后突然刹车。

如刹车过程是做匀变速运动,加速度⼤⼩为5m/s 2 ,则刹车后3秒钟内汽车所⾛的距离是多少?【错解】因为汽车刹车过程做匀减速直线运动,初速v 0=10m/s 加速度a=5m/s 2,据S=2021at t v -,则位移S=9521310??-?=7.5(m )。

【错解原因】出现以上错误有两个原因。

⼀是对刹车的物理过程不清楚。

当速度减为零时,车与地⾯⽆相对运动,滑动摩擦⼒变为零。

⼆是对位移公式的物理意义理解不深刻。

位移S 对应时间t ,这段时间内a 必须存在,⽽当a 不存在时,求出的位移则⽆意义。

由于第⼀点的不理解以致认为a 永远地存在;由于第⼆点的不理解以致有思考a 什么时候不存在。

圆周运动的实例分析3(高中物理10大难点突破)

圆周运动的实例分析3(高中物理10大难点突破)

圆周运动的实例分析3(高中物理10大难点突破)3.杂技节目“水流星”表演时,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面内做圆周运动,在最高点杯口朝下,但水不会流下,如图所示,这是为什么?分析:以杯中之水为研究对象进行受力分析,根据牛顿第二定律可知:F 向=m r v 2,此时重力G 与FN 的合力充当了向心力即F 向=G +FN故:G +FN =m r v 2由上式可知v 减小,F 减小,当FN =0时,v 有最小值为gr 。

讨论:①当mg =m r v 2,即v =gr 时,水恰能过最高点不洒出,这就是水能过最高点的临界条件;②当mg >m r v 2,即v <gr 时,水不能过最高点而不洒出;③当mg <m r v 2,即v >gr 时,水能过最高点不洒出,这时水的重力和杯对水的压力提供向心力。

例8:绳系着装有水的水桶,在竖直面内做圆周运动,水的质量m =0.5 kg ,绳长L =60 cm ,求:①最高点水不流出的最小速率。

②水在最高点速率v =3 m/s 时,水对桶底的压力。

【审题】当v0=gR 时,水恰好不流出,要求水对桶底的压力和判断是否能通过最高点,也要和这个速度v 比较,v>v0时,有压力;v=v0时,恰好无压力;v ≤v0时,不能到达最高点。

【解析】①水在最高点不流出的条件是重力不大于水做圆周运动所需要的向心力即mg <L mv 2,则最小速度v0=gR =gL =2.42 m/s 。

②当水在最高点的速率大于v0时,只靠重力提供向心力已不足,此时水桶底对水有一向下的压力,设为F ,由牛顿第二定律F +mg =m L v 2得:F =2.6 N 。

由牛顿第三定律知,水对水桶的作用力F ′=-F=-2.6 N ,即方向竖直向上。

【总结】当速度大于临界速率时,重力已不足以提供向心力,所缺部分由桶底提供,因此桶底对水产生向下的压力。

例2:汽车质量m 为1.5×104 kg ,以不变的速率先后驶过凹形路面和凸形路面,路面圆弧半径均为15 m ,如图3-17所示.如果路面承受的最大压力不得超过2×105 N ,汽车允许的最大速率是多少?汽车以此速率驶过路面的最小压力是多少?【审题】首先要确定汽车在何位置时对路面的压力最大,汽车经过凹形路面时,向心加速度方向向上,汽车处于超重状态;经过凸形路面时,向心加速度向下,汽车处于失重状态,所以汽车经过凹形路面最图3-17低点时,汽车对路面的压力最大。

圆周运动易错题归纳总结

圆周运动易错题归纳总结

圆周运动易错题归纳总结圆周运动是物理学中一个重要的概念,理解和掌握圆周运动的规律对于学生来说是至关重要的。

然而,在学习过程中,我们常常会遇到一些易错的题目,这些题目往往涉及到一些细微的概念误解或者计算错误。

为了帮助大家更好地理解和掌握圆周运动,本文将对一些常见的易错题进行归纳总结,并提供解题的思路和方法。

一、加速度的方向在圆周运动中,物体的速度方向会不断改变,因此加速度是必不可少的。

然而,我们常常会出现对加速度方向的判断错误的情况。

一般来说,物体在圆周运动中的加速度的方向指向圆心。

这是由于物体受到一个向心的力的作用,向心力的方向恰好指向圆心。

例如,当一个物体以一定的速度绕着一个固定的圆周轨道运动时,我们需要判断其加速度的方向。

可以通过以下步骤进行判断:1.确定物体运动的方向:物体在圆周运动中的运动轨迹可以确定其运动的方向。

2.确定物体的速度方向:物体在某一刻的速度方向可以通过切线的方向确定,切线与轨迹的切点处相切。

3.确定向心力的方向:向心力的方向指向圆心。

4.确定加速度的方向:加速度的方向与向心力的方向相同。

二、向心力与重力的关系在一些题目中,我们需要比较圆周运动中的向心力与重力的大小或者判断向心力与重力的方向。

向心力与重力在圆周运动中起着不同的作用。

向心力是使物体保持圆周运动的力,它的方向指向圆心。

向心力的大小可以通过以下公式计算:向心力 = 质量 ×加速度其中,加速度为物体在圆周运动中的加速度,质量为物体的质量。

而重力则是物体受到的地球引力,它始终指向地心。

重力的大小可以通过以下公式计算:重力 = 质量 ×重力加速度其中,重力加速度为地球引力的大小。

在圆周运动中,向心力与重力往往会产生平衡。

当物体受到的向心力等于重力时,物体就能够保持稳定的圆周运动。

如果向心力大于重力,物体将会向内偏离轨道;如果向心力小于重力,物体将会向外偏离轨道。

三、速度与半径的关系速度与半径之间存在着一定的关系,这在一些题目中经常会考察到。

高中物理难点之三--圆周运动的实例分析

高中物理难点之三--圆周运动的实例分析

难点之三:圆周运动的实例分析一、难点形成的原因1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。

2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用;3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。

4、圆周运动的周期性把握不准。

5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。

二、难点突破(1)匀速圆周运动与非匀速圆周运动a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。

圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。

b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。

c.匀速圆周运动只是速度方向改变,而速度大小不变。

做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。

非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。

例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。

【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有:mg T =︒30cos 1 ①30sin L ωm =30sin T AB 211②代入数据得: s rad /4.21=ω,要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设此时角速度为ω2,BC 绳拉力为T 2,则有mg T =︒45cos 2 ③T 2sin45°=m 22ωL AC sin30°④代入数据得:ω2=3.16rad/s 。

人教版高中物理必修二专题03 圆周运动【知识梳理】

人教版高中物理必修二专题03  圆周运动【知识梳理】

专题03 圆周运动知识整理一、描述圆周运动的物理量 1.圆周运动运动轨迹为圆周或一段圆弧的机械运动,圆周运动为曲线运动,故一定是变速运动. 2.线速度(1)物理意义:描述圆周运动物体的运动快慢. (2)定义公式:v =ΔsΔt.(3)方向:线速度是矢量,其方向为物体做圆周运动时该点的切线方向. 3.角速度(1)物理意义:描述物体绕圆心转动的快慢. (2)定义公式:ω=ΔθΔt.(3)单位:弧度/秒,符号是rad/s. 4.转速和周期(1)转速:物体单位时间内转过的圈数. (2)周期:物体转过一周所用的时间. 5.描述圆周运动的各物理量之间的关系6.描述圆周运动的各物理量之间关系的理解(1)角速度、周期、转速之间关系的理解:物体做匀速圆周运动时,由ω=2πT =2πn 知,角速度、周期、转速三个物理量,只要其中一个物理量确定了,其余两个物理量也唯一确定了.(2)线速度与角速度之间关系的理解:由v =ω·r 知,r 一定时,v ∝ω;v 一定时,ω∝1r;ω一定时,v ∝r .二、匀速圆周运动1.定义:线速度大小不变的圆周运动.2.特点(1)线速度大小不变,方向不断变化,是一种变速运动.(2)角速度不变.(3)转速、周期不变.三、向心力1.定义做匀速圆周运动的物体所受的合力总指向圆心,这个指向圆心的力叫作向心力.2.公式:F n=mv2r或者F n=mω2r.3.方向向心力的方向始终指向圆心,由于方向时刻改变,所以向心力是变力.4.效果力向心力是根据力的作用效果来命名的,凡是由某个力或者几个力的合力提供的物体做匀速圆周运动的力,不管属于哪种性质,都是向心力.5.向心力的来源向心力是根据力的作用效果命名的.它可以由重力、弹力、摩擦力等各种性质的力提供,也可以由它们的合力提供,还可以由某个力的分力提供.四、变速圆周运动和一般曲线运动1.变速圆周运动变速圆周运动所受合外力一般不等于向心力,合外力一般产生两个方面的效果:(1)合外力F跟圆周相切的分力F t,此分力与物体运动的速度在一条直线上.(2)合外力F指向圆心的分力F n,此分力提供物体做圆周运动所需的向心力,改变物体速度的方向.2.一般曲线运动的处理方法一般曲线运动,可以把曲线分割成许多很短的小段,每一小段可看作一小段圆弧.圆弧弯曲程度不同,表明它们具有不同的半径.这样,质点沿一般曲线运动时,可以采用圆周运动的分析方法进行处理.3.匀速圆周运动和变速圆周运动的对比匀速圆周运动变速圆周运动线速度特点 线速度的方向不断改变、大小不变 线速度的大小、方向都不断改变 受力特点 合力方向一定指向圆心,充当向心力合力可分解为与圆周相切的分力和指向圆心的分力,指向圆心的分力充当向心力周期性 有不一定有性质 均是非匀变速曲线运动 公式F n =m v 2r=mω2r 都适用五、匀速圆周运动的加速度方向1.定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫作向心加速度.2.向心加速度的作用:向心加速度的方向总是与速度方向垂直,故向心加速度的作用只改变速度的方向,对速度的大小无影响.六、匀速圆周运动的加速度大小 1.向心加速度公式 (1)基本公式a n =v 2r =ω2r .(2)拓展公式a n =4π2T2·r =ωv .2.向心加速度的公式既适用于匀速圆周运动,也适用于非匀速圆周运动. 3.向心加速度的几种表达式4.向心加速度的大小与半径的关系(1)当半径一定时,向心加速度的大小与角速度的平方成正比,也与线速度的平方成正比.随频率的增大或周期的减小而增大.(2)当角速度一定时,向心加速度与运动半径成正比. (3)当线速度一定时,向心加速度与运动半径成反比.(4)a n 与r 的关系图象:如图所示,由a n -r 图象可以看出,a n 与r 成正比还是反比,要看ω恒定还是v 恒定.5.向心加速度的注意要点(1)向心加速度是矢量,方向总是指向圆心,始终与速度方向垂直,故向心加速度只改变速度的方向,不改变速度的大小.向心加速度的大小表示速度方向改变的快慢.(2)向心加速度的公式适用于所有圆周运动的向心加速度的计算.包括非匀速圆周运动.但a n 与v 具有瞬时对应性.七、铁路的弯道1.火车在弯道上的运动特点火车在弯道上运动时实际上在做圆周运动,因而具有向心加速度,由于其质量巨大,需要很大的向心力.2.向心力的来源(1)若转弯时内外轨一样高,则由外轨对轮缘的弹力提供向心力,这样,铁轨和车轮极易受损. (2)若内外轨有高度差,依据规定的行驶速度行驶,转弯时向心力几乎完全由重力G 和支持力F N 的合力提供.八、拱形桥凸形桥和凹形桥的比较汽车过凸形桥汽车过凹形桥受力分析向心力 F n =mg -F N =m v 2rF n =F N -mg =m v 2r对桥的压力F N ′=mg -m v 2rF N ′=mg +m v 2r结论 汽车对桥的压力小于汽车的重力,而且汽车速度越大,对桥的压力越小汽车对桥的压力大于汽车的重力,而且汽车速度越大,对桥的压力越大九、航天器中的失重现象和离心运动 1.航天器在近地轨道的运动(1)对航天器,在近地轨道可认为地球的万有引力等于其重力,重力充当向心力,满足的关系为Mg =Mv 2r .(2)对航天员,由重力和座椅的支持力提供向心力,满足的关系为mg -F N =mv 2r ,由以上两式可得F N =0,航天员处于完全失重状态,对座椅压力为零.(3)航天器内的任何物体之间均没有压力. 2.对失重现象的认识航天器内的任何物体都处于完全失重状态,但并不是物体不受地球引力.正因为受到地球引力的作用,才使航天器连同其中的航天员做匀速圆周运动.3.离心运动(1)定义:物体沿切线飞出或做逐渐远离圆心的运动. (2)原因:向心力突然消失或外力不足以提供所需向心力.两个模型一、火车转弯模型1.模型构建(1)火车车轮的特点:火车的车轮有凸出的轮缘,火车在铁轨上运行时,车轮与铁轨有水平与竖直两个接触面,这种结构特点,主要是避免火车运行时脱轨,如图所示。

高考物理易错题分析集锦1-5

高考物理易错题分析集锦1-5

第一单元:质点的运动[内容和方法]本单元内容包括位移、路程、时间、时刻、平均速度、即时速度、线速度、角速度、加速度等基本概念,以及匀变速直线运动的规律、平抛运动的规律及圆周运动的规律。

在学习中要注意准确理解位移、速度、加速度等基本概念,特别应该理解位移与距离(路程)、速度与速率、时间与时刻、加速度与速度及速度变化量的不同。

本单元中所涉及到的基本方法有:利用运动合成与分解的方法研究平抛运动的问题,这是将复杂的问题利用分解的方法将其划分为若干个简单问题的基本方法;利用物理量间的函数关系图像研究物体的运动规律的方法,这也是形象、直观的研究物理问题的一种基本方法。

这些具体方法中所包含的思想,在整个物理学研究问题中都是经常用到的。

因此,在学习过程中要特别加以体会。

[例题分析]在本单元知识应用的过程中,初学者常犯的错误主要表现在:对要领理解不深刻,如加速度的大小与速度大小、速度变化量的大小,加速度的方向与速度的方向之间常混淆不清;对位移、速度、加速度这些矢量运算过程中正、负号的使用出现混乱:在未对物体运动(特别是物体做减速运动)过程进行准确分析的情况下,盲目地套公式进行运算等。

例1、汽车以10 m/s的速度行驶5分钟后突然刹车。

如刹车过程是做匀变速运动,加速度大小为5m/s2,则刹车后3秒钟内汽车所走的距离是多少?【错解分析】错解:因为汽车刹车过程做匀减速直线运动,初速v0=10 m/s加速度出现以上错误有两个原因。

一是对刹车的物理过程不清楚。

当速度减为零时,车与地面无相对运动,滑动摩擦力变为零。

二是对位移公式的物理意义理解不深刻。

位移S对应时间t,这段时间内a必须存在,而当a不存在时,求出的位移则无意义。

由于第一点的不理解以致认为a永远地存在;由于第二点的不理解以致有思考a什么时候不存在。

【正确解答】依题意画出运动草图1-1。

设经时间t1速度减为零。

据匀变速直线运动速度公式v1=v0+at 则有0=10-5t解得t=2S由于汽车在2S时【小结】物理问题不是简单的计算问题,当得出结果后,应思考是否与s=-30m的结果,这个结果是与实际不相符的。

圆周运动(培优篇)(Word版 含解析)

圆周运动(培优篇)(Word版 含解析)

一、第六章 圆周运动易错题培优(难)1.如图所示,水平圆盘可绕竖直轴转动,圆盘上放有小物体A 、B 、C ,质量分别为m 、2m 、3m ,A 叠放在B 上,C 、B 离圆心O 距离分别为2r 、3r 。

C 、B 之间用细线相连,圆盘静止时细线刚好伸直无张力。

已知C 、B 与圆盘间动摩擦因数为μ,A 、B 间摩擦因数为3μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g ,现让圆盘从静止缓慢加速,则( )A .当23grμω=时,A 、B 即将开始滑动 B .当2grμω=32mgμ C .当grμω=C 受到圆盘的摩擦力为0D .当25grμω=C 将做离心运动 【答案】BC 【解析】 【详解】A. 当A 开始滑动时有:2033A f mg m r μω==⋅⋅解得:0grμω=当23ggrrμμω=<AB 未发生相对滑动,选项A 错误;B. 当2ggrrμμω=<时,以AB 为整体,根据2F mr ω向=可知 29332F m r mg ωμ⋅⋅=向= B 与转盘之间的最大静摩擦力为:23Bm f m m g mg μμ=+=()所以有:Bm F f >向此时细线有张力,设细线的拉力为T , 对AB 有:2333mg T m r μω+=⋅⋅对C 有:232C f T m r ω+=⋅⋅解得32mg T μ=,32C mgf μ= 选项B 正确;C. 当ω=时,AB 需要的向心力为:2339AB Bm F m r mg T f ωμ'⋅⋅=+==解得此时细线的拉力96Bm T mg f mg μμ'-== C 需要的向心力为:2326C F m r mg ωμ⋅⋅==C 受到细线的拉力恰好等于需要的向心力,所以圆盘对C 的摩擦力一定等于0,选项C 正确;D. 当ω=C 有: 212325C f T m r mg ωμ+=⋅⋅=剪断细线,则1235C Cm f mg f mg μμ=<= 所以C 与转盘之间的静摩擦力大于需要的向心力,则C 仍然做匀速圆周运动。

高中物理易错题专题三物理生活中的圆周运动(含解析)含解析

高中物理易错题专题三物理生活中的圆周运动(含解析)含解析

高中物理易错题专题三物理生活中的圆周运动(含解析)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =,253gR v =3.如图所示,在竖直平面内有一半径为R 的14光滑圆弧轨道AB ,与水平地面相切于B 点。

高中物理圆周运动易错题成因及解决方法

高中物理圆周运动易错题成因及解决方法

高中物理圆周运动易错题成因及解决方法圆周运动是高中物理学中重要的知识点,但是学生在学习这一知识点时经常会遇到困难,以致考试中出现很多易错的题目。

本文旨在讨论高中物理圆周运动易错题的成因及解决方法。

首先,高中物理圆周运动易错题的成因是学生对理论知识缺乏系统性研究。

高中物理圆周运动是由简单的描述到复杂的应用步骤组成,学生在学习过程中往往忽略了若干细节,从而导致圆周运动的理论基础不扎实,考试中出现一些易错的题目。

此外,高中物理圆周运动的内容涉及到多个物理概念和技术,如惯性、斥力、动量守恒定律等,学生在学习圆周运动过程中,由于理解难度较大,容易在详细的知识点上出现一些错误,从而导致考试中可能出现一些易错的题目。

其次,解决高中物理圆周运动易错题的方法有多种。

首先,教师可以选择形象化、系统化的教学方式,通过清晰的图片和表格等方式,让学生深入理解圆周运动的基本概念和相关定律,从而加强学生的理解能力,增强学生知识的积累,更好地掌握圆周运动的相关内容。

其次,可以增加实验教学,在实验中让学生更深刻地感受到重力、惯性和动量之间的内在关系,以便更完整地理解圆周运动的含义和原理,从而提高学生的学习效率和考试成绩。

此外,课堂上可以鼓励学生多参加讨论,让学生通过研讨交流圆周运动的相关知识,加深对理论的理解,更好地掌握和掌握圆周运动的基本概念和本质。

最后,教师应该提高考试设计水平。

考试如果只以一些理论描述作为考题,容易让学生受到枯燥乏味的影响,甚至会降低考试成绩。

因此,教师应该尽量创新考试方式,如改编真实的现象、生活情景等,深入理解物理知识的本质,从而提高学生应用圆周运动的能力,给学生带来良好的考试及学习体验。

以上是本文介绍的高中物理圆周运动易错题成因及解决方法,最终要达到一个目标:提高学生学习圆周运动的能力,从而更好地应对考试题目。

仅有知识的储备是不够的,更重要的是学习过程中培养学生的解题思路,从而帮助他们解决问题,取得更好的考试成绩。

高一物理下册圆周运动易错题(Word版 含答案)

高一物理下册圆周运动易错题(Word版 含答案)

一、第六章 圆周运动易错题培优(难)1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等B .b 比a 先达到最大静摩擦力C .当2kgLω=a 刚要开始滑动 D .当23kgLω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即kmg +F =mω2•2L ①而a 受力为f′-F =2mω2L ②联立①②得f′=4mω2L -kmg综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有2kmg+kmg =2mω2L +mω2•2L解得34kgLω=选项C 错误;D. 当b 恰好达到最大静摩擦时202kmg m r ω=⋅解得02kgLω=因为32432kg kg kgL L L >>,则23kgLω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。

故选BD 。

2.如图所示,水平的木板B 托着木块A 一起在竖直平面内做圆心为O 的匀速圆周运动,Oa 水平,从最高点b 沿顺时针方向运动到a 点的过程中( )A .B 对A 的支持力越来越大 B .B 对A 的支持力越来越小C .B 对A 的摩擦力越来越小D .B 对A 的摩擦力越来越大 【答案】AD 【解析】 【分析】 【详解】由于始终做匀速圆周运动,合力指向圆心,合力大小不变,从最高点b 沿顺时针方向运动到a 点的过程中,合力的水平分量越来越大,竖直向下的分量越来越小,而合力由重力,支持力和摩擦力提供,因此对A 进行受力分析可知,A 受到的摩擦力越来越大,B 对A 的支持力越来越大,因此AD 正确,BC 错误。

高一物理圆周运动易错题(Word版 含答案)

高一物理圆周运动易错题(Word版 含答案)
C.小球在水平线ab以下的管道中运动时,竖直向下的重力沿半径方向的分力沿半径方向向外,小球的向心力是沿半径向圆心的,小球与外壁一定会相互挤压,所以小球一定会受到外壁的作用力,内壁管壁对小球一定无作用力,所以选项C正确;
D.小球在水平线ab以上的管道中运动时,当速度较小时,重力沿半径方向上的分力大于或等于小球做圆周运动需要的向心力,此时小球与外壁不存在相互挤压,外侧管壁对小球没有作用力,选项D错误.
C.当绳子AC与竖直方向之间的夹角不变时,AC绳子的拉力在竖直方向的分力始终等于重力,所以绳子的拉力绳子等于1.25mg;当转速大于 后,绳子与竖直方向之间的夹角增大,拉力开始增大;当转速大于 后,绳子与竖直方向之间的夹角不变,AC上竖直方向的拉力不变,水平方向的拉力增大,则AC的拉力继续增大;故C正确;

当C所受的摩擦力达到最大静摩擦力之后,BC间细线开始提供拉力,B的摩擦力增大,达到最大静摩擦力后,AB间细线开始有力的作用,随着角速度增大,A所受的摩擦力将减小到零然后反向增大,当A与B的摩擦力也达到最大值,且B、C间细线的拉力大于AB整体的摩擦力时整体将会出现相对滑动,此时A与B还受到细线的拉力,对C有
A.A、B两个物体同时达到最大静摩擦力
B.B、C两个物体的静摩擦力先增大后不变
C.当 时整体会发生滑动
D.当 时,在 增大的过程中B、C间的拉力不断增大
【答案】BC
【解析】
ABC、当圆盘转速增大时,由静摩擦力提供向心力.三个物体的角速度相等,由 可知,因为C的半径最大,质量最大,故C所需要的向心力增加最快,最先达到最大静摩擦力,此时 ,计算得出: ,当C的摩擦力达到最大静摩擦力之后,BC开始提供拉力,B的摩擦力增大,达最大静摩擦力后,AB之间绳开始有力的作用,随着角速度增大,A的摩擦力将减小到零然后反向增大,当A与B的摩擦力也达到最大时,且BC的拉力大于AB整体的摩擦力时物体将会出现相对滑动,此时A与B还受到绳的拉力,对C可得: ,对AB整体可得: ,计算得出: ,当 时整体会发生滑动,故A错误,BC正确;

高中物理易错题分析集锦3圆周运动(可编辑)

高中物理易错题分析集锦3圆周运动(可编辑)

第三单元:圆周运动[ ]本单元内容包括圆周运动的动力学部分和物体做圆周运动的能量问题,其核心内容是牛顿第二定律、机械能守恒定律等知识在圆周运动中的具体应用。

本单元中所涉及到的基本方法与第二单元牛顿定律的方法基本相同,只是在具体应用知识的过程中要注意结合圆周运动的特点:物体所受外力在沿半径指向圆心的合力才是物体做圆周运动的向心力,因此利用矢量合成的方法分析物体的受力情况同样也是本单元的基本方法;只有物体所受的合外力的方向沿半径指向圆心,物体才做匀速圆周运动。

根据牛顿第二定律合外力与加速度的瞬时关系可知,当物体在圆周上运动的某一瞬间的合外力指向圆心,我们仍可以用牛顿第二定律对这一时刻列出相应的牛顿定律的方程,如竖直圆周运动的最高点和最低点的问题。

另外,由于在具体的圆周运动中,物体所受除重力以外的合外力总指向圆心,与物体的运动方向垂直,因此向心力对物体不做功,所以物体的机械能守恒。

[ ]在本单元知识应用的过程中,初学者常犯的错误主要表现在:对物体做圆周运动时的受力情况不能做出正确的分析,特别是物体在水平面内做圆周运动,静摩擦力参与提供向心力的情况;对牛顿运动定律、圆周运动的规律及机械能守恒定律等知识内容不能综合地灵活应用,如对于被绳(或杆、轨道)束缚的物体在竖直面的圆周运动问题,由于涉及到多方面知识的综合,表现出解答问题时顾此失彼。

1 、一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R (比细管的半径大得多),圆管中有两个直径与细管内径相同的小球(可视为质点)。

A 球的质量为m1 ,B 球的质量为m2 。

它们沿环形圆管顺时针运动,经过最低点时的速度都为v0 。

设A 球运动到最低点时,球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1 ,m2 ,R 与v0 应满足关系式是。

A 球通过最低点时,圆管给 A 球向上的弹力N1 为向心力,则有B N2 为m2 的向心力,方向向下,则有m2 由最高点到最低点机械能守恒,则有N1=N2 ,但实际并没有真正明白为什么圆管给m2 向下的力。

圆周运动(培优篇)(Word版 含解析)

圆周运动(培优篇)(Word版 含解析)
D.小球从c点落到d点需要时间为
【答案】ACD
【解析】
【分析】
【详解】
小球恰好通过最高点C,根据重力提供向心力,有: 解得: 故A正确;小球离开C点后做平抛运动,即水平方向做匀速运动, 竖直方向做自由落体运动, 解得: ; 故B错误;CD正确;故选ACD
11.如图所示,一个内壁光滑的弯管处于竖直平面内,其中管道半径为R.现有一个半径略小于弯管横截面半径的光滑小球在弯管里运动,当小球通过最高点时速率为v0,则下列说法中错误的是
B.B对A的摩擦力一定为3m2r
C.转台的角速度需要满足
D.转台的角速度需要满足
【答案】BD
【解析】
【分析】
【详解】
AB.对A受力分析,受重力、支持力以及B对A的静摩擦力,静摩擦力提供向心力,有
故A错误,B正确;
CD.由于A、AB整体、C受到的静摩擦力均提供向心力,故对A有
对AB整体有
对物体C有
解得
当F1>0,杆对球有拉力,向下;
当F1=0,杆对球无作用力。
故杆对球的作用力情况①②都有可能,选项C正确,ABD错误。
故选C。
13.如图所示,用一根质量不计不可伸长的细线,一端系一可视为质点的小球,另一端固定在O点。当小球在水平面内做匀速圆周运动的角速度为 时,悬点O到轨迹圆心高度h,细绳拉力大小为F,小球的向心加速度大小为a,线速度大小为v,下列描述各物理量与角速度 的关系图像正确的是()
C.当绳中刚好要出现拉力时,
故 ,C正确;
D.当物块和转台之间摩擦力为0时,物块开始离开转台,故
角速度为 ,故D正确;
故选CD。
9.如图所示,匀速转动的水平圆盘上放有质量分别为2kg和3kg的小物体A、B,A、B间用细线沿半径方向相连。它们到转轴的距离分别为RA=0.2m、RB=0.3m。A、B与盘面间的最大静摩擦力均为重力的0.4倍。g取10m/s2,现极其缓慢地增大圆盘的角速度,则下列说法正确的是( )

2022高三物理高考易错题分析集锦:圆周运动

2022高三物理高考易错题分析集锦:圆周运动

高中物理易错题剖析集锦——3 圆周运动第三单元:圆周运动[内容和方法 ]本单元内容包含圆周运动的动力学部分和物体做圆周运动的能量问题,其核心内容是牛顿第二定律、机械能守恒定律等知识在圆周运动中的详细应用。

本单元中所波及到的基本方法与第二单元牛顿定律的方法基真相同,不过在详细应用知识的过程中要注意联合圆周运动的特色:物体所受外力在沿半径指向圆心的协力才是物体做圆周运动的向心力,所以利用矢量合成的方法剖析物体的受力状况相同也是本单元的基本方法;只有物体所受的合外力的方向沿半径指向圆心,物体才做匀速圆周运动。

依据牛顿第二定律合外力与加快度的刹时关系可知,当物体在圆周上运动的某一瞬时的合外力指向圆心,我们仍能够用牛顿第二定律对这一时辰列出相应的牛顿定律的方程,如竖直圆周运动的最高点和最低点的问题。

此外,因为在详细的圆周运动中,物体所受除重力之外的合外力总指向圆心,与物体的运动方向垂直,所以向心力对物体不做功,所以物体的机械能守恒。

[例题剖析 ]在本单元知识应用的过程中,初学者常犯的错误主要表此刻:对物体做圆周运动时的受力状况不可以做出正确的剖析,特别是物体在水平面内做圆周运动,静摩擦力参加供给向心力的状况;对牛顿运动定律、圆周运动的规律及机械能守恒定律等知识内容不可以综合地灵巧应用,如关于被绳(或杆、轨道)约束的物体在竖直面的圆周运动问题,因为波及到多方面知识的综合,表现出解答问题时左支右绌。

例 1、一内壁圆滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多),圆管中有两个直径与细管内径相同的小球(可视为质点)。

A 球的质量为 m1,B 球的质量为 m2。

它们沿环形圆管顺时针运动,经过最低点时的速度都为v0。

设 A 球运动到最低点时,球恰巧运动到最高点,若要此时两球作用于圆管的协力为零,那么m1, m2,R 与 v0应知足关系式是。

【错解剖析】错解:依题意可知在 A 球经过最低点时,圆管给 A 球向上的弹力 N1为向心力,则有B 球在最高点时,圆管对它的作使劲N2为 m2的向心力,方向向下,则有因为 m2由最高点到最低点机械能守恒,则有错解形成的主要原由是向心力的剖析中缺少规范的解题过程。

高中物理圆周运动易错题成因及解决方法

高中物理圆周运动易错题成因及解决方法

高中物理圆周运动易错题成因及解决方法高中物理课程中,学生们经常会碰到有关圆周运动的试题,但是却经常出现一些错误,有时是理解错误,有时是推导错误,这种情况非常让人头疼。

那么,究竟是什么原因导致了这样的易错题呢?有什么办法来帮助学生正确解答圆周运动问题呢?一、圆周运动易错题的成因1、理解不足:圆周运动是一种复杂的物理问题,要正确理解其中蕴含的物理原理,许多学生存在理解不足,例如不理解动量的定义、动能的含义等,从而导致圆周运动问题的解答错误。

2、思维层次不够深入:绝大多数学生对圆周运动的理解停留在简单形式的数学推导,而没有很好地运用物理概念进行探究,例如缺乏对重力力和受力的深刻认识,以及缺乏对圆周运动周期和能量转换的敏而深的观察。

3、不够系统的学习:绝大多数学生缺乏对圆周运动的系统研究和深入理解,虽然有必要的记忆知识,但缺乏对基本原理和相互关系的把握。

二、解决方法1、充分理解相关物理概念:要想正确解答圆周运动题,首先需要学生掌握和理解物理学中的相关概念,例如平抛运动,动量,动能,势能等概念,学会如何正确表述基本物理原理。

2、加深思维层次:思维能力才是学习的核心,学生可以通过不断的实践和练习,去加深思考,正确把握力学原理,不断突破局限,加深对圆周运动的理解。

3、多练习:掌握圆周运动的试题需要不断的实践,多做试题,多练习,不断归纳,提升自己对圆周运动的掌握能力,例如多用轨迹方程,把握细节,再加上相关公式,多熟悉它们之间的相互关系。

四、总结圆周运动是一个比较复杂的物理概念,即使有一定的理解,也不一定就能正确化解试题。

易错题的成因主要是学生在理解和思维层次上缺乏深入,同时缺乏对圆周运动的系统研究和深入理解。

要正确解答圆周运动问题,需要学生充分理解和掌握相关的物理概念,加深思维层次,多做练习,不断提升自己的掌握能力。

“圆周运动”易错题剖析

“圆周运动”易错题剖析

ʏ杨宗礼圆周运动是一种特殊形式的曲线运动,圆周运动涉及的概念繁多,规律复杂,同学们稍不注意就会出错㊂下面结合典型例题分析出错原因,给出正确求解过程,希望能够帮助同学们成功避开易犯错误㊂一㊁错误地认为物体做圆周运动受到的合外力一定指向圆心图1例1 如图1所示,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮随圆盘一起转动(俯视沿逆时针方向)㊂某段时间内圆盘的转速不断增大,但橡皮仍相对圆盘静止㊂在这段时间内,如图2所示的橡皮所受合外力F 方向的四种表示(俯视图)中正确的是( )㊂图2易错分析:认为橡皮做圆周运动时受到的合外力一定指向圆心,而选B ㊂正解:做曲线运动的物体所受合外力的方向指向曲线弯曲的内侧㊂橡皮随圆盘做加速圆周运动,摩擦力沿半径方向的分力提供向心力,摩擦力沿切线方向的分力改变速度的大小,因此这两个分力的合力(摩擦力)不沿半径方向指向圆心㊂答案:C橡皮随圆盘加速转动,橡皮既有沿法线方向(半径方向)远离圆心的运动趋势,又有沿切线方向滞后运动的趋势,因此橡皮相对圆盘的运动趋势既不沿法线方向,也不沿切线方向,而是介于二者之间㊂橡皮所受静摩擦力的方向与其相对圆盘运动趋势的方向相反㊂二㊁片面分析匀速圆周运动的临界问题 图3例2 如图3所示,细绳一端系着静止在水平盘面上质量M =0.6k g 的物体A ,另一端通过光滑小孔吊着质量m =0.3k g 的物体B ,物体A 的中心与小孔间的距离r =0.2m ,物体A 和水平盘面间的最大静摩擦力为2N ,取重力加速度g =10m /s2㊂现使水平盘绕中心轴转动,物体B 处于静止状态,则角速度ω的取值范围为( )㊂A .2.9r a d /s ɤωɤ6.5r a d /sB .ωȡ6.5r a d /sC .2.9r a d /s ɤωɤ5r a d /sD .5r a d /s ɤωɤ6.5r a d /s易错分析:仅考虑静摩擦力大小发生变化,没有考虑到静摩擦力方向也可能发生变化,认为水平盘面对物体A 的静摩擦力方向始终背向圆心,当静摩擦力等于最大静摩擦力时,角速度ω取最小值2.9r a d /s ,当静摩擦力等于0时,角速度ω取最大值5r a d /s ,而选C ㊂正解:物体A 和水平盘面保持相对静止,当角速度ω取最小值时,物体A 有向着圆心O 运动的趋势,水平盘面对物体A 的静摩擦力方向背向圆心,且等于最大静摩擦力F m a x =2N ㊂设细绳的张力为F ,则对物体B 有F =m g =3N ,对物体A 有F -F m a x =M ω2m i n r ,解得ωm i n =2.9r a d /s ㊂物体A 和水平盘面保持相对静止,当角速度ω取最大值时,物体A 有远离圆心O 运动的趋势,水平盘面对物体A 的静摩擦力方向指向圆心,且等于最大静摩擦力F m a x =2N ㊂细绳的张力F =m g =3N ,对物体A 有F +F m a x =M ω2m a x r ,解得ωm a x =6.5r a d /s ㊂因此角速度ω的取值范围是2.9r a d /s ɤωɤ6.5r a d /s㊂答案:A53物理部分㊃易错题归类剖析高一使用 2022年2月Copyright ©博看网. All Rights Reserved.分析圆周运动的临界问题,需要明确物体的极限状态,找出临界条件㊂物体受静摩擦力作用时,需要注意静摩擦力的大小和方向均随转速的变化而发生变化,当静摩擦力达到最大值时,物体达到极限状态,对应的运动参量也达到临界值㊂三㊁忽视匀速圆周运动的周期性而漏解图4例3如图4所示,小球A在半径R=1πm的光滑圆形槽内做匀速圆周运动,当它运动到图中a点时,在圆形槽中心O点正上方h=1.25m处,有一小球B沿O a方向以某一初速度水平抛出,结果恰好在a点与小球A相碰㊂取重力加速度g=10m/s2,则小球A做匀速圆周运动的速度为()㊂A.2m/sB.4m/sC.6m/sD.8m/s易错分析:忽视匀速圆周运动的周期性,认为小球A做匀速圆周运动的周期等于小球B做平抛运动的时间,即2πRv=2hg,解得v=4m/s,而只选B㊂正解:只要在小球B落至a点时小球A同时也到达a点,两小球就相碰㊂小球B做平抛运动落至a点所需的时间t B=2hg,考虑到小球A做匀速圆周运动的周期性,小球A运动至a点所需的时间t A=2kπRv(k=1,2,3, ),根据t A=t B,解得v=2kπR g2h=4k m/s(k=1,2,3, )㊂当k=1时,v=4m/s;当k=2时,v=8m/s;当k=3时,v=12m/s;答案:B D求解本题的关键是知道小球B做平抛运动的时间由高度决定,小球A做匀速圆周运动具有周期性,两小球相遇,运动时间相等㊂四㊁思维定式,错误迁移例4设想在我国的天和核心舱内微重力环境下,航天员做了一个物理实验:如图5所示,将长为l的细线一端固定,另一端系一图5个小球,拉直细线,让小球在B点以垂直于细线的速度v0开始做圆周运动,A为圆周的最高点,B为圆周的最低点㊂设天和核心舱内的重力加速度为g'(极小),在小球运动的过程中,下列说法正确的是()㊂A.小球做匀速圆周运动B.细线拉力的大小不断变化C.只要v0>0,小球都能通过A点D.只有v0ȡ5g'l,小球才能通过A点易错分析:照搬地面附近重力环境下竖直平面内圆周运动的绳模型的运动规律,而选B或D㊂正解:在天和核心舱内微重力环境下,重力加速度g'极小,小球受到的重力可以忽略不计,小球处于完全失重状态,只要给小球一个初速度,细线拉力时刻与速度方向垂直,只改变速度的方向不改变速度的大小,因此小球在竖直平面内做匀速圆周运动,选项A正确㊂根据F=mv2l可知,v与l不变,细线拉力的大小不变,选项B错误㊂小球做匀速圆周运动时,细线的拉力提供向心力,只要v0>,小球都能通过A点,选项C正确,D错误㊂答案:A C在天和核心舱内微重力环境下,小球只受细线拉力作用而在竖直平面内做匀速圆周运动;在地面附近的重力环境下,小球受到重力和细线拉力两个力的作用而在竖直平面内做变速圆周运动㊂两种情况完全不同,不能照搬地面上小球的运动规律分析判断微重力环境下小球的受力情况和运动情况㊂物理公式反映物理规律,若不知道公式的来龙去脉,只知道死记硬背,生搬硬套,则势必会犯各种错误㊂作者单位:湖南省岳阳市湘阴县第一中学(责任编辑张巧) 63物理部分㊃易错题归类剖析高一使用2022年2月Copyright©博看网. All Rights Reserved.。

易错点09 圆周运动(解析版)

易错点09 圆周运动(解析版)

易错点09 圆周运动易错总结1.在半径不确定的情况下,不能由角速度大小判断线速度大小,也不能由线速度大小判断角速度大小。

2.地球上的各点均绕地轴做匀速圆周运动,其周期及角速度均相等,而各点做匀速圆周运动的半径不同,故各点线速度大小不相等,由赤道向两极逐渐减小为零(极点)。

现在了牛顿的头上3.同一轮子上各质点的角速度关系(同轴转的问题):由于同一轮子上的各质点与转轴的连线在相同的时间内转过的角度相同,因此各质点角速度相同,且各质点具有相同的ω、T 和n .4.当向心力由静摩擦力提供时,静摩擦力的大小和方向是由物体运动状态决定的。

5.绳对物体只能产生拉力,杆对物体既可以产生拉力又可以产生支持力,所以求作用力时,应先利用临界条件判断杆对物体施力的方向,或先假设力作用于某一方向,然后根据所求结果的正负进行判断。

6.公式rv m ma F 2==是牛顿第二定律在圆周运动中的应用,向心力由做匀速圆周运动的物体所受的合外力所提供。

因此,牛顿定律及由牛顿定律推导出的一些规律(如超重、失重等)高中阶段仍适用。

7.物体做离心运动是合外力不足以提供向心力造成的,并不是受到“离心力”的作用。

8.物体在完全失去外力作用时,物体应沿当时其所在处的切线方向运动,而不是沿半径方向运动。

9.要明确物体做圆周运动需要的向心力a F (rmv F 2=)和提供的向心力b F 的关系,当ba F F <时,物体做离心运动;当b a F F =时,物体做匀速圆周运动;当b a F F >时,物体做近(向)心运动。

解题方法1.竖直面内圆周运动的轻绳(过山车)模型如图1所示,甲图中小球受绳拉力和重力作用,乙图中小球受轨道的弹力和重力作用,二者运动规律相同,现以甲图为例.图1(1)最低点动力学方程:F T1-mg =m v 21L所以F T1=mg +m v 21L(2)最高点动力学方程: F T2+mg =m v 22L所以F T2=m v 22L-mg(3)最高点的最小速度:由于绳不可能对球有向上的支持力,只能产生向下的拉力,由F T2+mg =mv 22L可知,当F T2=0时,v 2最小,最小速度为v 2=gL .讨论:当v 2=gL 时,拉力或压力为零. 当v 2>gL 时,小球受向下的拉力或压力. 当v 2<gL 时,小球不能到达最高点. 2.竖直面内圆周运动的轻杆(管)模型如图2所示,细杆上固定的小球和光滑管形轨道内运动的小球在重力和杆(管道)的弹力作用下做圆周运动.图2(1)最高点的最小速度由于杆和管在最高点处能对小球产生向上的支持力,故小球恰能到达最高点的最小速度v =0,此时小球受到的支持力F N =mg .(2)小球通过最高点时,轨道对小球的弹力情况①v >gL ,杆或管的外侧对球产生向下的拉力或弹力,mg +F =m v 2L ,所以F =m v 2L -mg ,F随v 增大而增大;②v =gL ,球在最高点只受重力,不受杆或管的作用力,F =0,mg =m v 2L;③0<v <gL ,杆或管的内侧对球产生向上的弹力,mg -F =m v 2L ,所以F =mg -m v 2L ,F 随v的增大而减小.【易错跟踪训练】易错类型1:对物理概念理解不透彻1.(2020·天津市第八中学)以下对有关物理概念的理解中正确的是( )A .物体的速度变化大其加速度就大B .受静摩擦力作用的物体一定处于静止状态C .骑自行车沿水平圆形轨道转弯时的向心力就是自行车手转动车把的力D .滑动摩擦力也可以对物体做正功 【答案】D 【详解】A .物体的速度变化大,根据公式∆=∆va t可知,加速度不一定大,故A 错误; B .运动的物体也可以收到静摩擦力,如随传送带一起斜向上运动的物体,故B 错误; C .骑自行车沿水平圆形轨道转弯时所需的向心力由地面对轮胎的侧向静摩擦力提供,故C 错误;D .滑动摩擦力的方向与物体相对运动方向相反,与物体运动方向可以相同,也可以相反,物体受滑动摩擦力可能做负功,也可能做正功,故D 正确; 故选D 。

高考物理易错题集锦

高考物理易错题集锦

高考物理易错题集锦(大全)(总20页)-本页仅作为预览文档封面,使用时请删除本页-高考物理易错题集锦(大全)第一单元:质点的运动例1.有一个物体在h高处,以水平初速度v0抛出,落地时的速度为v1,竖直分速度为v y,下列公式能用来计算该物体在空中运动时间的是[ ]形成以上错误有两个原因。

第一是模型与规律配套。

V t=v0+gt是匀加速直线运动的速度公式,而平抛运动是曲线运动,不能用此公式。

第二不理解运动的合成与分解。

平抛运动可分解为水平的匀速直线运动和竖直的自由落体运动。

每个分运动都对应自身运动规律。

【正确解答】本题的正确选项为A,C,D。

平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体,分运动与合运动时间具有等时性。

水平方向:x=v0t ①据式①~⑤知A,C,D正确。

例2.正在高空水平匀速飞行的飞机,每隔1s释放一个重球,先后共释放5个,不计空气阻力,则 [ ]A.这5个小球在空中排成一条直线B.这5个小球在空中处在同一抛物线上C.在空中,第1,2两个球间的距离保持不变D.相邻两球的落地间距相等【错解分析】错解:因为5个球先后释放,所以5个球在空中处在同一抛物线上,又因为小球都做自由落体运动,所以C选项正确。

形成错解的原因是只注意到球做平抛运动,但没有理解小球做平抛的时间不同,所以它们在不同的抛物线上,小球在竖直方向做自由落体运动,但是先后不同。

所以C选项不对。

【正确解答】释放的每个小球都做平抛运动。

水平方向的速度与飞机的飞行速度相等,在水平方向做匀速直线运动,在竖直方向上做自由落体运动,只是开始的时刻不同。

飞机和小球的位置如图1-7可以看出A,D选项正确。

【小结】解这类题时,决不应是想当然,而应依据物理规律画出运动草图,这样会有很大的帮助。

如本题水平方向每隔1s过位移一样,投小球水平间距相同,抓住特点画出各个球的轨迹图,这样答案就呈现出来了。

例3.物块从光滑曲面上的P点自由滑下,通过粗糙的静止水平传送带以后落到地面上的Q点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,如图1-16所示,再把物块放到P点自由滑下则 [ ]A.物块将仍落在Q点B.物块将会落在Q点的左边C.物块将会落在Q点的右边D.物块有可能落不到地面上【错解分析】错解:因为皮带轮转动起来以后,物块在皮带轮上的时间长,相对皮带位移变大,摩擦力做功将比皮带轮不转动时多,物块在皮带右端的速度将小于皮带轮不动时,所以落在Q点左边,应选B选项。

《易错题》高中物理必修二第六章《圆周运动》测试(包含答案解析)(1)

《易错题》高中物理必修二第六章《圆周运动》测试(包含答案解析)(1)

一、选择题1.如图所示,一圆筒绕其中心轴匀速转动,圆筒内壁上紧靠着一个物体与圆筒一起运动,相对筒无滑动,物体所受向心力是( )A .物体的重力B .筒壁对物体的弹力C .筒壁对物体的静摩擦力D .物体所受重力与弹力的合力2.如图所示,铁路在弯道处的内外轨道高低是不同的,已知内外轨组成的轨道平面与水平面的夹角为θ,弯道处的圆弧半径为R ,若质量为m 的火车以速度v 通过某弯道时,内外轨道均不受侧压力作用,下面分析正确的是( )A .sin v gR θ=B .若火车速度小于v 时,外轨将受到侧压力作用,其方向平行轨道平面向内C .若火车速度大于v 时,外轨将受到侧压力作用,其方向平行轨道平面向外D .无论火车以何种速度行驶,对内侧轨道都有压力3.如图所示,一圆盘绕过O 点的竖直轴在水平面内旋转,角速度为ω,半径R ,有人站在盘边缘P 点处面对O 随圆盘转动,他想用枪击中盘中心的目标O ,子弹发射速度为v ,则( )A .枪应瞄准O 点射击B .枪应向PO 左方偏过θ角射击,cos R v ωθ=C .枪应向PO 左方偏过θ角射击,tan R v ωθ=D .枪应向PO 左方偏过θ角射击,sin Rvωθ=4.如图所示,竖直转轴OO'垂直于光滑水平桌面,A是距水平桌面高h的轴上的一点,A 点固定有两铰链。

两轻质细杆的一端接到铰链上,并可绕铰链上的光滑轴在竖直面内转动,细杆的另一端分别固定质量均为m的小球B和C,杆长AC>AB>h,重力加速度为g。

当OO'轴转动时,B、C两小球以O为圆心在桌面上做圆周运动。

在OO'轴的角速度ω由零缓慢增大的过程中,下列说法正确的是()A.两小球的线速度大小总相等B.两小球的向心加速度大小总相等C.当ω=gh时,两小球对桌面均无压力D.小球C先离开桌面5.和谐号动车以80m/s的速率转过一段弯道,某乘客发现放在桌面上的指南针在10s内匀速转过了约10︒。

高中物理生活中的圆周运动易错剖析及解析

高中物理生活中的圆周运动易错剖析及解析

高中物理生活中的圆周运动易错剖析及解析一、高中物理精讲专题测试生活中的圆周运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =253gR v =3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-=222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.4.如图所示,一质量为m 的小球C 用轻绳悬挂在O 点,小球下方有一质量为2m 的平板车B 静止在光滑水平地面上,小球的位置比车板略高,一质量为m 的物块A 以大小为v 0的初速度向左滑上平板车,此时A 、C 间的距离为d ,一段时间后,物块A 与小球C 发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ ,重力加速度为g ,若A 碰C 之前物块与平板车已达共同速度,求: (1)A 、C 间的距离d 与v 0之间满足的关系式;(2)要使碰后小球C 能绕O 点做完整的圆周运动,轻绳的长度l 应满足什么条件?【答案】(1);(2)【解析】(1)A碰C前与平板车速度达到相等,设整个过程A的位移是x,由动量守恒定律得由动能定理得:解得满足的条件是(2)物块A与小球C发生碰撞,碰撞时两者的速度互换,C以速度v开始做完整的圆周运动,由机械能守恒定律得小球经过最高点时,有解得【名师点睛】A碰C前与平板车速度达到相等,由动量守恒定律列出等式;A减速的最大距离为d,由动能定理列出等式,联立求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三单元:圆周运动
[内容和方法]
本单元内容包括圆周运动的动力学部分和物体做圆周运动的能量问题,其核心内容是牛顿第二定律、机械能守恒定律等知识在圆周运动中的具体应用。

本单元中所涉及到的基本方法与第二单元牛顿定律的方法基本相同,只是在具体应用知识的过程中要注意结合圆周运动的特点:物体所受外力在沿半径指向圆心的合力才是物体做圆周运动的向心力,因此利用矢量合成的方法分析物体的受力情况同样也是本单元的基本方法;只有物体所受的合外力的方向沿半径指向圆心,物体才做匀速圆周运动。

根据牛顿第二定律合外力与加速度的瞬时关系可知,当物体在圆周上运动的某一瞬间的合外力指向圆心,我们仍可以用牛顿第二定律对这一时刻列出相应的牛顿定律的方程,如竖直圆周运动的最高点和最低点的问题。

另外,由于在具体的圆周运动中,物体所受除重力以外的合外力总指向圆心,与物体的运动方向垂直,因此向心力对物体不做功,所以物体的机械能守恒。

[例题分析]
在本单元知识应用的过程中,初学者常犯的错误主要表现在:对物体做圆周运动时的受力情况不能做出正确的分析,特别是物体在水平面内做圆周运动,静摩擦力参与提供向心力的情况;对牛顿运动定律、圆周运动的规律及机械能守恒定律等知识内容不能综合地灵活应用,如对于被绳(或杆、轨道)束缚的物体在竖直面的圆周运动问题,由于涉及到多方面知识的综合,表现出解答问题时顾此失彼。

例1、一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多),圆管中有两个直径与细管内径相同的小球(可视为质点)。

A球的质量为m1,B球的质量为m2。

它们沿环形圆管顺时针运动,经过最低点时的速度都为v0。

设A球运动到最低点时,球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1,m2,R与v0应满足关系式是。

【错解分析】错解:依题意可知在A球通过最低点时,圆管给A球向上的弹力N1为向心力,则有
B球在最高点时,圆管对它的作用力N2为m2的向心力,方向向下,则有
因为m2由最高点到最低点机械能守恒,则有
错解形成的主要原因是向心力的分析中缺乏规范的解题过程。

没有做受力分析,导致漏掉重力,表面上看分析出了N1=N2,但实际并没有真正明白为什么圆管给m2向下的力。

总之从根本上看还是解决力学问题的基本功受力分析不过关。

【正确解答】首先画出小球运动达到最高点和最低点的受力图,如图4-1所示。

A球在圆管最低点必受向上弹力N1,此时两球对圆管的合力为零,m2必受圆管向下的弹力N2,且N1=N2。

据牛顿第二定律A球在圆管的最低点有
同理m2在最高点有
m2球由最高点到最低点机械能守恒
【小结】比较复杂的物理过程,如能依照题意画出草图,确定好研究对象,逐一分析就会变为简单问题。

找出其中的联系就能很好地解决问题。

例2、使一小球沿半径为R的圆形轨道从最低点上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点?
【错解分析】错解:如图4-2所示,根据机械能守恒,小球在圆形轨道最高点A时的势能等于它在圆形轨道最低点B时的动能(以B点作为零势能位置),所以为
从而得
小球到达最高点A时的速度v A不能为零,否则小球早在到达A点之前就离开了圆形轨道。

要使小球到达A点(自然不脱离圆形轨道),则小球在A点的速度必须满足
式中,N A为圆形轨道对小球的弹力。

上式表示小球在A点作圆周运动所需要的向心力由轨道对它的弹力和它本身的重力共同提供。

当N A=0时,
【正确解答】以小球为研究对象。

小球在轨道最高点时,受重力和轨道给的弹力。

小球在圆形轨道最高点A时满足方程
根据机械能守恒,小球在圆形轨道最低点B时的速度满足方程
解(1),(2)方程组得
轨道的最高点A。

例3、用长L=1.6m的细绳,一端系着质量M=1kg的木块,另一端挂在固定点上。

现有一颗质量m =20g的子弹以v1=500m/s的水平速度向木块中心射击,结果子弹穿出木块后以v2=100m/s的速度前进。

问木块能运动到多高?(取g =10m/s2,空气阻力不计)【错解分析】错解:在水平方向动量守恒,有
mv1=Mv+mv2 (1)
式①中v为木块被子弹击中后的速度。

木块被子弹击中后便以速度v开始摆动。

由于绳子对木块的拉力跟木块的位移垂直,对木块不做功,所以木块的机械能守恒,即
h为木块所摆动的高度。

解①,②联立方程组得到
v = 8(v/s)
h = 3.2(m)
这个解法是错误的。

h = 3.2m,就是木块摆动到了B点。

如图4-3所示。

则它在B点时的速度v B。

应满足方程
这时木块的重力提供了木块在B点做圆周运动所需要的向心力。


如果v B<4 m/s,则木块不能升到B点,在到达B点之前的某一位置以某一速度开始做斜向上抛运动。

而木块在B点时的速度v B=4m/s,是不符合机械能守恒定律的,木块在B点时的能量为(选A点为零势能点)
两者不相等。

可见木块升不到B点,一定是h<3.2 m。

实际上,在木块向上运动的过程中,速度逐渐减小。

当木块运动到某一临界位置C时,如图4-4所示,木块所受的重力在绳子方向的分力恰好等于木块做圆周运动所需要的向心力。

此时绳子的拉力为零,绳子便开始松弛了。

木块就从这个位置开始,以此刻所具有的速度v c作斜上抛运动。

木块所能到达的高度就是C点的高度和从C点开始的斜上抛运动的最大高度之和。

【正确解答】如上分析,从式①求得v A= v = 8m/s。

木块在临界位置C时的速度为v c,高度为
h′=L(1+cosθ)
如图4-4所示,根据机械能守恒定律有
木块从C点开始以速度v c做斜上抛运动所能达到的最大高度h″为
【小结】物体能否做圆运动,不是我们想象它怎样就怎样,这里有一个需要的向心力和提供向心力能否吻合的问题,当需要能从实际提供中找到时,就可以做圆运动。

所谓需要就是符合牛顿第二定律F向= ma向的力,而提供则是实际中的力若两者不相等,则物体将做向心运动或者离心运动。

例4 假如一做圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍做圆周运动,则[ ]
A.根据公式v=ωr,可知卫星运动的线速度增大到原来的2倍。

D.根据上述选项B和C给出的公式,可知卫星运动的线速度将减
【错解分析】错解:选择A,B,C
所以选择A,B,C正确。

A,B,C中的三个公式确实是正确的,但使用过程中A,
【正确解答】正确选项为C,D。

A选项中线速度与半径成正比是在角速度一定的情况下。

而r变化时,角速度也变。

所以此选项不正确。

同理B选项也是如此,F∝1/r2是在v一定时,但此时v变化,故B选项错。

而C选项中G,M,m都是恒量,所以F∝
【小结】物理公式反映物理规律,不理解死记硬背经常会出错。

使用中应理解记忆。

知道使用条件,且知道来拢去脉。

卫星绕地球运动近似看成圆周运动,万有引力提供向心力,由此将
根据以上式子得出
例5、从地球上发射的两颗人造地球卫星A和B,绕地球做匀速圆周运动的半径之比为R A∶R B=4∶1,求它们的线速度之比和运动周期之比。

设A,B两颗卫星的质量分别为m A,m B。

这里错在没有考虑重力加速度与高度有关。

根据万有引力定律知道:
可见,在“错解”中把A,B两卫星的重力加速度g A,g B当作相同的g来处理是不对的。

【正确解答】卫星绕地球做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有
【小结】我们在研究地球上的物体的运动时,地面附近物体的重力加速度近似看做是恒量。

但研究天体运动时,应注意不能将其认为是常量,随高度变化,g值是改变的。

相关文档
最新文档