第七章 蛋白质降解及氨基酸代谢
生物化学试题库及其答案——蛋白质降解和氨基酸代谢
一、填空题1.根据蛋白酶作用肽键的位置,蛋白酶可分为酶和酶两类,胰蛋白酶则属于酶。
2.转氨酶类属于双成分酶,其共有的辅基为或;谷草转氨酶促反应中氨基供体为氨酸,而氨基的受体为该种酶促反应可表示为。
3.植物中联合脱氨基作用需要酶类和酶联合作用,可使大多数氨基酸脱去氨基。
4.在线粒体内谷氨酸脱氢酶的辅酶多为;同时谷氨酸经L-谷氨酸氢酶作用生成的酮酸为,这一产物可进入循环最终氧化为CO2和H2O。
5.动植物中尿素生成是通循环进行的,此循环每进行一周可产生一分子尿素,其尿素分子中的两个氨基分别来自于和。
每合成一分子尿素需消耗分子ATP。
6.根据反应填空7.氨基酸氧化脱氨产生的a-酮酸代谢主要去向是、、、。
8.固氮酶除了可使N2还原成以外,还能对其它含有三键的物质还原,如等。
该酶促作用过程中消耗的能量形式为。
9.生物界以NADH或NADPH为辅酶硝酸还原酶有三个类别,其中高等植物子叶中则以硝酸还原酸酶为主,在绿藻、酵母中存在着硝酸还原酶或硝酸还原酶。
10.硝酸还原酶催化机理如下图请填空完成反应过程。
11.亚硝酸还原酶的电子供体为,而此电子供体在还原子时的电子或氢则来自于或。
12.氨同化(植物组织中)通过谷氨酸循环进行,循环所需要的两种酶分别为和;它们催化的反应分别表示为和。
13.写出常见的一碳基团中的四种形式、、、;能提供一碳基团的氨基酸也有许多。
请写出其中的三种、、。
二、选择题(将正确答案相应字母填入括号中)1.谷丙转氨酶的辅基是()A、吡哆醛B、磷酸吡哆醇C、磷酸吡哆醛D、吡哆胺E、磷酸吡哆胺2.存在于植物子叶中和绿藻中的硝酸还原酶是()A、NADH—硝酸还原酶B、NADPH—硝酸还原酶C、Fd—硝酸还原酶D、NAD(P)H—硝酸还原酶3.硝酸还原酶属于诱导酶,下列因素中哪一种为最佳诱导物()A、硝酸盐B、光照C、亚硝酸盐D、水分4.固氮酶描述中,哪一项不正确()A、固氮酶是由钼铁蛋白质构成的寡聚蛋白B、固氮酶是由钼铁蛋白质和铁蛋白构成寡聚蛋白C、固氮酶活性中心富含Fe原子和S2-离子D、固氮酶具有高度专一性,只对N2起还原作用5.根据下表内容判断,不能生成糖类的氨基酸为()6.一般认为植物中运输贮藏氨的普遍方式是()A、经谷氨酰胺合成酶作用,NH3与谷氨酸合成谷氨酰胺;B、经天冬酰胺合成酶作用,NH3与天冬氨酸合成天冬酰胺;C、经鸟氨酸循环形成尿素;D、与有机酸结合成铵盐。
蛋白质降解及-氨基酸代谢
04
蛋白质降解及-氨基酸代谢的调 控
蛋白质降解的调控机制
泛素-蛋白酶体系统
泛素标记蛋白质,引导蛋白质进入蛋白酶体进行降解。
自噬
通过自噬小泡将蛋白质包裹并运送至溶酶体进行降解。
氧化应激
通过氧化应激反应诱导蛋白质降解,维持细胞内环境 稳定。
氨基酸代谢的调控机制
转氨酶
催化氨基酸之间的转换,参与氨基酸的合成与 分解。
Байду номын сангаас
1 2
相互依存
蛋白质降解产生的氨基酸是氨基酸代谢的主要来 源,而氨基酸代谢的状况又影响着蛋白质的降解 速率。
相互调控
蛋白质降解和氨基酸代谢过程中产生的中间产物 可相互转化,并相互调控对方的代谢过程。
3
共同维持机体稳态
蛋白质降解和氨基酸代谢共同参与机体各种生理 功能的调节,对于维持机体稳态具有重要意义。
促进细胞生长和发育
蛋白质降解对于细胞生长和发育过程中特定蛋白质的消除和再利用 具有重要意义。
02
氨基酸代谢
氨基酸的合成与分解
合成
氨基酸可以通过不同的生物合成途径 获得,如转氨基作用、脱羧基作用等 。这些途径通常需要特定的酶和营养 物质作为合成原料。
分解
氨基酸通过脱氨基作用被分解,产生相 应的碳骨架和α-酮酸。这些酮酸可以进 一步代谢或用于其他生物合成过程。
统性红斑狼疮等。
氨基酸代谢异常与疾病的关系
肝病
氨基酸代谢异常可能导致肝损伤,如肝性脑病等。
神经系统疾病
氨基酸代谢异常可能导致神经元功能异常,如肌 无力、精神分裂症、抑郁症等。
遗传性疾病
氨基酸代谢异常可能与某些遗传性疾病有关,如 苯丙酮尿症、枫糖尿症等。
蛋白质降解和氨基酸分解代谢
COOH
H2N (CH2)3 CH
NH 2
L-鸟氨酸
CO2
H2N (CH 2)3 CH 2 NH 2
腐胺
腺苷
S+ CH3 脱羧SAM
(CH2)3NH 2
H2N
(CH2)4 NH (CH2)3 NH 2
腺苷
S+ CH 3 (CH2)3NH 2
精脒
脱羧SAM
H2N (CH2)3 NH (CH2)4 NH (CH2)3 NH 2
组氨酸和精氨酸. 注:蛋白质不能储备:进入机体内的蛋白质作为氮源和能源
进行代谢.
6、蛋白质的消化和吸收:
三、氨基酸的分解代谢
● 氨基酸的分解代谢产物
α- 酮酸: ● 氧化:CO2、H2O、ATP. ● 提供可转化为G(燃料)
的3碳和4碳单位.
NH4 + : ●再利用生成氨基酸. ● 排泄:NH4+ 、尿素、尿
②
丙氨酸
◆查肝功抽血化验转氨酶指数的意义:
● 肝细胞中转氨酶活力比其他组织高出许多,是血液的100倍. ● 抽血化验若转氨酶比正常水平偏高则有可能:
肝组织受损破裂. ● 结合乙肝抗原等指标进一步确定原因.
(2)葡萄糖-丙氨酸循环:重要.
肌肉组织中有一种重要的转氨酶,不是以α- 酮戊 二酸(α-KG)作为氨基接受体,而是以α- 丙酮酸作
丙酮酸
乙酰CoA 草酰乙酸
乙酰乙酰CoA
天冬酰胺
异柠檬酸
谷氨酸
异亮氨酸
甲硫氨酸
α-酮戊二酸 缬氨酸
苯丙氨酸
谷氨酰胺
酪氨酸 亮氨酸 赖氨酸 色氨酸
苹果酸
三羧酸循环
琥珀酰CoA
延胡索酸
蛋白质的降解和氨基酸的分解代谢
提问:不同蛋白酶之间功能上可能有 什么区别?
氨肽酶
NH3+ —NH3+—
特定氨基酸间
CCOOOO--— —
羧肽酶
最终产物—氨基酸
二 氨基酸分解代谢
氨基酸的来源:
H C N H 33 COO-
2H+H+ R
H2O+H+
C NH
酶
C O O-
NH4+
脱氢 亚氨基酸不稳定 水解加氧
R CO C O O-
α-酮 酸
! L-谷氨酸脱氢酶(专一催化谷氨酸脱氢分解及逆过程)
酶——L-氨基酸氧化酶、D-氨基酸氧化酶
提问:那种酶作用最重要?
常误认为是L-氧化酶(大多数氨基酸都是L型),但该酶分布不普 遍,活力低(pH=7),作用小。
氨的去路:
高等动物的脑对氨极为敏感,血液中1% 的氨就可引起中枢神经系统中毒。
1. 氨的排泄(人:肝脏合成尿素) 2. 氨与谷氨酸合成谷氨酰胺 3. 氨的再利用 : 参与合成非必需氨基酸 或其它含氮化合物(如嘧啶碱) 4. 肾排氨: 中和酸以铵盐形式排出
1. 氨的排泄---安全、价廉
直接排氨,毒性大,不消耗能量。转化为排氨形式越复杂,越安全, 但越耗能。
HC
N
H
+ 3
L-谷氨酸脱氢酶
COO
COO ( C H 2)2 CO COO
α酮戊二酸大量转化 NADH大量消耗
三羧酸循环中断,能量
α-谷氨酸
α-酮戊二酸 供应受阻,某些敏感器
蛋白质降解方法与氨基酸分解代谢
(3)L-谷氨酸脱氢酶
该酶是能使氨基酸直接脱去氨基活力最高的酶。 存在于线粒体中。
蛋白质的降解方法和氨基 酸的分解代谢
1.2 氨基酸的非氧化脱氨基作用 1、 还原脱氨基作用
蛋白质的降解方法和氨基 酸的分解代谢
2、水解脱氨基作用
蛋白质的降解方法和氨基 酸的分解代谢
蛋白质的降解方法和氨基 酸的分解代谢
1.1 氧化脱氨基作用 1.1.1 氧化脱氨基作用一般过程
蛋白质的降解方法和氨基 酸的分解代谢
实际上:
黄素蛋白
蛋白质的降解方法和氨基 酸的分解代谢
氨基酸的脱氨基作用如果由不需氧脱氢酶催化, 则脱出的氢不以分子氧为直接受体,而以辅酶作 为受体,然后经细胞色素体系与氧结合成水。
R1
R2
R3
R4
水解位点
肽链
糜 蛋
或胰凝乳蛋白酶(Chymotrypsin):R1= 苯丙氨酸Phe,色氨酸Trp,酪氨酸Tyr; 亮氨
白
酸Leu,蛋氨酸Met和组氨酸His水解稍
酶
慢。
蛋白质的降解方法和氨基 酸的分解代谢
பைடு நூலகம்
氨基酸的吸收
氨基酸的吸收:主要在小肠进行,是一种主 动转运过程,需由特殊载体携带。除此之外, 也可经γ-谷氨酰循环进行 。
蛋白质的降解方法和氨基 酸的分解代谢
1.1.2 催化氧化脱氨基作用的酶 1. L-氨基酸氧化酶 ① 以黄素腺嘌呤二核苷酸(FAD)为辅基 ② 以黄素单核苷酸(FMN)为辅基。
说明:
– 人和动物体中的L-氨基酸氧化酶属于后一类。该 酶能催化十几种氨基酸的脱氨基作用。
– 对一些氨基酸必须由特殊的,专一性强的氨基酸 氧化酶催化脱氨基。
蛋白质分解及氨基酸代谢
非必需氨基酸是指体内需要的,但不是必须要从食物中摄 取,可以在体内通过一定的途径合成的氨基酸。 食物蛋白质的营养价值的高低,主要决定于其所含必需氨 基酸的种类、数量以及其相互比例是否与人体内的蛋白质 相似。 实际上评定食物蛋白质的营养价值还应包括食物蛋白质含 量、蛋白质的消化率、蛋白质的利用率三个方面。
ATP
过小肠粘膜的刷状缘γ-上谷的氨载酰半体胱蛋氨白酸转运ADP吸+Pi收。已证实的
AA AA
AA
AA
① γ氨-谷基氨酸酰载转体肽蛋酶白目前有④6种肽。酶
② γ-谷氨酰环化转移酶 ⑤ γ-谷氨酰半胱氨酸合成酶
③ 5-氧脯氨酸酶(一)主动⑥转谷运胱甘吸肽收合成酶
三、蛋白质的腐败
腐败作用是指食物中未被消化的蛋白质及未被吸收的氨基 酸和小肽在大肠下部受肠道细菌的作用,发生一些化学变 化、产生一系列产物的过程。 腐败作用是细菌本身对氨基酸及蛋白质的代谢作用。 腐败产物中有些是有一定营养价值的,如维生素K、泛酸、 生物素、叶酸等;其他大多数腐败产物对人体有害,如胺 类、酚类、吲哚、硫化氢、氨等。
第一节
蛋白质的生理功能 和营养作用
一、蛋白质在生命过程中的主要生理功能
维持组织的结构、生长、更新和修补有重要作用; 代谢中可以产生一些生理活性物质,参与接受和传递信 息、调节机体的生长和分化; 某些蛋白质具有特殊的生理功能; 某些蛋白质可以起到生物催化作用和免疫保护作用; 蛋白质也可以提供能量。
氨基酸代谢库的来源与去路
脱氨基
NH3
消化吸收 食物蛋白质
氨
基
组织蛋白质 降解
酸
代
谢
合成氨基酸
库
α-酮酸
脱羧基 转化或参与合成
合成Biblioteka 尿素 糖、酮体 氧化供能 氨基酸 胺类 某些含氮化合物 组织蛋白质
蛋白质的降解和氨基酸的代谢
转氨基作用机制
体内重要的转氨酶
丙氨酸氨基转移酶( ① 丙氨酸氨基转移酶(alanine aminotransferase, ALT或glutamic pyruvic 或 transaminase, GPT):肝中活性最高 ):肝 ): 天冬氨酸氨基转移酶( ② 天冬氨酸氨基转移酶(aspartate aminotransferase, AST或glutamic oxalo-acetic 或 transaminase, GOT):心肌中活性最高 ):心肌中活性最高 ):心肌
氮平衡 状态 氮的总 平衡 氮的正 平衡 氮的负 平衡 进、出氮 情况 摄入氮= 摄入氮= 排出氮 摄入氮> 摄入氮> 排出氮 摄入氮< 摄入氮< 排、青春期青少年、孕妇及 恢复期病人 长期饥饿、 长期饥饿、消耗性疾病患者
三、必需氨基酸 人体营养需要,而又不能自身合成, 人体营养需要,而又不能自身合成,必须由 食物供应的氨基酸。 食物供应的氨基酸。共8种:Val、Ile、 Leu、 种 、 、 、 Phe、Met、Trp、Thr、Lys。 、 、 、 、 。 四、蛋白质的互补作用 混合食用营养价值较低的蛋白质, 混合食用营养价值较低的蛋白质,则必需氨 基酸可以互相补充,从而提高营养价值。 基酸可以互相补充,从而提高营养价值。
第一节
蛋白质的酶促降解
一、细胞内蛋白质降解的的两个体系 P286 1. 溶酶体无选择的降解 2. 泛素标记的选择性蛋白质降解 • 泛素:是一种参与蛋白质降解的小分子蛋白质。 泛素:是一种参与蛋白质降解的小分子蛋白质。
1. 溶酶体无选择的降解蛋白质
• 溶酶体组成及特点 含有50种水解酶(组织蛋白酶),最适PH为 含有50种水解酶(组织蛋白酶),最适PH为5.0 50种水解酶 ),最适PH 左右,在细胞溶胶PH下无活性。 左右,在细胞溶胶PH下无活性。 PH下无活性 • 溶酶体对细胞内组分的利用是和膜融合后利用自 身酶来降解。 身酶来降解。 • 溶酶体降解蛋白质是无选择的。 溶酶体降解蛋白质是无选择的。
第七章.氨基酸代谢
第七章.氨基酸代谢一、教学目标1.了解蛋白质酶促降解过程中各种主要酶的作用。
2.掌握氨基酸分解代谢的一般规律,包括脱氨基作用、转氨基作用、联合脱氨基作用和脱羧基作用。
3.掌握氨基酸分解产物氨和酮酸的进一步代谢。
4.了解氨基酸合成代谢的一般过程。
5.对于个别氨基酸的代谢,作为一般内容了解。
二、生化术语1.生物固氮作用(Biological nitrogen fixation):大气中的氮被还原为氨的过程。
生物固氮只发生在少数的细菌和藻类中。
2.脱氨(deamination):在酶的催化下从生物分子(氨基酸或核苷酸分子)中除去氨基的过程。
3.氧化脱氨(oxidative deamination):α-氨基酸在酶的催化下脱氨生成相应α-酮酸的过程。
氧化脱氨过程实际上包括脱氢和水解两个步骤。
4.转氨酶(transaminases):也称之氨基转移酶(aminotransferases)。
催化一个α-氨基酸的α-氨基向一个α-酮酸转移的酶。
5.转氨(transamination):一个α-氨基酸的α-氨基借助转氨酶的催化作用转移到一个α-酮酸的过程。
6.乒乓反应(ping-pong reaction):在该反应中,酶结合一个底物并释放出一个产物,留下一个取代酶,然后该取代酶再结合第二个底物和释放出第二个产物,最后酶恢复到它的起始状态。
7.氨基酸的联合脱氨作用(transdeamination): 一般认为氨基酸在体内不是直接氧化脱去氨基,而是采取联合的方式进行。
有以L-谷氨酸脱氢酶为中心的联合脱氨和嘌呤核苷酸循环两种方式,后者是氨基酸脱氨的主要的方式。
8.尿素循环(urea cycle):是一个由4步酶促反应组成的可以将来自氨和天冬氨酸的氮转化为尿素的代谢循环。
该循环是发生在脊椎动物肝脏中的一个代谢循环9.生糖氨基酸(glucogenic amino acids):那些降解能生成可作为糖异生前体分子,例如丙酮酸或柠檬酸循环中间代谢物的氨基酸。
第7章蛋白质降解与氨基酸代谢ppt课件
硝酸还原酶是诱导酶,环境中须有NO3-,需光照条件。 NO2-+ 7H+ + 6e- 亚硝酸还原酶 NH3 + 2H2O
电子供体为铁氧还蛋白。
氨的同化指将氨转化为有机态氮的过程,有两条途径:
1、谷氨酸合成途径 (1)谷氨酰胺合成酶和谷氨酸合酶催化合成
谷氨酸 + NH3 谷氨酰胺合成酶 谷氨酰胺
ATP ADP
谷氨酸合酶
谷氨酰胺 + α-酮戊二酸
2谷氨酸
NADPH+H+ NADP+
现有试验证明,谷氨酸的合成,主要通过谷氨 酰胺合成酶和谷氨酸合酶这条双酶途径催化的。
6e-
固N条件
N2 + 3H2
2NH3
(1)电子供体:氧化底物(MH2)、丙酮酸、H2; (2)ATP供能;
(3)厌氧环境。
固N酶组成
铁蛋白:二聚体,含Fe和S 钼铁蛋白:四聚体,含Mo、Fe和S
一、NH3的来源
(二)硝酸还原
硝酸还原分为两步,第一步在硝酸还原酶催化下, NO3-还原为NO2-,第二步在亚硝酸还原酶催化下,NO2- 还原为NH3
氨基酸合成过程示意图
生物固氮
吸收 NH3
硝酸还原
氨基酸分解
氨同化
谷氨酸 供氨基
转氨作用
糖代谢
酮酸 供碳架
氨基酸
(少数)
转化
氨基酸
氨基酸
氨基酸
一碳基团代谢
概念:在代谢过程中,某些化合物可以分解产生 具有一个碳原子的基团,称为“一碳基团”或“一 碳单位”。
蛋白质降解和氨基酸代谢
溶酶体途径
溶酶体是细胞内含有多种水解酶 的细胞器,可以降解细胞内的蛋 白质、细胞器等。
蛋白质降解的生物学意义
维持细胞内环境稳定
通过降解异常或不再需要的蛋白质,可以维持细胞内环境的稳定。
调节细胞功能
通过降解特定蛋白质,可以调节细胞的功能,如细胞增殖、分化、 迁移等。
促进细胞器更新
通过降解老化的或受损的细胞器,可以促进细胞器的更新和修复。
蛋白质降解可以发生在细胞内 的不同部位,如溶酶体、高尔 基体、内质网等。
蛋白质降解的途径
泛素-蛋白酶体途
径
这是细胞内主要的一种蛋白质降 解途径,通过泛素标记将要降解 的蛋白质,然后由蛋白酶体进行 降解。
自噬途径
自噬是一种通过溶酶体降解细胞 内异常蛋白质和细胞器的过程, 对于维持细胞内环境稳定和细胞 器更新具有重要作用。
维持细胞内氨基酸平衡
通过降解蛋白质,细胞可以调节其内部氨基酸的浓度,从而维持一个稳定的氨基酸池,这 对于细胞内各种生物化学反应的正常进行至关重要。
产生能量
在某些情况下,降解的蛋白质可以通过三羧酸循环进一步代谢,为细胞提供能量。
氨基酸代谢对蛋白质降解的影响
01
氨基酸合成与分解的 平衡
细胞内的氨基酸合成与分解过程处于 动态平衡状态,这有助于确保蛋白质 结构的稳定性和功能的正常发挥。
转氨基作用
将氨基酸中的氨基转移至α-酮戊二酸生成谷氨酸,同时生 成新的氨基酸。
脱氨基作用
通过脱氨基酶催化,氨基酸脱去氨基生成相应的α-酮酸。
氨基酸合成与分解代谢
合成代谢中,氨基酸由相应的α-酮酸还原生成;分解代谢 中,氨基酸氧化生成相应的α-酮酸和水。
05
蛋白质降解和氨基酸代谢相
蛋白质的降解和氨基酸的代谢
R1
R2
CHNH2 + C O
COOH COOH
转氨酶
R1 CO + COOH
R2 CHNH2 COOH
要点:
① 反应可逆。
② 体内除Lys、Pro和羟脯氨酸外,大多数氨 基酸都可进行转氨基作用。
2ADP+Pi Pi
氨甲酰磷酸
线粒体
瓜氨酸
胞液
鸟氨酸
瓜氨酸
ATP
鸟氨酸
Urea
AMP+PPi
鸟氨酸循环
精氨酸代 琥珀酸
Arg H2O
延胡索酸
-酮戊 氨基酸 二酸 Asp
-酮酸 Glu 草酰乙酸
苹果酸
鸟氨酸循环要点
① 尿素分子中的氮,一个来自氨甲酰磷酸(或游 离的NH3),另一个来自Asp;
② 每合成1分子尿素需消耗4个~P; ③ 循环中消耗的Asp可通过延胡索酸转变为草酰
• 此阶段消耗2个ATP;
2. 胞液内反应步骤
NH2 CO NH
精氨酸代琥 珀酸合成酶
NH2 COOH
C N CH 精氨酸代琥 NH CH2 珀酸裂解酶
(CH2)3 ATP+Asp
ห้องสมุดไป่ตู้
(CH2)3 COOH
CHNH2
AMP + PPi CHNH2
COOH
COOH
瓜氨酸
精氨酸代
NH2
琥珀酸
COOH CH CH COOH
尿素 NAD+ + H2O
G
G
G
• 是肌肉与肝之间氨的转运形式。
蛋白质降解和氨基酸代谢优秀课件.ppt
学习目标
◆掌握一些主要的概念:转氨作用,氧化脱氨,联合脱氨 基作用,鸟氨酸循环(尿素循环),生酮和生糖氨基酸
◆熟悉鸟氨酸循环发生的部位,循环中的各步酶促反应, 尿素氮的来源
◆了解氨基酸碳骨架的氧化途径,特别是与代谢中心途径 (酵解和柠檬酸循环)的关系,以及一些氨基酸代谢 中酶的缺损引起的遗传病.
内容提要
◆生物体内蛋白质的降解体系主要包括溶酶体的非选择性降解和泛 肽/26S蛋白酶体的选择性降解.
◆谷氨酸脱氢酶催化氨整合到谷氨酸中,谷氨酰胺是氨的一个重要 载体和主要运输形式。葡萄糖-丙氨酸循环.
◆转氨酶催化α-氨基酸和α-酮酸的可逆相互转换。 ◆联合脱氨基作用是生物体脱氨的主要方式,主要分为以谷氨酸脱
L-谷氨酸脱氢酶
CH NH2 COOH
NAD(P)+ NAD(P)H+H+
COOH
CH2 CH2 C=O
+ NH3
COOH
R-CH-COO|
氨基酸氧化酶(FAD、FMN) R-C|| -COO-+NH3
NH+3
α-氨基酸
H2O+O2
H2O2
O
α-酮酸
蛋白质降解和氨基酸代谢优秀课件
• 氨基酸氧化酶:
(pepsinogen) (pepsin)
小肠 分泌 肠促胰液肽 中和胃酸
(secretin)
小肽
胰蛋白酶,糜蛋白酶,弹性蛋白酶
(trypsin) (chymotrypsin) (elastase)
羧肽酶, 氨肽酶 , 二(三)肽酶
(carboxypeptidase)(aminopeptidase) (di,tripeptidase)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 氨基化 (1)还原氨基化
(2)转氨基 (3)联合氨基化
3. 个别氨基酸合成 根据碳架来源分族
Glu族 Asp族 Ala族 (pyr) Ser族 (甘油3磷酸) 芳香族 (PPP途径) His (PRPP)
一碳单位: FH4 “S”的同化
酸 碱 酶
肽
AA
(2) 酶促降解 ) 动物 消化道酶 植物 果实酶 微生物
大多数正分解 有的细菌 真菌 放线菌
酶制剂
微生物来源蛋白酶制剂常按最适pH 微生物来源蛋白酶制剂常按最适pH分类 pH分类
碱性:pH10以上(2709枯草菌蛋白酶) 碱性:pH10以上(2709枯草菌蛋白酶) 酸性:pH2酸性:pH2-3以下 黑曲霉 中性:多 蛋白酶分类: 蛋白酶分类: 内肽酶 (蛋白酶) 外肽酶 羧肽酶、氨肽酶
二、 氨基酸分解的共同途径
1. 脱氨基作用
(1) 氧化脱氨基作用
氨基酸脱氢酶(不需氧) 氨基酸脱氢酶(不需氧)
氨基酸氧化酶(需氧) 氨基酸氧化酶(需氧)
(2) 非氧化脱氨基
脱水 脱H2S …
2. 转氨基作用
3. 联合脱氨基作用
4.脱羧基作用 4.脱羧基作用
5. AA降解产物的进一步代谢 AA降解产物的进一步代谢
第七章 蛋白质降解及氨基酸代谢
概述 氨基酸分解的共同途径 氨基酸的合成
一、 概 述
1.氮源与氨基酸库 氮源与氨基酸库
NO3 NO2 NH3 有机氮 (氨基酸)
N2
肽/蛋白质
2. 蛋白质的酶促水解(消化吸收) 蛋白质的酶促水解(消化吸收) (1)水解: )水解: 水解过程: 水解过程: protein 眎 胨
1).
放出
CO2
再羧化
2).
EMP
R-CO-COOH CO-
生糖/生酮 ATP
TCA
3). NH2
a. 再合成AA 甲酰磷酸 d. 生成尿素排泄(鸟氨酸(尿素)循环) 生成尿素排泄(鸟氨酸(尿素)循环)
三、 氨基酸的合成
1. 概述
-NH2 氨基化 酮酸(碳架) 酮酸(碳架)