北京市各区2017届中考数学二模试题分类整理代数综合题无答案20170717389.

合集下载

北京市各区2017届中考数学二模试题分类整理代数综合题无答案20170717389

北京市各区2017届中考数学二模试题分类整理代数综合题无答案20170717389

代数综合题(2017昌平二模)27. 在平面直角坐标系xOy 中,抛物线)0(42≠-=m mx mx y 与x 轴交于A ,B 两点(点A 在点B 的左侧).(1)求点A ,B 的坐标及抛物线的对称轴;(2)过点B 的直线l 与y 轴交于点C ,且2tan =∠ACB ,直接写出直线l 的表达式;(3)如果点)(1n x P ,和点)(2n x Q ,在函数)0(42≠-=m mx mx y 的图象上,PQ=2a 且21x x >,求26221+-+a ax x 的值.(2017房山二模)26.如图,在平面直角坐标系xoy 中,已知点(1,0)P -,C(21,1)-,(0,3)D -, A ,B 在x 轴上,且P 为AB 中点,1CAP S ∆=.(1)求经过A 、D 、B 三点的抛物线的表达式.(2)把抛物线在x 轴下方的部分沿x 轴向上翻折,得到一个新的图象G ,点Q 在此新图象G 上,且APQ APC S S ∆∆=,求点Q 坐标.(3)若一个动点M 自点N (0,-1)出发,先到达x 轴上某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点D ,求使点M 运动的总路程最短的点E 、点F 的坐标.(2017通州二模)27.已知:二次函数1422-++=m x x y ,与x 轴的公共点为A ,B . (1)如果A 与B 重合,求m 的值; (2)横、纵坐标都是整数的点叫做整点; ①当1=m 时,求线段AB 上整点的个数;②若设抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)整点的个数为n ,当1<<8n 时,结合函数的图象,求m 的取值范围.(2017朝阳二模)27.在平面直角坐标系xOy 中,抛物线y =mx 2-2mx +2(m ≠0)与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求点A ,B 的坐标;(2)点C ,D 在x 轴上(点C 在点D 的左侧),且与点B 的距离都为2,若该抛物线与线段CD 有两个公共点,结合函数的图象,求m 的取值范围.(2017西城二模)27.在平面直角坐标系xOy 中,抛物线y =ax 2+2ax -3a (a >0)与x 轴交于A ,B 两点(点A在点B 的左侧).(1)求抛物线的对称轴及线段AB 的长;(2)若抛物线的顶点为P ,若∠APB =120 °,求顶点P 的坐标及a 的值; (3)若在抛物线上存在点N ,使得∠ANB =90°,结合图形,求a 的取值范围.(2017东城二模)27.在平面直角坐标系xOy 中,抛物线2221y x mx m m =-+--+. (1)当抛物线的顶点在x 轴上时,求该抛物线的解析式;(2)不论m 取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;(3)若有两点()1,0A -,()1,0B ,且该抛物线与线段AB 始终有交点,请直接写出m 的取值范围.(2017丰台二模)27.在平面直角坐标系xOy 中,抛物线12212+-+=a x ax y 与y 轴交于点C ,与x 轴交于A ,B 两点(点A 在点B 左侧),且点A 的横坐标为﹣1. (1)求a 的值;(2)设抛物线的顶点P 关于原点的对称点为P′,求点P′的坐标; (3)将抛物线在A ,B 两点之间的部分(包括A ,B 两点),先向下平移 3个单位,再向左平移m (0>m )个单位,平移后的图象记为图象G ,若图象G 与直线PP′ 无交点,求m 的取值范围.(2017石景山二模)27.在平面直角坐标系xOy 中,抛物线1C :2y x bx c =++与x 轴交于点A ,B (点A 在点B 的左侧),对称轴与x 轴交于点3,0(),且4AB =. (1)求抛物线1C 的表达式及顶点坐标; (2)将抛物线1C 平移,得到的新抛物线2C 的 顶点为(0,1)-,抛物线1C 的对称轴与两 条抛物线1C ,2C 围成的封闭图形为M . 直线:(0)l y kx m k =+≠经过点B .若直 线l 与图形M 有公共点,求k 的取值范围.(2017顺义二模)27.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过A (﹣1,0),B (3,0)两点.(1)求抛物线的表达式;(2)抛物线2y x bx c =-++在第一象限内的部分记为图象G ,如果过点P (-3,4)的直线y =mx +n (m ≠0)与图象G 有唯一公共点,请结合图象,求n 的取值范围.备用图yx–1–2–3–4–5–6123456–1–2–3–4–5123456789101112O(2017平谷二模)27.在平面直角坐标系xOy 中,抛物线()24440y mx mx m m =-++≠的顶点为P .P ,M 两点关于原点O 成中心对称. (1)求点P ,M 的坐标;(2)若该抛物线经过原点,求抛物线的表达式; (3)在(2)的条件下,将抛物线沿x 轴翻折,翻折后的图象在05x ≤≤的部分记为图象H ,点N 为抛物线对称轴上的一个动点,经过M ,N 的直线与图象H 有两个公共点,结合图象求出点N 的纵坐标n 的取值范围.(2017怀柔二模)27. 在平面直角坐标系xOy 中,直线1y x =+与y 轴交于点A ,并且经过点B(3,n). (1)求点B 的坐标;(2)如果抛物线2441y ax ax a =-+- (a >0)与线段AB 有唯一公共点, 求a 的取值范围.Oyx-1-2-4-3-6-5-1-2-4-6-5-3124365124365。

北京市各区2017届中考数学二模试题分类整理应用题无答案20170717398

北京市各区2017届中考数学二模试题分类整理应用题无答案20170717398

应用题(2017昌平二模)22. 2016年共享单车横空出世,更好地解决了人们“最后一公里”出行难的问题,截止到2016年底,“ofo 共享单车”的投放数量是“摩拜单车”投放数量的1.6倍,覆盖城市也远超于“摩拜单车”,“ofo 共享单车”注册用户量约为960万人,“摩拜单车”的注册用户量约为750万人,据统计使用一辆“ofo 共享单车”的平均人数比使用一辆“摩拜单车”的平均人数少3人,假设注册这两种单车的用户都在使用共享单车,求2016年“摩拜单车”的投放数量约为多少万台?(2017房山二模)21.为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,且两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.(2017通州二模)23.某校组织同学到离校15千米的社会实践基地开展活动.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发32小时后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地.已知汽车速度是自行车速度的3倍,求自行车的速度.(2017西城二模)20.列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,但每件进价比第一批的每件进价少了10元,且进货量是第一批进货量的一半,求第一批购进这种衬衫每件进价是多少元.(2017东城二模)22.列方程或方程组解应用题:某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m 2区域的绿化时,甲队比乙队少用4天.求甲、乙两工程队每天能完成绿化的面积分别是多少m 2?(2017丰台二模)25.2016年底以来,京城路边排满了各种颜色的共享单车,本着低碳出行与强身健体的理念,赵老师决定改骑共享单车上下班.通过一段时间的体验,赵老师发现每天上班所用时间只比自驾车多52小时.已知赵老师家距学校12千米,上下班高峰时段,自驾车的速度是自行车速度的2倍.求赵老师骑共享单车每小时行驶多少千米.(2017石景山二模)21.列方程或方程组解应用题:某校的软笔书法社团购进一批宣纸,用720元购进的用于创作的宣纸与用120元购进的用于练习的宣纸的数量相同,已知用于创作的宣纸的单价比用于练习的宣纸的单价多1元,求用于练习的宣纸的单价是多少元∕张?。

2017各地中考及北京各区一、二模数学试题分类整理——圆基础

2017各地中考及北京各区一、二模数学试题分类整理——圆基础

类型1:圆基础(1)求角度 1、(海淀一模7)如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠ACO =50°,则∠B 的度数为( )A .60°B .50°C .40°D .30°2、(石景山二模6)如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧上任意一点(与点B 不重合),则BPC ∠的度数为( ) A .30°B .45°C .60°D .90°3、(怀柔二模8)如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 的度数为( )A .32°B .58°C .64°D .116°4、(苏州中考9)如图,在Rt △ABC 中,∠ACB =90°,∠A=56°.以BC 为直径的⊙O 交AB 于点D ,E 是⊙O 上一点,且 CECD =,连接OE ,过点E 作EF ⊥OE ,交AC 的延长线于点F ,则∠F 的度数为( )A .92B .108C .112D .1245、(西城一模14)如图,四边形ABCD 是⊙O 内接四边形,若∠BAC =30°,∠CBD =80°,则∠BCD 的度数为____________. 6、(朝阳一模13)如图,⊙O 是△ABC 的外接圆,∠ACO=45°,则∠B 的度数为___________.7、(昌平二模12)如图,四边形ABCD 的顶点均在⊙O 上,∠A =70°,则∠C =___________°.8、(青岛中考13)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.COABOADBC第13题图9、(丰台一模14)如下图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在大量角器上对应的度数为40°,那么在小量角器上对应的度数为______________.(只考虑小于90°的角度)10、(北京中考14)如图,AB 为O 的直径,C D 、为O 上的点,AD CD =.若040CAB ∠=,则CAD ∠= . 11、(怀柔二模13)一个扇形的半径长为5,且圆心角为60°,则此扇形的弧长为___________.12、(房山二模13)如图,四边形ABCD 的顶点均在⊙O 上,⊙O 的半径为2. 如果∠D =45°,那么»AC 的长为__________.(结果用π表示)*13、(海淀二模10)利用量角器可以制作“锐角正弦值速查卡”.制作方法如下:如图,设OA =1,以O 为圆心,分别以0.05,0.1,0.15,0.2,…,0.9,0.95长为半径作半圆,再以OA 为直径作⊙M .利用“锐角正弦值速查卡”可以读出相应锐角正弦的近似值.例如:A .70°B .50°C .40°D .30°P(2)求线段长 1、(门头沟一模7)如图,AB 是⊙O 的弦,当半径4OA =,120AOB ∠=︒时,弦AB 的长( ) A .2 B .4 C. D.2、(燕山一模7)如图,⊙O 的半径长3cm ,点C 在⊙O 上,弦AB 垂直平分OC 于点D ,则弦AB 的长为( )A .29cm B .233cm C.33cmD .49cm第1题图 第2题图 第3题图 第4题图 3、(海淀二模7)如图,OA 为⊙O 的半径,弦BC ⊥OA 于P 点.若OA =5,AP =2,则弦BC的长为( )A .10B .8C .6D .4 4、(朝阳二模9)如图,⊙O 的半径OC 垂直于弦AB ,垂足为D ,OA =,∠B =22.5°,AB的长为( )A .2B .4C .D . 5、(丰台二模7)如图,A ,B ,E 为⊙O 上的点,⊙O 的半径OC ⊥AB 于点D ,已知∠CEB =30°,OD =1,则⊙O 的半径为( ) A .3 B .2 C .32 D .4 6、(平谷二模5)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为6,则圆心O 到弦CD 的距离OE 长为( )A .6B .5C .D .37、(遵义中考17)如图,AB 是⊙O 的直径,AB=4,点M 是OA 的中点,过点M 的直线与⊙O 交于C ,D 两点.若∠CMA=45°,则弦CD 的长为 . 8、(东城二模14)如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB ,OC .若∠BAC 与∠BOC 互补,则弦BC 的长为 .AOBABDOPC BAOEBCD OA9、如图,在平面直角坐标系xOy 中,A (3,4)为⊙O 上一点,B 为⊙O内一点,请写出一个符合要求的点B 的坐标 . 10、(西城二模14)在平面直角坐标系xOy 中,⊙O 半径是5,点A为⊙O 上一点,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,若四边形ABOC 面积为12,写出一个符合条件的点A 坐标 .(3)求面积1、(西城二模8)如图,以点O 为圆心,AB 为直径的半圆经过点C ,若C 为弧AB 的中点,若AB =2,则图中阴影部分的面积是( )A .2πB .122π+C .4πD .124π+2、(石景山二模13)如图,ABC △是⊙O 的内接正三角形,图中阴影部分 的面积是12π,则⊙O 的半径为 .3、(山西中考10)右图是某商品的标志图案,AC 与BD 是O 的两条直径,首尾顺次连接点,,,A B C D ,得到四边形ABCD .若10,36AC cm BAC =∠= ,则图中阴影部分的面积为( )A .25cm πB .210cm πC .215cm πD .220cm π4、(丰台二模15)如图,扇形纸扇完全打开后,外侧两竹条AB ,AC夹角为120°,AB 的长为30cm ,无贴纸部分AD 的长为10cm ,则贴纸部分的面积等于 cm 2. 5、(东城二模15)如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,竹条AB 的长为25cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则一面贴纸的面积为 cm 2. (结果保留π)*6、(河南中考10)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )A .2π3B .2 3﹣π3 C .2 3﹣2π3D .4 3﹣2π3*7、(德州中考17)某景区修建一栋复古建筑,其窗户设计如图所示.圆的圆心与矩形对角线的交点重合,且圆与矩形上下两边相切(为上切点),与左右两边相交(,为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,根据设计要求,若∠EOF =45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为_____________.*8、(成都中考23)已知O 的两条直径,AC BD 互相垂直,分别以,,,AB BC CD DA 为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为1P ,针尖落在O 内的概率为2P ,则12P P ______________.O ABCD E FG。

2017各地中考及北京各区一、二模数学试题分类整理——整式运算与几何图形

2017各地中考及北京各区一、二模数学试题分类整理——整式运算与几何图形

类型7:整式运算与图形(1)多项式乘法与乘法公式与图形1、(朝阳一模15)如图,图中的四边形都是矩形,根据图形,写出一个正确的等式:____________________.2、(房山一模13、怀柔一模14)右图中的四边形均为矩形.根据图形,利用图中的字母,写出一个正确的等式:____________________.3、(丰台一模12)右图中的四边形均为矩形,根据图形的面积关系,写出一个正确的等式:____________________.4、(海淀一模13)右图中的四边形均为矩形.根据图形,写出一个正确的等式:____________________.5、(平谷一模12,其他模拟*3)如图,一个正方形被分成两个正方形和两个一模一样的矩形,请根据图形,写出一个含有a ,b 的正确的等式____________________.6、(顺义一模12)如图的四边形均为矩形或正方形,根据图形的面积,写出一个正确的等式:____________________.7、(门头沟一模12)如图1,将边长为a 的大正方形剪去一个边长为b 的小正方形并沿图中的虚线剪开,拼接后得到图2,这种变化可以用含字母a ,b 的等式表示为____________________.图2图1bbaa(2)勾股定理与图形 1、(西城二模15)右图是由三个直角三角形组成的梯形,根据图形,写出一个正确的等式____________________. 2、(通州二模13)2002年8月,在北京召开国际数学家大会,大会的会标取材于我国古代数学家赵爽的《勾股圆方图》.其中的“弦图”是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,如图所示.如果直角三角形的直角边分别为a ,b (a >b ),斜边为c ,那么小正方形的面积可以表示为____________________. 3、(平谷二模12)中国数学史上有许多著名的数学家,很多理论都是由他们的名字命名的.如图1就是著名的“赵爽弦图”,它是由公元3世纪三国时期的赵爽为证明某个定理而创设的一副“弦图”,图2由“弦图”变化得到,请用含a ,b ,c 的等式表示定理的内容____________________.图2图1。

2017各地中考及北京各区一、二模数学试题分类整理——尺规作图、作图依据

2017各地中考及北京各区一、二模数学试题分类整理——尺规作图、作图依据

类型1:尺规作图与作图依据1、(石景山一模9)用尺规作图法作已知角AOB ∠的平分线的步骤如下:①以点O 为圆心,任意长为半径作弧,交OB 于点D ,交OA 于点E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在AOB ∠的内部相交于点C ;③作射线OC .则射线OC 为AOB ∠的平分线.由上述作法可得OCD △≌OCE △的依据是A .SASB .ASAC .AASD .SSS 2、(通州一模16)工人师傅常用角尺(两个互相垂直的直尺构成)平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同..的刻度分别与点M ,N 重合.过角尺顶点C 的射线OC 便是∠AOB 的平分线.这样做的依据是:_____________ __________________________________________________________.3、(西城一模16)下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 和直线l 外一点P . 求作:直线l 的平行直线,使它经过点P .作法:如图2.(1) 过点P 作直线m 与直线l 交于点O ; (2) 在直线m 上取一点A (OA <OP ),以点O 为圆心,OA 长为半径画弧,与直线l 交于点B ;(3) 以点P 为圆心,OA 长为半径画弧,交直线m 于点C ,以点C 为圆心,AB 长为半径画弧,两弧交于点D ;(4) 作直线PD .所以直线PD 就是所求作的平行线.请回答:该作图的依据是 .4、(朝阳一模16)阅读下面材料:数学课上,老师提出如下问题:请回答:小红的作图依据是______________________.5、(东城一模16)下面是“以已知线段为直径作圆”的尺规作图过程.的长为半径请回答:该作图的依据是.6、(房山一模16)在数学课上,老师提出如下问题:小云的作法如下:小云作图的依据 . 7、(丰台一模16)在数学课上,老师提出如下问题:小姗的作法如下:老师说:“小姗的作法正确”.请回答:得到△ABC 是等腰三角形的依据是:____________________________. 8、(平谷一模16)小米是一个爱动脑筋的孩子,他用如下方法作∠AOB 的角平分线: 作法:如图,(1)在射线OA 上任取一点C ,过点C 作CD ∥OB ;(2)以点C 为圆心,CO 的长为半径作弧,交CD 于点E ; (3)作射线OE .所以射线OE 就是∠AOB 的角平分线.请回答:小米的作图依据是____________________________________________________ ____________________________________________________________________________.9、(海淀一模16)下面是“作三角形一边中线”的尺规作图过程.已知:△ABC .求作:BC 边上的中线AD .作法:如图,(1)分别以点B ,C 为圆心,AC ,AB 长为半径作弧,两弧相交于P 点; (2)作直线AP ,AP 与BC 交于D 点. 所以线段AD 就是所求作的中线.请回答:该作图的依据是_____________________________________________________. 10、(怀柔一模16)数学活动课上,老师让同学们围绕一道尺规作图题展开讨论,尽可能想出不同的作法: 请回答:小强这样作图的依据是: . 11、(顺义一模16)阅读下面材料:在数学课上,老师提出如下问题:小凯的作法如下:PABB CAPAB D C老师说:“小凯的作法正确.” 请回答:在小凯的作法中,判定四边形AECF 是菱形的依据是______________________. 12、(燕山一模16)下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.请回答:该作图依据是 . 13、(朝阳二模16)阅读下面材料:数学课上,老师提出如下问题:小强的作法如下:老师表扬了小强的作法是对的.请回答:小强这样作图的主要依据是 .尺规作图:经过直线外一点作这条直线的平行线.已知:直线l 和直线l 外一点A . 求作:直线l 的平行线,使它经过点A . 如图, (1)过点A 作直线m 交直线l 于点B ; (2)以点A 为圆心,AB 长为半径作弧,交直线m 于点C ; (3)在直线l 上取点D (不与点B 重合),连接CD ; (4)作线段CD 的垂直平分线n ,交线段CD 于点E ; (5)作直线AE. 所以直线AE 即为所求.14、(石景山二模15)下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.请回答:得到△ABC是等腰三角形的依据是:①___________________________________________________________________:②___________________________________________________________________.15、(顺义二模16)阅读下面材料:在数学课上,老师提出如下问题:小丽的作法如下:老师说:“小丽的作法正确.”请回答:小丽的作图依据是________________________________________.16、(通州二模16)阅读下面材料:在数学课上,老师提出如下问题:16-1 FK老师说:“小亮的作法正确”请回答:小亮的作图依据是____________________________________________.17、(门头沟一模16)在数学课上,老师布置了一项作图任务,如下:已知:如图16-1,在△ABC 中,AC AB =,请在图中的△ABC 内(含边),画出使45APB ∠=︒的一个点P (保留作图痕迹),小红经过思考后,利用如下的步骤找到了点P : (1)以AB 为直径,做⊙M ,如图16-2; (2)过点M 作AB 的垂线,交⊙M 于点N ;(3)以点N 为圆心,NA 为半径作⊙N ,分别交CA 、CB 边于F 、K ,在劣弧上任取一点P即为所求点,如图16-3.说出此种做法的依据__________________________________________________________.18、(丰台二模16)阅读下面材料:如图,AB 是半圆的直径,点C 在半圆外,老师要求小明用无刻度的直尺画出△ABC 的三条高.小明的作法如下:(1)连接AD ,BE,它们相交于点P ; (2)连接CP 并延长,交AB 于点F .所以,线段AD ,BE ,CF 就是所求的△ABC 的三条高.请回答,小明的作图依据是 .16-2 16-3 BAC DEE D CABFP如图:(1) 作射线CE ;(2) 以C 为圆心,AB 长为半径作弧交CE 于D .19、(怀柔二模16) 下面是一道确定点P 位置的尺规作图题的作图过程.请回答:该作图的依据是 . 20、(平谷二模16)如图1,△ABC 中,BC >AB >AC ,在BC 边上取一点P ,使∠APC =2∠ABC .小路的作法如下,如图2:①作AB 边的垂直平分线,交BC 于点P ; ②连结AP .所以,∠APC =2∠ABC .小路的作图依据是 . 21、(昌平二模15)如图,已知钝角△ABC,老师按照如下步骤尺规作图:步骤1:以C 为圆心,CA 为半径画弧①;步骤2:以B 为圆心,BA 为半径画弧②,交弧①于点D ;步骤3:连接AD ,交BC延长线于点H .小明说:图中的BH ⊥AD 且平分AD . 小丽说:图中AC 平分∠BAD . 小强说:图中点C 为BH 的中点.他们的说法中正确的是___________.他的依据是_____________________.图1BAB C DH图2B22、(北京中考16)下图是“作已知直角三角形的外接圆”的尺规作图过程已知:0,90Rt ABC C ∆∠=,求作:Rt ABC ∆的外接圆.作法:如图.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,P Q 两点;(2)作直线PQ ,交AB 于点O ; (3)以O 为圆心,OA 为半径作O .O 即为所求作的圆.请回答:该尺规作图的依据是 .23、(成都中考14)如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交,AB AD 于点,M N ;②分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若2,3DQ QC BC ==,则平行四边形ABCD 周长为 .24、(青岛中考15)用圆规、直尺作图,不写作法,但要保留作图痕迹. 已知:四边形ABCD .求作:点P .使∠PCB =∠B ,且点P 到AD 和CD 的距离相等。

2017年北京中考二模数学28题汇总(几何综合9个区)

2017年北京中考二模数学28题汇总(几何综合9个区)

2017年北京中考二模数学28题汇总(几何综合9个区)1.(2017北京昌平中考二模_28)(7分) 如图,在正方形ABCD 中,E 为AB 边上一点,连接DE ,将△ADE绕点D 逆时针旋转90°得到△CDF ,作点F 关于CD 的对称点,记为点G ,连接DG . (1)依题意在图1中补全图形;(2)连接BD ,EG ,判断BD 与EG 的位置关系并在图2中加以证明; (3)当点E 为线段AB 的中点时,直接写出∠EDG 的正切值.EDCBA图2图1ABCDE2.(2017北京通州中考二模_28)(7分)在△ABC 中,AB =BC ,∠ABC =90°. 以AB 为斜边作等腰直角三角形ADB . 点P 是直线DB 上一个动点,连接AP ,作PE ⊥AP 交BC 所在的直线于点E.备用图A B CD(1)如图1,点P在BD的延长线上,PE⊥EC,AD=1,直接写出PE的长;(2)点P在线段BD上(不与B,D重合),依题意,将图2补全,求证P A=PE;(3)点P在DB的延长线上,依题意,将图3补全,并判断P A=PE是否仍然成立.3.(2017北京房山中考二模_28)(7分)在Rt△ABC中,∠ACB=90°,AC=BC=2,点P为BC边上的一个动点(不与B、C重合). 点P关于直线AC、AB的对称点分别为M、N,连结MN交AB于点F,交AC于点E.(1)当点P为BC的中点时,求∠M的正切值;图2图1MEFNNFE MABCP P CBA (2)当点P 在线段BC 上运动(不与B 、C 重合)时,连接AM 、AN ,求证: ① △AMN 为等腰直角三角形;②△AEF ∽△BAM .4.(2017北京朝阳中考二模_28)(7分)在△ABC 中,∠ACB =90°,以AB 为斜边作等腰直角三角形ABD ,且点D 与点C 在直线AB 的两侧,连接CD .(1) 如图1,若∠ABC =30°,则∠CAD 的度数为 . (2)已知AC =1,BC =3. ①依题意将图2补全;②求CD 的长;小聪通过观察、实验、提出猜想,与同学们进行交流,通过讨论,形成了求CD 长的几种想法: 想法1:延长CB ,在CB 延长线上截取BE =AC ,连接DE .要求CD 的长,需证明 △ACD ≌△BED ,△CDE 为等腰直角三角形.想法2:过点D 作DH ⊥BC 于点H ,DG ⊥CA ,交CA 的延长线于点G ,要求CD 的长,需证明△BDH ≌△ADG ,△CHD 为等腰直角三角形. ……请参考上面的想法,帮助小聪求出CD 的长(一种方法即可). (3)用等式表示线段AC ,BC ,CD 之间的数量关系(直接写出即可).5.(2017北京海淀中考二模_28)(7分)在锐角△ABC 中,AB=AC ,AD 为BC 边上的高,E 为AC 中点. (1)如图1,过点C 作CF ⊥AB 于F 点,连接EF .若∠BAD =20°,求∠AFE 的度数;(2)若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 于N 点,射线EN ,AB交于P 点.①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M 运动的过程中,始终有∠APE =2∠MAD .图1图2小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法: 想法1:连接DE ,要证∠APE =2∠MAD ,只需证∠PED =2∠MAD .想法2:设∠MAD =α,∠DAC =β,只需用α,β表示出∠PEC ,通过角度计算得∠APE =2α. 想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,要证∠APE =2∠MAD ,只需证△NAQ ∽△APQ . ……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD .(一种方法即可)EFB D CA6.(2017北京石景山中考二模_28)(7分)已知在Rt BAC △中,90BAC ∠=°,AB AC =,点D 为射线BC 上一点(与点B 不重合),过点C 作CE ⊥BC 于点C ,且CE BD =(点E 与点A 在射线BC 同侧),连接AD ,ED .(1)如图1,当点D 在线段BC 上时,请直接写出ADE ∠的度数.(2)当点D 在线段BC 的延长线上时,依题意在图2中补全图形并判断(1)中结论是否成立?若成立,请证明;若不成立,请说明理由.(3)在(1)的条件下,ED 与AC 相交于点P ,若2AB =,直接写出CP 的最大值.图1 图2图1 图2 备用图7.(2017年北京平谷中考二模_28)(7分)在△ABC中,AB=AC,∠A=60°,点D是BC边的中点,作射线DE,与边AB交于点E,射线DE绕点D顺时针旋转120°,与直线AC交于点F.(1)依题意将图1补全;(2)小华通过观察、实验提出猜想:在点E运动的过程中,始终有DE=DF.小华把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:由点D是BC边的中点,通过构造一边的平行线,利用全等三角形,可证DE=DF;想法2:利用等边三角形的对称性,作点E关于线段AD的对称点P,由∠BAC与∠EDF互补,可得∠AED与∠AFD互补,由等角对等边,可证DE=DF;想法3:由等腰三角形三线合一,可得AD是∠BAC的角平分线,由角平分线定理,构造点D到AB,AC的高,利用全等三角形,可证DE=DF…….请你参考上面的想法,帮助小华证明DE=DF(选一种方法即可);(3)在点E运动的过程中,直接写出BE,CF,AB之间的数量关系.8.(2017年北京怀柔中考二模_28)(7分)在△ABN 中,∠B =90°,点M 是AB 上的动点(不与A,B 两点重合),点C 是BN 延长线上的动点(不与点N 重合),且AM=BC ,CN=BM ,连接CM 与AN 交于点P.(1)在图1中依题意补全图形;(2)小伟通过观察、实验,提出猜想:在点M ,N 运动的过程中,始终有∠APM=45°.小伟把这个猜图1 A B N 备用图 A B N想与同学们进行交流,通过讨论,形成了证明该猜想的一种思路:要想解决这个问题,首先应想办法移动部分等线段构造全等三角形,证明线段相等,再构造平行四边形,证明线段相等,进而证明等腰直角三角形,出现45°的角,再通过平行四边形对边平行的性质,证明∠APM=45°.他们的一种作法是:过点M在AB下方作MD⊥AB于点M,并且使MD=CN.通过证明△AMD≅△CBM,得到AD=CM,再连接DN,证明四边形CMDN是平行四边形,得到DN=CM,进而证明△ADN是等腰直角三角形,得到∠DNA=45°.又由四边形CMDN是平行四边形,推得∠APM=45°.使问题得以解决.请你参考上面同学的思路,用另一种方法证明∠APM=45°.9.(2017年北京顺义中考二模_28)(7分)在平面直角坐标系xOy中,对于点和⊙C给出如下定义:若⊙O上存在两个点,,使得,则称为⊙C的关联点.已知点,,,(1)当⊙O的半径为1时,①在点M,N,,中,⊙O的关联点是___________________________ ;②过点作直线l交轴正半轴于点,使,若直线l上的点是⊙O的关联点,求的取值范围;(2)若线段上的所有点都是半径为的⊙O的关联点,求半径的取值范围.。

2017各地中考及北京各区一、二模数学试题分类整理——几何基础知识部分

2017各地中考及北京各区一、二模数学试题分类整理——几何基础知识部分

2017各地中考及北京各区⼀、⼆模数学试题分类整理——⼏何基础知识部分⽬录类型1:三线⼋⾓、三⾓板、三⾓形内⾓和 (2)类型2:平⾯图形与⽴体图形 (5)(1)三视图 (5)(2)平⾯展开图 (7)类型3:轴对称与旋转对称 (9)类型4:其他⼏何基础 (13)(1)度量 (13)(2)其他 (13)类型1:三线⼋⾓、三⾓板、三⾓形内⾓和1、(西城⼀模3)如图,AB ∥CD ,DA ⊥CE 于点A .若∠EAB = 55°,则∠D 的度数为() A .25° B .35° C .45° D .55°2、(朝阳⼀模4)如图,直线1l ∥2l ,若∠1=70°,∠2=60°,则∠3的度数为()A .40°B .50°C .60°D .70°第1题图第2题图第3题图 3、(东城⼀模5)如图,AB ∥CD ,直线EF 分别交AB ,CD 于M ,N 两点,将⼀个含有45°⾓的直⾓三⾓尺按如图所⽰的⽅式摆放,若∠EMB =75°,则∠PNM 等于()A .15°B .25°C .30°D .45°4、(房⼭⼀模4)如图,直线a ∥b ,三⾓板的直⾓顶点放在直线b 上,两直⾓边与直线a 相交,如果∠1=55°,那么∠2等于()A .65°B.55°C.45°D . 35°5、(海淀⼀模6)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,点A ,点C 分别在直线a ,b 上,且a ∥b .若∠1=60°,则∠2的度数为()A .75°B .105°C .135°D .155°第4题图第5题图第6题图6、(门头沟⼀模5)⼀个三⾓板(含30°、60°⾓)和⼀把直尺摆放位置如图所⽰,直尺与三⾓板的⼀⾓相交于点A ,⼀边与三⾓板的两条直⾓边分别相交于点D 、点E ,且CD CE =,点F 在直尺的另⼀边上,那么∠BAF 的⼤⼩为()A .10°B .15°C .20°D .30°7、(⽯景⼭⼀模3)如图,直线a ∥b ,直线l 与a ,b 分别交于A ,B 两点,过点B 作BC ⊥AB 交直线a 于点C ,若1=65∠°,则2∠的度数为()A .25°B .35°C .65°D .115°DCABEPNMFE DCBACABCD8、(顺义⼀模3)如图,AB ∥CD ,E 是BC 延长线上⼀点,若∠B =50?,∠D =20?,则∠E 的度数为()A .20?B .30?C .40?D .50?9、(丰台⼆模4)如图,AB ∥CD ,∠B =56°,∠E =22°,则∠D 度数为()A .22°B .34°C .56°D .78°10、(通州⼆模4)如图,直线l 1,l 2,l 3交于⼀点,直线l 4// l 1,若∠1= ∠2=36°,则∠3的度数为()A .60°B .90°C .108°D .150°11、(东城⼆模7)将⼀副直⾓三⾓板如图放置,使含30°⾓的三⾓板的直⾓边和含45°⾓的三⾓板⼀条直⾓边在同⼀条直线上,则∠1的度数为()B .65°C .45°D .30°12、(⽯景⼭⼆模3)如图,直线a ∥b ,直线l 与a ,b 分别交于点A ,B ,过点A 作AC ⊥b 于点C ,若1=50∠°,则2∠的度数为()A .130°B .50°C .40°D .25° 13、(顺义⼆模5)如图,△ABC 中,∠A =60?,BD ,CD 分别是∠ABC ,∠ACB 的平分线,则∠BDC 的度数是()A .100?B .110?C .120?D .130?14、(上海中考16)⼀副三⾓尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在⼀条直线上).将三⾓尺DEF 绕着点F 按顺时针⽅向旋转n °后(0<n <180 ),如果EF ∥AB ,那么n 的值是.*15、(朝阳⼀模20)如图,四边形ABCD 中,AB ∥DC ,AE ,DF 分别是∠BAD ,∠ADC 的平分线,AE ,DF 交于点O .求证:AE ⊥DF .BABC DEECDBA l 2l 3l 1l 41 2330°1类型2:平⾯图形与⽴体图形(1)三视图1、(顺义⼀模7的轮廓图,其俯视图是()2、(燕⼭⼀模3)下列四个⼏何体中,主视图为圆的是()A.B.C.D.3、(海淀⼆模2)如图,在正⽅体的⼀⾓截去⼀个⼩正⽅体,所得⽴体图形的主视图是()A.B.C.D.4、(昌平⼆模3)在下⾯的四个⼏何体中,主视图是三⾓形的是()A.B.C.D.5、(怀柔⼆模7)如图所⽰的⼏何体为圆台,其俯视图正确的是()A.B.C.D.6、(平⾕⼆模3)下⾯所给⼏何体的俯视图是()A.B.C.D.7、(房⼭⼀模5)如图,A ,B ,C ,D 是四位同学画出的⼀个空⼼圆柱的主视图和俯视图,正确的⼀组是()A .B .C .D . 8、(东城⼀模6)下列哪个⼏何体,它的主视图、左视图、俯视图都相同()A .B .D . 9、(怀柔⼀模6)下⾯⼏何体中,主视图、左视图和俯视图形状都相同,⼤⼩均相等的是()A .圆柱B .圆锥C .三棱柱D .球10、(西城⼀模4)如图是某⼏何体的三视图,该⼏何体是() A .三棱柱 B .长⽅体 C .圆锥 D .圆柱 11、(朝阳⼀模3)如图是某个⼏何体的三视图,该⼏何体是()A.棱柱 B .圆锥 C .球 D .圆柱第10题图第11题图第12题图第13题图 12、(通州⼀模4)如图是某个⼏何体的三视图,该⼏何体是()A .圆锥B .四棱锥C .圆柱D .四棱柱13、(丰台⼆模3)如图是⼏何体的三视图,该⼏何体是()A.圆锥 B .圆柱 C .正三棱锥 D .正三棱柱14、(平⾕⼀模3、门头沟⼀模4)右图是某⼏何体从不同⾓度看到的图形,这个⼏何体是()A .圆锥B .圆柱C .正三棱柱D .三棱锥15、(⽯景⼭⼀模7)若某⼏何体的三视图如右图所⽰,则该⼏何体是()A .C .D .主视图俯视图俯视图左视图主视图主视图左视图俯视图16、(青岛中考14)已知某⼏何体的三视图如图所⽰,其中俯视图为正六边形,则该⼏何体的表⾯积为____。

北京市各区2017届中考数学二模试题分类整理 生活实际问题(无答案)

北京市各区2017届中考数学二模试题分类整理 生活实际问题(无答案)

生活实际问题(2017房山二模)12. 如图,公园内有一小湖,为了测量湖边B、C两点间的距离,小明设计如下方案,选取一个合适的A点,分别找到AB、AC的中点D、E,若测得DE的长为35米,则B、C两点间的距离为________米.(2017房山二模)13.随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.一位家住十渡地区的张老师持卡乘车,上车时站名上对应的数字是6,下车时站名上对应的数字是24,那么,张老师乘车的费用是_________元.(2017朝阳二模)15.在一段时间内,小军骑自行车上学和乘坐公共汽车上学的次数基本相同,他随机记录了其中某些天上学所用的时间,整理如下表:下面有四个推断:①平均来说,乘坐公共汽车上学所需的时间较短②骑自行车上学所需的时间比较容易预计③如果小军想在上学路上花的时间更少,他应该更多地乘坐公共汽车④如果小军一定要在16 min内到达学校,他应该乘坐公共汽车其中合理的是(填序号).(2017朝阳二模)22.调查作业:了解你所在学校学生本学期社会实践活动的情况.小明、小亮和小天三位同学在同一所学校上学.该学校共有三个年级,每个年级都有6个班,每个班的人数在30~40之间.为了了解该校学生本学期社会实践活动的情况,他们各自设计了如下的调查方案:小明:我给每个班学号分别为1、2、11、12、21、22的同学各发一份问卷,一两天就可以得到结果.小亮:我把要调查的问题放在某两个班的微信群里,这样群里的大部分人就可以完成调查的问题,并很快就可以反馈给我.小天:我给每个班发一份问卷,一两天也就可以得到结果了.根据以上材料回答问题:小明、小亮和小天三人中,哪一位同学的调查方案能较好地获得该校学生本学期社会实践活动的情况,并简要说明其他两位同学调查方案的不足之处.(2017怀柔二模)22.为倡导市民绿色出行,提高市民环保意识和健康意识,怀柔区建立了城市公共自行车系统,共建64个站点,投放2300辆自行车.并于2016年8月15日正式投入运营.办理借车卡和借车服务费标准如下:首次办理借车卡免收工本费,本地居民收取300元保证金及预充值消费50元、外地居民收取500元保证金及预充值消费50元.借车服务费用实行分段合计,还车刷卡时,从借车卡中结算扣取,每次借车1小时(含)为免费租用期;超过免费租用期1小时以内(含)的收取1元;超过免费租用期2小时到4小时以内(含)的,每小时收取2元;超过免费租用期4个小时以上的,每小时收取3元;一天20元封顶(不足一小时按1小时计).刘亮妈妈到点首次办了一张借车卡.第一次,她用了5小时20分钟后才还车.后来妈妈又借车出行了30次,卡中预充值的费用就全部用完了,妈妈说后来的这30次,每次从卡中扣除的服务费都是1元或3元.请你通过列方程或方程组的方法帮刘亮妈妈算一算她扣除1元和3元服务费各几次.(2017怀柔二模)26. 某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查,每降价1元,每星期可多卖出20件,在确保盈利的前提下,解答下列问题:(1)若设每件降价x (x 为整数)元,每星期售出商品的利润为y 元,请写出x 与y 之间的函数关系式,并求出自变量x 的取值范围;(2)请画出上述函数的大致图象.(3)当降价多少元时,每星期的利润最大?最大利润是多少?小丽解答过程如下:解:(1)根据题意,可列出表达式:y=(60-x)(300+20x)-40(300+20x),即y=-20x 2+100x+6000.∵降价要确保盈利,∴40<60-x ≤60.解得0≤x <20.(2)上述表达式的图象是抛物线的一部分,函数的大致图象如图1:(3)∵a=-20<0, ∴当x=2b a-=2.5时,y 有最大值,y=244ac b a -=6125. 所以,当降价2.5元时,每星期的利润 最大,最大利润为6125.老师看了小丽的解题过程,说小马第(1)问的表达式是正确的,但自变量x 的取值范围不准确.(2)(3)问的答案,也都存在问题.请你就老师说的问题,进行探究,写出你认为(1)(2)(3)中正确的答案,或说明错误原因.。

北京市各区2017届中考数学二模试题分类整理书写作图依据无答案20170717395

北京市各区2017届中考数学二模试题分类整理书写作图依据无答案20170717395

书写作图依据(2017昌平二模)15.如图,已知钝角△ABC,老师按照如下步骤尺规作图:步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.小明说:图中的BH⊥AD且平分AD.小丽说:图中AC平分∠BAD.小强说:图中点C为BH的中点.他们的说法中正确的是___________.他的依据是_____________________.(2017房山二模)15.阅读下面材料:在数学课上,老师提出如下问题:小芸的作图步骤如下:老师说:“小芸的作图步骤正确,且可以得到DF=AC”.请回答:得到DF=AC的依据是_________________________________________________.(2017通州二模)16.阅读下面材料:在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是_________________________________________________.AB CDH(2017朝阳二模)16.阅读下面材料:数学课上,老师提出如下问题:小强的作法如下:老师表扬了小强的作法是对的.请回答:小强这样作图的主要依据是 .(2017东城二模)20.如图,在Rt △ABC 中,∠C =90°. 以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP交边BC 于点D . 若CD =4,AB =15,求△ABD 的面积.尺规作图:经过直线外一点作这条直线的平行线.已知:直线l 和直线l 外一点A .求作:直线l 的平行线,使它经过点A .如图,(1)过点A 作直线m 交直线l 于点B ;(2)以点A 为圆心,AB 长为半径作弧,交直线m 于点C ; (3)在直线l 上取点D (不与点B 重合),连接CD ; (4)作线段CD 的垂直平分线n ,交线段CD 于点E ; (5)作直线AE . 所以直线AE 即为所求.(2017丰台二模)16.阅读下面材料:如图,AB 是半圆的直径,点C 在半圆外,老师要求小明用无刻度的直尺画出△ABC 的三条高. 小明的作法如下:(1)连接AD ,BE ,它们相交于点P ; (2)连接CP 并延长,交AB 于点F .所以,线段AD ,BE ,CF 就是所求的△ABC 的三条高.请回答,小明的作图依据是 .B AC DEE D C ABF P(2017石景山二模)15.下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.请回答:得到△ABC 是等腰三角形的依据是:①___________________________________________________________________: ②___________________________________________________________________.(2017平谷二模)16.数学课上,王老师布置如下任务:如图1,△ABC 中,BC>AB>AC ,在BC 边上取一点P ,使∠APC=2∠ABC .小路的作法如下,如图2:①作AB 边的垂直平分线,交BC 于点P ; ②连结AP .所以,∠APC =2∠ABC .小路的作图依据是 .(2017顺义二模)16.阅读下面材料: 在数学课上,老师提出如下问题:老师说:“小丽的作法正确.”请回答:小丽的作图依据是________________________________________.(2017怀柔二模)16. 下面是一道确定点P 位置的尺规作图题的作图过程.图1B图2B请回答:该作图的依据是 .。

北京市各区2017届中考数学二模试题分类整理“新定义”题型的探究无答案201707173100

北京市各区2017届中考数学二模试题分类整理“新定义”题型的探究无答案201707173100

“新定义”题型的探究(2017昌平二模)29.在平面直角坐标系xOy中,给出如下定义:对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MPN最大时,称∠MPN为点P关于⊙C的“视角”.(1)如图,⊙O的半径为1,○1已知点A(0,2),画出点A关于⊙O的“视角”;若点P在直线x = 2上,则点P关于⊙O的最大“视角”的度数;○2在第一象限内有一点B(m,m),点B关于⊙O的“视角”为60°,求点B的坐标;○3若点P在直线23y x=-+上,且点P关于⊙O的“视角”大于60°,求点P的横坐标Px的取值范围.(2)⊙C的圆心在x轴上,半径为1,点E的坐标为(0,1),点F的坐标为(0,-1),若线段EF上所有的点关于⊙C的“视角”都小于120°,直接写出点C的横坐标Cx的取值范围.xxx(2017房山二模)我们定义:关于x 的一次函数y ax b =+与y bx a =+叫做一对交换函数,例如34y x =+与43y x =+就是一对交换函数.(1)写出一次函数2y x b =-+的交换函数.(2)当2b ≠-时,写出(1)中两函数图象的交点的横坐标. (3)如果(1)中两函数图象与y 轴围成三角形的面积为3,求b 的值.(2017房山二模)28.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图1,在四边形ABCD 中添加一个条件使得四边形ABCD 是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究小红提出了一个猜想:对角线互相平分且相等的“等邻边四边形”是正方形.她的猜想正确吗?请说明理由.(3)如图2,“等邻边四边形”ABCD 中,AB=AD ,∠BAD+∠BCD=90°,AC ,BD 为对角线,.试探究线段BC ,CD ,BD 之间的数量关系,并证明你的结论.(2017通州二模)29.我们规定:平面内点A 到图形G 上各个点的距离的最小值称为该点到这个图形的最小距离d ,点A 到图形G 上各个点的距离的最大值称为该点到这个图形的最大距离D ,定义点A 到图形G 的距离跨度为R =D -d .(1)①如图1,在平面直角坐标系xOy 中,图形G 1为以O 为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:A (1,0)的距离跨度 ;B (21-,23)的距离跨度 ; C (-3,-2)的距离跨度 ;②根据①中的结果,猜想到图形G 1的距离跨度为2的所有的点组成的图形的形状是 .(2)如图2,在平面直角坐标系xOy 中,图形G 2为以D (-1,0)为圆心,2为半径的圆,直线)1(-=x k y 上存在到G 2的距离跨度为2的点,求k 的取值范围。

2017北京市西城区初三数学二模试题及答案(word版)

2017北京市西城区初三数学二模试题及答案(word版)

2017北京市西城区初三数学二模试题及答案(word版)D3. 不等式x-1>0的解集在数轴上表示正确的是(A) (B) (C) (D)4.在一个不透明的袋子里装有5个完全相同的乒乓球,把它们标号分别记为1,2,3,4,5,从中随机摸出一个小球,标号为奇数的概率为(A) 15(B) 25(C) 35(D) 4555(A) 0与1 (B) 1与2 (C) 2与3 (D) 3与46.右图是由射线AB,BC,CD,DE,EA组成的平面图形,若∠1+∠2+∠3+∠4=225°,ED∥AB,则∠1的度数为(A)55°(B)45°(C)35°(D)25°7.已知反比例函数6y x =,当1<x <2时,y 的取值范围是(A) 1<y <3 (B) 2<y <3 (C) 1<y <6 (D) 3<y <68.如图,以点O 为圆心,AB 为直径的半圆经过点C ,若C 为弧AB 的中点,若AB =2,则图中阴影部分的面积是( )(A) 2π (B) 122π+(C) 4π (D) 124π+9. 如图,点A 在观测点的北偏东方向30 °,且与观测点的距离为8千米,将点A 的位置记作A (8,30°),用同样的方法将点B ,点C 的位置分别记作B (8,60°),C (4,60°),则观测点的位置应在(A) O 1 (B)O 2 (C) O 3 (D) O 410.某大型文体活动需要招募一批学生作为志愿者参与服务.已知报名的男生有420人,女生有400人,他们身高在155≤x<175,随机抽取该校男生、女生进行抽样调查.已知该校共有女生400人,男生420人,抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表:根据统计图表提供的信息,下列说法中①估计报名者中男生的身高的众数在D组;②估计报名者中女生的身高的中位数在B组;③抽取的样本中,抽取女生的样本容量是38;④估计报名者中身高在160≤x<170之间的学生约有400人其中合理的是(A)①②(B) ) ①④(C)②④(D) ③④二、填空题(本题共18分,每小题3分) 11. 如图, 在长方体中,所有与棱AB 平行的棱是 .12.关于x 的方程240x x k -+=有两个相等的实数根,则k 的值为 .13.如图,正方形ABCD ,AC 为对角线,点E 在AC 上,且AE =AB ,则∠BED 的度数为 °.14. 在平面直角坐标系xOy 中,⊙O 半径是5,点A 为⊙O 上一点,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,若四边形ABOC 面积为12,写出一个符合条件的点A 坐标 .15. 右图是由三个直角三角形组成的梯形,根据图形,A C EMHFD写出一个正确的等式 .16.《数书九章》中的秦九韶算法是我国南宋时期的数学家秦九韶提出的一种多项式简化算法.在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如在计算“当8=x 时,多项式8354323+--x x x 的值”,按照秦九昭算法,可先将多项式8354323+--x x x 一步地进行改写:()8354383543223+--=+--x x x x x x ()[]83543+--=x x x按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法次数,使计算量减少. 计算当8x =时,多项式的值为1008. 请参考上述方法,将多项式3221x x x ++-改写为: ,当8x =时,多项式的值为 .三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17112()4sin 453π----. 18.方程组为1328y x x y =-⎧⎨+=⎩19.已知2340x x --=,求代数式22(1)(1)(3)2x x x x +--++的值.20.列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,但每件进价比第一批的每件进价少了10元,且进货量是第一批进货量的一半,求第一批购进这种衬衫每件进价是多少元.21.如图, 在Rt △ABC 中,∠ABC =90 °,CD 平分∠ACB 交AB 于点D ,DE ⊥AC 于点E , BF ∥DE 交CD 于点F . 求证: DE =BF .22.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ACB=90 °. 对角线AC,BD交于点O,DE平分∠ADC 交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)CD=2,∠COD=60 °.求△BED的面积.23.直线24=-+与x轴交于点A,与y轴交于点B,直线y x=+(k,b是常数,k≠0)经过点A,与y轴交于y kx b点C,且OC=OA.(1)求点A的坐标及k的值;(2)点C在x轴上方,上点P在第一象限,且在直线24=-+上,若PC=PB,求点P的坐标.y x24.阅读下列材料:社会消费品零售总额是指批发和零售业,住宿和餐饮业以及其他行业直接售给城乡居民和社会集团的消费品零售额.在各类与消费有关的统计数据中,社会消费品零售总额是表现国内消费需求最直接的数据.2012年,北京市全年实现社会消费品零售额7702.8.5亿元,比上一年增长11.6%。

北京市各区2017届中考数学二模试题分类整理简单函数无答案20170717393

北京市各区2017届中考数学二模试题分类整理简单函数无答案20170717393

“简单”函数(2017昌平二模)23. 一次函数1+2y x b =-(b 为常数)的图象与x 轴交于点A (2,0),与y 轴交于点B ,与反比例函数xky =的图象交于点C (-2,m ). (1)求点C 的坐标及反比例函数的表达式;(2)过点C 的直线与y 轴交于点D ,且1:2:=BO C CBD S S △△,求点D 的坐标.(2017房山二模)24.在平面直角坐标系xoy 中,函数ky x=(k≠0,x >0)的图象如图所示.已知此图象经过(,)A m n ,B (2,2)两点.过点B 作BD⊥y 轴于点D ,过点A 作AC⊥x 轴于点C ,AC 与BD 交于点F .一次函数y ax b =+(a≠0)的图象经过点A 、D ,与x 轴的负半轴交于点E .(1)如果32AC OD =,求a 、b 的值; (2)如果BC∥AE,求BC 的长.(2017通州二模)21.在平面直角坐标系xOy 中,直线12+=x y 与双曲线xky =的一个交点为A (m ,-3). (1)求双曲线的表达式;(2)过动点P (n ,0)(n <0)且垂直于x 轴的直线与直线12+=x y 和双曲线xky =的交点分别为B ,C ,当点B 位于点C 上方时,直接写出n 的取值范围.(2017西城二模)23.直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,直线y kx b =+(k ,b 是常数,k ≠0)经过点A ,与y 轴交于点C ,且OC =OA . (1)求点A 的坐标及k 的值;(2)点C 在x 轴上方,上点P 在第一象限,且在直线24y x =-+上,若PC =PB ,求点P 的坐标.(2017东城二模)21.如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A )在反比例函数(0)ky k x=≠的图象上. (1)求反比例函数(0)ky k x=≠的解析式和点B 的坐标;(2)若将△BOA 绕点B 按逆时针方向旋转 60º 得到△BDE (点O 与点D 是对应点),补全图形,直接写出点E 的坐标,并判断点E 是否在该反比例函数的图象上,说明理由.(2017丰台二模) 21.如图,在平面直角坐标系xOy 中,双曲线xmy =与直线12+-=x y 交于点A (-1,a ).(1)求a ,m 的值; (2)点P 是双曲线xmy =上一点,且OP 与直线 12+-=x y 平行,求点P 的横坐标.(2017石景山二模)23.如图,在平面直角坐标系xOy 中,直线3(0)y kx k =+≠与x 轴交于点A ,与双曲线(0)m y m x=≠的一个交点为(1,4)B -.(1)求直线与双曲线的表达式;(2)过点B 作BC ⊥x 轴于点C ,若点P 在双曲线my x=上,且△PAC 的面积为4,求点P 的坐标.(2017平谷二模)21.如图,一次函数()0y kx b k =+≠与反比例函数()0my m x=≠的图象在第一象限内交于A (1,6),B (3,n )两点. (1)求这两个函数的表达式; (2)根据图象直接写出0mkx b x+-<的x 的取值范围.(2017顺义二模)21.如图,在平面直角坐标系xOy 中,反比例函数(0)ky k x=≠与一次函数4(0)y ax a =+≠的图象只有一个公共点A (2,2),直线(0)y mx m =≠也过点A . (1)求k 、 a 及m 的值;(2)结合图象,写出4kmx ax x<+<时x 的取值范围.。

2017年北京市中考数学试卷2真题(附答案)

2017年北京市中考数学试卷2真题(附答案)

2017年北京市中考数学试卷一、选择题(本题共30分,每小题3分)1.(3分)如图所示,点P到直线l的距离是()A.线段P A的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度2.(3分)若代数式有意义,则实数x的取值范围是()A.x=0B.x=4C.x≠0D.x≠43.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱4.(3分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.|a|>|d|D.b+c>05.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.6.(3分)若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.187.(3分)如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3B.﹣1C.1D.38.(3分)下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推断不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.(3分)小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10.(3分)如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是()A.①B.②C.①②D.①③二、填空题(本题共18分,每题3分)11.(3分)写出一个比3大且比4小的无理数:.12.(3分)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.13.(3分)如图,在△ABC中,M、N分别为AC,BC的中点.若S△CMN=1,则S四边形ABNM =.14.(3分)如图,AB为⊙O的直径,C、D为⊙O上的点,=.若∠CAB=40°,则∠CAD=.15.(3分)如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:.16.(3分)下面是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.三、解答题(本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17.(5分)计算:4cos30°+(1﹣)0﹣+|﹣2|.18.(5分)解不等式组:.19.(5分)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC.20.(5分)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所得两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据该图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(+).易知,S△ADC=S△ABC,=,=.可得S矩形NFGD=S矩形EBMF.21.(5分)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.22.(5分)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.23.(5分)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.24.(5分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.25.(5分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 6983 77乙93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 8070 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x 人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙(说明:成绩80分及以上为生产技能优秀,70﹣﹣79分为生产技能良好,60﹣﹣69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:a.估计乙部门生产技能优秀的员工人数为;b.可以推断出部门员工的生产技能水平较高,理由为.(至少从两个不同的角度说明推断的合理性)26.(5分)如图,P是所对弦AB上一动点,过点P作PM⊥AB交于点M,连接MB,过点P作PN⊥MB于点N.已知AB=6cm,设A、P两点间的距离为xcm,P、N两点间的距离为ycm.(当点P与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm0 2.0 2.3 2.10.90(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当△P AN为等腰三角形时,AP的长度约为cm.27.(7分)在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N (x3,y3),若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.28.(7分)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.29.(8分)在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.2017年北京市中考数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.(3分)如图所示,点P到直线l的距离是()A.线段P A的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度【点评】本题考查了点到直线的距离,利用点到直线的距离是解题关键.2.(3分)若代数式有意义,则实数x的取值范围是()A.x=0B.x=4C.x≠0D.x≠4【点评】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件,本题属于基础题型.3.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【点评】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.4.(3分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.|a|>|d|D.b+c>0【点评】本题考查了实数与数轴,利用数轴上点的位置关系得出a,b,c,d的大小是解题关键.5.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.18【点评】本题考查了多边形的内角与外角,利用内角和公式是解题关键.7.(3分)如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3B.﹣1C.1D.3【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.8.(3分)下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推断不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多【点评】此题主要考查了折线统计图,利用折线统计图获取正确信息是解题关键.9.(3分)小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次【点评】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10.(3分)如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是()A.①B.②C.①②D.①③【点评】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.二、填空题(本题共18分,每题3分)11.(3分)写出一个比3大且比4小的无理数:π.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.12.(3分)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.13.(3分)如图,在△ABC中,M、N分别为AC,BC的中点.若S△CMN=1,则S四边形ABNM =3.【点评】本题考查了相似三角形的判定与性质、三角形中位线定理;熟练掌握三角形中位线定理,证明三角形相似是解决问题的关键.14.(3分)如图,AB为⊙O的直径,C、D为⊙O上的点,=.若∠CAB=40°,则∠CAD=25°.【点评】本题考查的是圆周角定理,直径所对的圆周角是直角,直角三角形的性质,解本题的关键是作出辅助线.15.(3分)如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:△OCD 绕C点顺时针旋转90°,并向左平移2个单位得到△AOB.【点评】考查了坐标与图形变化﹣旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.16.(3分)下面是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一条直线;90°的圆周角所对的弦是直径;圆的定义等..【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三、解答题(本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17.(5分)计算:4cos30°+(1﹣)0﹣+|﹣2|.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5分)解不等式组:.【点评】此题考查解不等式组;求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(5分)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC.【点评】本题主要考查等腰三角形的性质和判定,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.20.(5分)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所得两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据该图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(S△AEF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC.可得S矩形NFGD=S矩形EBMF.【点评】本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.21.(5分)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.【点评】本题考查了根的判别式、因式分解法解一元二次方程以及解一元一次不等式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)利用因式分解法解一元二次方程结合方程一根小于1,找出关于k的一元一次不等式.22.(5分)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.【点评】本题考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.23.(5分)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.24.(5分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.【点评】本题考查切线的性质、勾股定理、垂径定理、锐角三角函数、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.25.(5分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 6983 77乙93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 8070 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x 人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙1007102(说明:成绩80分及以上为生产技能优秀,70﹣﹣79分为生产技能良好,60﹣﹣69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:a.估计乙部门生产技能优秀的员工人数为240;b.可以推断出甲或乙部门员工的生产技能水平较高,理由为①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.或①乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;②乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高..(至少从两个不同的角度说明推断的合理性)【点评】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.26.(5分)如图,P是所对弦AB上一动点,过点P作PM⊥AB交于点M,连接MB,过点P作PN⊥MB于点N.已知AB=6cm,设A、P两点间的距离为xcm,P、N两点间的距离为ycm.(当点P与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm0 2.0 2.3 2.1 1.60.90(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当△P AN为等腰三角形时,AP的长度约为 2.2cm.【点评】本题考查圆综合题、坐标与图形的关系等知识,解题的关键是理解题意,学会用测量法、图象法解决实际问题,属于中考压轴题.27.(7分)在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N (x3,y3),若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.【点评】本题考查了抛物线与x轴的交点.解答(2)题时,利用了“数形结合”的数学思想,降低了解题的难度.28.(7分)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解决问题的关键.29.(8分)在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,第21页(共22页)①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是P2,P3.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.【点评】本题考查了一次函数的性质,勾股定理,直线与圆的位置关系,两点间的距离公式,正确的作出图形是解题的关键.第22页(共22页)。

2017北京各区数学二模试题分类整理——数据与统计+

2017北京各区数学二模试题分类整理——数据与统计+

2017数学二模试题分类整理数据与统计2017.6(2017昌平二模)24.近几年,中国在线旅游产业发展迅猛,在线旅游产业是依托互联网,以满足旅游消费者信息查询、产品预订及服务评价为核心目的,囊括了包括航空公司、酒店、景区、租车公司、海内外旅游服务供应商及搜索引擎、OTA 、电信运营商、旅游资讯及社区网站等在线旅游平台的新产业. 据数据统计:2012年中国在线旅游市场交易金额约为2219亿元,2013年中国在线旅游市场交易金额约为3015亿元,2014年中国在线旅游市场交易金额相比2013年增加了1117亿元,2015年中国在线旅游市场交易金额约为5424亿元,2016年中国在线旅游市场交易金额为6622亿元,在人们对休闲旅游观念的不断加强之下,未来两年中国在线旅游市场交易规模会持续上涨.(1)请用折线统计图或条形统计图将2012—2016年中国在线旅游市场交易金额的数据描述出来,并在图中标明相应数据;(2)根据绘制的统计图中提供的信息,预估2017年中国在线旅游市场交易金额约为___________亿元,你的预估理由是_______________________________________.(2017房山二模)22.当雾霾出现红色预警时,全市中小学就随即展开“停课不停学”的活动,这一活动倍受家长们的关注.为此某媒体记者随机调查了某市城区若干名中学生家长对“停课不停学”的态度(态度分为:A :无所谓;B :赞成;C :反对),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调査中,共调査了________________________名中学生家长; (2)将图①补充完整;(3)请就雾霾期间如何学习的问题说说你的看法.(2017通州二模)7.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,下图做出了表示平均数的直线和10次射箭成绩的折线图. 1S ,2S 分别表示小明、小华两名运动员这次测试成绩的方差,则有A .21S S <B .21S S >C .21S S =D .21S S ≥(2017朝阳二模)10.甲、乙、丙三名射箭运动员在某次测试中各射箭8次,三人的测试成绩如下表:s2甲、s 2乙、s 2丙分别表示甲、乙、丙三名运动员这次测试成绩的方差,下面各式中正确的是A.s 2甲>s 2乙>s 2丙B.s 2乙>s 2甲>s 2丙C.s 2丙>s 2甲>s 2乙D.s 2丙>s 2乙>s 2甲(2017通州二模)25.阅读下面材料:当前,中国互联网产业发展迅速,互联网教育市场增长率位居全行业前列.以下是根据某媒体发布的2012 2015年互联网教育市场规模的相关数据,绘制的统计图表的一部分.(1)2015年互联网教育市场规模约是亿元(结果精确到1亿元),并补全条形统计图;(2)截至2015年底,约有5亿网民使用互联网进行学习,互联网学习用户的年龄分布如右图所示,请你补全扇形统计图,并估计7-17岁年龄段有亿网民通过互联网进行学习;(3)根据以上材料,写出你的思考或建议(一条即可).(2017朝阳二模)24.阅读下列材料:自2011年以来,朝阳区统筹推进稳增长、调结构、促改革、惠民生等各项工作,经济转型发展不断加快,全区经济实力不断迈上新台阶.2011年,朝阳区生产总值3272.2 亿元.2012年,朝阳区生产总值3632.1 亿元,比上年增长359.9亿元.2013年,朝阳区生产总值4030.6 亿元,比上年增长398.5亿元.2014年,朝阳区生产总值4337.3 亿元,比上年增长7.6%.2015年,朝阳区生产总值4640.2 亿元,比上年增长7.0%,其中,第一产业1.2 亿元,第二产业358.0 亿元,第三产业4281.0 亿元.2016年,朝阳区生产总值4942.0亿元,比上年增长6.5%,居民人均可支配收入达到59886元,比上年增长8%.根据以上材料解答下列问题:(1)用折线图将2011-2016年朝阳区生产总值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2017年朝阳区生产总值约亿元,你的预估理由是.(2017西城二模)10.某大型文体活动需要招募一批学生作为志愿者参与服务.已知报名的男生有420人,女生有400人,他们身高在155≤x<175,随机抽取该校男生、女生进行抽样调查.已知该校共有女生400人,男生420人,抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表:根据统计图表提供的信息,下列说法中①估计报名者中男生的身高的众数在D组;②估计报名者中女生的身高的中位数在B组;③抽取的样本中,抽取女生的样本容量是38;④估计报名者中身高在160≤x<170之间的学生约有400人其中合理的是(A)①②(B))①④(C)②④(D) ③④(2017西城二模)24.阅读下列材料:社会消费品零售总额是指批发和零售业,住宿和餐饮业以及其他行业直接售给城乡居民和社会集团的消费品零售额.在各类与消费有关的统计数据中,社会消费品零售总额是表现国内消费需求最直接的数据.2012年,北京市全年实现社会消费品零售额7702.8.5亿元,比上一年增长11.6%。

2017北京中考数学各区二模26题汇编

2017北京中考数学各区二模26题汇编

()(1) 当k =1时,使得原等式成立的x 的个数为 _______; (2) 当0<k <1时,使得原等式成立的x 的个数为_______; (3) 当k >1时,使得原等式成立的x 的个数为 _______. 参考小明思考问题的方法,解决问题:关于x 的不等式240 ()x a a x+-<>0只有一个整数解,求a 的取值范围. 26.(1)小明遇到下面一道题:如图1,在四边形ABCD 中,AD∥BC ,∠ABC =90º,∠ACB =30º,BE ⊥AC 于点E ,且=CDEACB ∠∠.如果AB =1,求CD 边的长.小明在解题过程中发现,图1中,△CDE 与△ 相似,CD 的长度等于,线段CD 与线段 的长度相等;他进一步思考:如果ACB α∠=(α是锐角),其他条件不变,那么CD 的长度可以表示为CD = ;(用含α的式子表示)(2)受以上解答过程的启发,小明设计了如下的画图题:在Rt △OMN 中,∠MON =90º,OM <ON ,OQ ⊥MN 于点Q ,直线l 经过点M ,且l ∥ON .请在直线l 上找出点P 的位置,使得NPQ ONM ∠=∠.请写出画图步骤,并在答题卡上完成相应的画图过程.(画一个即可,保留痕迹,不必证明)26 .阅读材料如图1,若点P 是⊙O 外的一点,线段PO 交⊙O 于点A,则PA 长是点P 与⊙O 上各点之间的最短距离.图1 图2 证明:延长PO 交⊙O 于点B ,显然PB>PA .如图2,在⊙O 上任取一点C (与点A ,B 不重合),连结PC ,OC .,,,,PO PC OC PO PA OA OA OC PA PC <+=+=∴<且∴PA 长是点P 与⊙O 上各点之间的最短距离.由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差. 请用上述真命题解决下列问题.(1)如图3,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以BC 为直径的半圆交AB 于D ,P 是上的一个动点,连接AP ,则AP 长的最小值是.图3(2)如图4,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△MN A ',连接C A ',①求线段A ’M 的长度; ②求线段C A '长的最小值. 图426.问题背景:在△ABC 中,AB ,BC ,AC,小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC 的高,借用网格就能计算出它的面积.CBA图1 图2 (1)请你直接写出△ABC 的面积________; 26.阅读下面材料:小玲遇到这样一个问题:如图1,在等腰三角形ABC 中,AC AB =,︒=∠45BAC ,22=BC ,BC AD ⊥于点D ,求AD 的长.图3小玲发现:分别以AB ,AC 为对称轴,分别作出△ABD ,△ACD 的轴对称图形,点D 的对称点分别为E ,F ,延长EB ,FC 交于点G ,得到正方形AEGF ,根据勾股定理和正方形的性质就能求出AD 的长.(如图2) 请回答:BG 的长为,AD 的长为; 参考小玲思考问题的方法,解决问题:如图3,在平面直角坐标系xOy 中,点()0,3A ,()4,0B ,点P 是△OAB 的外角的角平分线AP和BP 的交点,求点P 的坐标. E FB图1 图226.阅读下面材料:小凯遇到这样一个问题:如图1,在四边形ABCD 中,对角线AC 、BD 相交于点O , AC =4,BD =6,∠AOB =30°,求四边形ABCD 的面积.小凯发现,分别过点A 、C 作直线BD 的垂线,垂足分别为点E 、F ,设AO 为m ,通过计算△ABD 与△BCD 的面积和使问题得到解决(如图2).请回答:(1)△ABD 的面积为 (用含m 的式子表示). (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD 中,对角线AC 、BD 相交于 点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为 (用含a 、b 、α的式子表示).26.【阅读学习】 刘老师提出这样一个问题:已知α为锐角,且tan α=13,求sin2α的值.小娟是这样解决的:如图1,在⊙O 中,AB 是直径,点C 在⊙O 上,∠BAC =α,所以∠ACB =90°,tan α=BC AC =13. 易得∠BOC =2α.设BC =x ,则AC =3x ,则AB.作CD ⊥AB 于D ,求出CD = (用含x 的式子表示),可求得sin2α=CDOC= . 【问题解决】已知,如图2,点M 、N 、P 为圆O 上的三点,且∠P =β,tan β =12,求sin2β的值.图1图2图3图1图226. 如图,在平面直角坐标系xOy 中,矩形ABCD 各边都平行于坐标轴,且A (-2,2),C (3,-2).对矩形ABCD 及其内部的点进行如下操作:把每个点的横坐标乘以a ,纵坐标乘以b ,将得到的点再向右平移k (0k >)个单位,得到矩形''''A B C D 及其内部的点(''''A B C D 分别与ABCD 对应).E (2,1)经过上述操作后的对应点记为'E .(1)若a =2,b =-3,k =2,则点D 的坐标为 ,点'D 的坐标为 ; (2)若'A (1,4),'C (6,-4),求点'E 的坐标.26.阅读下面的材料:小明遇到一个问题:如图1,在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G . 如果3AF EF =,求CDCG的值. 他的做法是:过点E 作EH ∥AB 交BG 于点H ,那么可以得到△BAF ∽△HEF . 请回答:(1)AB 和EH 之间的数量关系是 ,CG 和EH 之间的数量关系是 ,CDCG的值为 . (2)参考小明思考问题的方法,解决问题:如图2,在四边形ABCD 中,DC ∥AB ,点E 是BC 延长线上一点,AE 和BD 相交于点F .如果2ABCD=,2BC AFH G F ECD BAFECB A D图1 图2个角度26.在平面内,将一个图形G 以任意点O 为旋转中心,逆时针...旋转一θ,得到图形'G ,再以O 为中心将图形'G 放大或缩小得到图形''G ,使图形''G 与图形G 对应线段的比为k ,并且图形G 上的任一点P ,它的对应点''P 在线段'OP 或其延长线上;我们把这种图形变换叫做旋转相似变换,记为()O θ,k ,其中点O 叫做旋转相似中心,θ叫做旋转角,k 叫做相似比. 如图1中的线段''OA 便是由线段OA 经过()302︒O ,得到的.(1)如图2,将△A B C 经过☆ ()901,︒后得到△'''A B C ,则横线上“☆”应填下列四个点()00O ,、()01D ,、()0E ,-1、()12C ,中的点 .(2)如图3,△ADE 是△ABC 经过()A θ,k 得到的,90︒=EAB ∠,12cos EAC =∠ 则这个图形变换可以表示为(),A .26.如图1,在□ABCD 中,点E 是BC 边上的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G ,若AB =6,3AF EF =,求DG 的长.小米的发现,过点E 作EH AB ∥交BG 于点H (如图2),经过推理和计算能够使问题得到解决.则图2图3O如图3,四边形ABCD 中,AD ∥BC ,点E 是射线DM 上的一点,连接BE 和AC 相交于点F ,若BC aAD =,CD bCE =,求BFEF的值(用含,a b26.如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.(1)如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. (2)如图③,在△ABC 中,∠A <∠B <∠C .①利用尺规作出△ABC 的自相似点P (不写出作法,保留作图痕迹);②如果△ABC 的内心P 是该三角形的自相似点,请直接写出该三角形三个内角的度数.参考答案26. (本小题满分5分)解:(1)当k =1时,使得原等式成立的x 分(2)当0<k <1时,使得原等式成立的分(3)当k >1时,使得原等式成立的x 图1图2图3 BBC ①②CBC③解决问题:将不等式240 ()x a a x +-<>0转化为24()x a a x+<>0, 研究函数2(0)y x a a =+>与函数4y x=的图象的交点. ∵函数4y x=的图象经过点A (1,4),B (2,2), 函数2y x =的图象经过点C (1,1),D (2,4),若函数2(0)y x a a =+>经过点A (1,4),则3a =, ………………………………………………4分 结合图象可知,当03a <<时,关于x 的不等式24(0)x a a x+<>只有一个整数解.也就是当03a <<时,关于x 的不等式240 ()x a a x+-<>0只有一个整数解. ………………5分26.解:(1)CAD,BC . …………………………………………………………… 3分1tan α.……………………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点 1P ,2P 为符合题意的点.……………………………………………… 5分 方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与2m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点. ……………………………………… 5分26. 解:(1)△ABC 的面积是4.5;…….2分(2)如右图: …….4分△MNP 的面积是7. …….5分26.解:BG 的长为2,AD 的长为22+;…………………2分如图,过点P 分别作x PC ⊥轴于点C ,y PD ⊥轴于点D ,AB PE ⊥于点E …………………3分∵AP 和BP 是△OAB 的外角的角平分线 ∴CAP EAP ∠=∠,EBP DBP ∠=∠ ∴PD PE PC ==∴四边形OCPD 是正方形,AE AC =,BE BD =…………4分∴DO PD CP OC === ∵()0,3A ,()4,0B ∴5=AB∴12=++=+BO AB OA OD OC∴6==OD OC ,∴6==PD CP ∴()6,6P ……………………5分26. 解:(1)3m ;……………………………………………………………………………1分∵ AO = m ,∠AOB =30°, ∴AE =12m . ∴S △ABD =m AE BD 2321=⋅. 同理,CF =1(4)2m -. ∴S △BCD =m CF BD 23621-=⋅.…………………………………………………2分 ∴S 四边形ABCD = S △ABD +S △BCD 6=.…………………………………………………3分 解决问题:αsin 21⋅ab .………………………………………………………………5分26.解:10103xCD =. ……………………………………………………………………… 1分Sin2α=CD OC =53. ……………………………………………………………………… 2分如图,连接NO ,并延长交⊙O 于Q ,连接MQ ,MO ,作NO MH ⊥于H . 在⊙O 中,∠NMQ =90°. ∵ ∠Q=∠P =β,OM=ON,∴ ∠MON=2∠Q=2β. ………………………………………… 3分∵ tan β=21,∴ 设MN =k ,则MQ =2k , ∴ NQ =k MQ MN 522=+.∴ OM=21NQ=k 25. ∵ MH NQ MQ MN S NMQ ⋅=⋅=∆2121, ∴ MH k k k ⋅=⋅52 .∴ MH=k 552. ………………………………………………………………………………… 4分N在MHO Rt ∆中,sin2β=sin ∠MON =5425552==kkOM MH . …………………………………… 5分 26. 解:(1)D (3,2),'D (8,-6),..................................................................................2分(2)依题可列:21,3 6.a k a k -+=⎧⎨+=⎩则a =1,k =3,2b =4,b =2,.........................................................4分(a ,b ,k 求出一个给1分) ∵点E (2,1),∴'E (5,2)......................................................................................................5分26.(本小题满分5分)解:(1)A B =3E H ,C G =2E H ,32.………………………………………………3分 (2)如图,过点E 作EH ∥AB 交BD 的延长线于点H .∴ EH ∥AB ∥CD . ∵ EH ∥CD , ∴23CD BC EH BE ==, ∴ CD =23EH . 又∵2AB CD =,∴ AB =2CD =43EH . ∵ EH ∥AB ,∴ △ABF ∽△EHF . ∴4433AF AB EH EH EF EH ===.……………………………………5分 26.(1)E ………………………………………………………………………………2分 (2)60,k︒………………………………………………………5分26.答案:DG =2;……………………………………………………………………………………2 如图(画图正确,正确标出点E 、F )………………………………………………………………3 过E 作EG ∥AD ,延长CA 交于点G ∴△CAD ∽△CGE .HF E CB AD∴AD CD GE CE=.∵CD bCE=,∴ADb GE=.∴AD bEG=. (4)∵AD∥BC,∴BC∥EG.∴△GEF∽△CBF.∴BC BF EG EF=.∵BC aAD=,∴BC abEG=.∴BFabEF= (5)26.解:⑴在Rt△ABC中,∠ACB=90°,CD是AB上的中线,∴12CD AB=,∴CD=BD.∴∠BCE=∠ABC.……………………………….(1分)∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB.……………………………….(2分)∴△BCE∽△ABC.∴E是△ABC的自相似点.………………………….(3分)⑵①作图略.(方法不唯一)……………………….(5分)②连接PB、PC.∵P为△ABC的内心,∴12PBC ABC∠=∠,12PCB ACB∠=∠.∵P为△ABC的自相似点,∴△BCP∽△ABC.∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.∴∠A+2∠A+4∠A=180°.∴1807A∠=.∴该三角形三个内角的度数分别为1807、3607、7207.…………….(6分)。

北京市各区2017届中考数学二模试题分类整理 圆的证明与计算(无答案)

北京市各区2017届中考数学二模试题分类整理 圆的证明与计算(无答案)

圆的证明与计算(2017昌平二模)25.如图,AB 为⊙O 的直径,点D ,E 为⊙O 上的两个点,延长AD 至C ,使∠CBD=∠BED .(1)求证:BC 是⊙O 的切线;(2)当点E 为弧AD 的中点且∠BED=30°时,⊙O 半径为2,求DF 的长度.BCA(2017房山二模)25.如图,△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 相交于点D ,与CA 的延长线相交于点E ,DF 过点D 作⊙O 的切线交AC 于点F . (1)求证:DF⊥AC;(2)如果sin cAE 的长为2.求⊙O 的半径.(2017通州二模)24.如图,AB 是⊙O 的直径,PC 切⊙O 于点C ,AB 的延长线与PC 交于点P ,PC 的延长线与AD 交于点D ,AC 平分∠DAB . (1)求证:AD ⊥PC ;(2)连接BC ,如果∠ABC =60°,BC =2,求线段PC 的长.PA(2017西城二模)25.如图,AB 是⊙O 的直径,C 是⊙O 上一点,过点B 作⊙O 的切线,与AC 延长线交于点D ,连接BC ,OE ∥BC 交⊙O 于点E ,连接BE 交AC 于点H . (1)求证:BE 平分∠ABC ;(2)连接OD ,若BH =BD =2,求OD 的长.(2017东城二模)25. 如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD 交AD 的延长线于点E . (1)求证:∠BDC =∠A ;(2)若CE =4,DE =2,求AD 的长.(2017丰台二模)26.如图,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过点C 的切线,垂足为点D ,AB 的延长线交切线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长.A(2017平谷二模)25.如图,已知△ABC 内接于⊙O ,AB 是⊙O 的直径,点F 在⊙O 上,且点C 是BF 的中点,过点C 作⊙O 的切线交AB 的延长线于点D ,交AF 的延长线于点E . (1)求证:AE ⊥DE ;(2)若∠BAF =60°,AF=4,求CE 的长.(2017顺义二模)25.如图,在Rt △ABC 中,∠CA B =90︒,以AB 为直径的⊙O 交BC 于点D ,点E 是AC 的中点,连接DE .(1)求证:DE 是⊙O 的切线;(2)点P 是BD 上一点,连接AP ,DP ,若BD :CD=4:1,求sin ∠APD 的值.BE(2017怀柔二模)25. 如图,AB 是⊙O 的直径,CD 为⊙O 的弦,过点B 作⊙O 的切线,交AD 的延长线于点E ,连接AC 并延长,过点E 作EG ⊥AC 的延长线于点G ,并且∠GCD = ∠GAB . (1)求证:AC BD =;(2)若AB =10,sin ∠ADC =35,求AG 的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数综合题
(2017昌平二模)27. 在平面直角坐标系xOy 中,抛物线)0(42
≠-=m mx mx y 与x 轴交于A ,B 两点(点
A 在点
B 的左侧).
(1)求点A ,B 的坐标及抛物线的对称轴;
(2)过点B 的直线l 与y 轴交于点C ,且2tan =∠ACB ,直接写出直线l 的表达式;
(3)如果点)(1n x P ,和点)(2n x Q ,在函数)0(42
≠-=m mx mx y 的图象上,PQ=2a 且21x x >,求
2622
1+-+a ax x 的值.
(2017房山二模)26.如图,在平面直角坐标系xoy 中,已知点(1,0)P -,1,1),(0,3)D -, A ,B 在x 轴上,且P 为AB 中点,1CAP S ∆=.
(1)求经过A 、D 、B 三点的抛物线的表达式.
(2)把抛物线在x 轴下方的部分沿x 轴向上翻折,得到一个新的图象G ,点Q 在此新图象G 上,且
APQ APC S S ∆∆=,求点Q 坐标.
(3)若一个动点M 自点N (0,-1)出发,先到达x 轴上某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点D ,求使点M 运动的总路程最短的点E 、点F 的坐标.
(2017通州二模)27.已知:二次函数1422
-++=m x x y ,与x 轴的公共点为A ,B .
(1)如果A 与B 重合,求m 的值; (2)横、纵坐标都是整数的点叫做整点; ①当1=m 时,求线段AB 上整点的个数;
②若设抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)整点的个数为n ,当
1<<8n 时,结合函数的图象,求m 的取值范围.
(2017朝阳二模)27.在平面直角坐标系xOy 中,抛物线y =mx 2
-2mx +2(m ≠0)与y 轴交于点A ,其对称轴与
x 轴交于点B .
(1)求点A ,B 的坐标;
(2)点C ,D 在x 轴上(点C 在点D 的左侧),且与点B 的距离都为2,若该抛物线与线段CD 有两个公共点,结合函数的图象,求m 的取值范围.
(2017西城二模)27.在平面直角坐标系xOy 中,抛物线y =ax 2
+2ax -3a (a >0)与x 轴交于A ,B 两点(点A
在点B 的左侧).
(1)求抛物线的对称轴及线段AB 的长;
(2)若抛物线的顶点为P ,若∠APB =120 °,求顶点P 的坐标及a 的值; (3)若在抛物线上存在点N ,使得∠ANB =90°,结合图形,求a 的取值范围.
(2017东城二模)27.在平面直角坐标系xOy 中,抛物线2
2
21y x mx m m =-+--+. (1)当抛物线的顶点在x 轴上时,求该抛物线的解析式;
(2)不论m 取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;
(3)若有两点()1,0A -,()1,0B ,且该抛物线与线段AB 始终有交点,请直接写出m 的取值范围.
(2017丰台二模)27.在平面直角坐标系xOy 中,抛物线122
12
+-+=
a x ax y 与y 轴交于点C ,与x 轴交于A ,B 两点(点A 在点B 左侧),且点A 的横坐标为﹣1. (1)求a 的值;
(2)设抛物线的顶点P 关于原点的对称点为P′,求点P′的坐标; (3)将抛物线在A ,B 两点之间的部分(包括A ,B 两点),先向下平移 3个单位,再向左平移m (0>m )
个单位,平移后的图象记为图象G ,若图象G 与直线PP′ 无交点,求m 的取值范围.
(2017石景山二模)27.在平面直角坐标系xOy 中,抛物线1C :2
y x bx c =++与x 轴交于点A ,B (点A 在点B 的左侧)
,对称轴与x 轴交于点3,0(),且4AB =. (1)求抛物线1C 的表达式及顶点坐标; (2)将抛物线1C 平移,得到的新抛物线2C 的 顶点为(0,1)-,抛物线1C 的对称轴与两 条抛物线1C ,2C 围成的封闭图形为M . 直线:(0)l y kx m k =+≠经过点B .若直 线l 与图形M 有公共点,求k 的取值范围.
(2017顺义二模)27.如图,在平面直角坐标系xOy 中,抛物线2
y x bx c =-++经过A (﹣1,0),B (3,0)两点.
(1)求抛物线的表达式;
(2)抛物线2
y x bx c =-++在第一象限内的部分记为图象G ,如果过点P (-3,4)的直线y =mx +n (m ≠0)
与图象G 有唯一公共点,请结合图象,求n 的取值范围.
备用图
(2017平谷二模)27.在平面直角坐标系xOy 中,抛物线()2
4440y mx mx m m =-++≠的顶点为P .P ,
M 两点关于原点O 成中心对称. (1)求点P ,M 的坐标;
(2)若该抛物线经过原点,求抛物线的表达式; (3)在(2)的条件下,将抛物线沿x 轴翻折,翻折后的图象在05x ≤≤的部分记为图象H ,点N 为抛物线对称轴上的一个动点,经过M ,N 的直线与图象H 有两个公共点,结合图象求出点N 的纵坐标n 的取值范围.
(2017怀柔二模)27. 在平面直角坐标系xOy 中,直线1y x =+与y 轴交于点A ,并且经过点B(3,n). (1)求点B 的坐标;
(2)如果抛物线
2
441y ax ax a =-+- (a >0)与线段AB 有唯一公共点, 求a 的取值范围.。

相关文档
最新文档