苏科版七年级上册数学第四章《一元一次方程》提优训练
苏科版七年级数学上册第四章一元一次方程提优测试卷
苏科版七年级数学上册第四章一元一次方程提优测试卷第四章一元一次方程提优测试卷一、选择题(每题2分,共20分)1. 下列方程中,是一元一次方程的是()A.42=-y xB. 4=xyC. 413=-yD.441-x 2.若关于x 的一元一次方程422=+-m xa 的解为1=x ,则m a +的值为()A.9B.8C.5D.4 3.下列判断正确的是()A.方程132=-x 与方程x x x =-)32(同解B.方程132=-x 与方程x x x =-)32(没有相同的解C.方程x x x =-)32(的解也是方程132=-x 的解D.方程132=-x 的解也是方程x x x =-)32(的解4.小明在文具用品商店买了3件甲种文具和2件乙种文具,一共花了23元,已知每件甲种文具比每件乙种文具的售价少1元。
设每件乙种文具的售价为x 元,则下面所列方程正确的是()A.232)1(3=+-x xB.23)1(23=-+x xC.232)1(3=++x xD.23)1(23=++x x 5.某种商品每件的标价是270元,按标价的八折销售时,仍可获利%20,则这种商品每件的进价为()A. 180元B. 200元C. 225元D. 259.2元6. 某轮船在静水中的速度为h Km /20,水流速度为h Km /4,该船从甲码头顺流航行到乙码头,再返回甲码头,共用了h 5(不计停留时间),求甲、乙两码头间的距离。
设甲、乙两码头间的距离为xKm ,则列出的方程正确的是()A.5420=+x xB.5)420()420(=-++x xC.5420=+x x D.5420420=-++xx 7.对任意四个有理数d c b a ,,,,定义新运算:cabc ad d b-=,如22 4231213-=?-?=,若xx 21814=-,则x 的值为()A.-1B. 2C. 3D. 48.关于x 的一元一次方程01)43(=++x b a 无解,则ab 的值为()A. 正数B. 非正数C. 负数D. 非负数 9.满足81272=-++a a 的整数a 的值的个数是()A. 5B. 4C. 3D. 210. 如图,一个瓶子的容积为L 1,瓶内装着一些溶液。
苏科版七年级数学上册:一元一次方程应用题提优训练
一元一次方程应用题提优训练1、假期间,小明和小颖两家共 8 人相约外出旅行,分别乘坐两辆出租车前往机场,在距离机场11 千米处一辆车出 了故障不能继续行驶.此时离机场停止办理登机手续还有 30 分钟,唯一可以利用的交通工具只有另一辆出租车, 连同司机在内限乘 5 人,车速每小时 60 千米.(1)如果这辆车分两批接送,其中 4 人乘车先走,余下 4 人原地等候, 8 人能否及时到达机场办理登机手续?(上下车时间忽略不计)(2)如果这辆车在送第一批客人的时候,余下的人以每小时6 千米的速度步行前往机场,待司机将第一批客人送达后立即返回接第二批客人,他们能及时到达机场吗?2、去年元旦期间,某商场打出促销广告,如下表所示:其中 500 元仍按九折优惠,超过 500 元部分按八折优惠全部按九折优惠办法 (1)用代数式表示(所填结果需化简)x x x设一次性购买的物品原价是 元,当原价 超过 200 元但不超过 500 元时,实际付款为 元;当原价 超过500元时,实际付款为元;(2)若甲购物时一次性付款490元,则所购物品的原价是多少元?(3)若乙分两次购物,两次所购物品的原价之和为1000元(第二次所购物品的原价高于第一次),两次实际付款共894元,则乙两次购物时,所购物品的原价分别是多少元?3、某人去水果批发市场采购苹果,他看中了A、B两家苹果。
这两家苹果品质一样,零售价都为6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)500以上~15001500以上~2500价零售价的70%【表格说明:批发价格分段计算,如:某人批发苹果2100千克,则总费用=6×95%×500+6×85%×1000+6×75%×(2100-1500)】(1)如果他批发600千克苹果,则他在A家批发需要元,在B家批发需要元.元,在B家批发需要元(2)如果他批发x千克苹果(1500<x<2000),则他在A家批发需要(用含x的代数式表示).(3)现在他要批发1800千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由.4、国庆黄金周,某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费满一定金额后,按下表获得相应的返还金额.消费金额(元)返还金额(元)100~50060注:100~500表示消费金额大于100元且小于或等于500元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为500元的商品,则消费金额为400元,获得的优惠额为500×(1﹣80%)+60=160(元).(1)购买一件标价为700元的商品,顾客获得的优惠额是多少?(2)若顾客在该商场购买一件标价x元(x>500)的商品,那么该顾客获得的优惠额为多少?(用含有x的代数式表示)(3)若顾客在该商场第一次购买一件标价x元(x>800)的商品后,第二次又购买了一件标价为300元的商品,两件商品的优惠额共为300元,则这名顾客第一次购买商品的标价为元.5、随着出行方式的多样化,某地区三类打车方式的收费标准如下:出租车3千米以内:12元 1.5元/千米0.5元/分钟2元/千米超过3千米的部分:2.4元/千米0.6元/分钟(如:乘坐8千米,耗时12分钟,出租车的收费为:12+2.4×(8-3)=24(元);顺风车的收费为:8×1.5+12×0.5=18(元);专车的收费为:8×2+12×0.6=23.2(元))解决问题:(假设打车的平均车速为30千米/小时)(1)李强乘车从新一城去江阴汽车站,全程10千米,如果小明使用顺风车,需要支付的打车费用为(2)李强乘车从市区去华西村,用顺风车比乘坐出租车节省了3元.求市区到华西村的路程;;(3)滴滴公司为了和吸引客户,分别推出了优惠方式,顺风车对于乘车路程在5千米以上(含5千米)的客户每次收费立减9元;专车车费5折优惠.对采用哪一种打车方式更合算提出你的建议.6、旅行社组织了甲、乙两个旅游团到游乐场游玩,两团总报名人数为120人,其中甲团人数不超过50人,游乐场规定一次性购票50人以上可享受团队票.门票价格如下:门票类别购票要求散客票团队票A超过50人但不超过100人70元/人团队票B超过100人60元/人票价(元/人)80元/人旅行社经过计算后发现,如果甲、乙两团合并成一个团队购票可以比分开购票节约300元.(1)求甲、乙两团的报名人数;(2)当天到达游乐场后发现团队票价格作了临时调整,团队票A每张降价a元,团队票B每张降价2a元,同时乙团队因故缺席了30人,此时甲、乙两团合并成一个团队购票可以比分开购票节约225元,求a的值.7、每年“双11”网上商城都会推出各种优惠活动经行促销,今年某单位在“双11”到来之前咨询了某网上商城的A、B两家店铺,打算在“双11”当天选择其中一家购买同一款运动手表若干台,已知该款手表在A、B两家店铺的标价均为900元/台,“双11”促销活动期间,对于该款手表,这两家店铺分别推出下列优惠活动:A店铺:“双11”当天购买,享受立减活动:当购买台数不超过12台时,每台立减140元;当购物台数超过12台时,前12台优惠不变,超过部分每台立减220元B店铺:提前一次性支付定金600元(最多一次),到“双11”当天购买就可以抵用1200元;同时,如果“双11”当天的下单金额超过1000元还可以享受立减活动;下单金额每满450元立减50元(注:下单金额=标价×购物数量)(1)“双11”当天,若该单位一单购买了5台该表手表,①若在A店铺购买,实付金额为元;②若在B店铺购物,实付的最少金额为元.(2)“双11”当天,若该单位一单要购买若干台该款手表,经过计算发现,在A店铺购买的实付金额与在B店铺购买的实付最少金额相等,问该单位要购买多少台该款手表.8、在计算 1+4+7+10+13+16+19+22+25+28 时,我们发现,从第一个数开始,后面的每个数与它的前面一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下列公式来求和S ,n (a a ) S (其中 n 表示数的个数,a 表示第一个数,a 表示最后一个数). n 1 n 21 10(1 28) 所以,1+4+7+10+13+16+19+22+25+28 用上面的知识解答下面问题:145 2某公司对外招商承包一个分公司,符合条件的两个企业 A 、B 分别拟定上缴利润方案如下:A :每年结算一次上缴利润,第一年上缴 1.5 万元,以后每年比前一年增加 1 万元;B :每半年结算一次上缴利润,第一个半年上缴 0.3 万元,以年每半年比前半年增加 0.3 万元.(1)如果承包期限 2 年,则 A 企业上缴利润的总金额为(2)如果承包期限为 n 年,则 A 企业上缴利润的总金额为(用含 n 的代数式表示);万元,B 企业上缴利润的总金额为 万元,B 企业上缴利润的总金额为 万元; 万元(3)承包期限 n=20 时,通过计算说明哪个企业上缴利润的总金额比较多?多多少万元? 9.如图是某市民健身广场的平面示意图,它是由 6 个正方形拼成的长方形,已知中间最小的正方形 A 的边长是 1(1)若设图中最大正方形 B 的边长是 x 米,请用含 x 的代数式分别表示出正方形 F 、E 和 C 的边长 、 、(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的 MN 和 PQ ).请根据这个等量关系,求x 的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙 2 个工程队单独铺设分别需要 10 天、15 天完成.如果两队从同一点开始,沿相反的方向同时施工 2 天后,因甲队另有任务,余下的工程由 乙队单独施工, 试问还要多少天完成10、某景区内的环形路是边长为800 m 的正方形ABCD,如图1 和图2 所示.现有1 号、2 号两游览车分别从出口A和景点C同时出发,1 号车逆时针、2 号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200 m/min.[探究]设行驶时间为t min.(1) 当0≤t≤8时,分别用含t的代数式表示1 号车、2 号车在左半环线离出口A的路程y,y (m),并求1 2出当两车相距的路程是400 m时t的值;(2) 求当t为何值时,1 号车第三次恰好经过景点C,并直接写出这一段时间内它与2 号车相遇过的次数.[发现] 如图2,游客甲在BC上的一点K (不与点B,C重合) 处候车,准备乘车到出口A. 设CK=x m.情况一:若他刚好错过2 号车,便搭乘即将到来的1 号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多.(含候车时间)10、某景区内的环形路是边长为800 m 的正方形ABCD,如图1 和图2 所示.现有1 号、2 号两游览车分别从出口A和景点C同时出发,1 号车逆时针、2 号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200 m/min.[探究]设行驶时间为t min.(1) 当0≤t≤8时,分别用含t的代数式表示1 号车、2 号车在左半环线离出口A的路程y,y (m),并求1 2出当两车相距的路程是400 m时t的值;(2) 求当t为何值时,1 号车第三次恰好经过景点C,并直接写出这一段时间内它与2 号车相遇过的次数.[发现] 如图2,游客甲在BC上的一点K (不与点B,C重合) 处候车,准备乘车到出口A. 设CK=x m.情况一:若他刚好错过2 号车,便搭乘即将到来的1 号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多.(含候车时间)10、某景区内的环形路是边长为800 m 的正方形ABCD,如图1 和图2 所示.现有1 号、2 号两游览车分别从出口A和景点C同时出发,1 号车逆时针、2 号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200 m/min.[探究]设行驶时间为t min.(1) 当0≤t≤8时,分别用含t的代数式表示1 号车、2 号车在左半环线离出口A的路程y,y (m),并求1 2出当两车相距的路程是400 m时t的值;(2) 求当t为何值时,1 号车第三次恰好经过景点C,并直接写出这一段时间内它与2 号车相遇过的次数.[发现] 如图2,游客甲在BC上的一点K (不与点B,C重合) 处候车,准备乘车到出口A. 设CK=x m.情况一:若他刚好错过2 号车,便搭乘即将到来的1 号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多.(含候车时间)。
2020学苏教版初一数学第四章《一元一次方程》综合提优练习(含答案)
1第四章《一元一次方程》综合提优练习第四章《一元一次方程》综合提优练习一.选择题一.选择题1.书架上,第一层的数量是第二层书的数量x 的2倍,从第一层抽8本到第二层,这时第一层剩下的数量恰比第二层的一半多3本.依上述情形,所列关系式成立的是(本.依上述情形,所列关系式成立的是( )A .2x x+3B .2x (x+8)+3C .2x ﹣8x+3D .2x ﹣8(x+8)+32.小明和小亮两人在长为50m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若小明跑步的速度为5m/s ,小亮跑步的速度为4m/s ,则起跑后60s 内,两人相遇的次数为(次数为( ) A .3B .4C .5D .63.小石家的脐橙成熟了!小石家的脐橙成熟了!今年甲脐橙园有脐橙今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从乙脐橙园运脐橙x 千克到甲脐橙园,则可列方程为(千克到甲脐橙园,则可列方程为( )A .7000=2(5000+x )B .7000﹣x =2×5000C .7000﹣x =2(5000+x )D .7000+x =2(5000﹣x )4.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是(方程正确的是( ) A .0.8×(1+40%)x =15 B .0.8×(1+40%)x ﹣x =15 C .0.8×40%x =15D .0.8×40%x ﹣x =155.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x 天完成这项工程,则可以列的方程是(天完成这项工程,则可以列的方程是( )A .B .C .D .6.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,若3个甲种零件和2个乙种零件配成一套,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?设应分配x 人生产甲种零件,则根据题意可得的方程为(零件,则根据题意可得的方程为( ) A .12x =62(23﹣x )B .3×12x =2×23(62﹣x )C .2×12x =3×23(62﹣x )D .23(62﹣x )=12x7.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数.若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是(则框住的四个数的和不可能得到的数是( )A .22B .70C .182D .2068.某超市在“元旦”活动期间,推出如下购物优惠方案:某超市在“元旦”活动期间,推出如下购物优惠方案: ①一次性购物在100元(不含100元)以内,不享受优惠;元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)元)以内,一律享受九折优惠;以内,一律享受九折优惠; ③一次性购物在350元(含350元)以上,一律享受八折优惠;元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款(则小敏至少需付款( )元)元 A .288B .296C .312D .3209.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?(高度变为多少公分?( )底面积(平方公分)底面积(平方公分) 甲杯甲杯 60 乙杯乙杯80丙杯丙杯 100A .5.4B .5.7C .7.2D .7.510.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD :AB =(=( )A .5:3B .7:5C .23:14D .47:2911.小李年初向建设银行贷款5万元用于购房,年利率为5%,按复利计算,若这笔借款分15次等额归还,每年1次,15年还清,并从借后次年年初开始归还,问每年应还大约( ) A .4819元B .4818元C .4817元D .4816元12.某企业接到为地震灾区生产活动房的任务,某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,此企业拥有九个生产车间,此企业拥有九个生产车间,现在每个车间原现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A 、B 两组检验员,其中A 组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B 组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B 组检验员人数为( ) A .8人B .10人C .12人D .14人二.填空题二.填空题13.某商品在进价的基础上加价80%再打八折销售,可获利润44元,则该商品的进价为元,则该商品的进价为 元.元.14.甲乙两车分别从A ,B 两地同时相向匀速行驶,甲车每小时比乙车快20千米,行驶3小时两车相遇,乙车到达A 地后未作停留,继续保持原速向远离B 地的方向行驶,而甲车在相遇后又行驶了2小时到达B 地后休整了半小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地.则A ,C 两地相距两地相距 千米.千米.15.某学校需要购买一批电脑,有两种方案如下:方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装费等其它费用合计3000元.学校添置元.学校添置台电脑时,两种方案的费用相同.台电脑时,两种方案的费用相同. 16.A 、B 、C 三地依次在同一直线上,B ,C 两地相距560千米,甲、乙两车分别从B ,C 两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C 地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A 地,则A ,B 两地相距两地相距 千米.千米.17.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,若设前年的产值为x 万元,由题意可列方程万元,由题意可列方程. 18.“十一”“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.若两人同时出发,小张车速为20千米/小时,小李车速为15千米/小时,经过小时,经过 小时能相遇.小时能相遇.19.九江市城区的出租车收费标准如下:2公里内起步价为7元,超过2公里以后按每公里1.4元计价.若某人坐出租车行驶x 公里,应付给司机21元,则x = .20.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动,正方形的边开始移动,甲点依顺时针方向环行,甲点依顺时针方向环行,甲点依顺时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的若乙的速度是甲的速度的3倍,则它们第2018次相遇在边次相遇在边 .21.科学考察队的一辆越野车需要穿越650千米的沙漠,但这辆车每次装满汽油最多只能驶600千米,队长想出一个方法,在沙漠中设一个储油点P ,越野车装满油从起点A 出发,到储油点P 时从车中取出部分油放进P 储油点,然后返回出发点A ,加满油后再开往P ,到P 储油点时取出储存的所有油放在车上,储油点时取出储存的所有油放在车上,再到达终点.再到达终点.用队长想出的方法,这辆越野车穿越这片沙漠的最大距离是片沙漠的最大距离是 千米.千米.22.已知a ,b 为定值,关于x 的方程1,无论k 为何值,它的解总是1,则a+b= . 三.解答题三.解答题23.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?元,那么这两种奖品分别购买了多少件? (2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?总花费最少?24.中国古代算书《算法统宗》中有这样一道题:甲赶群羊逐草茂,乙拽肥羊随其后,戏问甲及一百否?甲云所说无差谬,若得这般一群凑,再添半群小半(注:四分之一的意思)群,得你一只来方凑.玄机奥妙谁参透?大意是说:牧羊人赶着一群羊去寻找草长得茂盛的地方放牧,有一个过路人牵着1只肥羊从后面跟了上来,他对牧羊人说你赶的这群羊大概有100只吧?牧羊人答道:如果这一群羊加上1倍,再加上原来羊群的一半,再加上原来羊群的一半,又加上原来这群羊的又加上原来这群羊的四分之一,连你牵着的这只肥羊也算进去,连你牵着的这只肥羊也算进去,才刚好满才刚好满100只.你知道牧羊人放牧的这群羊一共有多少只吗?共有多少只吗?25.在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如表所示的数据:出如表所示的数据:功率功率使用寿命使用寿命 价格价格 普通白炽灯普通白炽灯 100瓦(即0.1千瓦)千瓦) 2000小时小时 3元/盏 优质节能灯优质节能灯20瓦(即0.02千瓦)千瓦)4000小时小时35元/盏已知这两种灯的照明效果一样,小明家所在地的电价是每度0.5元.元. (注:用电度数=功率(千瓦)×时间(小时),费用=灯的售价+电费)电费)如:若选用一盏普通白炽灯照明1000小时,那么它的费用为1000×0.1×0.5+3=53(元),请解决以下问题:请解决以下问题:(1)在白炽灯的使用寿命内,设照明时间为x 小时,请用含x 的代数式分别表示用一盘白炽灯的费用y1(元)和一盏节能灯的费用y2(元):(2)在白炽灯的使用寿命内,照明多少小时时,使用这两种灯的费用相等?)在白炽灯的使用寿命内,照明多少小时时,使用这两种灯的费用相等? (3)如果计划照明4000小时,购买哪一种灯更省钱?请你通过计算说明理由.小时,购买哪一种灯更省钱?请你通过计算说明理由.26.巴南区认真落实“精准扶贫”.某“建卡贫困户”在党和政府的关怀和帮助下投资了一个鱼塘,经过一年多的精心养殖,经过一年多的精心养殖,今年今年10月份从鱼塘里捕捞了草鱼和花鲢共2500千克,在市场上草鱼以每千克16元的价格出售,花鲢以每千克24元的价格出售,这样该贫困户10月份收入52000元,元,(1)今年10月份从鱼塘里捕捞草鱼和花鲢各多少千克?月份从鱼塘里捕捞草鱼和花鲢各多少千克?(2)该贫困户今年12月份再次从鱼塘里捕捞.捕捞数量和销售价格上,草鱼数量比10月份减少了2a 千克,销售价格不变;花鲢数量比10月份减少了a%,销售价格比10月份减少了,该贫困户在10月份和12月份两次捕捞中共收入了94040元,真正达到了脱贫致富,求a 的值.的值.27.王老师想为梦想班的同学们购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.本词典. (1)每个书包和每本词典的价格各是多少元?)每个书包和每本词典的价格各是多少元?(2)王老师计划用900元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下的钱最少为多少元?此时购买书包和词典的方案是什么?后,余下的钱最少为多少元?此时购买书包和词典的方案是什么?28.育才中学组织七年级师生去春游,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,则少租一辆,且余15个座位.个座位. (1)求参加春游的师生总人数;)求参加春游的师生总人数;(2)已知一辆45座客车的租金每天250元,一辆60座客车的租金每天300元,问单租哪种客车省钱?种客车省钱?(3)如果同时租用这两种客车,那么两种客车分别租多少辆最省钱?(只写出租车方案即可)可)一.选择题一.选择题1.书架上,第一层的数量是第二层书的数量x 的2倍,从第一层抽8本到第二层,这时第一层剩下的数量恰比第二层的一半多3本.依上述情形,所列关系式成立的是(本.依上述情形,所列关系式成立的是( )A .2x x+3B .2x (x+8)+3C .2x ﹣8x+3D .2x ﹣8(x+8)+3【解答】D【解析】由题意知,第一层书的数量为2x 本,则可得到方程2x ﹣8(x+8)+3.故选D .2.小明和小亮两人在长为50m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若小明跑步的速度为5m/s ,小亮跑步的速度为4m/s ,则起跑后60s 内,两人相遇的次数为(次数为( ) A .3 B .4C .5D .6【解答】C【解析】设两人起跑后60s 内,两人相遇的次数为x 次,依题意得;次,依题意得;每次相遇间隔时间t ,A 、B 两地相距为S ,V 甲、V 乙分别表示小明和小亮两人的速度,则有:有:(V 甲+V 乙)t =2S ,则t ,则x =60,解得:x =5.4,∵x 是正整数,且只能取整,是正整数,且只能取整, ∴x =5. 故选C .3.小石家的脐橙成熟了!小石家的脐橙成熟了!今年甲脐橙园有脐橙今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从乙脐橙园运脐橙x 千克到甲脐橙园,则可列方程为(千克到甲脐橙园,则可列方程为( ) A .7000=2(5000+x ) B .7000﹣x =2×5000C .7000﹣x =2(5000+x )D .7000+x =2(5000﹣x )【解答】D【解析】设从乙脐橙园运脐橙x 千克到甲脐橙园,千克到甲脐橙园, 则7000+x =2(5000﹣x ). 故选D .4.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是(方程正确的是( ) A .0.8×(1+40%)x =15 B .0.8×(1+40%)x ﹣x =15 C .0.8×40%x =15 D .0.8×40%x ﹣x =15 【解答】B【解析】设这种服装每件的成本价是x 元,由题意得:元,由题意得: 0.8×(1+40%)x ﹣x =15 故选B .5.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x 天完成这项工程,则可以列的方程是(天完成这项工程,则可以列的方程是( )A .B .C .D .【解答】C【解析】设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:为:.故选C .6.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,若3个甲种零件和2个乙种零件配成一套,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?设应分配x 人生产甲种零件,则根据题意可得的方程为(零件,则根据题意可得的方程为( ) A .12x =62(23﹣x )B .3×12x =2×23(62﹣x )C .2×12x =3×23(62﹣x )D .23(62﹣x )=12x【解答】C【解析】设应分配x 人生产甲种零件,人生产甲种零件, 12x ×2=23(62﹣x )×3, 故选C .7.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数.若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是(则框住的四个数的和不可能得到的数是( )A .22B .70C .182D .206【解答】D【解析】由题意,设T 字框内处于中间且靠上方的数为2n ﹣1, 则框内该数左边的数为2n ﹣3,右边的为2n+1,下面的数为2n ﹣1+10, ∴T 字框内四个数的和为:字框内四个数的和为:2n ﹣3+2n ﹣1+2n+1+2n ﹣1+10=8n+6. 故T 字框内四个数的和为:8n+6.A 、由题意,令框住的四个数的和为22,则有:,则有: 8n+6=22,解得n =2.符合题意..符合题意. 故本选项不符合题意;故本选项不符合题意;B 、由题意,令框住的四个数的和为70,则有:,则有: 8n+6=70,解得n =8.符合题意..符合题意. 故本选项不符合题意;故本选项不符合题意;C 、由题意,令框住的四个数的和为182,则有:,则有: 8n+6=182,解得n =22.符合题意..符合题意. 故本选项不符合题意;故本选项不符合题意;D 、由题意,令框住的四个数的和为206,则有:,则有: 8n+6=206,解得n =25.由于数2n ﹣1=49,排在数表的第5行的最右边,它不能处于T 字框内中间且靠上方的数,所以不符合题意.所以不符合题意.故框住的四个数的和不能等于206. 故本选项符合题意;故本选项符合题意; 故选D .8. 某超市在“元旦”活动期间,推出如下购物优惠方案:某超市在“元旦”活动期间,推出如下购物优惠方案: ①一次性购物在100元(不含100元)以内,不享受优惠;元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)元)以内,一律享受九折优惠;以内,一律享受九折优惠; ③一次性购物在350元(含350元)以上,一律享受八折优惠;元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款(则小敏至少需付款( )元)元 A .288 B .296 C .312 D .320【解答】C【解析】设第一次购物购买商品的价格为x 元,第二次购物购买商品的价格为y 元,元, 当0<x <100时,x =90; 当100≤x <350时,0.9x =90, 解得:x =100; ∵0.9y =270, ∴y =300.∴0.8(x+y )=312或320. 所以至少需要付312元.元. 故选C .9. 桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?(高度变为多少公分?( )底面积(平方公分)底面积(平方公分) 甲杯甲杯 60 乙杯乙杯 80 丙杯丙杯 100A .5.4B .5.7C .7.2D .7.5【解答】C【解析】设后来甲、乙、丙三杯内水的高度为3x 、4x 、5x , 根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x , 解得:x =2.4,则甲杯内水的高度变为3×2.4=7.2(公分). 故选C .10.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD :AB =(=( )A .5:3B .7:5C .23:14D .47:29【解答】D【解析】设灰色长方形的长上摆5x 个小正方形,宽上摆3x 个小正方形,个小正方形, 2(5x+3x )+4=148 x =95x =45,3x =27, AD =45+2=47, AB =27+2=29,.故选D .11.小李年初向建设银行贷款5万元用于购房,年利率为5%,按复利计算,若这笔借款分15次等额归还,每年1次,15年还清,并从借后次年年初开始归还,问每年应还大约( ) A .4819元 B .4818元C .4817元D .4816元【解答】C【解析】设每年应还x 元,则根据题意可知:元,则根据题意可知:50000×(1+0.05)15=x ×(1+0.05)14+x ×(1+0.05)13+…+x . 用计算器得出:x =4817 故选C .12.某企业接到为地震灾区生产活动房的任务,某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,此企业拥有九个生产车间,此企业拥有九个生产车间,现在每个车间原现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A 、B 两组检验员,其中A 组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B 组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B 组检验员人数为( ) A .8人 B .10人C .12人D .14人【解答】C【解析】设每个车间原有成品a 件,每个车间每天生产b 件产品,根据检验速度相同得:件产品,根据检验速度相同得:,解得a =4b ;则A 组每名检验员每天检验的成品数为:2(a+2b )÷(2×8)=12b ÷16b .那么B 组检验员的人数为:5(a+5b )÷(b )÷5=45b b ÷5=12(人). 故选C . 二.填空题二.填空题13.某商品在进价的基础上加价80%再打八折销售,可获利润44元,则该商品的进价为元,则该商品的进价为 元.元. 【解答】100【解析】设这件商品的进价为x 元,元, x (1+80%)×0.8=x+44,解得,x=100,即这件商品的进价为100元,元,故答案为100.14.甲乙两车分别从A,B两地同时相向匀速行驶,甲车每小时比乙车快20千米,行驶3小时两车相遇,乙车到达A地后未作停留,继续保持原速向远离B地的方向行驶,而甲车在相遇后又行驶了2小时到达B地后休整了半小时,然后调头并保持原速与乙车同向行驶,千米.千米.两地相距经过一段时间后两车同时到达C地.则A,C两地相距【解答】360)千米,【解析】设乙车每小时行驶x千米,则甲车每小时行驶(x+20)千米,由题意得:3x=2(x+20),解得:x=40,则x+20=60,千米,即乙车每小时行驶40千米,则甲车每小时行驶60千米,∴A,B两地的距离为:3×60+3×40=300(千米),设两车相遇后经过y小时到达C地,地,由题意得:60(y﹣2.5)=40(y+3),解得:y=13.5,∴B,C两地的距离为:60(13.5﹣2.5)=660(千米),∴A,C两地的距离为:660﹣300=360(千米);故答案为360.15.某学校需要购买一批电脑,有两种方案如下:方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装费等其它费用合计3000元.学校添置台电脑时,两种方案的费用相同.元.学校添置 台电脑时,两种方案的费用相同.【解答】3台电脑,【解析】设学校添置x台电脑,由题意,得7000x=6000x+3000,解得x=3,答:当学校添置3台电脑时,两种方案的费用相同;台电脑时,两种方案的费用相同;故答案为3.16.A、B、C三地依次在同一直线上,B,C两地相距560千米,甲、乙两车分别从B,C两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C 地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A 地,则A ,B 两地相距两地相距 千米.千米. 【解答】760【解析】设乙车的平均速度是x 千米/时,则时,则4(x )=560.解得x =60即乙车的平均速度是60千米/时.时.设甲车从C 地到A 地需要t 小时,则乙车从C 地到A 地需要(t+7)小时,则)小时,则 80(1+10%)t =60(7+t ) 解得t =15.所以60(7+t )﹣560=760(千米)(千米) 故答案为760.17.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,若设前年的产值为x 万元,由题意可列方程万元,由题意可列方程 . 【解答】550【解析】设前年的产值是x 万元,则去年的产值是1.5x 万元,今年的产值是3x 万元,依题意有意有x+1.5x+3x =550.故答案为x+1.5x+3x =550.18.“十一”“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.若两人同时出发,小张车速为20千米/小时,小李车速为15千米/小时,经过小时,经过 小时能相遇.小时能相遇. 【解答】2【解析】设经过t 小时相遇,则小时相遇,则 20t =15t+10, 解方程得:t =2,所以两人经过两个小时后相遇.所以两人经过两个小时后相遇. 故答案为2.19.九江市城区的出租车收费标准如下:2公里内起步价为7元,超过2公里以后按每公里1.4元计价.若某人坐出租车行驶x 公里,应付给司机21元,则x = . 【解答】12【解析】因为21>7, 所以x >2.由题意知,7+1.4(x ﹣2)=21 解得x =12.故答案为12.20.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动,正方形的边开始移动,甲点依顺时针方向环行,甲点依顺时针方向环行,甲点依顺时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的若乙的速度是甲的速度的3倍,则它们第2018次相遇在边次相遇在边 .【解答】DC【解析】正方形的边长为4,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:份,由题意知:①第一次相遇甲乙行的路程和为8,甲行的路程为82,乙行的路程为8﹣2=6,在AD 边相遇;边相遇;②第二次相遇甲乙行的路程和为16,甲行的路程为164,乙行的路程为16﹣4=12,在DC 边相遇;边相遇;③第三次相遇甲乙行的路程和为16,甲行的路程为164,乙行的路程为16﹣4=12,在CB 边相遇;边相遇;④第四次相遇甲乙行的路程和为16,甲行的路程为164,乙行的路程为16﹣4=12,。
苏科版七年级上数学第四章《一元一次方程》提优训练含答案
第四章一元一次方程一、选择题(每题2分,共20分)1.下列方程中,一元一次方程是( )A.2a=1 B.3y-5 C.3+7=10 D.x2+x=l2.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )A.2(x-1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x-1)=133.下列变形正确的是( )A.4x-5=3x+2变形得4x-3x=-2+5B.211332x x-=+变形得4x-6=3x+18C.3(x-1)=2(x+3)变形得3x-1=2x+6D. 3x=2变形得x=2 34.解为x=5的方程是( )A. 5x+2=7x-8B. 5x-2=7x+8C.5x+2=7x+8 D.5x-2=7x-85.已知2是关于x的方程3x+a=0的一个解.那么a的值是( )A.-6 B.-3 C.-4 D.-56.班长去文具店买毕业留言卡50张.每张标价2元,店老板说可以按标价九折优惠,则班长应付( ) A.45元B.90元C.10元D.100元7.若方程6x+3a=22与方程5(x+1)=4x+7的解相同,则a的值是( )A.103B.310C.103-D.310-8.若1-(2-x)=1-x,则代数式2x2-7的值是( )A.-5 B.5 C.1 D.-19.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为( ) A. 26元B.27元C.28元D.29元10.如图,宽为50 cm的长方形图案由10个相间的小长方形拼成,其中一个小长方形的面积为( ) A.400 cm2 B. 500 cm2C.600 cm2D.4000 cm2二、填空题(每空2分,共24分)11.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x月后他能捐出100元,则可列方程为______________.12.一个长方形周长是42 cm,宽比长少3 cm,如果设长为x cm,那么根据题意列方程为______________.13.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为_______元.14.若9a x b3与-7a3x-4b3是同类项,则x=________.15.当m=________时,代数式53m+的值是2.16. 某校七(1)班的男生比女生多2人,女生占全班人数的48%.这个班男生有_____人,女生有___人.17. 已知x=23是一元一次方程3(m-34x)+32x=5m的解,则m的值是_______.18. 从甲地到乙地,公共汽车原需行驶7 h,开通高速公路后,车速平均每小时增加了20 km,只需5 h 即可到达.甲、乙两地的路程是________.19.x=9是方程123x b-=的解,那么b=_______.当b=l时.方程的解为_______.20.其商场在促销期间规定:商场内所有商品按标价的80%出售,同时.与顾客在该商场内消费满一定金额后。
苏科版七年级数学上册 第4章 《一元一次方程》专题训练(含答案)
七年级数学《一元一次方程》专题训练1 含参数的一元一次方程方程是中学数学中最重要的内容之一,最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧.一元一次方程ax b =的解由a 、b 的取值来确定:(1)若0a ≠,则方程有唯一解b x a=(2)若0a =,且0b =,方程变为00x =g ,则方程有无数多个解;(3)若0a =,且0b ≠,方程变为0x b =g ,则方程无解. 经典例题解方程::2222()()()()a x b a b x a x b x a b +---=-+-解题策略本题将方程中的括号去掉后产生2x ,但整理化简后可以消去2x ,也就是说,原方程实际上仍然是一个一元一次方程.在化为ax b =的形式后.需要讨论a 、b 的情况. 将原方程整理化简得即222()()a b x a b -=- (1) 当22()0a b -≠,即a b ≠±时,方程有唯一解222()a b a b x a b a b --==-+ (2) 当22()0a b -=,即a b =或a b =-时,若a b ≠,即0a b -≠时,方程无解;若a b =时,当方程有无数多个解画龙点睛含有字母系数的方程,一定要注意字母的取值范围,解这类方程时,需要从方程有唯一解、无解、有无数多个解这三种情况进行讨论.举一反三1. 解关于x 的方程:29261a x ax -=+2. 解关于x 的方程:32132x ab ax b ++-= 3. 解关于x 的方程:(0,0)x m x n n m n n m m ---=≠≠ 融会贯通4. 已知关于x 的方程21035a x bx --=的解为3x =,求代数式22ab ab +的值. 2 利用解的情况求参数的值在上一节,我们知道了,一元一次方程的解有三种情况,有唯一解、有无数解以及无解.这一节我们将通过方程解的情况来确定方程中未知参数的值或取值范围.经典例题(1)关于x 的方程8512x a bx -+=+有唯一解,求a 、b 满足的条件(2)已知关于x 的方程(31)23a x x -=-无解,求a 的值解题策略(1)首先将方程化为Ax B =的形式,由于方程有唯一解,则0A ≠,B 取一切实数.整理得:(8)17b x a -=-,由于方程有唯一解,则80b -≠,17a -可取任意实数,得a 取任意实数,8b ≠.(2)整理得(32)3a x a -=-,由于方程无解,则32030a a -=⎧⎨-≠⎩可得,当方程无解时,23a = 画龙点睛利用解的情况求参数的值或取值范围时,首先将方程化为ax b =的形式,再根据方程根的情况判断参数的取值范围.举一反三1. 已知方程32(1)2(5)x x x +-=+和方程34()65()x a x x a x --=--有相同的解,试求a 的值.2. 己知方程2(1)3(4)x x +=-的解为2a +,求方程5[2(3)3()]8x x a a ++-=的解.3. 求当m 为何值时,方程2235m x m m mx -=-的解是正数?融会贯通4. 已知关于x 的方程5814225x a x -=+,且a 为某些正整数时,方程的解为正整数,试求正整数a 的最小值.3 整体考虑在解一元一次方程时,若要将式子全部化简,往往会很繁琐,这时把某个含x 的式子当作一个整体来考虑进行运算,往往能使问题简化.经典例题解方程: (1)113(4)(3)2(3)(4)32x x x x +--=--+ (2)2329307123x x x -+---+= 解题策略(1)原方程可以化为77(4)(3)23x x +=-,解得18x =-,故原方程的解为18x =- (2)原方程可化为 因为11207123--≠,所以9x = 故原方程的解9x = 画龙点睛上面两个例题,我们都可以去分母,然后整理成一元一次方程的标准形式去求解,但是在求解过程中,如果结合整体思想(在(1)中,把4x +和3x -分别作为整体,在(2)中,把9x -作为整体)可以巧妙求解.举一反三1. 解方程:113(1)(1)2(1)(1)32x x x x +--=--+ 2. 解方程:1112[(27)](27)236x x x x ---=- 3. 解方程:92211132x x x x -+--=-- 融会贯通4. 若1abc =,解方程:2221111ax bx cx ab a bc b ca c ++=++++++ 4 列方程解应用题列方程解应用题的关键在于能够正确地设立未知数,找出等量关系,从而建立方程.而找出等量关系,又在于熟练运用数量之间的各种已知条件.掌握了这两点,就能正确地列出方程.列方程解应用题的一般步骤是:1.弄清题意,找出未知数,并用x 表示;2.找出应用题中数量之间的相等关系,列方程;3.解方程;4.检验,写出答案.经典例题有大、中、小三种衬衣的包装盒共50个,分别装有70、30、20件衬衣,一共装了1800件衬衣,其中中盒的数量是小盒的三倍.求三种盒子各有多少个.解题策略设其中小盒的数量是x 个,则中盒的数量是3x 个,大盒数量是503x x --个,于是有方程解得10x =所以,小盒的数量是10个,中盒的数量是31030⨯=个,大盒的数量是50103010--=(个).画龙点睛本题中要求求出小盒的数量,就直接设小盒的数量是x 个.还要求中盒的数量、大盒的数量,当然,也可以把它们设为未知数,比如y 、z 等,但设未知数的个数应少一些为好,不必要的未知数尽量不设,以免列方程和解方程时麻烦.举一反三1. 甲、乙两小组人数的和是28,如果甲组增加4人,乙组增加1人,那么甲组人数与乙组人数的比是2:1,求原来甲、乙两组的人数.2. 甲、乙、丙、丁四位小朋友共有81本书,如果把每人的书的本数作以下变化:甲加2,乙减2,丙乘以2,丁除以2后,各人所有书的本数相等,求甲、丁原来各有书多少本?3. 甲、乙两车同时从A 、B 两地出发.相向而行.在A 、B 两地间不断往返行驶.甲车到达B地后,在B 地停留了2个小时,然后返回A 地;乙车到达A 地后,马上返回B 地.两车在返回途中又相遇,相遇地点距B 地288千米.已知甲车速度是每小时60千米,乙速度是每小时4 0千米.求A 、B 两地距离.融会贯通4. 幼儿园有三个班,甲班比乙班多4人,乙班比丙班多4人,老师给小孩分巧克力,甲班每个小孩比乙班每个小孩少分3个巧克力,乙班每个小孩比丙班每个小孩少分5个巧克力,结果甲班比乙班总共多分了3个巧克力,乙班比丙班总共多分了5个巧克力.问三个班总共分了多少个巧克力?5 商品销售问题在日常生活中,我们经常会遇到商品销售问题.在商品销售过程中,有如下几个基本概念:进价:商店购进商品时的价格;标价:商店销售商品时标出的价格;售价:实际销售价格,也叫成交价格;利润:因销售商品而赚的钱;利润率:利润占进价的百分率;销售折扣:商品售价占商品标价的百分率.利润=售价-进价,利润率=100%-⨯售价进价进价售价=标价⨯销售折扣.经典例题某商店一种商品的进价降低了8%,而售价保持不变,可使得商店的利润提高10%,问:原来的利润率是百分之几?解题策略设原来的进价为a 元,原利润率为%x .由题意知,原售价为(1%)x a +元,现在的进价为(18%)a -元,所以,利润率为 现在的售价仍然是(1%)x a +元,于是可得方程所以(8)%(10)%92%x x +=+⨯解得15x =所以,原来的利润率15%画龙点睛这里的原进价a 是一个“辅助未知数”,在解题过程中.它消去了,但是有了它,许多关系就好表达了.举一反三1. 某商品的进价是2019元,标价是3000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?2. 某商品的标价比成本高p %,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过d %,试用p 表示d .3. 张先生向商店订购某一商品,每件定价100元.共订购60件,张先生向商店经理说:“如果你肯减价。
苏科版数学七年级上册 第四章《一元一次方程》强化提优试卷
南京市鼓楼区2020-2021七年级 第四章《一元一次方程》强化提优试卷时间:90分钟 总分:120分一.选择题(共10小题,每小题3分,共30分)1.已知下列方程:①x ﹣2=;②0.2x =1;③=x ﹣3;④x ﹣y =6;⑤x =0,其中一元一次方程有( ) A .2个 B .3个 C .4个 D .5个2.用等式性质进行的变形,一定正确的是( ) A .如果a =b ,那么a +b =b ﹣c B .如果a +b =b ﹣c ,那么a =bC .如果a =b ,那么D .如果那么a =b3.下列说法中正确的是( )A.含有一个未知数的等式是一元一次方程B.未知数的次数都是1次的方程是一元一次方程C.含有一个未知数,并且未知数的次数都是一次的方程是一元一次方程D.2y −3=1是一元一次方程4.解一元一次方程(x ﹣1)=2﹣x 时,去分母正确的是( ) A .2(x ﹣1)=2﹣5x B .2(x ﹣1)=20﹣5x C .5(x ﹣1)=2﹣2x D .5(x ﹣1)=20﹣2x5.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x 公顷沙漠改造为绿洲,则可列方程为( )A.54+x =80%×108B.54+x =80%(108−x)C.54−x =80%(108+x)D.108−x =80%(54+x)6.若关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为 ( ) A. 9 B. 8 C. 5 D. 47.吴云科和孟家福是七年级四班的两名爱好数学的优等生,在学完第三章《一元一次方程》后,吴云科对孟家福说:“方程2−x−13=1−x 2+3−x 与方程4−kx+23=3k −2−2x4的解相同,你能求出k 的值吗?”孟家福用笔算了一下给出正确答案,聪明的你知道是哪个吗?( )A.0B.2C.1D.−18.将连续的奇数1,3,5,7,9,…排成如图所示的数表,平移十字方框,方框内的5个数字之和可能是( )A .405B .545C .2012D .20159.某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为( ) A .+=1 B .+=1 C .+=1 D .+=110.如图,数轴上的点O 和点A 分别表示0和10,点P 是线段OA 上一动点.点P 沿O →A →O 以每秒2个单位的速度往返运动1次,B 是线段OA 的中点,设点P 运动时间为t 秒(t 不超过10秒).若点P 在运动过程中,当PB =2时,则运动时间t 的值为( ) A .秒或秒B .秒或秒秒或秒 C .3秒或7秒 D .3秒或秒或7秒或秒二.填空题(共10小题,每小题3分,共30分) 11.若1(2)42m m xm --+=是关于x 的一元一次方程,则m 的值为12.在x =1,2,0中,是方程−12x +9=3x +2的解的是x =________.13.由x +6=1−3x 得x +3x =1−6,这步变形叫________,变形的依据是________. 14.若x =-3是关于x 的方程3x -a =2x +5的解,则a 的值为_____ 15.小明今年13岁,妈妈38岁, 年后,小明年龄是妈妈的21. 16.若2x −3=0且|3y −2|=0,则xy =________.17.某车间有26名工人,每人每天能生产螺栓12个或螺母18个,设有x 名工人生产螺栓,其他工人生产螺母,且每天生产的螺栓和螺母按1:2配套,由此可得方程_________. 18.设P=2y -2, Q=2y+3, 有2P -Q=1, 则y 的值是_______19.我国古代《算法统宗》里有这样一首诗:我问开店李三公.众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?设该店有房x 间,则可列方程:20.李强用8个一样大的矩形(长a cm ,宽b cm)拼图,拼出了如图甲、乙的两种图案:图案甲是一个正方形,图案乙是一个大的矩形;图案甲的中间留下了边长是2cm 的正方形小洞.则(a+2b)2-8ab 的值为 .三.解答题(共7小题,满分60分) 21.(16分)解下列方程(1)2x ﹣1=﹣3﹣x (2) 2x ﹣3(x ﹣2)=4 (3)1﹣(4)13.027.17.0=--xx22.(6分)下面是小丽解方程7(x ﹣1)﹣3x =2(x +3)﹣3的过程,请仔细阅读,并解答所提出的问题:解:去括号,得7x ﹣7﹣3x =2x +3﹣3.(第一步) 移项,得7x ﹣3x ﹣2x =7+3﹣3.(第二步) 合并同类项,得2x =7.(第三步) 系数化为1,得x =.(第四步)(1)该同学解答过程从第 步开始出错,错误原因是 ; (2)写出正确的解答过程.23. (6分)己知方程2(1)3(4)x x +=-的解为2a +,求方程5[2(3)3()]8x x a a ++-=的解.24.(6分)研学基地高明盈香生态园的团体票价格如表:数量(张)30~5051~100101及以上单价(元/张)806050某校七年级(1)、(2)班共102人去研学,其中(1)班人数较少,不足50人,两个班相差不超过20人.经估算,如果两个班都以班为单位购票,则一共应付7080元,问:(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可省多少钱?25.(8分)定义:对于一个有理数x,我们把[x]称作x的对称数.若x≥0,则[x]=x﹣2;若x<0,则[x]=x+2.例:[1]=1﹣2=﹣1,[﹣2]=﹣2+2=0.(1)求[],[﹣1]的值;(2)已知有理数a>0,b<0,且满足[a]=[b],试求代数式(b﹣a)3﹣2a+2b的值;(3)解方程:[2x]+[x+1]=1.26.(8分)己知A 、B 、C 、D四个车站的位置如图所示.(1)求A 、D 两站之间的距离;(用含a 、b 的代数式表示)(2)一辆汽车从A 站出发,每小时行驶60千米,经过B 站到达C 站(在B 站没有停留).所用时间为23小时.汽车在C 站短暂停留后,继续以相同速度行驶,再行驶2小时到达D 站,求a ,b 的值以及汽车从B 站行驶到C 站一共用了多少小时?27.(10分)已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是线段AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.(3)在(2)的条件下,已知点A所表示的数为﹣2,有一动点P从点A开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q从点B开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD=2QD?答案: 一、选择题11. -2;12. 2;13.移项,等式的基本性质;14. -8;15. 12;16. 1;17.)26(1824x x -=; 18. 4; 19. )1(977-=+x x ;20. 4 三、解答题21.(1)32-=x ; (2)2=x ;(3)3-=x ;(4)1714=x .22.解:(1)该同学解答过程从第一步开始出错,错误原因是去括号时,3没乘以2, 故答案为:一;去括号时,3没乘以2; (2)正确的解答过程为: 去括号得:7x ﹣7﹣3x =2x +6﹣3, 移项得:7x ﹣3x ﹣2x =6﹣3+7, 合并得:2x =10, 系数化为1,得x =5.23.将2x a =+代入2(1)3(4)x x +=-得12a =代入5[2(3)3()]8x x a a ++-= 得21925x =24.解:(1)设七年级(1)班的人数为x ,则(2)班的人数为(102﹣x ),由题得: 80x +60(102﹣x )=7080 化简得:20x =960 解得:x =48(人)∴102﹣x =102﹣48=54(人)答:七年级(1)班有48人,(2)班有54人. (2)联合购票应付钱数为:102×50=5100(元) 则节省的钱数为:7080﹣5100=1980(元) 答:如果两个班联合起来购票可省1980元.25.解:(1)[]=﹣2=﹣,[﹣1]=﹣1+2=1;(2)a >0,b <0,[a ]=[b ],即a ﹣2=b +2,解得:a ﹣b =4, 故(b ﹣a )3﹣2a +2b =(b ﹣a )3﹣2(a ﹣b )=(﹣4)3﹣8=﹣72; (3)当x ≥0时,方程为:2x ﹣2+x +1﹣2=1,解得:x =; 当﹣1<x <0时,方程为:2x +2+x +1﹣2=1,解得:x =0(舍弃); 当x ≤﹣1时,方程为:2x +2+x +1+2=1,解得:x =﹣;故方程的解为:x =.26.解:(1)AD=AB+BD=(a+b )+(3a+2b )=4a+3b (2)BC =BD -CD=(3a+2b )-(a+3b )=2a -b AC=AB+BC=(a+b )+(2a -b )=3a3012033026033023603==+⨯=+=⨯=b b b a a a设汽车从B 站行驶到C 站一共用了x 小时213030260=-⨯=x x答:a ,b 的值分别为30,30;汽车从B 站行驶到C 站一共用了21小时. 27.解:(1)把x =﹣3代入方程(k +3)x +2=3x ﹣2k 得:﹣3(k +3)+2=﹣9﹣2k , 解得:k =2;(2)当k =2时,BC =2AC ,AB =6cm , ∴AC =2cm ,BC =4cm , 当C 在线段AB 上时,如图1,∵D 为AC 的中点, ∴CD =AC =1cm . 即线段CD 的长为1cm ;(3)在(2)的条件下,∵点A 所表示的数为﹣2,AD =CD =1,AB =6, ∴D 点表示的数为﹣1,B 点表示的数为4.设经过x 秒时,有PD =2QD ,则此时P 与Q 在数轴上表示的数分别是﹣2﹣2x ,4﹣4x . 分两种情况:①当点D 在PQ 之间时, ∵PD =2QD ,∴﹣1﹣(﹣2﹣2x )=2[4﹣4x ﹣(﹣1)],解得x =;②当点Q 在PD 之间时, ∵PD =2QD ,∴﹣1﹣(﹣2﹣2x )=2[﹣1﹣(4﹣4x )],解得x =. 答:当时间为或秒时,有PD =2QD .。
苏科版七年级数学上册《第4章一元一次方程》综合练习题(附答案)
苏科版七年级数学上册《第4章一元一次方程》综合练习题(附答案)一、单选题1.下列式子:①2x+1;②1+7=15−8+1;③1−2x=x−1;④x+2y=3.其中,方程有()A.1个B.2个C.3个D.4个2.已知2a=b+5,则下列等式中不一定...成立的是()3.关于x的方程2(x−1)−a=0的解是3,则a的值为()A.4B.−4C.5D.−54.下列方程变形中,正确的是()6.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调到甲队汽车()A.8辆B.10辆C.12辆D.16辆7.某商贩售出两套服装,每套均卖110元,按成本计算,其中一套盈利10%,另一套赔了10%,则在这次买卖中这位商贩()A.不赚不赔B.约赚了2.2元C.赔了20元D.约赔了2.2元8.甲、乙两人从同一个地点出发,沿着同一条路线进行赛跑练习,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m.设甲出发xs后追上乙,则下列四个方程中不正确的是()二、填空题三、解答题17.解方程:(1)1−3(x−2)=4(2)2x+13−5x−16=1(3)x−10.3−x+20.5=1.2(4)3|x−1|−7=218.一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数.19.定义:关于x的方程ax−b=0与方程bx−a=0(a,b均为不等于0的常数)称互为“反对方程”,例如:方程2x−1=0与方程x−2=0互为“反对方程”.(1)若关于x的方程2x−3=0与方程3x−c=0互为“反对方程”,则c=___________.(2)若关于x的方程4x+3m+1=0与方程5x−n+2=0互为“反对方程”,求mn的值.(3)若关于x的方程3x−c=0与其“反对方程”的解都是整数,求整数c的值.20.一种笔记本售价为2.5元/本,如果买100本以上(不含100本),售价为2元/本.请回答下面的问题:(1)当n≤100时,买n本笔记本所需钱数为______,当n>100时,买n本笔记本所需的钱数为______.(2)如果七(1)、七(2)两班分别需要购买50本,52本,怎样购买可省钱?可以省多少钱?(3)如果两次共购买200本笔记本(第二次比第一次多),平均每个笔记本为2.2元/本,两次分别购买多少本?21.同学们都知道,|3−(−2)|表示3与−2的差的绝对值,实际上也可以理解为3与−2在数轴上所对应的两个点之间的距离,根据这种意义回答下列问题:(1)|3−(−2)|=_____;(2)若|x+2|=5,求x的值;(3)找出所以符合条件的整数x,使|x+3|+|x−1|=4;(4)求|x−7|+|x+2|的最小值.22.列方程(组)解应用题(1)某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位;若租用同样数量的60座汽车,则比45座汽车多出一辆无人乘坐,但其余客车恰好坐满.问初一年级人数是多少?原计划租用45座汽车多少辆?(2)《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得,那么乙也共有钱到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的2348文,问甲,乙二人原来各有多少钱?”23.芜湖市一商场经销的A、B两种商品,A种商品每件售价60元,利润率为50%;B 种商品每件进价为50元,售价80元.(1)A种商品每件进价为元,每件B种商品利润率为.(2)若该商场同时购进A、B两种商品共50件,恰好总进价为2100元,求购进A种商品按上述优惠条件,若小华一次性购买A、B商品实际付款522元,求若没有优惠促销,小华在该商场购买同样商品要付多少元?24.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)如果设十字架正中心的数为x,用含x的式子表示这五个数的和.(2)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由;(3)十字框中五个数的和能等于2020吗?若能,请写出这五个数:若不能,请说明理由.参考答案1.解::①2x+1,不是等式,故不是方程,不符合题意;②1+7=15−8+1,不含有未知数,故不是方程,不符合题意;③1−2x=x−1,符合方程的定义,符合题意;④x+2y=3,符合方程的定义,符合题意.故选:B.2.解:A.等式两边同时减去5即可得到,故A正确,不符合题意;B.等式两边同时加上1即可得到,故B 正确,不符合题意;C.等式两边同时除以2即可得到,故C正确,不符合题意;D.等式两边同时乘以3即得到6a=3b+15,故D错误,符合题意;故选:D.3.解:根据题意将x=3代入得:2×(3−1)−a=0解得:a=4故选:A.4.解:A、方程23t=32,系数化为1得t=32×32=94,故该选项不正确;B、方程x−10.2−x0.5=1,整理得5(x−1)−2x=1,去括号得5x−5−2x=1,化简整理可得3x=6,故该选项正确;C、方程3x−2=2x+1,移项得3x−2x=1+2,故该选项不正确;D、方程3−x=2−5(x−1),去括号得3−x=2−5x+5,故该选项不正确;故选:B.5.解:2(x−1)−6=02(x−1)=6x=4∵方程2(x−1)−6=0与1−3a−x3=0的解互为相反数∵1−3a−x3=0的解为:x=−4∵1−3a+43=01=3a+4 33a+4=3,解得:a=−13故选:A.6.解:设需要从乙车队调x辆汽车到甲车队,根据题意得:100+x=2(68−x).解得x=12答:需要从乙队调到甲队汽车12辆.故选:C.7.解:设两套服装进价分别为a元,b元,根据题意得:110−a=10%a,b−110=10%b 解得:a=100 b≈122.2则这次销售中商店盈利110−100+110−122.2=−2.2即约赔2.2元故选D.8.解:由题意可知,甲xs跑的路程为7xm,乙xs跑的路程为6.5xm,根据xs后甲追上乙,列出方程为:7x=6.5x+5故选项A正确,不符合题意;对方程进行变形可得1−2x−56=3−x4故选项C、D正确,不符合题意,选项B不正确,符合题意.故选:B.9.解:x的4倍与7的和等于20,则可列方程为4x+7=20;故答案为:4x+7=20.10.解:由关于x的方程(k−1)x|k|+2=0是一元一次方程则|k|=1,且k−1≠0解得:k=-1.11.解:根据题意可得:13a+2+2a−73=0即a+6+2a−7=0解得a=13;故答案为:13.12.解:∵等式3a−7=2a+11的两边同时减去一个多项式可以得到等式a=8,3a−7−(2a−7)=2a+1−(2a−7)时a=8∵该多项式为2a−7.故答案为2a−7.13.解:根据题意,得:120×5+(120+112)×(x−5)=1则有方程:x20+x−512=1故答案为:x20+x−512=1.14.解:设大箱子x个,小箱子(150−x)个∵大箱子的重量为x4吨,小箱子的重量为150−x6吨根据题意可得x 4+60×16=150−x6+60×14解得x=72150−72=78∵大箱子72个,小箱子78个.故答案为:72,78.15.解:设为了使每天的产品刚好配套,应该分配x名工人生产螺钉,则(22−x)名工人生产螺母根据题意得:2×1200x=2000(22−x)解得:x=10.答:为了使每天的产品刚好配套,应该分配10名工人生产螺钉.故答案为:10.16.解:乙车速度为40÷(1−12)=80(千米/时)设甲行驶时间为t,当相遇前甲、乙两车相距40千米时:(40+80)t=320−40解得t=73当相遇后甲、乙两车相距40千米时:(40+80)t=320+40解得t=3故答案为:73或3.17.(1)解:1−3(x−2)=4去括号,得1−3x+6=4移项,得−3x=4−6−1合并同类项,得−3x=−3系数化为1,得x=1;(2)解:2x+13−5x−16=1去分母,得2(2x+1)−(5x−1)=6去括号,得4x+2−5x+1=6移项,得4x−5x=6−1−2合并同类项,得−x=3系数化为1,得x=−3;(3)解:x−10.3−x+20.5=1.2原方程可变形为10x−103−10x+205=1.2去分母,得5(10x−10)−3(10x+20)=18去括号,得50x−50−30x−60=18移项,得50x−30x=18+50+60合并同类项,得20x=128系数化为1,得x=6.4;(4)解:3|x−1|−7=2去绝对值,得:3(x−1)−7=2或3(1−x)−7=2去括号,得:3x−3−7=2或3−3x−7=2移项,得:3x=2+3+7或−3x=2−3+7合并同类项,得:3x=12或−3x=6系数化为1,得:x=4或x=−2.18.解:由题意设十位上的数为x,则这个数是100(2x+1)+10x+(3x-1)把这个三位数的百位上的数字和个位上的数字对调后的数为100(3x-1)+10x+(2x+1)则100(3x-1)+10x+(2x+1)-[100(2x+1)+10x+(3x-1)]=99解得x=3.所以这个数是738.19.(1)解:由题可知,ax−b=0与方程bx−a=0(a,b均为不等于0的常数)称互为“反对方程”∵2x −3=0与方程3x −c =0互为“反对方程” ∵c =2 故答案为:2.(2)解:将4x +3m +1=0写成4x −(−3m −1)=0的形式 将5x −n +2=0写成5x −(n −2)=0的形式∵4x +3m +1=0与方程5x −n +2=0互为“反对方程” ∵{−3m −1=5n −2=4∵{m =−2n =6∴mn =−2×6=−12;(3)解:3x −c =0的“反对方程”为c ⋅x −3=0 由3x −c =0得 当c ⋅x −3=0,得x =3c∵3x −c =0与c ⋅x −3=0的解均为整数 ∵c3与3c 都为整数∵c 也为整数∵当c =3时c3=1,3c=1都为整数当c =−3时c 3=−1,3c=−1都为整数∵c 的值为±3.20.(1)解:当n ≤100时,买n 本笔记本所需的钱数是:2.5n 当n >100时,买n 本笔记本所需的钱数是:2n ; 故答案为:2.5n ,2n ;(2)解:分开购买所花费用为:2.5×(50+52)=255元 联合购买的费用:2×(50+52)=204元 ∵204<255∵联合购买更省钱,联合购买所省的钱为255−204=51元; (3)解:设第一次购买x 本,则第二购买(200−x )本,根据题意得:2.5x +2(200−x )=2.2×200解得x=80答:第一次购买80本,第二则买120本.21.解:(1)因为在数轴上3与−2之间的距离为5所以|3−(−2)|=5故答案为:5;(2)|x+2|=5即|x−(−2)|=5因为在数轴上距离-2等于5的数字有3和-7故x=3或x=-7;(3)|x+3|+|x−1|=4即|x−(−3)|+|x−1|=4若x在-3的左侧,则x到1的距离大于4,到-3的距离大于0,故x不能在-3的左侧同理x不能在1的右侧若x在-3与1之间(包含-3和-1这两个端点),根据线段的和x与-3和1的距离之和刚好等于4故符合条件的整数x有:-3,-2,-1,0,1;(4)|x−7|+|x+2|即|x−7|+|x−(−2)|由上可知当x在7的右侧或2的左侧时,x与7和-2的距离之和大于9,当x在7和-2之间(包含端点),x与7和-2的距离之和等于9故|x−7|+|x+2|的最小值为9.22.解:(1)设原计划租用45座客车x辆,则租用60座客车(x﹣1)辆,根据题意得:45x+15=60(x﹣1)解得:x=5.当x=5时,60(x﹣1)=60×4=240.答:初一年级人数是240人,原计划租用45座汽车5辆.(2)设甲原有x文钱,则乙原有2(48﹣x)文钱,根据题意,得:2x+2(48﹣x)=483解得:x=36,则2(48﹣x)=24.答:甲原来有36文钱,乙原来有24文钱.23.(1)解:设A种商品每件进价为x元依题意得:60−x=50%x解得:x=40.故A种商品每件进价为40元;每件B种商品利润率为(80−50)÷50=60%.故答案为:40;60%.(2)设购进A种商品x件,则购进B种商品(50−x)件由题意得:40x+50(50−x)=2100解得:x=40.答:购进A种商品40件,B种商品10件.(3)设小华打折前应付款为y元当打折前购物金额超过450元,但不超过600元时由题意得:0.9y=522解得:y=580;当打折前购物金额超过600元时600×0.8+(y−600)×0.7=522解得:y=660.综上可得,小华在该商场购买同样商品要付580元或660元.24.(1)解:五个数的和与框正中心的数还有这种规律.设中心的数为x,则其余4个数分别为x−1,x+1,x−7,x+7.x+x−1+x+1+x−7+x+7=5x∵十字框中五个数的和是5x.(2)十字框中五个数的和不能等于180.∵当5x=180时,解得x=3636÷7=5⋯⋯1,36在数阵中位于第6排的第1个数,其前面无数字∵十字框中五个数的和不能等于180.(3)十字框中五个数的和能等于2020.∵当5x=2020时,解得x=404404÷7=57⋯⋯5,404在数阵中位于第58排的第5个数∵十字框中五个数的和能等于2020这五个数是404,403,405,397,411.。
苏科版七年级数学上第4章《一元一次方程》应用题综合提优含答案
第4章《一元一次方程》应用题分类:综合类问题综合练习1.A、B两地相距450km,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120km/h,乙车速度为80km/h,求两车相遇的地方距A地多远?2.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)3.某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?4.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?5.已知多项式4x6y2﹣3x2y﹣x﹣7,次数是b,4a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)a=,b=;(2)若小蚂蚁甲从点A处以3个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以4个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.(写出解答过程)(3)若小蚂蚁甲和乙约好分别从A,B两点,分别沿数轴甲向左,乙向右以相同的速度爬行,经过一段时间原路返回,刚好在16s时一起重新回到原出发点A和B,设小蚂蚁们出发t(s)时的速度为v(mm/s),v与t之间的关系如下图.(其中s表示时间单位秒,mm表示路程单位毫米)t(s)0<t≤2 2<t≤5 5<t≤16v(mm/s)10 16 8①当2<t≤5时,你知道小蚂蚁甲与乙之间的距离吗?(用含有t的代数式表示);②当t为时,小蚂蚁甲乙之间的距离是42mm.(请直接写出答案)6.华联超市第一次用7000元购进甲、乙两种商品,其中甲商品的件数是乙商品件数的2倍,甲、乙两种商品的进价和售价如表:(注:获利=售价﹣进价)甲乙进价(元/件)20 30售价(元/件)25 40 (1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍:甲商品按原价销售,乙商品打折销售,第二次两种商品都售完以后获得的总利润比第一次获得的总利润多800元,求第二次乙商品是按原价打几折销售?7.用A型和B型机器生产同样的产品,已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱装多少个产品?8.某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱,为什么?9.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?10.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?参考答案1.解:设两车相遇的时间为xh,根据题意,得:(120+80)x=450,解得:x=2.25,则120×2.25=270(km),答:两车相遇的地方距A地270km.2.解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8×20)×80%=288(元);乙商场所需费用为5×40+(20﹣5×2)×8=280(元),∵288>280,∴选择乙商场购买更合算.3.解:设原计划每小时生产x个零件,由题意得:26x+60=24(x+5),解得:x=30,所以原计划生产零件个数为:26x=780,答:原计划生产780零件.4.解:设乙工程队再单独需x个月能完成,由题意,得2×++x=1.解得x=1.答:乙工程队再单独需1个月能完成.5.解:(1)∵多项式4x6y2﹣3x2y﹣x﹣7,次数是b,∴b=8;∵4a与b互为相反数,∴4a+8=0,∴a=﹣2.故答案为:﹣2,8;(2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤t≤2时,此时OA=2+3t,OB=8﹣4t;∵OA=OB,∴2+3t=8﹣4t,解得:t=;②甲向左运动,乙向右运动,即t>2时,此时OA=2+3t,OB=4t﹣8;∵OA=OB,∴2+3t=4t﹣8,解得:t=10;∴甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t为秒或10秒;(3)①∵小蚂蚁甲和乙同时出发以相同的速度爬行,∴小蚂蚁甲和乙爬行的路程是相同的,各自爬行的总路程都等于:10×2+16×3+8×11=156(mm),∵原路返回,刚好在16s时一起重新回到原出发点A和B,∴小蚂蚁甲和乙返程的路程都等于78mm,∴甲乙之间的距离为:8﹣(﹣2)+10×2×2+16×(t﹣2)×2=32t﹣14;②设a秒时小蚂蚁甲和乙开始返程,由(3)①可知:10×2+16×3+8(a﹣5)=78,解得:a=;以下分情况讨论:当8﹣(﹣2)+10t×2=42,解得:t=1.6;当32t﹣14=42时,解得:t=;当t=时,小蚂蚁甲和乙还没有开始返程,故舍去t=;当t>时,8﹣(﹣2)+78×2﹣8(t﹣)×2=42,解得:t=14;综上所述,当t=1.6秒或14秒时,小蚂蚁甲乙之间的距离是42mm.故答案为:1.6秒或14秒.6.解:(1)设第一次购进乙种商品x件,则购进甲种商品2x件,根据题意得:20×2x+30x=7000,解得:x=100,∴2x=200件,答:该超市第一次购进甲种商品200件,乙种商品100件.(2)(25﹣20)×200+(40﹣30)×100=2000(元)答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润2000元.(3)方法一:设第二次乙种商品是按原价打y折销售根据题意得:(25﹣20)×200+(40×﹣30)×100×3=2000+800,解得:y=9答:第二次乙商品是按原价打9折销售.方法二:设第二次乙种商品每件售价为y元,根据题意得:(25﹣20)×200+(y﹣30)×100×3=2000+800,解得:y=36×100%=90%答:第二次乙商品是按原价打9折销售.方法三:2000+800﹣100×3=1800元∴=6,∴×100%=90%,答:第二次乙商品是按原价打9折销售.7.解:设B型机器一天生产x个产品,则A型机器一天生产(x+1)个产品,由题意得,=,解得:x=19,7x﹣1=132,132÷11=12(个).答:每箱装12个产品.8.解:(1)设该中学库存x套桌凳,甲需要天,乙需要天,由题意得:﹣=20,解方程得:x=960.经检验x=960是所列方程的解,答:该中学库存960套桌凳;(2)设①②③三种修理方案的费用分别为y1、y2、y3元,则y1=(80+10)×=5400y2=(120+10)×=5200y3=(80+120+10)×=5040综上可知,选择方案③更省时省钱.9.解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.10.解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),解得:x=12,则22﹣x=10,答:应安排生产螺钉和螺母的工人10名,12名.。
苏科版七年级上册数学第4章 一元一次方程含答案
苏科版七年级上册数学第4章一元一次方程含答案一、单选题(共15题,共计45分)1、下列变形中,正确的是()A.若a=b,则=B.若a x=ay,则x=yC.若a-3=b+3,则a=b D.若=,则a=b2、下列方程是一元一次方程的是()A. B. C. D.3、下列方程是一元一次方程的是()A. =1B.3 x+2 y=0C. x2-l=0D. x=34、代数式2ax+5b的值会随x的取值不同而不同,下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=-4的解是()x -4 -3 -2 -1 02ax+5b 12 8 4 0 -4C.-2D.05、若x=2是关于x的一元一次方程ax-2=b的解,则3b-6a+2的值是().A.-8B.-4C.8D.46、某汽车队运送一批救灾物资,若每辆车装4吨,还剩8吨未装;若每辆车装4.5吨,恰好装完.设这个车队有辆车,则()A. B. C. D.7、已知关于x的方程的解为偶数,则整数a的所有可能的取值的和为()A.8B.4C.7D.-28、与方程x-=-1的解相同的方程是()A.3x-2x+2=-1B.3x-2x+3=-3C.2(x-5)=1D. x-3=09、小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+ = y﹣.小明翻看了书后的答案,此方程的解是y=﹣,则这个常数是()A.1B.2C.3D.410、已知是方程的解,则k的值是()A. B. C. D.11、下列四个式子中,是一元一次方程的是()A. B. C. D.12、当时,成立,则( )A.0B.1C.99.25D.99.7513、如果2x与x﹣3的值互为相反数,那么x等于()A.﹣1B.1C.﹣3D.314、把方程-1=的分母化为整数的方程是( )A. B. C.D.15、下列等式变形错误的是( )A.由a=b得a+5=b+5;B.由a=b得;C.由x+2=y+2得x=y; D.由-3x=-3y得x=-y二、填空题(共10题,共计30分)16、多项式(mx+4)(2-3x)展开后不含x项,则m=________.17、已知x|m|﹣3+5=9是关于x的一元一次方程,则m=________.18、小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行,小明每小时骑行,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为,依题意,可列方程为________.19、若二次函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是________.20、不论x取何值时,等式恒成立,则a+b=________21、填空:________.22、方程(2a-1)x2+3x+1=4是一元一次方程,则a= ________.23、若是方程的解,则的值为________.24、方程=4,则x=________.25、已知是关于的方程的解,则的值是________.三、解答题(共5题,共计25分)26、已知关于x的方程与=3x﹣2的解互为相反数,求m的值.27、国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税;若王老师获得稿费后纳税420元,求这笔稿费是多少钱?28、如果方程的解与方程4x-(3a+1)=6x+2a-1的解相同,求式子的值.29、关于x的方程与的解互为相反数,求的值.30、解方程:(3x﹣2)(2x﹣3)=(6x+5)(x﹣1)参考答案一、单选题(共15题,共计45分)1、D2、C3、D4、D5、B6、B7、A8、B9、B10、B11、B12、D13、B14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
苏科版七年级数学上册第四章《一元一次方程》应用题选择专项提升训练(一)
第四章《一元一次方程》应用题选择专项提升训练(一)1.小明和小亮两人在长为50m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B 点……若小明跑步的速度为5m/s,小亮跑步的速度为4m/s,则起跑后60s内,两人相遇的次数为()A.3 B.4 C.5 D.62.“双十一”期间,某电商决定对网上销售的某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利21元,则这种服装每件的成本是()A.160元B.165元C.170元D.175元3.某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如表:会员卡类型办卡费用/元有效期优惠方式A类40 1年每杯打九折B类80 1年每杯打八折C类130 1年一次性购买2杯,第二杯半价例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A.购买A类会员卡B.购买B类会员卡C.购买C类会员卡D.不购买会员卡4.元旦前夕,某商店购进某种特色商品100件,按进价每件加价30%作为定价,可是总卖不出去,后来每件按定价降价20%,以每件104元出售,终于在元旦前全部售出,则这批商品在销售过程中的盈亏情况是()A.亏40元B.赚400元C.亏400元D.不亏不赚5.天虹商场将某品牌的羽绒服在进价的基础上提高60%定价销售,发现销量不好,于是在“元旦”期间将该品牌的羽绒服打六折出售,那么,在“元旦”期间天虹商场每售出一件这样的羽绒服,将会()A.不亏不赚B.赚了4% C.亏了4% D.赚了36%6.已知某网络书店销售两套版本不同的《趣味数学丛书》,售价都是70元,其中一套盈利40%,另一套亏本30%,则在这次买卖中,网络书店的盈亏情况是()A.盈利15元B.盈利10元C.不盈不亏D.亏损10元7.我市为鼓励居民节约用水,对家庭用水户按分段计费方式收取水费:若每月用水不超过10m3,则按每立方米1.5元收费;若每月用水量超过10m3,则超过部分按每立方米3元收费.如果某居民在某月缴纳了45元水费,那么这户居民在这个月的用水量为()A.10m3B.15m3C.20m3D.25m38.如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O→A→O 以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(t 不超过10秒).若点P在运动过程中,当PB=2时,则运动时间t的值为()A.秒或秒B.秒或秒秒或秒C.3秒或7秒D.3秒或秒或7秒或秒9.某种商品的进价为100元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为()A.116元B.145元C.150元D.160元10.公元前4世纪的印度巴克沙利手稿中记载着一题:甲、乙、丙、丁四人各持金,乙为甲的二倍,丙为乙的三倍,丁为丙的四倍,并知四人持金的总数为132卢比,则乙的持金数为()A.4卢比B.8卢比C.12卢比D.16卢比11.某商店进行年终促销活动,将一件标价为690元的羽绒服7折售出,仍获利15%,则这件羽绒服的进价为()A.380元B.420元C.460元D.480元12.如图,正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1cm,乙的速度为每秒5cm,已知正方形轨道ABCD的边长为2cm,则乙在第2020次追上甲时的位置在()A.AB上B.BC上C.CD上D.AD上13.根据图中提供的信息,可知一个杯子的价格是()A.6元B.8元C.10元D.12元14.某商店以每件300元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店卖出这两件衣服总的是()A.盈利15元B.亏损15元C.盈利40元D.亏损40元15.甲、乙两店分别购进一批无线耳机,每副耳机的进价甲店比乙店便宜10%,乙店的标价比甲店的标价高5.4元,这样甲乙两店的利润率分别为20%和17%,则乙店每副耳机的进价为()A.56元B.60元C.72元D.80元16.某商品在进价的基础上提价70元后出售,之后打七五折促销,获利30元,则商品进价为()元.A.90 B.100 C.110 D.12017.在2019年10月份的月历表中,任意框出表中竖列上三个相邻的数(如图,如框出了10,17,24),则这三个数的和不可能的是()A.30 B.40 C.45 D.5118.一商场某品牌服装统一按进价增加10%作为定价,元旦期间以9折促销.李老师在该摊位以198元的价格买了一件服装,则对于商家来说,这次生意的盈亏情况为()A.亏2元B.不亏不赚C.赚2元D.亏5元19.将正整数按下表的规律排列:平移表中涂色部分的方框,方框中的4个数的和可能是()A.2010 B.2014 C.2018 D.202220.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1cm,乙的速度为每秒5cm,已知正方形轨道ABCD 的边长为2cm,则乙在第2019次追上甲时的位置()A.AB上B.BC上C.CD上D.AD上21.某商品的标价为150元,八折销售仍盈利20%,则商品进价为()元.A.100 B.110 C.120 D.13022.有m辆客车及n个乘客,若每辆客车乘坐40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②40m+10=43m+1;③=;④=,其中正确的是()A.①②B.②④C.②③D.③④23.小宝今年5岁,妈妈35岁,()年后,妈妈的年龄是小宝的2倍.A.30 B.20 C.10 D.以上都不对24.郑奶奶提着篮子去农贸市场买鸡蛋,摊主按郑奶奶的要求,用电子秤称了5千克鸡蛋,郑奶奶怀疑重量不对,把鸡蛋放入自带的质量为0.6千克的篮子中(篮子质量准确),要求放在电子秤上再称一遍,称得为5.75千克,老板客气地说:“除去篮子后为5.15千克,老顾客啦,多0.15千克就算了”,郑奶奶高兴地付了钱,满意地回家了.以下说法正确的是()A.郑奶奶赚了,鸡蛋的实际质量为5.15千克B.郑奶奶亏了,鸡蛋的实际质量为4千克C.郑奶奶亏了,鸡蛋的实际质量为4.85千克D.郑奶奶不亏也不赚,鸡蛋的实际质量为5千克25.将连续的奇数1,3,5,7,9,…排成如图所示的数表,则十字形框中的五数之和能等于2012吗?能等于2015吗?()A.能,能B.能,不能C.不能,能D.不能,不能26.用一根绳子环绕一棵大树,若环绕大树3周绳子还多4米,若环绕4周又少了3米,则环绕大树一周需要绳子长()A.5米B.6米C.7米D.8米27.用A、B两种规格的长方形纸板(如图1)无重合无缝隙的拼接可得如图2所示的周长为40cm的正方形,已知A种长方形的宽为1cm,则B种长方形的面积是()A.12cm2B.14cm2C.21cm2D.28cm228.一件商品按成本价提高30%后标价,又以8折销售,售价为416元,这件商品卖出后获得利润()元.A.16 B.18 C.24 D.3229.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的六折销售,仍可获利30元,则这件商品的进价为()A.80元B.90元C.100元D.120元30.初一(1)班有学生60名,其中参加数学小组的有36人,参加英语小组的人数比参加数学小组的人数少5人,并且这两个小组都不参加的人数比两个小组都参加的人数的多2.则同时参加这两个小组的人数是()A.16 B.12 C.10 D.8参考答案1.解:设两人起跑后60s内,两人相遇的次数为x次,依题意得;每次相遇间隔时间t,A、B两地相距为S,V甲、V乙分别表示小明和小亮两人的速度,则有:(V甲+V乙)t=2S,则t==,则x=60,解得:x=5.4,∵x是正整数,且只能取整,∴x=5.故选:C.2.解:设这种服装每件的成本是x元,根据题意列方程得:x+21=(x+40%x)×80%,解这个方程得:x=175则这种服装每件的成本是175元.故选:D.3.解:设一年内在便利店购买咖啡x次,购买A类会员年卡,消费费用为40+2×(0.9×10)x=(40+18x)元;购买B类会员年卡,消费费用为80+2×(0.8×10)x=(80+16x)元;购买C类会员年卡,消费费用为130+(10+5)x=(130+15x)元;把x=75代入得A:1390元;B:1280元;C:1255元,把x=85代入得A:1570元;B:1440元;C:1405元,则小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为购买C类会员年卡.故选:C.4.解:设该商品每件的进价为x元由题意列方程:x(1+30%)(1﹣20%)=104解得:x=100所以100件商品的利润为:100×(104﹣100)=400元故选:B.5.解:设一件羽绒服的进价为a元,则在进价的基础上提高60%定价为:(1+60%)a=1.6a,在“元旦”期间将该品牌的羽绒服打六折出售,售价为1.6a×0.6=0.96a,0.96a﹣a=﹣0.04a,∴在“元旦”期间天虹商场每售出一件这样的羽绒服,将会亏了4%;故选:C.6.解:设盈利的《趣味数学丛书》的进价为x元/本,亏损的《趣味数学丛书》的进价为y 元/本,根据题意得:70﹣x=40%x,解得:x=50,70﹣y=﹣30%y,解得:y=100,70×2﹣50﹣100=﹣10(元).答:网络书店的盈亏情况是亏损10元.故选:D.7.解:设这户居民去年12月份实际用水xm3.∵1.5×10=15<45,∴x>10.由题意有1.5×10+3(x﹣10)=45,解得:x=20.故选:C.8.解:①当0≤t≤5时,动点P所表示的数是2t,∵PB=2,∴|2t﹣5|=2,∴2t﹣5=﹣2,或2t﹣5=2,解得t=或t=;②当5≤t≤10时,动点P所表示的数是20﹣2t,∵PB=2,∴|20﹣2t﹣5|=2,∴20﹣2t﹣5=2,或20﹣2t﹣5=﹣2,解得t=或t=.综上所述,运动时间t的值为秒或秒秒或秒.故选:B.9.解:8折=0.8,设标价为x元,由题意得:0.8x﹣100=160.8x=100+160.8x=116x=145故选:B.10.解:设乙的持金数为x卢比,则甲的持金数为x卢比,丙的持金数为3x卢比,丁的持金数为12x卢比,由题意得:x+x+3x+12x=132,解得:x=8,∴乙的持金数为8卢比,故选:B.11.解:设这件羽绒服的进价为x元,则(1+15%)x=690×70%,所以1.15x=483,解得x=420答:这件羽绒服的进价为420元.故选:B.12.解:设乙走x秒第一次追上甲.根据题意,得5x﹣x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y﹣y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505,∴乙在第2020次追上甲时的位置是AD上.故选:D.13.解:设一个杯子的价格是x元,则一个暖瓶的价格是(43﹣x)元,根据题意得:3x+2(43﹣x)=94,解得:x=8.答:一个杯子的价格是8元.故选:B.14.解:设第一件衣服的进价为x元,依题意得:x(1+25%)=300,解得:x=240,所以赚了:300﹣240=60(元);设第二件衣服的进价为y元,依题意得:y(1﹣20%)=300,解得:y=375,所以赔了:375﹣300=75(元),则两件衣服一共赔了75﹣60=15(元).故选:B.15.解:设乙店每副耳机的进价为x元,则甲店每副耳机的进价为0.9x元,依题意有(1+17%)x﹣(1+20%)×0.9x=5.4,解得x=60.故乙店每副耳机的进价为60元.故选:B.16.解:设商品进价为x元,则(x+70)×75%﹣x=30,∴52.5﹣0.25x=30,解得x=90答:商品进价为90元.故选:A.17.解:设三个数中间的一个数为x,则另外两个数分别为x﹣7、x+7,根据题意得:(x﹣7)+x+(x+7)=30或(x﹣7)+x+(x+7)=40或(x﹣7)+x+(x+7)=45或(x﹣7)+x+(x+7)=51,解得:x=10或x=或x=15或x=17,又∵x=不符合题意,∴这三个数的和不可能是40.故选:B.18.解:设这件服装的进价为x元,根据题意得:0.9×(1+10%)x=198,解得:x=200,即这件服装的进价为200元,∵李老师在该摊位以198元的价格买了这件服装,又∵198﹣200=﹣2,∴这次生意的盈亏情况为:亏2元,故选:A.19.解:从表中正整数的排列情况来看,每一行是9个数,也就是每一列下面的数减去上面的数是9.随着方框向下平移,可表示出这4个数其变化规律的表达式为:2+9n,3+9n,4+9n,5+9n,将这4个数相加为:2+9n+3+9n+4+9n+5+9n=36n+14,这4个数向下移再向左移相加为36n+14﹣4=36n+10,这4个数向下移再向右移一个格相加为36n+14+4=36n+18,这4个数向下移再向右移二个格相加为36n+14+8=36n+22,这4个数向下移再向右移三个格相加为36n+14+12=36n+26,这4个数向下移再向右移四个格相加为36n+14+16=36n+30,36×55+30=2010,∴平移表中涂色部分的方框向下移55个格再向右移4个格,方框中的4个数的和为2010,其余三个答案中的数代入36n+14,36n+10,36n+18,36n+22,36n+26,36n+30来尝试,n均不是整数.故选:A.20.解:设乙走x秒第一次追上甲.根据题意,得5x﹣x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y﹣y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2019÷4=504…3,∴乙在第201,9次追上甲时的位置是CD上.故选:C.21.解:设商品进价为x元,根据题意得:150×80%=(1+20%)x,x=100,答:商品进价为100元.故选:A.22.解:根据总人数列方程,应是40m+10=43m+1,①错误,②正确;根据客车数列方程,应该为=,③正确,④错误;所以正确的是②③.故选:C.23.解:设x年后,妈妈的年龄是小宝的2倍.根据题意,得2(5+x)=35+x解得x=25答:25年后,妈妈的年龄是小宝的2倍.故选:D.24.解:设鸡蛋的实际质量为x千克,根据题意,得=解得x=4因为4<5.15所以郑奶奶亏了,鸡蛋的实际质量为4千克.故选:B.25.解:设中间的一个数为x,则其余的4个数分别为x﹣2,x+2,x﹣10,x+10,由题意得:x+x﹣2+x+2+x﹣10+x+10=2012,解得:x=402.4.∵402.4是小数,∴不存在十字形框中五数之和等于2012,同理:x+x﹣2+x+2+x﹣10+x+10=2015,解得x=403,403在第二列,可以得出十字形框中五数之和等于2015,故选:C.26.解:方法一:设环绕大树一周需要绳子长x米.根据题意,得3x+4=4x﹣3解得x=7.答:环绕大树一周需要绳子长7米.故选C.方法二:设围绕大树一周形成圆的半径为x米,则围绕大树一周需要绳子长为2πx米.根据题意列方程,得3×2πx+4=4×2πx﹣3解得x=,∴2πx=7.∴围绕大树一周需要绳子长为7米.故选:C.27.解:设A长方形的长是xcm,则B长方形的宽是(5﹣x)cm,B长方形的长是(9﹣x)cm,依题意有4[(5﹣x)+(9﹣x)]=40,解得x=4,(5﹣x)(9﹣x)=(5﹣2)×(9﹣2)=3×7=21(cm2).故B种长方形的面积是21cm2.故选:C.28.解:设原价为x元,根据题意列方程得:x×(1+30%)×80%=416解得x=400,416﹣400=16(元).答:这件商品卖出后获得利润16元.故选:A.29.解:设这件商品的进价为x元,根据题意得:200×0.6﹣x=30,解得:x=90.答:这件商品的进价为90元.故选:B.30.解:设同时参加这两个小组的人数为x,则这两个小组都不参加的人数为x+2,得:36+36﹣5﹣x+x+2=60 移项、合并同类项得:9=x 系数化为1得:x=12故选:B.。
苏科版七年级上册数学第四章一元一次方程周末提优练习题(无答案)
七上第四章一元一次方程周末提优练习题一、选择题1.已知k=4x+32x−1,则满足k为整数的所有整数x的和是()A. −1B. 0C. 1D. 22.方程:|x+1|+|x−3|=4的整数解有( )个.A. 4B. 3C. 5D. 无数个3.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6,7,8,13,14,15,20,21,22).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和可能为下列数中的()A. 81B. 100C. 108D. 2164.现有一列数:,,,,…,,(为正整数),规定,,,…,(),若,则的值为().A. 2016B. 2017C. 2018D. 20195.永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明山景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为( )A. 10:00B. 12:00C. 13:00D. 16:006.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是A. x28=x24+3 B. x28=x24−3 C. x+226=x−226+3 D. x−226=x+226−37. 某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A. 亏了10元B. 赚了10元C. 赚了20元D. 亏了20元8. 若关于x 的一元一次方程为(m −1)x |m|−2m =0,则这个方程的解是( )A. 1B. −1C. ±1D. 2二、填空题9. 下面的框图表示了解这个方程的流程在上述五个步骤中依据等式的性质2的步骤有______.(只填序号) 10. 我们知道x5−y3=x−y 5−3是不符合多项式运算法则的,因此这个等式是错误的.但当x 、y 取某些特殊数值时,这个等式可以成立,例如: x =y =0 时,x5−y3=x−y5−3=0,等式成立; x =5,y =9 时,x5−y3=x−y 5−3=−2,等式成立;……我们称使得x5−y3=x−y 5−3成立的一对有理数x 、y 为“巧合数对”,记作(x,y) . (1)若是“巧合数对”,则有理数x = _________;(2)若(x,y) 是“巧合数对”,试归纳、猜想有理数x 、y 应满足的关系:__________; (3)求2a −13b 3−[5a −3(2b −7)]的值,其中(a,b)是“巧合数对”.11. 若代数式3a +12的值与代数式3(a −12)的值互为相反数,则a =______. 12. 已知m ,n 为定值,关于x 的方程2kx+m 3=x−nk 6+1, 无论k 为何值,它的解总是2,则m +n =____.13. 某同学在解方程2x−13=x+a 3−1去分母时,方程右边的−1忘记了乘3,因而求得方程的解为x =2.则a 的值为______,原方程的解为_______。
苏科 版数学七年级上册第4章 一元一次方程 专项培优训练
【一元一次方程】专项培优训练一.选择题1.方程13﹣x=17的解是()A.x=﹣4B.x=﹣2C.x=2D.x=42.下列等式变形正确的是()A.若﹣2x=5,则x=B.若3(x+1)﹣2x=1,则3x+1﹣2x=1C.若5x﹣6=﹣2x﹣8,则5x+2x=8+6D.若,则2x+3(x﹣1)=63.已知关于x的一元一次方程(3﹣a)x﹣x+2﹣2a=0的解是的倒数,则a的值为()A.﹣2B.﹣1C.D.24.关于x的方程x﹣=1与2x﹣3=1的解相等,则a的值为()A.7B.5C.3D.15.某商场年收入由餐饮、零售两类组成.已知2018年餐饮类收入是零售类收入的2倍,2019年因商场运营调整,餐饮类收入减少了10%,零售类收入增加了18%,若该商场2019年零售类收入为708万元,则该商场2019的年收入比2018年()A.增加12万元B.减少12万元C.增加24万元D.减少24万元6.已知关于x方程x﹣=﹣1的解是非正整数,则符合条件的所有整数a的和是()A.﹣4B.﹣3C.2D.37.解一元一次方程去分母后,正确的是()A.3(2﹣x)﹣3=2(2x﹣1)B.3(2﹣x)﹣6=2x﹣1C.3(2﹣x)﹣6=2(2x﹣1)D.3(2﹣x)+6=2(2x﹣1)8.关于x的一元一次方程x3﹣3n﹣1=0,那么n的值为()A.0B.1C.D.9.在梯形面积公式中,已知S=50,a=6,b=a,则h的值是()A.B.C.10D.2510.如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(t不超过10秒).若点P在运动过程中,当PB=2时,则运动时间t的值为()A.秒或秒B.秒或秒秒或秒C.3秒或7秒D.3秒或秒或7秒或秒二.填空题11.若关于x的方程2x+a﹣4=0的解是x=﹣1,则a的值等于.12.若x=4是关于x的方程5x﹣3m=2的解,则m=.13.若关于x的方程3x﹣5=2x+a的解与方程4x+3=7的解相同,则a=.14.已知5a+8b=3b+10,利用等式性质可求得a+b的值是.15.关于x的方程2x﹣3=kx的解是整数,则整数k可以取的值是.三.解答题16.解方程:(1)14x=2x﹣6;(2)x﹣1=x+1;(3)4x﹣x=2(x﹣1)+5;(4)=+x.17.我们规定,若关于x的一元一次方程ax=b的解为a+b,则称该方程为“合并式方程”,例如:3x=﹣的解为﹣,且﹣,则该方程3x=﹣是合并式方程.(1)判断x=1是否是合并式方程并说明理由;(2)若关于x的一元一次方程5x=m+1是合并式方程,求m的值.18.列方程解应用题(1)某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:50张以上购买贺卡数不超过30张30张以上不超过50张每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?19.列方程解应用题:现有校舍面积20000平方米,为改善办学条件,计划拆除部分旧校舍,建造新校舍,使新造校舍的面积是拆除旧校舍面积的3倍还多1000平方米.这样,计划完成后的校舍总面积可比现有校舍面积增加20%.(1)改造多少平方米旧校舍;(2)已知拆除旧校舍每平方米费用80元,建造新校舍每平方米需费用700元,问完成该计划需多少费用.20.如图,数轴上有两点A,B,点A表示的数为2,点B在点A的左侧,且AB=6.动点P从点A 出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动时间为t秒(t>0).(1)填空:数轴上点B表示的数为,点P表示的数为(用含t的式子表示);(2)经过多长时间,P、B两点之间相距8个单位长度?(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动.若点P,R同时出发,经过多长时间,P,R之间的距离为2个单位长度?参考答案一.选择题1.解:方程13﹣x=17,移项得:﹣x=17﹣13,合并得:﹣x=4,解得:x=﹣4.故选:A.2.解:A、若﹣2x=5,则x=﹣,错误,故本选项不符合题意;B、若3(x+1)﹣2x=1,则3x+3﹣2x=1,错误,故本选项不符合题意;C、若5x﹣6=﹣2x﹣8,则5x+2x=﹣8+6,错误,故本选项不符合题意;D、若+=1,则2x+3(x﹣1)=6,正确,故本选项符合题意;故选:D.3.解:的倒数是3,把x=3代入方程(3﹣a)x﹣x+2﹣2a=0得:3(3﹣a)﹣3+2﹣2a=0,解得:a=,故选:C.4.解:2x﹣3=1,解得:x=2,∴x=2是方程x﹣=1的解,将x=2代入方程x﹣=1得:2﹣=1,解得:a=5.故选:B.5.解:设2018年零售类收入为x万元,餐饮类收入为2x万元,由题意可得:x(1+18%)=708,解得:x=600,∴2x=1200万元,∴708+1200×(1﹣10%)﹣(600+1200)=﹣12万元,∴该商场2019的年收入比2018年减少了12万元,故选:B.6.解:x﹣=﹣1,6x﹣(4﹣ax)=2(x+a)﹣66x﹣4+ax=2x+2a﹣66x+ax﹣2x=2a﹣6+4(a+4)x=2a﹣2x=,∵方程的解是非正整数,∴≤0,解得:﹣4<a≤1,当a=﹣3时,x=﹣8;当a=﹣2时,x=﹣3;当a=﹣1时,x=﹣(舍去);当a=0时,x=﹣(舍去);当a=1时,x=0;则符合条件的所有整数a的和是﹣3﹣2+1=﹣4.故选:A.7.解:解一元一次方程﹣3=2x﹣1,去分母得:3(2﹣x)﹣6=2(2x﹣1).故选:C.8.解:由题意得:3﹣3n=1,3n=2,n=,故选:C.9.解:把S=50,a=6,b=a代入梯形面积公式中,50=(6+×6)h,解得h=.则h的值为.故选:B.10.解:①当0≤t≤5时,动点P所表示的数是2t,∵PB=2,∴|2t﹣5|=2,∴2t﹣5=﹣2,或2t﹣5=2,解得t=或t=;②当5≤t≤10时,动点P所表示的数是20﹣2t,∵PB=2,∴|20﹣2t﹣5|=2,∴20﹣2t﹣5=2,或20﹣2t﹣5=﹣2,解得t=或t=.综上所述,运动时间t的值为秒或秒秒或秒.故选:B.二.填空题11.解:把x=﹣1代入方程得:﹣2+a﹣4=0,解得:a=6,故答案是:6.12.解:把x=4代入5x﹣3m=2得:5×4﹣3m=2,解得:m=6.故填:6.13.解:∵4x+3=7,∴x=1,∵关于x的方程3x﹣5=2x+a的解与方程4x+3=7的解相同,∴方程3x﹣5=2x+a的解为x=1,∴3﹣5=2+a,解得:a=﹣4.故答案为:﹣4.14.解:5a+8b=3b+10,5a+8b﹣3b=3b﹣3b+10,5a+5b=10,5(a+b)=10,a+b=2.给答案为:2.15.解:移项、合并,得(2﹣k)x=3,解得x=,∵x为整数,k为整数,∴,,解得k=±1或3或5.故答案为:±1或3或5.三.解答题16.解:(1)14x=2x﹣6,移项得:14x﹣2x=﹣6,合并同类项得:12x=﹣6,解得:x=﹣;(2)x﹣1=x+1,移项得:x﹣=1+1,合并同类项得:x=2,解得:x=3;(3)4x﹣x=2(x﹣1)+5,去括号得:4x﹣x=2x﹣2+5,移项得:4x﹣x﹣2x=﹣2+5,合并同类项得:x=3;(4)=+x,去分母得:6x﹣1=6+8x,移项得:6x﹣8x=6+1,合并得:﹣2x=7,解得:x=﹣.17.解:(1)∵x=1,∴x=2,∵+1≠2,∴x=1不是合并式方程;(2)∵关于x的一元一次方程5x=m+1是合并式方程,∴5+m+1=,解得:m=﹣.故m的值为﹣.18.解:(1)设分配x名工人生产螺栓,则分配(24﹣x)名工人生产螺母,依题意,得:=,解得:x=12,∴24﹣x=12.答:应该分配12名工人生产螺栓,12名工人生产螺母.(2)(i)七(01)班购买贺卡费用为3×24+2.5×46=187(元),七(02)班购买贺卡费用为2×70=140(元).187>140,187﹣140=47(元).答:七(01)班购买贺卡费用为187元,七(02)班购买贺卡费用为140元,七(02)班费用更节省,省47元.(ii)设第一次购买贺卡m张,则第二次购买贺卡(70﹣m)张.当0<m<20时,3m+2(70﹣m)=150,解得:m=10;当20≤m≤30时,3m+2.5(70﹣m)=150,解得:m=﹣50(不合题意,舍去);当30<m<35时,2.5m+2.5(70﹣m)=175≠150,无解.答:第一次购买贺卡10张,第二次购买贺卡60张.19.解:(1)设需要拆除的旧校舍的面积是x平方米,则新造校舍的面积是(3x+1000)平方米,依题意,得:20000﹣x+3x+1000=20000(1+20%),解得:x=1500.答:改造1500平方米旧校舍.(2)80×1500+700×(1500×3+1000)=3970000(元).答:完成该计划需3970000元.20.解:(1)数轴上点B表示的数为2﹣6=﹣4,点P表示的数为2+t(用含t的式子表示);(2)依题意有2+t﹣(﹣4)=8,解得t=2.故经过2秒长时间,P、B两点之间相距8个单位长度;(3)①当点R追上P前,依题意有2+t﹣(﹣4+2t)=2,解得t=4;②当点R追上P后,依题意有﹣4+2t﹣(2+t)=2,解得t=8.故经过4秒或8秒长时间,P,R之间的距离为2个单位长度.故答案为:﹣4,2+t.。
苏科版七年级数学第4章 一元一次方程综合提优测试
第4章 一元一次方程综合提优测试一.选择题1.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33852元。
设王先生存入的本金为x 元,则下面所列方程正确的是A 、x+3×4.25%x=33825B 、x+4.25%x=33825C 、3×4.25%x=33825D 、3(x+4.25%x)=338252.若代数式4x ﹣5与的值相等,则x 的值是( ) A .1 B . C . D .23.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则还有1人不能上车.有下列四个等式:①4010431m m +=-;②1014043n n ++=; ③1014043n n --=;④4010431m m +=+. 其中正确的是( )A.①②B.②④C.②③D.③④4.若方程4x ﹣1=3x+1和2m+x=1的解相同,则m 的值为( )A.-3B.1C.-12D.325.家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是( )A .20x •13%=2340B .20x=2340×13%C .20x (1﹣13%)=2340D .13%•x=23406.解方程12131=--x 时,去分母正确的是( ) A.1−(x −1)=1 B.2−3(x −1)=6C.2−3(x −1)=1D.3−2(x −1)=67.一件衣服以220元出售,可获利10%,则这件衣服的进价是( )A.110元B.180元C.198元D.200元8.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他( )A .不赚不赔B .赚9元C .赔18元D .赚18元9.若方程042=-+a x 的解是2-=x ,则a 等于( )A.-8B.0C.2D.810.方程 去分母得( )A 、2﹣5(3x ﹣7)=﹣4(x+17)B 、40﹣15x ﹣35=﹣4x ﹣68C 、40﹣5(3x ﹣7)=﹣4x+68D 、40﹣5(3x ﹣7)=﹣4(x+17)二.填空题11.方程x+2=7的解为 .12.当m = __________时,方程2x +m =x +1的解为x =−4.13.已知关于x 的方程ax+b=0,有以下四种说法:①若x=1是该方程的解,则a+b=0;②若a=﹣1,则x=b 是该方程的解;③若a≠0,则该方程的解是x=﹣ba ;④若a=0,b≠0,则该方程无解.其中所有正确说法的序号是________.14. 已知|x ﹣y|=y ﹣x ,|x|=3,|y|=4,则(x+y )3= .15.方程432-=+x m x 与方程6)16(21-=-x 的解相同,则m 的值为__________.16.将方程4x+3y=6变形成用y 的代数式表示x ,则x=________.17. 减去2﹣x 等于3x 2﹣x+6的整式是 .18.小强比他叔叔小30岁,而两年前,小强的年龄是他叔叔的41,则小强的叔叔今年____________岁.三解答题19.今年父子的年龄之和是50,且父亲的年龄是儿子的4倍,求儿子今年多少岁?20. 如果方程的解与方程4x ﹣(3a+1)=6x+2a ﹣1的解相同,求式子的值.21. 定义新运算符号“*”的运算过程为b a b a 3121*-=,试解方程2∗(2∗x )=1∗x .22.已知方程(3m ﹣4)x 2﹣(5﹣3m )x ﹣4m=﹣2m 是关于x 的一元一次方程,(1)求m和x的值.(2)若n满足关系式|2n+m|=1,求n的值.23.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a 千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a .(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时,应交电费是多少元.24. 为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;规定吨数以上的超过部分收费标(1)求出规定吨数和两种收费标准.(2)若小明家6月份用水20吨,则应缴多少元?(3)若小明家7月份缴水费29元,则7月份用水多少吨?25.有一火车要以每分钟600米的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5秒时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求两座铁桥的长分别为多少.答案1. A2. B3. D4. C5. A6. B7. D8. C9. D10. D11. x=5.12. 513. ①②③14. 343或1.15. -616. 6−3y417. 3x 2﹣2x+8.18. 4219. 解:设儿子的年龄是x ,则父亲的年龄就是4x ,根据题意得:x+4x=50,解得:x=10,20. 解:解方程,2(x ﹣4)﹣48=﹣3(x+2),2x ﹣8﹣48=﹣3x ﹣6,5x=50,得:x=10.把x=10代入方程4x ﹣(3a+1)=6x+2a ﹣1,得:4×10﹣(3a+1)=6×10+2a﹣1,解得:a=﹣4,∴可得: .21. 解:根据“*”的运算过程,有x x x 31131221*2-=-⨯=, x x x 312131121*1-=-⨯=, x x x x x 913291311)311(311)*2(31221)*2(*2+=+-=--=-⨯=, 故=+x 9132x 3121-. 解方程得83-=x . 22. 解:(1)∵方程(3m ﹣4)x 2﹣(5﹣3m )x ﹣4m=﹣2m 是关于x 的一元一次方程,∴3m ﹣4=0.解得:m=43.将m=43代入得:﹣x﹣163=﹣83.解得x=﹣83.(2)∵将m=43代入得:|2n+43|=1.∴2n+43=1或2n+43=﹣1.∴n=﹣16或n=﹣76.23.解:(1)由题意,得0.4a+(84﹣a)×0.40×70%=30.72,解得a=60;(2)设九月份共用电x千瓦时,则0.40×60+(x﹣60)×0.40×70%=0.36x,解得x=90,所以0.36×90=32.40(元).答:九月份共用电90千瓦时,应交电费32.40元.24.解:(1)从表中可以看出规定吨数为不超过10吨,10吨以内,每吨2元,超过10吨的部分每吨3元.(2)小明家6月份的水费是:10×2+(20−10)×3=50(元).(3)设小明家7月份用水x吨,因为29>10×2,所以x>10.由题意得10×2+(x−10)×3=29,解得:x=13.故小明家7月份用水13吨.25.解:设第一座铁桥的长为米,那么第二座铁桥的长为米,过完第一座铁桥所需要的时间为分,过完第二座铁桥所需要的时间为分.依题意,可列出方程解方程得所以答:第一座铁桥长100米,第二座铁桥长150米.。
苏科版七年级上册数学:第四章一元一次方程复习训练卷
第四章 一元一次方程 复习训练卷(时间:60分钟 满分:100分)一、选择题(每题2分,共20分)1.下列是一元一次方程的是( ).A. x -y=4-2x B .1x+1=x -2 C .2x -5=3x -2 D .x(x -1)=22.用方程表示“x 的12减去3等于-1”的数量关系是 ( ). A. x -12-3=-1 B .x(12-3)=-1 C .2x -3=-1 D .12x -3=-1 3.把方程126x x --=1去分母,正确的是( ). A. 3x -(x -1)=1 B .3x -x -1=1C. 3x -x -1=6 D .3x -(x -1)=64.方程2(x -1)=13(4x -3)的解是( ). A .32 B .-32 C .92 D .-92 5.如果2 005-200.5=x -20.05,那么x 等于( ).A. 1 814.55 B .1 824.55 C .1 774.45 D .1 784.456.已知一个三角形三条边长的比为2:4:5.最长边比最短边长6 cm ,则这个三角形的周长为( ).A. 21 cm B .22 cm C .23 cm D .24 cm7.一件商品按成本价提高40%后标价,再打八折(标价的80%)销售,售价为240元.设这件商品的成本价为x元. 根据题意,下面所列的方程正确的是( ).A. x·40%×80%=240 B.x(1+40%)×80%=240C.240×40%×80%=x D.x·40%=240×80%8.右图是“东方”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙算一算,该洗发水的原价为( ).A. 22元B.23元 C. 24元D.26元9.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了.则这次生意的盈亏情况为( ).A. 赚6元B.不亏不赚C.亏4元D.亏24元10.参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1 000元.那么此人住院的医疗费是( ).A .1 000元B.1250元C.1 500元D.2000元二、填空题(每题2分,共20分)11.方程3-x=5的解是__________.12.如果式子8x-9与式子6-2x的值互为相反数,那么x的值是__________.13.已知梯形的面积是30 cm2,下底长是12 cm,高是3 cm,则其上底长为__________.14.当__________时,式子13x一1与3-x的值相等.15.三个连续偶数的和为48,则这三个偶数的积为__________.16.m的3倍与5的差比m的13小3,可列方程为__________.17.美术课外小组女同学占全组人数的14,加入4个女同学后,女同学就占全组人数的12,则美术课外小组原来的人数是__________人.18.我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米l元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费.如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为__________立方米.19.小华的妈妈为爸爸买了一件衣服和一条裤子,共用306元.其中衣服按标价打七折,裤子按标价打八折,衣服的标价为300元,则裤子的标价为__________元.20.《广东省工伤保险条例》规定:职工有依法享有工伤保险待遇的权利,某单位一名职工因公受伤住院治疗了一个月(按30天计),用去医疗费5 000元,伙食费500元,工伤保险基金按规定给他补贴医疗费4 500元,其单位按因公出差标准(每天30元)的百分之七十补助给他做伙食费,则在这次工伤治疗中他自己只需支付__________.三、解答题(第21~24题每题3分,其余每题6分,共60分)21.解方程:5x-3=4x+15.22.解方程:2(3x -1)=4(x+1)。
苏科版七年级上册数学第4章 一元一次方程 含答案
苏科版七年级上册数学第4章一元一次方程含答案一、单选题(共15题,共计45分)1、已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树.设男生有x人,则()A.2x+3(72-x)=30B.3x+2(72-x)=30C.2x+3(30-x)=72 D.3x+2(30-x)=722、下列方程中,是一元一次方程的是()A. =3B.x 2+1=5C.x=0D.x+2y=33、对于任意两个有理数a、b,规定a⊗b=3a﹣b,若(2x+3)⊗(3x﹣1)=4,则x的值为()A.1B.﹣1C.2D.﹣24、下列变形正确的是( )A.由5=x一2得x=-5-2B.由5y=0得y=C.由2x=3x+5得-5=3x-2xD.由3x=-2得x=-5、若x=0是方程1- = 的解,则k值为()A.2B.3C.4D.06、解方程﹣=1时,去分母正确的是()A.2(x﹣4)﹣(1+2x)=1B.4(x﹣4)2 (1+2x)=4C.2 (x﹣4)﹣1+2x=4D.2(x﹣4)一﹣(1+2x)=47、下列方程中,不是一元一次方程的为()A.3x+2=6B.4x﹣2=x+1C.x+1=0D.5x+6y=18、在解方程=1﹣时,去分母正确的是()A.3(x﹣1)=1﹣2(2+3x)B.3(x﹣1)=1+2(2x+3)C.3(x﹣1)=6﹣2(2x+3)D.3(x﹣1)=6+2(2x+3)9、下列等式变形中正确的是()A.若x=y,则B.若a=b,则a-3=3-bC.若2πr1=2πr2,则r1=r2D.若,则a=c10、方程|3x|=15的解的情况是()A.有一个解,是5B.无解C.有无数个解D.有两个解,是±511、若是关于的一元一次方程,则()A.1B.-1C.D.12、下列方程中方程的解为的是()A.x+1=3B.2x-4=3C.3x-5=6D.1-10x=813、某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律九折;(3)一次性购物超过300元一律八折;兰兰两次购物分别付款80元,252元.如果兰兰一次性购买和上两次相同的物品应付款()A.288元B.288元和332元C.332元D.288元和316元14、若关于的一元二次方程的一个根是,则的值是()A. B. C. D.15、下列各组方程中,解相同的是()A.x=3与4x+12=0B.x+1=2与2(x+1)=2xC.7x-6=25与D.x=9与x+9=0二、填空题(共10题,共计30分)16、若关于x的方程ax﹣6=2的解为=﹣2,则a=________.17、如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为________.18、2x+1=5的解也是关于x的方程3x﹣a=4的解,则a=________.19、方程中有一个数字被墨水盖住了,查后面的答案,知道这个方程的解是x=−1,那么盖住的数字是________20、若关于x方程的解也是方程的解,则6________.21、若与互为相反数,则a=________.22、由等式(a﹣2)x=a﹣2能得到x﹣1=0,则a必须满足的条件是________.23、关于x的方程a2x2﹣(2a+1)x+1=0有实数根,则a满足的条件是________.24、一般情况下不成立,但也有数可以使得它成立,例如:m=n =0.使得成立的一对数m、n我们称为“相伴数对”,记为(m,n).若(x,1)是“相伴数对”,则x的值为________.25、定义新运算:对于任意有理数a、b都有a⊗b=a(a–b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊗5=2×(2–5)+1=2×(–3)+1=–6+1=–5.则4⊗x=13,则x=________.三、解答题(共5题,共计25分)26、若方程3x+2a=12和方程3x-4=2的解相同,求a的值.27、已知不等式的最小整数解为方程的解,求代数式的值.28、解方程:﹣=1.29、小明解方程时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为x=4,试求a的值,并正确地求出方程的解.30、王凯在解方程2x=5x时,在方程两边同时除以x,竟得到2=5,你知道他错在什么地方吗?参考答案一、单选题(共15题,共计45分)2、C3、D4、C5、B6、D7、D8、C9、C10、D11、B12、A13、D14、B15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、30、。
苏科版七年级上册数学第4章 一元一次方程含答案(研优卷)
苏科版七年级上册数学第4章一元一次方程含答案一、单选题(共15题,共计45分)1、若关于x的一元一次方程k(x+4)﹣2k﹣x=5的解为x=﹣3,则k的值是()A.﹣2B.2C.D.﹣2、下面四个等式的变形中正确的是()A.由4x+8=0得x+2=0B.由x+7=5﹣3x得4x=2C.由x=4得x=D.由﹣4(x﹣1)=﹣2得4x=﹣63、下列各式的变形,能正确运用等式的性质的是()A.由得x=2B.由得x=1C.由-2a=-3得a=D.由x-1=4得x=54、要使方程﹣=1去分母,两边同乘以6得()A.3(6﹣2x)﹣4(18+3x)=1B.3(6﹣2x)﹣4(18+3x)=6C.3D.35、如果式子5-2x的值与互为倒数,则x=()A.1B.2C.3D.46、以下等式变形不正确的是()A.由x+2=y+2,得到x=yB.由2a﹣3=b﹣3,得到2a=bC.由am=an,得到m=n D.由m=n,得到2am=2an7、如图,天秤中的物体a、b、c使天秤处于平衡状态,则物体a与物体c的重量关系是( )A. 2a=3cB.4a=9cC.a=2cD.a=c8、有下列结论:①若a+b+c=0,则abc≠0;②若a(x﹣1)=b(x﹣1)有唯一的解,则a≠b;③若b=2a,则关于x的方程ax+b=0(a≠0)的解为x=﹣;④若a+b+c=1,且a≠0,则x=1一定是方程ax+b+c=1的解;其中结论正确的个数有()A.4个B.3个C.2个D.1个9、如果关于x的方程的解集是,那么a的值是()A.−2B.−1C.1D.210、小明爷爷今年的年龄是小明的5倍,4年后,爷爷的年龄是小明的4倍,求小明今年的年龄?设小明今年的年龄为岁,根据题意,列出方程正确的是()A. B. C. D.11、已知方程3x|m|+1=0是关于x的一元一次方程,则m的值是()A.±1B.1C.-1D.0和112、下列说法:①在等式2x=4两边都加上2,可得等式4x=6;②在等式2x=4两边都减去2,可得等式x=2;③在等式2x=4两边都乘以,等式变为x=2;④等式两边都除以同一个数,等式仍然成立.其中正确的说法有()A.1个B.2个C.3个D.4个13、下列等式变形正确的是()A.由a=b,得=B.由﹣3x=﹣3y,得x=﹣yC.由=1,得x=D.由x=y,得=14、下列等式变形正确的是()A.由2x+7=0,得2x=-7B.由2x-3=0,得2x-3+3=0C.由,得 D.由5x=4,得x=2015、下列结论:①若,则关于x的方程 ax-b+c=0(a 的解是x=-1;②若x=1是方程ax+b+c=1且a 的解,则a+b+c=1成立;③若,则;④A、B、C是平面内的三个点,AB与AC是两条线段,若AB=AC,则点C为线段AB的中点;⑤若,则的值为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章一元一次方程提优训练
一、选择题(每题2分,共20分)
1.下列方程中,一元一次方程是( )
A.2a=1 B.3y-5 C.3+7=10 D.x2+x=l
2.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )
A.2(x-1)+3x=13 B.2(x+1)+3x=13
C.2x+3(x+1)=13 D.2x+3(x-1)=13
3.下列变形正确的是( )
A.4x-5=3x+2变形得4x-3x=-2+5
B.21
13
32
x x
-=+变形得4x-6=3x+18
C.3(x-1)=2(x+3)变形得3x-1=2x+6
D. 3x=2变形得x=2 3
4.解为x=5的方程是( )
A. 5x+2=7x-8
B. 5x-2=7x+8
C.5x+2=7x+8 D.5x-2=7x-8
5.已知2是关于x的方程3x+a=0的一个解.那么a的值是( )
A.-6 B.-3 C.-4 D.-5
6.班长去文具店买毕业留言卡50张.每张标价2元,店老板说可以按标价九折优惠,则班长应付( ) A.45元B.90元C.10元D.100元
7.若方程6x+3a=22与方程5(x+1)=4x+7的解相同,则a的值是( )
A.10
3
B.
3
10
C.
10
3
-D.
3
10
-
8.若1-(2-x)=1-x,则代数式2x2-7的值是( )
A.-5 B.5 C.1 D.-1
9.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为( ) A. 26元B.27元C.28元D.29元
10.如图,宽为50 cm的长方形图案由10个相间的小长方形拼成,其中一个小长方形的面积为( ) A.400 cm2 B. 500 cm2C.600 cm2D.4000 cm2
二、填空题(每空2分,共24分)
11.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x月后他能捐出100元,则可列方程为______________.
12.一个长方形周长是42 cm,宽比长少3 cm,如果设长为x cm,那么根据题意列方程为______________.13.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为_______元.
14.若9a x b3与-7a3x
-4b3是同类项,则x=________.
15.当m=________时,代数式
5
3
m+
的值是2.
16. 某校七(1)班的男生比女生多2人,女生占全班人数的48%.这个班男生有_____人,女生有___人.
17. 已知x=
2
3
是一元一次方程3(m-
3
4
x)+
3
2
x=5m的解,则m的值是_______.
18. 从甲地到乙地,公共汽车原需行驶7 h,开通高速公路后,车速平均每小时增加了20 km,只需5 h 即可到达.甲、乙两地的路程是________.
19.x=9是方程
1
2
3
x b
-=的解,那么b=_______.当b=l时.方程的解为_______.
20.其商场在促销期间规定:商场内所有商品按标价的80%出售,同时.与顾客在该商场内消费满一定金额后。
按如下方案获得相应金额的奖券.(奖券购物不再享受优惠)
根据上述促销方法,顾客在该商场购物可获得双重优惠.如果胡老师在该商场购一家用电器获得的优惠额为120元.则这一家用电器的标价为_________元.
三、解答题(第21题8分,第22、23题每题4分,第24~27题每题10分,共56分)
21.解下列方程:
(1)5(x+8)-6(2x-7)+5:(2)
223
1
46
x x
+-
-=.
22.设a,b,c,d为有理数,现规定一种新的运算:
a b
ad bc
c d
=-
,那么当
35-x
7
2 7
=
时,x 的值是多少?
23.2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44 km/h,提速前的列车时刻表如下表所示:
请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.
24.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人整理一小时,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?
25.如果关于x的方程232
3
53
x
x
-
=-与
1
3
4
n-=3(x+n)-2n的解相同,求(n-3
5
8
)2的值.
26.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸
爸的对话(如图),试根据图中的信息,解答下列问题:
(1)小明他们一共去了几个成人,几个学生?
(?)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.-
27.甲、乙两辆车在一条公路上匀速行驶,为了确定汽车的位置.我们用O x表示这条公路,原点O
为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数
轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表
示汽车位于零千米的左侧:行程为零,表示汽车位于零千米处。
就上面表格的空白,提出问题,并写出解题过程.
(1)甲、乙两车能否相遇,如果相遇,求相遇时的时刻及在公路上的位置;如果不能相遇,请说明理由;
(2)甲、乙汽车能否相距180 km,如果能,求相距180 km的时刻及其位置;如不能,请说明理由.
参考答案
1.A 2.A 3.B 4.A 5.A 6.B 7.A 8.A 9.C 10.A 11.10x+20=100 12.x+(x -3)=21 13.120 14.2 15.
13 16.26 24 l7.m=-14
18.350 km
19.1 x=9或x=3. 20.450
21.(1)去括号.得5x+40=12x -42+5
移项、台并同类项.得x=77. 系数化1.得 x=11.
(2)去分母.得3(x+2)-2(2x -3)=12. 去括号.得3x+6-4x+6=12. .移项、合并同类项.得x=0. 22.x=-2
23.设列车提速后行驶时间为x h .根据题意得
264442644x ⎛⎫
+= ⎪⎝⎭
. x=2. 4. 经检验 x=2.4符合题意. 答:到站时刻为4:2 4.,历时2.4 h .提速后的列车时刻表为:
24.设先安排整理的人员有x 人.依题意得,()21516060
x x ++=解得.x=10. 答:先安排整理的人员有10人. 25.由方程
232
353
x x -=-可得: 3(2x -3)=10x -45,
6x -9=10x -45, 45-9=10x -6x, 36=4x , x=9.
由题意可知x=9是方程1
34
n -
=3(x+n)-2n 的解. 则:1
34
n -
=3(9+n)-2n , 134n -
=27+3n -2n , 2n=27+14
, n=
1098
当n=
1098时,(n -358)2=102=100 即(n -35
8
)2=100 26.(1)设成人人数为x 人,则学生人数为 (12-x)人.则
35x+
()35
123502
x -= 解得,x=8
故学生人数为12-8=4人,成人人数为8人. (2)如果买团体票,按16人计算,共需费用: 35×0.6×16=336(元)
336<350 所以,购团体票更省钱.
27.由表格可以看出甲车的速度为-40 km /h ,
乙车的速度为50 km/h ,乙车的起始位置是-80 km . (1)设两车x h 相遇.由题意,得
190-40x=-80+50x; 解得:x=3,经检验,符合题意. 190-40x=70:
所以甲、乙两车能够相遇,3 h 相遇在公路上的70 km 处的位置. (2)设两车在y h 时相距180 km ,由题意,得
190-40y=-80+50y+180或190-40y+180=-80+50x . 解得:y=1,或者y=5,经检验,符合题意. 190-407=150或者190-40y=-10. -80+50y=30或者-80+50y=170.
所以甲、乙两车能够相距180 km ,在1 h 时甲车的位置是150 km 处,乙车的位置是-30 km 处:或在5 h 时甲车的位置是-10 km .乙车的位置是170 km 处。