(通用版)2019版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布列课时达标检测

合集下载

高三数学一轮复习 第11章第1课时课件

高三数学一轮复习 第11章第1课时课件
=2 100 元.
两个计数原理的综合应用
对于某些复杂的问题,有时既要用分类计数原理, 又要用分步计数原理,重视两个原理的灵活运用, 并注意以下几点: (1)认真审题,分析题目的条件、结论,特别要理 解题目中所讲的“事情”是什么,完成这件事情 的含义和标准是什么. (2)明 确 完 成 这 件 事 情 需 要 “ 分 类 ” 还 是 “ 分
2.混合问题一般是先分类再分步. 3.分类时标准要明确,做到不重复不遗漏. 4.要恰当画出示意图或树状图,使问题的分
析更直观、清楚,便于探索规律.
从近两年的高考试题来看,分类加法计数 原理和分步乘法计数原理是考查的热 点.题型为选择题、填空题,分值在5分左 右,属中档题.两个计数原理较少单独考 查,一般与排列、组合的知识相结合命 题.
(2010·广东卷)为了迎接 2010 年广州亚运会,某大
楼安装了 5 个彩灯,它们闪亮的顺序不固定,每
个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜
色,且这 5 个彩灯所闪亮的颜色各不相同,记这 5
个彩灯有序地各闪亮一次为一个闪烁,在每个闪
烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两
个闪烁的时间间隔均为 5 秒,如果要实现所有不
(2)确定第二象限的点,可分两步完成:第一 步确定 a,由于 a<0,所以有 3 种确定方法; 第二步确定 b,由于 b>0,所以有 2 种确定方 法.由分步乘法计数原理,得到第二象限点 的个数是 3×2=6.
(3)点 P(a,b)在直线 y=x 上的充要条件是 a =b.因此 a 和 b 必须在集合 M 中取同一元素, 共有 6 种取法,即在直线 y=x 上的点有 6 个.由(1)得不在直线 y=x 上的点共有 36- 6=30(个).

高三数学一轮复习第十一篇计数原理概率随机变量及其分布第2节排列与组合课件理(1)

高三数学一轮复习第十一篇计数原理概率随机变量及其分布第2节排列与组合课件理(1)

个.
解析: (2)若 0 在 1,3 之间,则在 0,1,3 隔开的四个空位中插入 2,4 即可,此 时的五位数个数为 A22A24 =24;若 0 在 1,3 右边,则 1,3 之间需插入一个数,另 一个数在最高位,或者在 0 左右,此时五位数的个数为 A22C12 ×3=12;若 0 在 1,3 左边,此时 2,4 只能一个在 0 的左边(最高位)、一个在 1,3 之间,此时的 五位数个数为 A22A22 =4.故共可组成五位数有 24+12+4=40(个).
不同元素中取出 m 个元素的排列数
n 个不同元素中取出 m 个元素的组合数
排列数公式
A
m n
=n(n-1)(n-2)…
公 式
(n-m+1) =
n!
(n m)!
组合数公式
C
m n
=
Amn Amm
=
n(n 1)(n 2)...(n m 1) = n!
m!
m!(n m)!
性 质
A
n n
【即时训练】 (2015河南郑州市二次质量预测)某校开设A类选修课2 门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选 一门,则不同的选法共有( ) (A)3种 (B)6种 (C)9种 (D)18种
解析:直接法: C12C32 + C22C13 =9. 间接法: C35 -1=9. 故选 C.
答案: (2)40
备选例题
【例 1】
(1)若
3
A
3 x
=2
A2 x 1
+6
A
2 x
,则
x=
.
(2)若
Cx2 16

高中数学知识点总结(第十一章 计数原理与概率、随机变量及其分布 第五节 古典概型与几何概型)

高中数学知识点总结(第十一章 计数原理与概率、随机变量及其分布 第五节 古典概型与几何概型)

第五节 古典概型与几何概型一、基础知识1.古典概型(1)古典概型的特征:①有限性:在一次试验中,可能出现的结果是有限的,即只有有限个不同的基本事件;,②等可能性:每个基本事件出现的可能性是相等的.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性.(2)古典概型的概率计算的基本步骤:①判断本次试验的结果是否是等可能的,设出所求的事件为A ;②分别计算基本事件的总数n 和所求的事件A 所包含的基本事件个数m ; ③利用古典概型的概率公式P (A )=mn ,求出事件A 的概率.(3)频率的计算公式与古典概型的概率计算公式的异同 名称 不同点相同点频率计 算公式 频率计算中的m ,n 均随随机试验的变化而变化,但随着试验次数的增多,它们的比值逐渐趋近于概率值 都计算了一个比值mn古典概型的 概率计算公式mn 是一个定值,对同一个随机事件而言,m ,n 都不会变化2.几何概型(1)概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)几何概型的基本特点:①试验中所有可能出现的结果(基本事件)有无限多个; ②每个基本事件出现的可能性相等. (3)计算公式:P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.几何概型应用中的关注点1关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 2确定基本事件时一定要选准度量,注意基本事件的等可能性.考点一 古典概型[典例精析](1)(2018·全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A.112 B.114 C.115D.118(2)(2019·武汉调研)将一枚质地均匀的骰子投掷两次,得到的点数依次记为a 和b ,则方程ax 2+bx +1=0有实数解的概率是( )A.736B.12C.1936D.518[解析] (1)不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 210=45种情况,而和为30的有7+23,11+19,13+17这3种情况,所以所求概率P =345=115.(2)投掷骰子两次,所得的点数a 和b 满足的关系为⎩⎪⎨⎪⎧1≤a ≤6,a ∈N *,1≤b ≤6,b ∈N *,所以a 和b 的组合有36种.若方程ax 2+bx +1=0有实数解, 则Δ=b 2-4a ≥0,所以b 2≥4a .当b =1时,没有a 符合条件;当b =2时,a 可取1;当b =3时,a 可取1,2;当b =4时,a 可取1,2,3,4;当b =5时,a 可取1,2,3,4,5,6;当b =6时,a 可取1,2,3,4,5,6.满足条件的组合有19种,则方程ax 2+bx +1=0有实数解的概率P =1936.[答案] (1)C (2)C[题组训练]1.(2019·益阳、湘潭调研)已知a ∈{-2,0,1,2,3},b ∈{3,5},则函数f (x )=(a 2-2)e x +b 为减函数的概率是( )A.310B.35C.25D.15解析:选C 若函数f (x )=(a 2-2)e x +b 为减函数,则a 2-2<0,又a ∈{-2,0,1,2,3},故只有a =0,a =1满足题意,又b ∈{3,5},所以函数f (x )=(a 2-2)e x +b 为减函数的概率是2×25×2=25. 2.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.518B.49C.59D.79解析:选C 由题意得,所求概率P =5×4×29×8=59.3.将A ,B ,C ,D 这4名同学从左至右随机地排成一排,则“A 与B 相邻且A 与C 之间恰好有1名同学”的概率是( )A.12 B.14 C.16D.18解析:选B A ,B ,C ,D 4名同学排成一排有A 44=24种排法.当A ,C 之间是B 时,有2×2=4种排法,当A ,C 之间是D 时,有2种排法,所以所求概率P =4+224=14.考点二 几何概型类型(一) 与长度有关的几何概型[例1] (2019·濮阳模拟)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( )A.215 B.715 C.35D.1115[解析] ∵f (x )=-x 2+mx +m 的图象与x 轴有公共点,∴Δ=m 2+4m ≥0,∴m ≤-4或m ≥0,∴在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率P =[-4--6]+9-09--6=1115,故选D. [答案] D类型(二) 与面积有关的几何概型[例2] (1)(2018·潍坊模拟)如图,六边形ABCDEF 是一个正六边形,若在正六边形内任取一点,则该点恰好在图中阴影部分的概率是( )A.14 B.13 C.23D.34(2)(2019·洛阳联考)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A.4π2B.4π3C.2π2 D.2π3 [解析] (1)设正六边形的中心为点O ,BD 与AC 交于点G ,BC =1,则BG =CG ,∠BGC =120°,在△BCG 中,由余弦定理得1=BG 2+BG 2-2BG 2cos 120°,得BG =33,所以S △BCG =12 ×BG ×BG ×sin 120°=12 ×33 ×33 ×32=312,因为S六边形ABCDEF =S △BOC ×6=12×1×1×sin 60°×6=332,所以该点恰好在图中阴影部分的概率P =1-6S △BCG S 六边形ABCDEF =23.(2)由题意知圆O 的面积为π3,正弦曲线y =sin x ,x ∈[-π,π]与x 轴围成的区域记为M ,根据图形的对称性得区域M 的面积S =2∫π0 sin x d x =-2cos x |π0 =4,由几何概型的概率计算公式可得,随机往圆O 内投一个点A ,则点A 落在区域M 内的概率P =4π3.[答案] (1)C (2)B类型(三) 与体积有关的几何概型[例3] 已知在四棱锥P ­ABCD 中,P A ⊥底面ABCD ,底面ABCD 是正方形,P A =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O ­ABCD 的体积不小于23的概率为________.[解析] 当四棱锥O ­ABCD 的体积为23时,设O 到平面ABCD 的距离为h ,则13×22×h =23,解得h =12.如图所示,在四棱锥P ­ABCD 内作平面EFGH 平行于底面ABCD ,且平面EFGH 与底面ABCD 的距离为12.因为P A ⊥底面ABCD ,且P A =2,所以PH P A =34,又四棱锥P ­ABCD 与四棱锥P ­EFGH 相似,所以四棱锥O ­ABCD 的体积不小于23的概率P =V 四棱锥P ­EFGH V 四棱锥P ­ABCD =⎝⎛⎭⎫PH P A 3=⎝⎛⎭⎫343=2764.[答案]2764类型(四) 与角度有关的几何概型[例4] 如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.[解析] 连接AC ,如图, 因为tan ∠CAB =BC AB =33,所以∠CAB =π6,满足条件的事件是直线AP 在∠CAB 内,且AP 与AC 相交时,即直线AP 与线段BC 有公共点,所以射线AP 与线段BC 有公共点的概率P =∠CAB ∠DAB =π6π2=13.[答案] 13[题组训练]1.(2019·豫东名校联考)一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF ­BCE 内自由飞翔,则它飞入几何体F ­AMCD 内的概率为( )A.34 B.23 C.13D.12解析:选D 由题图可知V F ­AMCD =13×S 四边形AMCD ×DF =14a 3,V ADF ­BCE =12a 3,所以它飞入几何体F ­AMCD 内的概率P =14a 312a 3=12.2.在区间[0,π]上随机取一个数x ,则事件“sin x +cos x ≥22”发生的概率为________.解析:由题意可得⎩⎪⎨⎪⎧sin x +cos x ≥22,0≤x ≤π,即⎩⎪⎨⎪⎧sin ⎝⎛⎭⎫x +π4≥12,0≤x ≤π,解得0≤x ≤7π12,故所求的概率为7π12π=712.答案:7123.(2018·唐山模拟)向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率为________.解析:如图,连接CA ,CB ,依题意,圆心C 到x 轴的距离为3,所以弦AB 的长为2.又圆的半径为2,所以弓形ADB 的面积为12×23π×2-12×2×3=23π-3,所以向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率P =16-34π.答案:16-34π[课时跟踪检测]A 级1.(2019·衡水联考)2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币.如图所示是一枚8克圆形金质纪念币,直径22 mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )A.363π10 mm 2B.363π5 mm 2C.726π5mm 2D.363π20mm 2 解析:选A 向硬币内投掷100次,恰有30次落在军旗内,所以可估计军旗的面积大约是S =30100×π×112=363π10(mm 2).2.(2019·漳州一模)甲、乙、丙、丁、戊5名同学参加“《论语》知识大赛”,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”,从上述回答分析,丙是第一名的概率是( )A.15B.13C.14D.16解析:选B 由于甲和乙都不可能是第一名,所以第一名只可能是丙、丁或戊.又因为所有的限制条件对丙、丁或戊都没有影响,所以这三个人获得第一名是等可能事件,所以丙是第一名的概率是13.3.(2019·郑州模拟)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为( )A.110B.15C.310D.25解析:选C 将5张奖票不放回地依次取出共有A 55=120(种)不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票,共有C 23C 12A 33=36(种)取法,所以P =36120=310. 4.(2019·长沙模拟)如图是一个边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A.π8 B.π16 C.1-π8D.1-π16解析:选C 正方形的面积为82,正方形的内切圆半径为4,中间黑色大圆的半径为2,黑色小圆的半径为1,所以白色区域的面积为π×42-π×22-4×π×12=8π,所以黑色区域的面积为82-8π.在正方形图案上随机取一点,则该点取自黑色区域的概率为P =82-8π82=1-π8.5.(2019·郑州模拟)已知圆C :x 2+y 2=1,直线l :y =k (x +2),在[-1,1]上随机选取一个数k ,则事件“直线l 与圆C 相离”发生的概率为( )A.12 B.2-22C.3-33D.2-32解析:选C 圆C :x 2+y 2=1的圆心C (0,0),半径r =1,圆心到直线l :y =k (x +2)的距离d =|0×k -0+2k |k 2+-12=2|k |k 2+1,直线l 与圆C 相离时d >r ,即2|k |k 2+1>1,解得k <-33或k >33,故所求的概率P =2×⎝⎛⎭⎫1-331--1=3-33.6.从1~9这9个自然数中任取7个不同的数,则这7个数的平均数是5的概率为________.解析:从1~9这9个自然数中任取7个不同的数的取法共有C 79=36种,从(1,9),(2,8),(3,7),(4,6)中任选3组,有C 34=4种选法,故这7个数的平均数是5的概率P =436=19. 答案:197.一个三位数的百位,十位,个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称这个三位数为“好数”(如213,134),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“好数”的概率是________.解析:从1,2,3,4中任选3个互不相同的数并进行全排列,共组成A 34=24个三位数,而“好数”的三个位置上的数字为1,2,3或1,3,4,所以共组成2A 33=12个“好数”,故所求概率P =1224=12. 答案:128.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O 被函数y =3sin π6x 的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.解析:根据题意,大圆的直径为函数y =3sin π6x 的最小正周期T ,又T =2ππ6=12,所以大圆的面积S =π·⎝⎛⎭⎫1222=36π,一个小圆的面积S ′=π·12=π,故在大圆内随机取一点,此点取自阴影部分的概率P =2S ′S =2π36π=118.答案:1189.(2018·天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.解:(1)因为甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.②由①,不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种.所以事件M 发生的概率P (M =521.10.在某大型活动中,甲、乙等五名志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率; (3)求五名志愿者中仅有一人参加A 岗位服务的概率.解:(1)记“甲、乙两人同时参加A 岗位服务”为事件E A ,那么P (E A )=A 33C 25A 44=140,即甲、乙两人同时参加A 岗位服务的概率是140.(2)记“甲、乙两人同时参加同一岗位服务”为事件E ,那么P (E )=A 44C 25A 44=110,所以甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910.(3)因为有两人同时参加A 岗位服务的概率P 2=C 25A 33C 25A 44=14,所以仅有一人参加A 岗位服务的概率P 1=1-P 2=34.B 级1.(2019·太原联考)甲、乙二人约定7:10在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是( )A.18B.14C.38D.58解析:选C 建立平面直角坐标系如图,x ,y 分别表示甲、乙二人到达的时刻,则坐标系中每个点(x ,y )可对应甲、乙二人到达时刻的可能性,则甲至少等待乙5分钟应满足的条件是⎩⎪⎨⎪⎧y -x ≥5,0≤x ≤20,5≤y ≤20,其构成的区域为如图阴影部分,则所求的概率P =12×15×1520×15=38.2.(2019·开封模拟)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A.17 B.27 C.37D.47解析:选B 根据题意,最近路线就是不能走回头路,不能走重复的路,∴一共要走3次向上,2次向右,2次向前,共7次,∴最近的行走路线共有A 77=5 040(种).∵不能连续向上,∴先把不向上的次数排列起来,也就是2次向右和2次向前全排列为A 44.接下来,就是把3次向上插到4次不向上之间的空当中,5个位置排3个元素,也就是A 35,则最近的行走路线中不连续向上攀登的路线共有A 44A 35=1 440(种),∴其最近的行走路线中不连续向上攀登的概率P =1 4405 040=27.故选B.3.已知等腰直角△ABC 中,∠C =90°,在∠CAB 内作射线AM ,则使∠CAM <30°的概率为________.解析:如图,在∠CAB 内作射线AM 0,使∠CAM 0=30°,于是有P (∠CAM <30°)=∠CAM 0∠CAB =3045=23.答案:234.已知P 是△ABC 所在平面内一点,且PB ―→+PC ―→+2P A ―→=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( )A.14B.13C.12D.23 解析:选C 以PB ,PC 为邻边作平行四边形PBDC ,连接PD 交BC 于点O ,则PB ―→+PC ―→=PD ―→.∵PB ―→+PC ―→+2P A ―→=0,∴PB ―→+PC ―→=-2P A ―→,即PD ―→=-2P A ―→,由此可得,P 是BC 边上的中线AO 的中点,点P 到BC 的距离等于点A 到BC 的距离的12,∴S △PBC =12S △ABC ,∴将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率P =S △PBC S △ABC =12. 5.点集Ω={(x ,y )|0≤x ≤e ,0≤y ≤e},A ={(x ,y )|y ≥e x ,(x ,y )∈Ω},在点集Ω中任取一个元素a ,则a ∈A 的概率为( )A.1eB.1e 2C.e -1eD.e 2-1e2 解析:选B 如图,根据题意可知Ω表示的平面区域为正方形BCDO ,面积为e 2,A 表示的区域为图中阴影部分,面积为∫10 (e -e x )d x =(e x -e x )|10=(e -e)-(-1)=1,根据几何概型可知a ∈A 的概率P =1e2.故选B.6.如图,来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅱ,黑色部分记为Ⅱ,其余部分记为Ⅱ.在整个图形中随机取一点,此点取自Ⅱ,Ⅱ,Ⅱ的概率分别记为p 1,p 2,p 3,则( )A.p 1=p 2B.p 1=p 3C.p 2=p 3D.p 1=p 2+p 3解析:选A 不妨设△ABC 为等腰直角三角形,AB =AC =2,则BC =22,所以区域Ⅱ的面积即△ABC 的面积,为S 1=12×2×2=2, 区域Ⅱ的面积S 2=π×12-⎣⎡⎦⎤π×222-2=2,区域Ⅱ的面积S 3=π×222-2=π-2.根据几何概型的概率计算公式,得p 1=p 2=2π+2,p 3=π-2π+2, 所以p 1≠p 3,p 2≠p 3,p 1≠p 2+p 3,故选A.7.双曲线C :x 2a 2-y 2b2=1(a >0,b >0),其中a ∈{1,2,3,4},b ∈{1,2,3,4},且a ,b 取到其中每个数都是等可能的,则直线l :y =x 与双曲线C 的左、右支各有一个交点的概率为( )A.14B.38C.12D.58解析:选B 直线l :y =x 与双曲线C 的左、右支各有一个交点,则b a>1,总基本事件数为4×4=16,满足条件的(a ,b )的情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个,故概率为38. 8.在区间[0,1]上随机取两个数a ,b ,则函数f (x )=x 2+ax +14b 有零点的概率是________. 解析:函数f (x )=x 2+ax +14b 有零点,则Δ=a 2-b ≥0,∴b ≤a 2,∴函数f (x )=x 2+ax +14b 有零点的概率P =∫10a 2d a 1×1=13. 答案:13。

高三理科数学一轮复习讲义:第十一章计数原理概率随机变量及其分布11.8条件概率n次独立重复试验与二项分布

高三理科数学一轮复习讲义:第十一章计数原理概率随机变量及其分布11.8条件概率n次独立重复试验与二项分布

§11.8 条件概率、n 次独立重复试验与二项分布考纲展示►1.了解条件概率和两个事件相互独立的概念.2.理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.考点1 条件概率条件概率 (1)定义设A ,B 为两个事件,且P (A )>0,称P (B |A )=P ABP A为在事件A 发生条件下,事件B 发生的条件概率.(2)性质①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ).条件概率的性质.(1)有界性:0≤P (B |A )≤1.( )(2)可加性:如果B 和C 为互斥事件,则P ((B ∪C )|A )=P (B |A )+P (C |A ).( )[典题1] (1)从1,2,3,4,5中任取2个不同的数,事件A :“取到的2个数之和为偶数”,事件B :“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12(2)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则两次都取到红球的概率是( )A.1127B.1124C.827D.924[点石成金] 条件概率的两种求解方法 (1)定义法:先求P (A )和P (AB ),再由P (B |A )=P ABP A求P (B |A ).(2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n ABn A.考点2 事件的相互独立性(1)定义:设A ,B 为两个事件,如果P (AB )=________,则称事件A 与事件B 相互独立. (2)性质:若事件A 与B 相互独立,则A 与B 、A 与B 、A 与B 也都相互独立,P (B |A )=________,P (A |B )=________.[典题2] 为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22千米的地铁票价如下表:的概率分别为14,13,甲、乙乘车超过6千米且不超过12千米的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列.[点石成金] 1.利用相互独立事件的概率乘法公式直接求解;2.正面计算较繁或难以入手时,可从其对立事件入手计算.在一块耕地上种植一种作物,每季种植成本为 1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.考点3 独立重复试验与二项分布独立重复试验与二项分布(1)[教材习题改编]某人抛掷一枚硬币,出现正反的概率都是12,构造数列{a n },使得a n=⎩⎪⎨⎪⎧第n 次出现正面,-第n 次出现反面, 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为________.(2)[教材习题改编]小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是________.二项分布:P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n ).设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)的值是________.[典题3] [2019·湖南长沙模拟]博彩公司对2019年NBA 总决赛做了大胆地预测和分析,预测西部冠军是老辣的马刺队,东部冠军是拥有詹姆斯的年轻的骑士队,总决赛采取7场4胜制,每场必须分出胜负,场与场之间的结果互不影响,只要有一队获胜4场就结束比赛.前4场,马刺队胜利的概率为12,第5,6场马刺队因为平均年龄大,体能下降厉害,所以胜利的概率降为25,第7场,马刺队因为有多次打第7场的经验,所以胜利的概率为35.(1)分别求马刺队以4∶0,4∶1,4∶2,4∶3胜利的概率及总决赛马刺队获得冠军的概率; (2)随机变量X 为分出总冠军时比赛的场数,求随机变量X 的分布列.[点石成金] 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该概率模型是否满足公式P (X =k )=C k n p k(1-p )n -k的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率.某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数据进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.(1)求这次铅球测试成绩合格的人数;(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列.[方法技巧] 1.古典概型中,A 发生的条件下B 发生的条件概率公式为P (B |A )=P ABP A=n AB n A ,其中,在实际应用中P (B |A )=n ABn A是一种重要的求条件概率的方法.2.判断一个随机变量是否服从二项分布,关键有二:其一是独立性,即一次试验中,事件发生与不发生二者必居其一;其二是重复性,即试验是独立重复地进行了n次.3.n次独立重复试验中,事件A恰好发生k次可看作是C k n个互斥事件的和,其中每一个事件都可看作是k个A事件与n-k个A事件同时发生,只是发生的次序不同,其发生的概率都是p k(1-p)n-k.因此n次独立重复试验中事件A恰好发生k次的概率为C k n p k(1-p)n-k.[易错防范] 1.相互独立事件是指两个事件发生的概率互不影响,计算公式为P(AB)=P(A)P(B).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).2.运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A,B相互独立时,公式才成立.真题演练集训1.[2018·重庆模拟]投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648 B.0.432C.0.36 D.0.3122.[2018·天津模拟]某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8 B.0.75C.0.6 D.0.45课外拓展阅读误用“二项分布与超几何分布”二项分布和超几何分布是两类重要的概率分布模型,这两种分布存在着很多的相似之处,在应用时应注意各自的适用条件和情境,以免混用出错.[典例1] 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.现在在总共8小块地中,随机选4小块地种植品种甲,另外4小块地种植品种乙.种植完成后若随机选出4块地,其中种植品种甲的小块地的数目记为X,求X的分布列和数学期望.[思路分析]判断分布的类型→确定X的取值及其概率→列出分布列并求数学期望易错提示本题容易错误地得到X 服从二项分布,每块地种植甲的概率为12,故X ~B (4,0.5).错误的根源在于每块地种植甲或乙不是相互独立的,它们之间是相互制约的,无论怎么种植都要保证8块地中有4块种植甲,4块种植乙,事实上X 应服从超几何分布.如果将题目改为:在8块地中,每块地要么种植甲,要么种植乙,那么在选出的4块地中种植甲的数目为X ,则这时X ~B (4,0.5)(这时这8块地种植的方法总数为28,会出现所有地都种植一种作物的情况,而题目要求4块地种植甲,4块地种植乙,其方法总数为C 48).[典例2] 某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是23,且每题正确完成与否互不影响.(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;(2)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.易错提示本题容易错误地得到甲、乙两考生正确完成的题数均服从二项分布,实际上题目中已知甲、乙两考生按照题目要求独立完成全部实验操作,甲考生正确完成的题数服从超几何分布,乙考生正确完成的题数服从二项分布.。

数学课标通用(理科)一轮复习配套教师用书:第十一章 计数原理、概率、随机变量及其分布 二项式定理

数学课标通用(理科)一轮复习配套教师用书:第十一章 计数原理、概率、随机变量及其分布  二项式定理

§11.3 二项式定理考纲展示►1.能利用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.考点1 二项展开式中特定项或系数问题二项式定理二项式定理(a+b)n=________________二项式系数二项展开式中各项系数C k n (k=0,1,…,n)二项式通项T k+1=________,它表示第________项答案:C错误!a n+C错误!a n-1b+…+C错误!a n-k b k+…+C错误!b n(n∈N*)C k,n a n-k b k k+1(1)[教材习题改编](1-2x)7的展开式的第4项的系数是________.答案:-280解析:展开式中,T r+1=C错误!·(-2x)r=C错误!·(-2)r x r,当r =3时,T4=C错误!·(-2)3·x3=-280x3,所以第4项的系数为-280.(2)[教材习题改编]错误!12的展开式的常数项是________.答案:495解析:展开式中,T r+1=C错误!x12-r·错误!r=(-1)r C错误!x12-3r,当r=4时,T5=C412=495为常数项。

[典题1] (1)在二项式错误!5的展开式中,含x4的项的系数是()A.10 B.-10 C.-5 D.20[答案]A[解析] 由二项式定理可知,展开式的通项为C错误!(-1)r x10-3r,令10-3r=4,得r=2,所以含x4项的系数为C错误!(-1)2=10,故选A.(2)[2017·吉林长春模拟]错误!5的展开式中的常数项为()A.80 B.-80 C.40 D.-40[答案]C[解析]∵T r+1=C错误!(x2)5-r错误!r=(-2)r C错误!x10-5r,由10-5r=0,得r=2,∴T3=(-2)2C错误!=40.(3)[2015·湖南卷]已知错误!5的展开式中含x错误!的项的系数为30,则a=( )A.错误!B.-错误!C.6 D.-6[答案]D[解析] T r+1=C错误!(错误!)5-r·错误!r=C错误!(-a)r x,由错误!=错误!,解得r=1.由C错误!(-a)=30,得a=-6。

(全国通用版)2019版高考数学大一轮复习 第十一章 计数原理、概率、随机变量及其分布 第4节 事件与概率 理

(全国通用版)2019版高考数学大一轮复习 第十一章 计数原理、概率、随机变量及其分布 第4节 事件与概率 理

【训练3】 某商场有奖销售活动中,购满100元商品得1张奖 券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个, 一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二 等奖的事件分别为A,B,C,求: (1)P(A),P(B),P(C); (2)1张奖券的中奖概率; (3)1张奖券不中特等奖且不中一等奖的概率.
解 (1)P(A)=1 0100,P(B)=1 10000=1100,P(C)=1 50000=210. 故事件 A,B,C 的概率分别为1 0100,1100,210. (2)1 张奖券中奖包含中特等奖、一等奖、二等奖.设“1 张奖券中奖”这个事件为 M,
则 M=A∪B∪C. ∵A,B,C 两两互斥,
规律方法 1.准确把握互斥事件与对立事件的概念 (1)互斥事件是不可能同时发生的事件,但也可以同时不发生. (2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可 能都不发生,即有且仅有一个发生. 2.判别互斥、对立事件的方法 判别互斥事件、对立事件一般用定义判断,不可能同时发生 的两个事件为互斥事件;两个事件,若有且仅有一个发生, 则这两个事件为对立事件,对立事件一定是互斥事件.
【训练1】 从1,2,3,4,5这五个数中任取两个数,其中:
①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇
数和两个都是奇数;③至少有一个是奇数和两个都是偶数;
④至少有一个是奇数和至少有一个是偶数.上述事件中,是
对立事件的是( )
A.①
B.②④
C.③
D.①③
解析 从1,2,3,4,5这五个数中任取两个数有3种情况: 一奇一偶,两个奇数,两个偶数. 其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种 情况,它与两个都是偶数是对立事件. 又①②④中的事件可以同时发生,不是对立事件. 答案 C

高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布 第二节 排列与组合

高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布 第二节 排列与组合
比赛,在下列情形中各有多少种选派方法?
(1)男运动员3名,女运动员2名;
(2)至少有1名女运动员;
(3)队长中至少有1人参加;
(4)既要有队长,又要有女运动员.
解 (1)分两步完成:第 1 步,选 3 名男运动员,有C63 种选派方法;第 2 步,选 2 名女
运动员,有C42 种选派方法.由分步乘法计数原理可得,共有C63 × C42 =120 种选派
A.1 800
B.3 600
C.4 320
)
D.5 040
(3)(2024九省联考)甲、乙、丙等5人站成一排,且甲不在两端,乙和丙之间
恰有2人,则不同排法共有(
A.20种
B.16种
)
C.12种
D.8种
答案 (1)B (2)B
(3)B
解析 (1)因为 A 在 B 的前面出场,且 A,B 都不在 3 号位置,则情况如下:
n!.
-1

4.kC =nC-1 .
5.C
=


-1
C-1
=


6.A
=
C
·A


.

-

C-1
=
- +1

-1
·C .
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)所有元素完全相同的两个排列为相同排列.( × )
(2)两个组合相同的充要条件是其中的元素完全相同.( √
有 2C84 + C83 =196 种选派方法.
5
(方法 2 间接法)从 10 人中任选 5 人有C10
种选派方法,其中不选队长的选派

2022届高考一轮复习第11章计数原理概率随机变量及其分布第4节随机事件的概率课时跟踪检测理含解

2022届高考一轮复习第11章计数原理概率随机变量及其分布第4节随机事件的概率课时跟踪检测理含解

第十一章 计数原理、概率、随机变量及其分布第四节 随机事件的概率A 级·基础过关 |固根基|1.如果事件A 与B 是互斥事件,且事件A∪B 发生的概率是0.64,事件B 发生的概率是事件A 发生的概率的3倍,则事件A 发生的概率为( )A .0.64B .0.36C .0.16D .0.84解析:选C 设P(A)=x ,则P(B)=3x ,所以P(A∪B)=P(A)+P(B)=x +3x =0.64,解得x =0.16,故选C .2.(2019届西安五校模拟)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,如果事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡解析:选A “2张全是移动卡”的对立事件是“2张不全是移动卡”,即至多有一张移动卡. 3.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A .13 B .12 C .23D .34解析:选C 从4张卡片中抽取2张的方法有6种,和为奇数的情况有4种,∴P=23.4.从1,2,3,4,5这5个数中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .310B .15C .12D .35解析:选A 从1,2,3,4,5这5个数中任取3个数,共有10种情况,其中三个数可作为三角形边长的有(2,3,4),(2,4,5),(3,4,5)3种情况,故所求概率P =310.故选A .5.(2019届湖南长沙模拟)同时掷3枚硬币,至少有1枚正面向上的概率是( ) A .78 B .58 C .38D .18解析:选A 由题意知本题是一个等可能事件的概率,试验发生包含的事件是将1枚硬币连续抛掷三次,共有8种结果,满足条件的事件的对立事件是3枚硬币都是背面向上,有1种结果,所以至少一枚正面向上的概率是1-18=78.故选A .6.(2019年全国卷Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16 B .14 C .13D .12解析:选D 将两位男同学分别记为A 1,A 2,两位女同学分别记为B 1,B 2,则四位同学排成一列,情况有A 1A 2B 1B 2,A 1A 2B 2B 1,A 2A 1B 1B 2,A 2A 1B 2B 1,A 1B 1A 2B 2,A 1B 2A 2B 1,A 2B 1A 1B 2,A 2B 2A 1B 1,B 1A 1A 2B 2,B 1A 2A 1B 2,B 2A 1A 2B 1,B 2A 2A 1B 1,A 1B 1B 2A 2,A 1B 2B 1A 2,A 2B 1B 2A 1,A 2B 2B 1A 1,B 1B 2A 1A 2,B 1B 2A 2A 1,B 2B 1A 1A 2,B 2B 1A 2A 1,B 1A 1B 2A 2,B 1A 2B 2A 1,B 2A 1B 1A 2,B 2A 2B 1A 1,共有24种,其中两位女同学相邻的有12种,所以所求概率P =12.故选D .7.(2019年全国卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A .23B .35C .25D .15解析:选B 设3只测量过某项指标的兔子为A ,B ,C ,另2只兔子为a ,b ,从这5只兔子中随机取出3只,则基本事件共有10种,分别为(A ,B ,C),(A ,B ,a),(A ,B ,b),(A ,C ,a),(A ,C ,b),(A ,a ,b),(B ,C ,a),(B ,C ,b),(B ,a ,b),(C ,a ,b),其中“恰有2只测量过该指标”的取法有6种,分别为(A ,B ,a),(A ,B ,b),(A ,C ,a),(A ,C ,b),(B ,C ,a),(B ,C ,b),因此所求的概率为610=35,故选B . 8.(2019届云南质检)在2,0,1,8这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )A .34B .58C .12D .14解析:选C 分析题意可知,共有(0,1,2),(0,2,8),(1,2,8),(0,1,8)4种取法,符合题意的取法有2种,故所求概率P =12.9.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是( )A .16B .13C .12D .38解析:选 C 将两张卡片排在一起组成两位数,所组成的两位数有12,13,20,21,30,31,共6个,两位数为奇数的有13,21,31,共3个,故所组成的两位数为奇数的概率为36=12.10.(2019届银川模拟)已知甲、乙两人下棋,和棋的概率为12,乙胜的概率为13,则甲胜的概率和甲不输的概率分别为( )A .16,16 B .12,23 C .16,23D .23,12解析:选C 因为“甲胜”是“和棋或乙胜”的对立事件,所以甲胜的概率为1-12-13=16.设“甲不输”为事件A ,则A 可看作是“甲胜”与“和棋”这两个互斥事件的和事件,所以P(A)=16+12=23(或设“甲不输”为事件A ,则A ⎭⎪⎫可看作是“乙胜”的对立事件,所以P (A )=1-13=23. 11.(2019届吉林模拟)从分别写有0,1,2,3,4的五张卡片中取出一张卡片.记下数字后放回,再从中取出一张卡片,则两次取出的卡片上的数字之和恰好等于4的概率是________.解析:从0,1,2,3,4五张卡片中取出两张卡片的结果有25种,数字之和恰好等于4的结果有(0,4),(1,3),(2,2),(3,1),(4,0),共5种,所以数字之和恰好等于4的概率是P =15.答案:1512.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解:(1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔 4 000元”,由已知,得样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.13.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(2)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率; (3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2 000元的人数有变化?说明理由.解:(1)由题知,样本中仅使用A 的学生有27+3=30(人),仅使用B 的学生有24+1=25(人),A ,B 两种支付方式都不使用的学生有5人,故样本中A ,B 两种支付方式都使用的学生有100-30-25-5=40(人).估计该校学生中上个月A ,B 两种支付方式都使用的人数为40100×1 000=400.(2)记事件C 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”, 则P(C)=125=0.04.(3)记事件E 为“从样本仅使用B 的学生中随机抽查1人,该学生本月的支付金额大于2 000元”. 由(2)知,P(E)=0.04.可以认为有变化.理由如下:因为P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化,所以可以认为有变化.B 级·素养提升 |练能力|14.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石解析:选B 这批米内夹谷为28254×1 534≈169(石),故选B .15.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,向量m =(a ,b),n =(1,2),则向量m 与向量n 不共线的概率是( )A .16B .1112C .112D .118解析:选B 若m 与n 共线,则2a -b =0,即2a =b.(a ,b)的可能情况有36种,符合2a =b 的有(1,2),(2,4),(3,6),共3种,故共线的概率是336=112,从而不共线的概率是1-112=1112.16.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P(A)=2-a ,P(B)=3a -4,则实数a 的取值范围为( )A .⎝ ⎛⎦⎥⎤43,32B .⎝ ⎛⎦⎥⎤1,32C .⎝ ⎛⎭⎪⎫43,32 D .⎝ ⎛⎭⎪⎫12,43 解析:选A 由题意,知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,即⎩⎪⎨⎪⎧0<2-a<1,0<3a -4<1,2a -2≤1,解得43<a ≤32,所以实数a 的取值范围为⎝ ⎛⎦⎥⎤43,32.故选A .17.(2019届合肥模拟)某城市有连接8个小区A ,B ,C ,D ,E ,F ,G ,H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示.某人从道路网中随机地选择一条最短路径,由小区A 前往小区H ,则他经过市中心O 的概率为( )A .13B .23C .14D .34解析:选B 由题意知,此人从小区A 前往小区H 的所有最短路径为:A→B→C→E→H,A→B→O→E→H,A→B→O→G→H,A→D→O→E→H,A→D→O→G→H,A→D→F→G→H,共6条.记“此人经过市中心O”为事件M ,则M 包含的基本事件为:A→B→O→E→H,A→B→O→G→H,A→D→O→E→H,A→D→O→G→H,共4个,所以P(M)=46=23,即他经过市中心O 的概率为23.。

高考数学一轮复习第十一章计数原理、概率、随机变量及其分布第二节排列与组合课件理

高考数学一轮复习第十一章计数原理、概率、随机变量及其分布第二节排列与组合课件理
第二十页,共56页。
由 0,1,2,3,4,5 这六个数字组成的无重复数字 的自然数,
求:(1)有多少个含有 2,3,但它们不相邻的 五位数?
(2)有多少个数字 1,2,3,必须由大到小顺序排 列的六位数?
第二十一页,共56页。
解:(1)先不考虑 0 是否在首位,0,1,4,5 先排 三个位置,
答案:5
第十二页,共56页。
6.已知C1m5 -C1m6 =107Cm7 ,则 C8m=________.
解析:由已知得 m 的取值范围为 m|0≤m≤5,m∈Z,m!55!-m!-m!66!-m!= 7×71-0×m7!!m!,整理可得 m2-23m+42=0,解得 m=21(舍去)或 m=2.故 Cm8 =C28=28.
(1) Anm=n(n-1)(n-2)…(n-m+1)=n-n!m!
公式 (2) Cnm=AAmnmm=nn-1n-m2!…n-m+1
=m!nn!-m!
性质
(1)0!= 1 ;Ann= n! (2)Cmn =Cnn-m;Cnm+1=
第六页,共56页。
[自我查验] 1.判断下列结论的正误.(正确的打“√”,错误的 打“×”) (1)所有元素完全相同的两个排列为相同排列.( ) (2)Anm=n(n-1)(n-2)×…×(n-m).( ) (3)若组合式 Cxn=Cmn ,则 x=m 成立.( )
第十八页,共56页。
[探究 4] 本例(1)中将条件“选其中 5 人排成一 排”改为“全体站成一排,甲不站排头也不站排尾”, 其他条件不变,则有多少不同的排法?
解:先安排甲,从除去排头和排尾的 5 个位 中安排甲,有 A15=5 种排法;再安排其他人,有 A66=720 种排法.所以共有 A15·A66=3 600 种排法.

2019版高考数学一轮复习训练: 基础与考点过关 第十一章 计数原理、随机变量及分布列

2019版高考数学一轮复习训练:  基础与考点过关 第十一章 计数原理、随机变量及分布列

第十一章计数原理、随机变量及分布列1. (选修23P9习题4改编)一件工作可以用两种方法完成,有18人会用第一种方法完成,有10人会用第二种方法完成.从中选出1人来完成这件工作,不同选法的总数是W.答案:28解析:由分类计数原理知不同选法的总数共有18+10=28(种).2. (选修23P9习题8改编)从1到10的正整数中,任意抽取两个数相加所得和为奇数的不同情形的种数是W.答案:25解析:当且仅当偶数加上奇数后和为奇数,从而不同情形有5×5=25(种).3. (改编题)一只袋中有大小一样的红色球3个,白色球3个,黑色球2个.从袋中随机取出(一次性)2个球,则这2个球为同色球的种数为W.答案:7解析:2个球为红色共3种,2个球为白色共3种,2个球为黑色共1种,由分类计数原理得共7种.4. (选修23P10习题12改编)以正方形的4个顶点中某一顶点为起点、另一个顶点为终点作向量,可以作出不相等的向量个数为W.答案:8解析:起点有4个,每一个起点都可选另外三个顶点中的某一个为终点,但正方形相对边且方向相同的向量为同一向量,故共有不相等的向量个数为4×3-4=8.5. (选修23P10习题16改编)现用4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有种.答案:14解析:设两种不同颜色为a ,b ,则所有可能为(a ,a ,a ),(a ,a ,b ),(a ,b ,a ),(a ,b ,b ),(b ,a ,a ),(b ,a ,b ),(b ,b ,a ),(b ,b ,b ),共8种.其中满足条件的有(a ,b ,a ),(b ,a ,b ),共2种,∴ 所求概率为14.2. (必修3P 100例1改编)一个不透明的盒子中装有标号为1,2,3,4,5的5个除序号外都相同的球,同时取出两个球,则两个球上的数字为相邻整数的概率为 W.答案:25解析:从5个球中同时取出2个球的基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个.记“两个球上的数字为相邻整数”为事件A ,则事件A 中含有4个基本事件:(1,2),(2,3),(3,4),(4,5).所以P (A )=410=25. 3. (必修3P 103练习2改编)小明的自行车用的是密码锁,密码锁的四位数密码由4个数字2,4,6,8按一定顺序排列构成,小明不小心忘记了密码中4个数字的顺序,随机地输入由2,4,6,8组成的一个四位数,能打开锁的概率是 W.答案:124解析:四位数密码共有24种等可能的结果,恰好能打开锁的密码只有1种,故所求事件的概率为124.4. (必修3P 101例3改编)连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),记“两次向上的数字之和等于m”为事件A ,则P (A )最大时,m = W. 答案:7解析:m 可能取到的值有2,3,4,5,6,7,8,9,10,11,12,对应的基本事件个数依次为1,2,3,4,5,6,5,4,3,2,1,∴两次向上的数字之和等于7对应的事件发生的概率最大.5. (必修3P 103练习4改编)已知一个不透明的袋中有3个白球,2个黑球,第一次摸出一个球,然后放回,第二次再摸出一个球,则两次摸到的都是黑球的概率为 W.答案:425解析:把它们编号,白为1,2,3,黑为4,5.用(x ,y )记录摸球结果,x 表示第一次摸到球号数,y 表示第二次摸到球号数.所有可能的结果为(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25种,两次摸到的都是黑球的情况为(4,4),(4,5),(5,4),(5,5),共4种,故所求概率P =425.1. 概率的取值范围是0≤P(A )≤1.当A 是必然发生的事件时,P (A )=1;当A 是不可能发生的事件时,P (A )=0;当A 是随机事件时,0<P (A )<1W.2. 利用P (A )=mn计算古典概型的概率时,关键是求出m ,n ,其中n 是1次试验中等可能出现的结果数,m 是某个事件A 所包含的结果数,求n 时应注意n 种结果必须是等可能的W. 3. 在1次试验中,等可能出现的n 个结果组成一个集合I ,这n 个结果就是集合I 的n 个元素,各基本事件均对应于集合I 的含有1个元素的子集,包含m 个结果的事件A 对应于I 的含有m 个元素的子集A.因此,从集合的角度看,事件A 的概率是子集A 的元素个数与集合I的元素个数的比值,即P (A )=mn .[备课札记]1 古典概型与代数问题交汇)1) 若a ,b 为先后投掷一枚骰子所得的点数,函数f (x )=12ax 2+bx +1.(1) 求f (x )在区间(-∞,-1]上是减函数的概率; (2) 求函数f (x )有零点的概率.(1) f′(x )=ax +b ,由题意f′(-1)≤0,即b≤a,符合条件的基本事件有21个,所以f (x )在区间(-∞,-1]上是减函数的概率P 1=2136=712.(2) 因为函数f (x )有零点,所以b 2-2a≥0,符合条件的基本事件有24个,所以函数f(x )有零点的概率P 2=2436=23.变式训练一个均匀的正四面体面上分别标有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为b ,c.(1) 记z =(b -3)2+(c -3)2,求z =4的概率;(2) 若方程x 2-bx -c =0至少有一根x∈{1,2,3,4},就称该方程为“漂亮方程”,求方程为“漂亮方程”的概率. 解:(1) 因为是投掷两次,所以基本事件(b ,c )共有4×4=16(个).当z =4时,(b ,c )的所有取值为(1,3),(3,1),所以z =4的概率P 1=216=18.(2) ① 若方程一根为x =1,则1-b -c =0,即b +c =1,不成立;② 若方程一根为x =2,则4-2b -c =0,即2b +c =4,所以b =1,c =2; ③ 若方程一根为x =3,则9-3b -c =0,即3b +c =9,所以b =2,c =3; ④ 若方程一根为x =4,则16-4b -c =0,即4b +c =16,所以b =3,c =4. 综上所述,(b ,c )的所有可能取值为(1,2),(2,3),(3,4),共3种.所以,方程为“漂亮方程”的概率P 2=316.2 几何背景的古典概型问题)2) 已知直线l 1:x -2y -1=0,直线l 2:ax -by +1=0,其中a ,b ∈{1,2,3,4,5,6}.(1) 求直线l 1∩l 2=∅的概率;(2) 求直线l 1与l 2的交点位于第一象限的概率.解:(1) 直线l 1的斜率k 1=12,直线l 2的斜率k 2=ab.设事件A 为“直线l 1∩l 2=∅”.a ,b ∈{1,2,3,4,5,6}的总事件数为(1,1),(1,2),…,(1,6),(2,1),(2,2),…,(2,6),…,(6,5),(6,6),共36个.若l 1∩l 2=∅,则l 1∥l 2,即k 1=k 2,即b =2a.满足条件的实数对(a ,b )有(1,2),(2,4),(3,6),共3种情况.∴ P(A )=336=112.(2) 设事件B 为“直线l 1与l 2的交点位于第一象限”,由于直线l 1与l 2有交点,则b≠2a.联立方程组⎩⎪⎨⎪⎧ax -by +1=0,x -2y -1=0,解得⎩⎪⎨⎪⎧x =b +2b -2a ,y =a +1b -2a .∵ l 1与l 2的交点位于第一象限,∴ ⎩⎪⎨⎪⎧b +2b -2a>0,a +1b -2a>0.∵ a ,b ∈{1,2,3,4,5,6},∴ b>2a.∵ 总事件数共36个,满足b>2a 的事件有(1,3),(1,4),(1,5),(1,6),(2,5),(2,6),共6个,∴ P (B )=636=16.备选变式(教师专享)若先后抛掷两次骰子得到的点数分别为m ,n ,求: (1) 点P (m ,n )在直线x +y =4上的概率;(2) 点P (m ,n )落在区域|x -2|+|y -2|≤2内的概率. 解:(1) 由题意可知,(m ,n )的取值情况有(1,1),(1,2),(1,3),…,(1,6),(2,1),(2,2),…,(2,6),…,(6,1),(6,2),…,(6,6),共36种.而满足点P (m ,n )在直线x +y =4上的取值情况有(1,3),(2,2),(3,1),共3种,故所求概率为336= 112.(2) 由题意可得,基本事件n =36.当m =1时,1≤n ≤3,故符合条件的基本事件有3个;当m =2 时,1≤n ≤4,故符合条件的基本事件有4个;当m =3时,1≤n ≤3,故符合条件的基本事件有3个;当m =4时,n =2,故符合条件的基本事件有1个.故符合条件的基本事件共11个,所以所求概率为1136.3 用概率解决生活中的决策问题)3) 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法:从装有2个红球A 1,A 2和1个白球B 的甲箱与装有2个红球a 1,a 2和2个白球b 1,b 2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖. (1) 用球的标号列出所有可能的摸出结果;(2) 有人认为:两个箱子中的红球总数比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由. 解:(1) 所有可能的摸出结果是(A 1,a 1),(A 1,a 2),(A 1,b 1),(A 1,b 2),(A 2,a 1),(A 2,a 2), (A 2,b 1),(A 2,b 2),(B ,a 1),(B ,a 2),(B ,b 1),(B ,b 2). (2) 不正确,理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A 1,a 1},{A 1,a 2},{A 2,a 1},{A 2,a 2},共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13,故这种说法不正确.变式训练某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y.奖励规则如下:① 若xy≤3,则奖励玩具一个;② 若xy≥8,则奖励水杯一个;③ 其余情况奖励饮料一瓶. 假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (1) 求小亮获得玩具的概率;(2) 请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解:用数对(x ,y )表示儿童参加活动两次记录的数,则基本事件空间Ω与点集S ={(x ,y )|x∈N ,y ∈N ,1≤x ≤4,1≤y ≤4}一一对应,因为S 中元素个数是4×4=16,所以基本事件总数n =16.(1) 记“xy≤3”为事件A.则事件A 包含的基本事件共有5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A )=516,即小亮获得玩具的概率为516.(2) 记“xy≥8”为事件B ,“3<xy<8”为事件C.则事件B 包含的基本事件共有6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P (B )=616=38.事件C 包含的基本事件共有5个,即(1,4),(2,2),(2,3),(3,2),(4,1),所以P (C )=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.1. (2017·苏北四市期末)从1,2,3,4,5,6这六个数中一次随机地取出2个数,则所取2个数的和能被3整除的概率为 W.答案:13解析:从1,2,3,4,5,6这六个数中一次随机地取出2个数,基本事件总数n =15,所取2个数的和能被3整除包含的基本事件有(1,2),(1,5),(2,4),(3,6),(4,5),共5个,所以所取2个数的和能被3整除的概率P =515=13.2. 某校从2名男生和3名女生中随机选出3名学生做义工,则选出的学生中男女生都有的概率为 W.答案:910解析:从5名学生中随机选出3名学生共有10种选法,男女生都有的共9种(即去掉选的是3名女生的情况),则所求的概率为910.本题考查用列举法解决古典概型问题,属于容易题.3. 箱子中有形状、大小都相同的3只红球和2只白球,一次摸出2只球,则摸到的2只球颜色不同的概率为 W.5解析:从5只球中一次摸出2只球,共有10种摸法,摸到的2只球颜色不同的摸法共有6种,则所求的概率为35.4. (2016·新课标Ⅰ文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 W.答案:23解析:将4种颜色的花任选2种种在一个花坛中,余下2种种在另一个花坛中,有6种种法,其中红色和紫色的花不在同一花坛的种法有4种,故概率为23.5. (2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 W.答案:25解析:将第一次抽取的卡片上的数记为a ,第二次抽取的卡片上的数记为b ,先后两次抽取的卡片上的数记为(a ,b ),则有(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25种抽取方法,其中第一张卡片上的数大于第二张卡片上的数的抽取方法有10种,所以所求概率P =1025=25.1. (2017·扬州期末)已知A ,B ∈{-3,-1,1,2}且A≠B,则直线Ax +By +1=0的斜率小于0的概率为 W.答案:13解析:所有的基本事件(A ,B )为(-3,-1),(-3,1),(-3,2),(-1,1),(-1,2),(1,2),(-1,-3),(1,-3),(2,-3),(1,-1),(2,-1),(2,1)共12种,其中(-3,-1),(1,2),(-1,-3),(2,1)这4种能使直线Ax +By +1=0的斜率小于0,所以所求的概率P =412=13.2. (2016·上海卷文)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为 W.答案:16解析:将四种水果每两种分为一组,有6种方法,则甲、乙两同学各自所选的两种水果相同的概率为16.3. (2017·山东卷)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是 W.答案:59解析:每次抽取1张,抽取2次,共有9×8=72(种)情况,其中满足题意的情况有2×5×4=40(种),所以所求概率P =4072=59.4. (2016·新课标Ⅲ文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是 W.15解析:开机密码的前两位可能是M1,M2,M3,M4,M5,I1,I2,I3,I4,I5,N1,N2,N3,N4,N5,共15种,所以小敏输入一次密码能够成功开机的概率是115.1. 解以代数、几何等数学知识为背景的概率题的策略是:读懂题意,理解内涵,寻求关系,突破入口;尽力脱去背景外衣,回首重温概率定义;细心诊断事件类型,正确运用概率公式.2. 解较复杂的概率问题的关键是理解题目的实际含义,把问题转化为概率模型.必要时可考虑分类讨论、数形结合、正难则反等思想方法.[备课札记]第5课时几何概型与互斥事件(对应学生用书(文)166~168页、(理)168~169页)1. (必修3P 110习题1改编)在水平放置的长为5 m 的木杆上挂一盏灯,则悬挂点与木杆两端距离都大于2 m 的概率是 .答案:15解析:这是一个几何概型题,其概率就是相应的线段CD ,AB (如图)的长度的比值,∴ P =15.2. (必修3P 115练习1改编)把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是 W.(填序号) ① 对立事件;② 不可能事件;③ 互斥但不对立事件. 答案:③解析:由互斥事件的定义可知,甲、乙不能同时得到红牌.由对立事件的定义可知,甲、乙可能都得不到红牌,即“甲或乙分得红牌”的事件可能不发生.故填③.3. (必修3P 115练习2改编)一箱产品中有正品4件,次品3件,从中任取2件. ① 恰有1件次品和恰有2件次品; ② 至少有1件次品和全是次品;③ 至少有1件正品和至少有1件次品; ④ 至少有1件次品和全是正品.以上几组事件中互斥事件有 组. 答案:2解析:①④中的两事件互斥,②③中的两事件不互斥.4. (必修3P 109练习3改编)在500 mL 的水中有一只草履虫,现从中随机取出2 mL 水样放到显微镜下观察,则发现草履虫的概率是 W. 答案:0.004解析:由于取水样的随机性,所求事件A“在取出2 mL 的水样中有草履虫”的概率等于水样的体积与总体积之比,即2500=0.004.5. (必修3P 110习题4改编)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内任投一点,则此点落在阴影部分的概率是 W.答案:1-2π解析:设扇形的半径为2,则其面积为π×224=π,如图,由两段小圆弧围成的阴影面积为S 1,另外三段圆弧围成的阴影面积为S 2,则S 1=2×⎝ ⎛⎭⎪⎫π4-12=π2-1,S 2=π4×22-2×π2×12+π2-1=π2-1,故阴影部分的总面积为2×⎝ ⎛⎭⎪⎫π2-1=π-2,因此任投一点,此点落在阴影部分的概率为π-2π=1-2π.1. 几何概型的定义对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型. 2. 概率计算公式在几何区域D 中随机地取一点,记事件“该点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率P (A )=d 的测度D 的测度.3. 不能同时发生的两个事件称为互斥事件.4. 如果事件A ,B 互斥,那么事件A +B 发生的概率等于事件A ,B 分别发生的概率的和,即P (A +B )=P (A )+P (B )W.5. 一般地,如果事件A 1,A 2,…,A n 两两互斥,那么P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n )W.6. 若两个互斥事件必有1个发生,则称这两个事件为对立事件;若事件A 的对立事件记作A -,则P (A )+P (A -)=1,P (A -)=1-P (A )W.1 几何概型)1) (2017·全国卷Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 W.答案:π8解析:由于圆中黑色部分和白色部分关于正方形的中心(即圆心)对称,所以圆中黑色部分的面积为圆的面积的一半.不妨设正方形的边长为2,则所求的概率P =12π×122×2=π8.变式训练在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一射线CM ,与线段AB 交于点M ,求AM <AC 的概率.解:如图,过点C 在∠ACB 内任作射线CM ,则射线CM 在∠ACB 内是等可能分布的,故基本事件的区域测度是∠ACB 的大小,即90°.在AB 上取AC′=AC ,则∠ACC′=180°-45°2=67.5°.记“AM < AC”为事件A ,则事件A 的概率P (A )=67.590=34,故AM < AC 的概率是34.2 古典概型与几何概型的区别与联系)2) 设关于x 的一元二次方程x 2+2ax +b 2=0.(1) 若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2) 若a 是从区间[0,3]中任取的一个数,b 是从区间[0,2]中任取的一个数,求上述方程有实根的概率.解:设事件A 为“方程x 2+2ax +b 2=0有实根”,当a≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a≥b. (1) 基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,故事件A 发生的概率P (A )=912=34.(2) 试验的全部结果所构成的区域为{(a ,b )|0≤a≤3,0≤b ≤2}.构成事件A 的区域为{(a ,b )|0≤a≤3,0≤b ≤2,a ≥b},即如图所示的阴影区域,所以所求的概率P (A )=3×2-12×2×23×2=23.变式训练已知关于x 的二次函数f (x )=ax 2-4bx +1.(1) 设集合A ={-1,1,2,3,4,5}和B ={-2,-1,1,2,3,4},分别从集合A ,B 中随机取一个数作为a 和b ,求函数f (x )在区间[1,+∞)上是增函数的概率;(2) 设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的随机点,求函数f (x )在区间[1,+∞)上是增函数的概率.解:要使函数f (x )在区间[1,+∞)上是增函数,需a >0,且--4b2a≤1,即a >0且2b≤a.(1) 所有(a ,b )的取法总数为6×6=36(个),满足条件的(a ,b )有(1,-2),(1,-1),(2,-2),(2,-1),(2,1),(3,-2),(3,-1),(3,1),(4,-2),(4,-1),(4,1),(4,2),(5,-2),(5,-1),(5,1),(5,2),共16个,所以所求概率P =1636=49. (2) 如图:求得区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0的面积为12×8×8=32,由⎩⎪⎨⎪⎧x +y -8=0,x -2y =0求得P ⎝ ⎛⎭⎪⎫163,83,所以区域内满足a >0且2b ≤a 的面积为12×8×83=323,所以所求概率P =32332=13.3 互斥事件)3) 某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆(1)(2) 在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率. 解:(1) 设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率,得P (A )=1501 000=0.15,P (B )=1201 000=0.12.由于投保金额为2 800元,所以赔付金额大于投保金额的概率为P (A )+P (B )=0.15+0.12=0.27.(2) 设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,得样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24.由频率估计概率得P (C )=0.24. 备选变式(教师专享)如图,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:12(2) 现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径. 解:(1) 选择L 1的有60人,选择L 2的有40人,故由调查结果得:所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 L 1的频率 0.1 0.2 0.3 0.2 0.2 L 2的频率 0 0.1 0.4 0.4 0.1(2121212L 1和L 2时,在50分钟内赶到火车站.由(1)知P (A 1)=0.1+0.2+0.3=0.6, P (A 2)=0.1+0.4=0.5,P (A 1)>P (A 2), 所以甲应选择路径L 1;P (B 1)=0.1+0.2+0.3+0.2=0.8,P (B 2)=0.1+0.4+0.4=0.9,P (B 2)>P (B 1), 所以乙应选择路径L 2.1. (2016·新课标Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40 s.若一名行人来到该路口遇到红灯,则至少需要等待15 s 才出现绿灯的概率为 .答案:58解析:因为红灯持续时间为40 s.所以这名行人至少需要等待15 s 才出现绿灯的概率为40-1540=58. 2. (2016·天津卷文)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为 W.答案:56解析:甲不输的概率为12+13=56.3. (2017·苏州市考前模拟)在区间[-1,1]上随机取一个数x ,cos πx 2的值介于0到12之间的概率为 W.答案:13解析:在区间[-1,1]上随机取一个数x ,即x∈[-1,1]时,要使cos πx 2的值介于0到12之间,需使-π2≤πx 2≤-π3或π3≤πx 2≤π2.∴ -1≤x≤-23或23≤x ≤1,区间长度为23.由几何概型知cos πx 2的值介于0到12之间的概率为232=13. 4. (2017·南京、盐城一模)在数字1,2,3,4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为 W.答案:56解析:在数字1,2,3,4中随机选两个数字,基本事件总数为6,选中的数字中至少有一个是偶数的对立事件是选中的两个数字都是奇数,所以选中的数字中至少有一个是偶数的概率P =1-16=56.5. (2017·常州期末)男队有号码为1,2,3的三名乒乓球运动员,女队有号码为1,2,3,4的四名乒乓球运动员,现两队各出一名运动员比赛一场,则出场的两名运动员号码不同的概率为 W.答案:34解析:男队有号码为1,2,3的三名乒乓球运动员,女队有号码为1,2,3,4的四名乒乓球运动员,现两队各出一名运动员比赛一场,基本事件总数为3×4=12(个),出场的两名运动员号码不同的对立事件是出场的两名运动员号码相同,所以出场的两名运动员号码不同的概率P =1-312=34.1. (2017·扬州市考前调研)在区间(0,5)内任取一个实数m , 则满足3<m <4的概率为 W.答案:15解析:根据几何概型的概率计算公式,得满足3<m <4的概率为15.2. 设函数f (x )=log 2x ,在区间(0,5)上随机取一个数x ,则f (x )<2的概率为 W.答案:45解析:因为log 2x <2,解得0<x <4,所以P (f (x )<2)=45.3. 甲、乙两盒中各有除颜色外完全相同的2个红球和1个白球,现从两盒中随机各取一个球,则至少有一个红球的概率为 W.答案:89解析:从两盒中各取一个球的基本事件数为9,没有红球的基本事件数为1,则至少有一个红球的概率=1-没有红球的概率=1-19=89.4. (2017·苏州期末)若一架飞机向目标投弹,击毁目标的概率为0.2,目标未受损的概率为0.4,则目标受损但未完全被击毁的概率为 W. 答案: 0.4解析:根据互斥事件的概率公式,得目标受损但未完全被击毁的概率为1-0.2-0.4=0.4.1. 对于几何概型的应用题,关键是将实际问题转化为概型中的长度、角度、面积、体积等常见几何概型问题,构造出随机事件对应的几何图形,利用图形的测度来求随机事件的概率.2. 分清古典概型与几何概型的关键就是古典概型与几何概型中基本事件发生的可能性都是相等的,但古典概型要求基本事件是有限个,而几何概型则是无限个.3. 求较复杂的互斥事件的概率,一般有两种方法:一是直接求解法,即将所求事件的概率分解成一些彼此互斥的事件的概率和,分解后的每个事件概率的计算通常为等可能事件的概率计算,这时应注意事件是否互斥,是否完备;二是间接求解法,先求出此事件的对立事件的概率,再用公式P (A )=1-P (A -).若解决“至少”“至多”型的题目,用后一种方法就显得比较方便.解题时需注意“互斥事件”与“对立事件”的区别与联系,搞清楚“互斥事件”与“等可能性事件”的差异.[备课札记]答案:48解析:按A→B→C→D顺序分四步涂色,共有4×3×2×2=48(种).1. 分类计数原理:如果完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2. 分步计数原理:如果完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3. 分类和分步的区别,关键是看事件能否一步完成,事件一步完成了就是分类;必须要连续若干步才能完成的则是分步.分类要用分类计数原理将种数相加;分步要用分步计数原理,将种数相乘.[备课札记]1分类计数原理)1) 在所有的两位数中,个位数字大于十位数字的两位数共有多少个?解:(解法1)按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).(解法2)按个位上的数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个.由分类计数原理知,符合题意的两位数共有1+2+3+4+5+6+7+8=36(个).变式训练有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有多少种?解:第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作电脑,有2×2=4(种)方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人操作电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人操作电脑只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类计数原理,共有4+2+1+1=8(种)选派方法.2分步计数原理)2) 用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有种.答案:108解析:把区域分为三部分,第一部分1,5,9,有3种涂法;第二部分4,7,8,当5,7同色时,4,8各有2种涂法,共4种涂法,当5,7异色时,7有2种涂法,4,8均只有1种涂法,故第二部分共4+2=6(种)涂法;第三部分与第二部分一样,共6种涂法.由分步计数原理,可得涂法共有3×6×6=108(种).变式训练有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有种.答案:9解析:分四步完成:第一步:第1位教师有3种选法;第二步:第1位教师监考的班的数学老师即第2位教师有3种选法;第三步:第3位教师有1种选法;第四步:第4位教师有1种选法.共有3×3×1×1=9(种)监考的方法.3两个基本原理的综合应用)3) 已知集合M={1,2,3,4},集合A,B为集合M的非空子集.若对∀x∈A,y ∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有个.答案:17解析:A={1}时,B有23-1=7(种)情况;A={2}时,B有22-1=3(种)情况;A={3}时,B有1种情况;A={1,2}时,B有22-1=3(种)情况;A={1,3},{2,3},{1,2,3}时,B均有1种情况,故满足题意的“子集对”共有7+3+1+3+3=17(个).备选变式(教师专享)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有种.(用数字作答)答案:96解析:分为两类:第一棒是丙有1×2×4×3×2×1=48(种);第一棒是甲、乙中一人有2×1×4×3×2×1=48(种).根据分类计数原理,共有方案48+48=96(种).1. 只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有个.答案:18解析:由题意知,1,2,3中必有某一个数字重复使用2次,第一步确定谁被使用2次,有3种方法;第二步把这2个相等的数放在四位数不相邻的两个位置上,也有3种方法;第三步将余下的2个数放在四位数余下的2个位置上,有2种方法.故这样的四位数共有3×3×2=18(个).2. 如果把个位数是1,且恰好有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有个.答案:12解析:当重复数字是1时,有3×3种;当重复数字不是1时,有3种.由分类计数原理,得满足条件的“好数”有3×3+3=12(个).3. 由1,2,3,4可以组成个自然数,其中数字可以重复,最多只能是四位数字. 答案:340解析:组成的自然数可以分为以下四类:第一类:一位自然数,共有4个.第二类:两位自然数,可分两步来完成.先取出十位上的数字,再取出个位上的数字,共有4×4=16(个).第三类:三位自然数,可分三步来完成.每一步都可以从4个不同的数字中任取一个,共有4×4×4=64(个).。

近年高考数学一轮复习第十一章计数原理、概率、随机变量及其分布列学案理(2021年整理)

近年高考数学一轮复习第十一章计数原理、概率、随机变量及其分布列学案理(2021年整理)

(通用版)2019版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布列学案理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((通用版)2019版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布列学案理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(通用版)2019版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布列学案理的全部内容。

第十一章计数原理、概率、随机变量及其分布列第一节排列、组合本节主要包括2个知识点:1。

两个计数原理; 2.排列、组合问题.突破点(一)两个计数原理[基本知识]1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.两个计数原理的比较名称分类加法计数原理分步乘法计数原理相同点都是解决完成一件事的不同方法的种数问题不同点运用加法运算运用乘法运算分类完成一件事,并且每类办法中的每种方法都能独立完成这件事情,要注意“类”与“类"之间的独立性和并列性.分类计数原理可利用“并联”电路来理解分步完成一件事,并且只有各个步骤都完成才算完成这件事情,要注意“步”与“步”之间的连续性.分步计数原理可利用“串联"电路来理解错误!1.判断题(1)在分类加法计数原理中,某两类不同方案中的方法可以相同.()(2)在分步乘法计数原理中,只有各步骤都完成后,这件事情才算完成.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )答案:(1)×(2)√(3)√2.填空题(1)从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数是________.解析:从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N =3+3=6(种).答案:6(2)从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有________个.解析:∵a+b i为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.答案:36(3)书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第3层放有6本不同的体育书.从第1,2,3层分别各取1本书,则不同的取法种数为________.解析:由分步乘法计数原理,从1,2,3层分别各取1本书不同的取法种数为4×5×6=120.答案:120错误!分类加法计数原理(1)完成一件事有若干种方法,这些方法可以分成n类.(2)用每一类中的每一种方法都可以完成这件事.(3)把各类的方法数相加,就可以得到完成这件事的所有方法数.[例1](1)三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有()A.4种B.6种C.10种D.16种(2)(2018·杭州二中月考)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14 B.13C.12 D.10[解析](1)分两类:甲第一次踢给乙时,满足条件的有3种方法(如图),同理,甲先踢给丙时,满足条件有3种方法.由分类加法计数原理,共有3+3= 6种传递方式.(2)①当a=0时,有x=-错误!,b=-1,0,1,2,有4种可能;②当a≠0时,则Δ=4-4ab≥0,ab≤1,(ⅰ)当a=-1时,b=-1,0,1,2,有4种可能;(ⅱ)当a=1时,b=-1,0,1,有3种可能;(ⅲ)当a=2时,b=-1,0,有2种可能.∴有序数对(a,b)的个数为4+4+3+2=13。

2019年高考数学计数原理、概率、随机变量及其分布复习指导(最适用、最全面)

2019年高考数学计数原理、概率、随机变量及其分布复习指导(最适用、最全面)

2019年高考数学计数原理、概率、随机变量及其分布复习指导第一节计数原理与排列、组合教材细梳理1.两个计数原理1.分类加法计数原理中各类办法之间是相互独立的,并列的,互斥的.分步乘法计数原理中各步之间是相互依存的.2.“排列”与“排列数”是两个不同的概念,一个排列是指“从n 个不同元素中取出m 个元素,按一定顺序排成一列”,而排列数是指这种排列的个数.知识微思考1.判断下列结论的正误(正确的打“√”错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( ) (2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( )(3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成.( )(4)如果完成一件事情有n 个不同步骤,在每一步中都有若干种不同的方法m i (i =1,2,3,…,n ),那么完成这件事共有m 1m 2m 3…m n 种方法.( )(5)在分步乘法计算原理中,每个步骤中完成这个步骤的方法是各不相同的.( ) (6)所有元素完全相同的两个排列为相同排列.( ) (7)一个组合中取出的元素讲究元素的先后顺序.( ) (8)两个组合相同的充要条件是其中的元素完全相同.( ) (9)(n +1)!-n !=n ·n !.( )(10)A m n =n A m -1n -1.( )答案:(1)× (2)√ (3)√ (4)√ (5)√ (6)× (7)× (8)√ (9)√ (10)√ 2.如何区分某一问题是排列问题还是组合问题?提示:可交换某两个元素的位置,判断对结果是否产生影响,产生影响的是排列问题,否则是组合问题.四基精演练1.(选修2-3·习题1.2A 组改编)已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为( )A .16B .13C .12D .10答案:C2.(选修2-3·习题1.2A 组改编)从3,5,7,11这四个质数中,每次取出两个不同的数分别为a ,b ,共可得到ab的不同值的个数为( )A .6B .8C .12D .16答案:C3.(选修2-3·习题A组改编)某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有()A.3种B.6种C.9种D.18种答案:C4.(选修2-3·习题1.2B组改编)如图,从A城到B城有3条路;从B城到D城有4条路;从A城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有________条不同的路线.答案:325.(2017·高考全国卷Ⅱ改编)安排3名志愿者完成3项工作,每人完成一项,则不同的安排方式共有________.答案:6考点一计数原理及应用[简单型]——运用数据分析、提升数学运算1.使用分类加法原理时首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类.2.(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.3.使用两个基本原理进行计数的基本思想是“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.1.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种解析:选B.法一:设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9(种).法二:班级按a,b,c,d的顺序依次排列,为避免重复或遗漏现象,教师的监考顺序可用“树形图”表示如下:∴共有9种不同的监考方法.2.(2016·高考全国卷Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18C.12 D.9解析:选B.分两步,第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.3.如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有()A.400种B.460种C.480种D.496种解析:选C.完成此事可能使用4种颜色,也可能使用3种颜色.当使用4种颜色时:从A开始,有6种方法,B有5种,C有4种,D有3种,完成此事共有6×5×4×3=360(种)方法;当使用3种颜色时:A,D使用同一种颜色,从A,D开始,有6种方法,B有5种,C有4种,完成此事共有6×5×4=120(种)方法.由分类加法计数原理可知:不同涂法有360+120=480(种).考点二排列的应用[高频型]——发展数学建模、提升数学运算[例1](1)若A,B,C,D,E,F六个不同元素排成一列,要求A不排在两端,且B,C相邻,则不同的排法有________种(用数字作答).解析:由于B,C相邻,把B,C看作一个整体,有2种排法.这样,6个元素变成了5个.先排A,由于A不排在两端,则A排在中间的3个位置中,有A13=3种排法,其余的4个元素任意排,有A44种不同排法,故不同的排法有2×3×A44=144(种).答案:144(2)在数字1,2,3与符号“+”“-”这五个元素的所有全排列中,任意两个数字都不相邻的全排列方法共有________种.解析:本题主要考查某些元素不相邻的问题,先排符号“+”“-”,有A22种排列方法,此时两个符号中间与两端共有3个空位,把数字1,2,3“插空”,有A33种排列方法,因此满足题目要求的排列方法共有A22A33=12(种).答案:12[母题变式]1.若本例(2)中条件“任意两个数字都不相邻”改为“1,2,3这三个数字必须相邻”,则这样的全排列方法有________种.解析:用捆绑法,有A33A33=36(种).答案:362.若本例(2)中条件变为:符号“+”与“-”都不相邻,则这样的全排列有________种.解析:A 33A 24=72(种).答案:721.求解有限制条件排列问题的主要方法(1)根据特殊元素(位置)优先安排进行分步,即先安排特殊元素或特殊位置. (2)根据特殊元素当选数量或特殊位置由谁来占进行分类. [易错提醒] (1)分类要全,以免遗漏.(2)插空时要数清插空的个数,捆绑时要注意捆绑后元素的个数及要注意相邻元素的排列数.(3)用间接法求解时,事件的反面数情况要准确.1.某市内公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数为( )A .48B .54C .72D .84解析:选C.先把3名乘客进行全排列,有A33=6种排法,排好后,有4个空,再将1个空位和余下的2个连续的空位插入4个空中,有A24=12种排法,则共有6×12=72(种)候车方式.2.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120C.144 D.168解析:选B.歌舞类节目设为a1,a2,a3,小品类节目设为b1,b2,相声类节目设为c,先排a1,a2,a3不相邻,顺序如○b1○b2○c○,共A33A34种方法,b1b2相邻前提下○b1b2○c○插空法共A22A33A22种方法,所以同类节目不相邻的排法种数为A33A34-A22A33A22=A33·(A34-4)=6×20=120.考点三组合问题[简单型]——发展数学建模、提升数学运算1.组合问题的常见题型及解题思路(1)常见题型:一般有选派问题、抽样问题、图形问题、集合问题、分组问题等.(2)解题思路:①分清问题是否为组合问题;②对较复杂的组合问题,要搞清是“分类”还是“分步”,一般是先整体分类,然后局部分步,将复杂问题通过两个原理化归为简单问题.2.两类含有附加条件的组合问题的解法(1)“含有”或“不含有”某些元素的组合题型:若“含”,则先将这些元素取出,再由另外元素补足;若“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的组合题型:解这类题目必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解,通常用直接法分类复杂时,用间接法求解.1.2107年天津全运会之际,某单位要从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有________种.解析:分两类:第1类是有1名女生,共有C12·C26=2×15=30(种);第2类是有2名女生,共有C22·C16=1×6=6(种).由分类加法计数原理得,共有30+6=36(种).答案:362.在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止.若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有()A.6种B.12种C.18种D.20种解析:选D.分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输一局,第4局赢),共有2C23=6种情形;恰好打5局(一个前4局中赢2局,输2局,第5局赢),共有2C24=12种情形.所有可能出现的情形共有2+6+12=20(种).考点四排列、组合的综合应用[探究型]——发展数学建模、提升数学运算4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种解析:将4项工作分成3部分,每部分至少有1项工作,共有C24=6(种)方法,再分别分给3人,由分步乘法计数原理知,共有C24×A33=36(种)不同方法.答案:D(2)(2017·高考天津卷)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个(用数字作答).解析:由题意可得,第1类取出的4个数都是奇数,有A45个,第2类取出的4个数中有1个偶数,有C14C35A44个,由分类加法计数原理,得共有A45+C14C35A44=120+960=1 080(个).答案:1 080(1)恰有1个盒不放球,共有几种放法? (2)恰有1个盒内有2个球,共有几种放法? (3)恰有2个盒不放球,共有几种放法?解:(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理得,共有C 14C 24C 13×A 22=144(种).(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C 24种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有C 34C 11A 22种方法;第二类有序均匀分组有C 24C 22A 22·A 22种方法.故共有C 24(C 34C 11A 22+C 24C 22A 22·A 22)=84(种).1.解决简单的排列与组合的综合问题的思路(1)根据附加条件将要完成事件先分类.(2)对每一类型取出符合要求的元素组合,再对取出的元素排列. (3)由分类加法计数原理计算总数.2.分组、分配问题的求解策略(1)对不同元素的分配问题.①对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n (n 为均分的组数),避免重复计数.②对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m !,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.③对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.(2)对于相同元素的“分配”问题,常用方法是采用“隔板法”.3.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有________种.解析:①有1名女生的选派方法有C12C34=8(种).②有2名女生的选派方法有C22C24=6(种).∴不同的选派方案共有8+6=14(种).答案:144.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴全运会的四个不同场馆服务,不同的分配方案有________种(用数字作答).解析:先分组再分配,共有C16C15C242A22·A44=1 080(种)分配方案.答案:1 080发展数学建模、数学运算(应用型)模型1计数原理、排列、组合与实际应用问题相结合对于排列、组合都是以生活实际问题为背景,加以限制条件,并结合计数原理进行考查.[例4]小陈家来了六位同学(四女两男),包括他共7人,小陈从果园里摘了7个大小不同的百香果,每人一个.小陈把最小的一个留给自己,4位女同学中的一人拿最大的一个,则百香果的不同分法共有()A.96种B.120种C.480种D.720种解析:可分两步:第一步,4位女同学中的一人拿最大的一个的分法种数为C14;第二步,余下5人的分法种数为A55,根据分步乘法计数原理,百香果的不同分法共有C14A55=480(种),故选C.答案:C模型2排列、组合与新定义相结合排列、组合常与数学中的新定义结合考查,利用其它知识进行求解.[例5](2016·高考全国卷Ⅲ)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个解析:当m=4时,数列{a n}共有8项,其中4项为0,4项为1,要满足对任意k≤8,a1,a2,…,a k中0的个数不少于1的个数,则必有a1=0,a8=1,a2可为0,也可为1.(1)当a2=0时,分以下3种情况:①若a3=0,则a4,a5,a6,a7中任意一个为0均可,则有C14=4种情况;②若a3=1,a4=0,则a5,a6,a7中任意一个为0均可,有C13=3种情况;③若a3=1,a4=1,则a5必为0,a6,a7中任一个为0均可,有C12=2种情况;(2)当a2=1时,必有a3=0,分以下2种情况:①若a4=0,则a5,a6,a7中任一个为0均可,有C13=3种情况;②若a4=1,则a5必为0,a6,a7中任一个为0均可,有C12=2种情况.综上所述,不同的“规范01数列”共有4+3+2+3+2=14个,故选C.答案:C课时规范训练(限时练·夯基练·提能练)A级基础夯实练(25分钟,50分)1.(2018·邵阳模拟)用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24B.48C.60 D.72解析:选B.先排个位,再排十位,百位,千位,万位,依次有2,4,3,2,1种排法,由分步乘法计数原理知:2×4×3×2×1=48.2.a,b,c,d,e共5个人,从中选1名组长、1名副组长,但a不能当副组长,不同选法的种数是()A.20 B.16C.10 D.6解析:选B.当选a当组长时,则共有1×4=4种选法;当a不当组长时,又因为a也不能当副组长,则共有4×3=12种选法.因此共有4+12=16种选法.3.(2018·自贡一模)已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系上点的坐标,则确定的不同的点的个数为()A.36 B.32C.33 D.34解析:选C.不考虑限定条件的情况下,确定的不同的点的个数为C12C13A33=36,但集合B,C中有相同元素1,由5,1,1三个数确定的不同的点只有3个,故最终确定的不同的点的个数为36-(A33-3)=33.4.(2018·诸暨一模)在第二届乌镇互联网大会中,为了提高安保的级别,同时为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国的人员要在a,b,c三家酒店各选择一家,且每家酒店至少有一个参会国的人员入住,则这样的安排方法共有() A.96种B.124种C.130种D.150种解析:选D.可以把五个参会国的人员分成三组,一种是按照1,1,3分;另一种是按照1,2,2分.当按照1,1,3分时,共有C35A33=60种方法;当按照1,2,2分时,共有C25C23A33A22=90种方法.根据分类加法计数原理可得安排方法共有60+90=150种.5.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:选B.依题意知,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共有3+6+3+3=15(个).6.(2018·石家庄模拟)一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在4场比赛中,甲队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种解析:选D.设S i表示第i场胜、P i表示第i场平,F i表示第i场负,积4分可分2胜2负,1胜2平1负或4平三类,其中2胜2负有S1S2F3F4,S1F2S3F4,S1F2F3S4,F1S2S3F4,F1S2F3S4,F1F2S3S4,共6种.1胜2平1负有S1P2P3F4,S1P2F3P4,S1F2P3P4,P1S2P3F4,P1S2F3P4,F1S2P3P4,P1P2S3F4,P1F2S3P4,F1P2S3P4,P1P2F3S4,P1F2P3S4,F1P2P3S4,共12种.4平有P1P2P3P4共1种,由分类加法计数原理有6+12+1=19种.7.某市委从组织机关10名科员中选3人担任驻村第一书记,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85 B.56C.49 D.28解析:选C.由于丙不入选,相当于从9人中选派3人.甲、乙两人均入选,有C22C17种选法,甲、乙两人只有1人入选,有C12C27种选法.所以由分类加法计数原理,共有C22C17+C12C27=49种不同选法.8.(2018·武邑一模)将6名留学归国人员分配到甲、乙两地工作,若甲地至少安排2人,乙地至少安排3人,则不同的安排方法数为________.解析:可以分为以下两类:(1)甲地安排3人,乙地安排3人,有C36=20种方法;(2)甲地安排2人,乙地安排4人,有C46=15种方法.根据分类加法计数原理可得,不同的安排方法种数为20+15=35.答案:359.(2018·平罗一模)从5名学生中选出4名参加A,B,C,D四科的竞赛(假设每名学生仅能参加一科的竞赛),其中甲不能参加A,B两科的竞赛,则不同的参赛方案种数为________.解析:可分为以下两步:(1)先从5名学生中选出4名,分为甲参加和甲不参加两种情况,甲参加时,选法有C34=4种,甲不参加时,选法有C44=1种;(2)安排科目——甲参加时,先排甲,再排其他人,排法有C12A33=12种,甲不参加时,排法有A44=24种.故不同的参赛方案种数为4×12+1×24=72.答案:7210.已知集合N={a,b,c}⊆{-5,-4,-2,1,4},若关于x的不等式ax2+bx+c<0恒有实数解,则满足条件的集合N的个数是________.解析:依题意知,集合N最多有10个,其中对于不等式ax2+bx+c<0没有实数解的情况可转化为需要满足a>0,且Δ=b2-4ac≤0,因此只有当a,c同号时才有可能,共有{1,-4,4},{1,-2,4},2种情况,因此满足条件的集合N的个数是10-2=8.答案:8B级能力升级练(20分钟,30分)1.某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为()A.20 B.25C.32 D.60解析:选C.依据题意知,最后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为25=32.2.某班组织文艺晚会,准备从A,B等8个节目中选出4个节目演出,要求A,B两个节目至少有一个选中,且A,B同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为()A.1 860 B.1 320C.1 140 D.1 020解析:选C.当A,B节目中只选其中一个时,共有C12C36A44=960种演出顺序;当A,B节目都被选中时,由插空法得共有C26A22A23=180种演出顺序,所以一共有1 140种演出顺序.3.已知I={1,2,3},A,B是集合I的两个非空子集,且A中所有元素的和大于B中所有元素的和,则集合A,B共有()A.12对B.15对C.18对D.20对解析:选D.依题意,当A,B均有一个元素时,有3对;当B有一个元素,A有两个元素时,有C23+C23+2=8对;当B有一个元素,A有三个元素时,有3对;当B有两个元素,A有三个元素时,有3对;当A,B均有两个元素时,有3对.所以共有3+8+3+3+3=20对,选D.4.在三位正整数中,若十位数字小于个位和百位数字,则称该数为“驼峰数”,比如“102”、“546”为“驼峰数”.由数字1,2,3,4,5这五个数字构成的无重复数字的“驼峰数”的十位上的数字之和为()A.25 B.28C.30 D.32解析:选C.由数字1,2,3,4,5这五个数字构成的无重复数字的三位“驼峰数”中,1在十位的有A24=12个,2在十位的有A23=6个,3在十位上的有A22=2个,所以所有三位“驼峰数”的十位上的数字之和为12×1+6×2+2×3=30.5.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对任意x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有________个.解析:A={1}时,B有23-1=7种情况;A={2}时,B有22-1=3种情况;A={3}时,B有1种情况;A={1,2}时,B有22-1=3种情况;A={1,3},{2,3},{1,2,3}时,B均有1种情况,故满足题意的“子集对”共有7+3+1+3+3=17个.答案:176.数字“2 016”中,各位数字相加和为9,称该数为“至尊四位数”.用数字0,1,2,3,4,5组成的无重复数字且大于2 016的“至尊四位数”共有________个.解析:依题意知:符合条件的四个数字可分为以下两组:0,1,3,5与0,2,3,4.由0,1,3,5组成的大于2 016的“至尊四位数”有2A33=12个;由0,2,3,4组成的“至尊四位数”有3A33=18个.由分类加法计数原理可得:共有12+18=30个“至尊四位数”.答案:30第二节二项式定理教材细梳理1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *),其中右端为(a +b )n 的二项展开式.2.二项展开式的通项公式第k +1项为:T k +1=C k n an -k b k . 3.二项式系数(1)定义:二项式系数为:C k n (k ∈{0,1,2,…,n }). (2)二项式系数的性质1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)C r n an -r b r是二项展开式的第r 项.( ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( ) (4)在(1-x )9的展开式中系数最大的项是第五、第六两项.( )(5)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( ) (6)在(x +1)n 的展开式中,每一项的二项式系数就是这项的系数.( ) (7)(a +b )n 与(b +a )n 的展开式中通项公式是一样的.( )(8)(x -y )n 的展开式中,第m 项的系数为(-1)m C m -1n.( ) (9)(1+2x )5的展开式中含x 的项的系数为5.( )(10)⎝⎛⎭⎪⎫x 2-13x n的展开式中不可能有常数项.( )答案:(1)× (2)× (3)√ (4)× (5)× (6)√ (7)× (8)× (9)× (10)× 2.二项展开式第k +1项的二项式系数与第k +1项的系数有什么区别?提示:二项展开式第k +1项的二项式系数为C k n ,而它的第k +1项的系数等于它的二项式系数C k n 与其他常数以及符号的乘积.四基精演练1.(选修2-3·1.3例2改编)(1+2x )5的展开式中,x 2的系数等于( ) A .80 B .40 C .20 D .10答案:B2.(选修2-3·习题1.3A 组改编)⎝⎛⎭⎫x +12x 8的展开式中常数项为( ) A .3516B .358C .354D .105答案:B3.(2017·高考全国卷Ⅰ改编)⎝⎛⎭⎫1+1x 2(1+x )2展开式中常数项为( ) A .1 B .2 C .3 D .4答案:B4.(选修2-3·习题1.3A 组改编)若(1+ax )7(a ≠0)的展开式中x 5与x 6的系数相等,则a =________.答案:35.(探究题)(教材探究题)如图杨辉三角中的第二行,第三行,第四行,第五行中的1,2,3,4之和等于第六行的“10”,所体现的性质为1+2+3+…+C 1n -1=________.答案:C 2n考点一 展开式中的特定项或系数[高频型]——提升数学运算x 3的系数是________.(用数字填写答案)解析:设展开式的第k +1项为T k +1,k ∈{0,1,2,3,4,5},所以T k +1=C k 5(2x )5-k (x )k =C k 525-kx 5-k 2, 令5-k 2=3得,k =4,即T 5=C 4525-4x 5-42=10x 3. ∴x 3的系数为10. 答案:10(2)(2016·高考四川卷)设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4D .20i x 4解析:∵T r +1=C r 6x r (i)6-r ,∴含x 4的项为T 5=C 46x 4i 2=-15x 4. 答案:A [母题变式]1.在本例(1)中,条件不变,展开式中系数最大的项是第几项. 解:设第r +1项的系数最大,T r +1=25-r C r 5·x 5-r 2, 第r 项的系数为26-r C r -15 第r +2项的系数为24-r C r +15 ∴⎩⎪⎨⎪⎧25-r C r 5≥26-r C r -1525-r C r 5≥24-r C r +15,1≤r ≤2.当r =1时,T 2=24C 15x 92, 当r =2时,T 3=23C 25x 4,故系数最大的项为T 2或T 3.2.在本例(2)中,已知条件不变,求展开式中的常数项.解:由T r +1=C r 6x6-r ·i r 可知,当r =6时. 常数项为T 7=C 66·i 6=-1.[例2] (1)(2017·高考全国卷Ⅰ)⎝⎭⎫1+1x 2(1+x )6展开式中x 2的系数为( ) A .15 B .20 C .30D .35解析:(1+x )6展开式的通项T r +1=C r 6x r,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30,故选C .答案:C(2)(2018·河北唐山一模)⎝⎛⎭⎫x 2+1x 2-23展开式中的常数项为( ) A .-8 B .-12 C .-20D .20解析:∵⎝⎛⎭⎫x 2+1x 2-23=⎝⎛⎭⎫x -1x 6,∴T r +1=C r 6x 6-r ⎝⎛⎭⎫-1x r =C r 6(-1)r x 6-2r,令6-2r =0,得r =3,∴常数项为C 36(-1)3=-20.答案:C(3)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30D .60解析:(x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C .答案:C [母题变式]1.在本例(1)中,求此展开式的常数项.解:⎝⎛⎭⎫1+1x 2(1+x )6的展开式中常数项为1+C 26=16. 2.在本例(3)中,求展开式中含x 3y 3的系数.解析:(x 2+x +y )5为5个x 2+x +y 之积,其中有三个取y ,一个取x 2,一个取x 即可,所以x 3y 3的系数为C 35C 12C 11=10×2×1=20.1.求二项展开式中的特定项或项的系数问题的思路(1)利用通项公式将T k +1项写出并化简.(2)令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出k .(3)代回通项得所求.2.求多项式展开式中的特定项或项的系数问题的方法(1)对于三项式问题,一般先变形化为二项式,再用通项公式求解,或用组合知识求解.(2)对于几个多项式积的展开式中的特定项问题,一般对某个因式用通项公式,再结合与其他因式相乘情况求解特定项,或根据因式连乘的规律,结合组合知识求解,但要注意适当地运用分类思想,以免重复或遗漏.(3)对于几个多项式和的展开式中的特定项问题,只需依据各个二项展开式中分别得到符合要求的项,再求和即可.1.(2017·高考全国卷Ⅲ)(x+y)(2x-y)5的展开式中x3y3的系数为()A.-80B.-40C.40 D.80解析:选C.由二项式定理可得,原式展开式中含x3y3的项为x·C25(2x)2(-y)3+y·C35(2x)3(-y)2=40x3y3,则x3y3的系数为40,故选C.2.(2017·高考浙江卷)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=________,a5=________.解析:由题意知a4为含x项的系数,根据二项式定理得a4=C23×12×C22×22+C33×13×C12×2=16,a5是常数项,所以a5=C33×13×C22×22=4.答案:16 4考点二二项展开式的系数和问题[高频型]——提升数学运算[例3](1)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=________.解析:法一:直接将(a+x)(1+x)4展开得x5+(a+4)x4+(6+4a)x3+(4+6a)x2+(1+4a)x +a,由题意得1+(6+4a)+(1+4a)=32,解得a=3.法二:(1+x)4展开式的通项为T r+1=C r4x r,由题意可知,a(C14+C34)+C04+C24+C44=32,解得a=3.[母题变式]若本例中条件“x的奇数次幂项”变为“奇数项”,则a=________.解析:奇数项分别为:a,(6a+4)x2,(a+4)x4,∴a+(6a+4)+(a+4)=32,∴a=3.答案:3(2)⎝⎛⎭⎫x +a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中常数项为( ) A .-40 B .-20 C .20D .40解析:选D .令x =1得(1+a )(2-1)5=1+a =2, 所以a =1.因此⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5展开式中的常数项即为⎝⎛⎭⎫2x -1x 5展开式中1x 的系数与x 的系数的和.⎝⎛⎭⎫2x -1x 5展开式的通项为T k +1=C k 5(2x )5-k ·(-1)k ·x -k =C k 525-k x 5-2k ·(-1)k.令5-2k =1,得2k =4,即k =2,因此⎝⎛⎭⎫2x -1x 5展开式中x 的系数为C 2525-2(-1)2=80.令5-2k =-1,得2k =6,即k =3,因此⎝⎛⎭⎫2x -1x 5展开式中1x的系数为C 3525-3·(-1)3=-40. 所以⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5展开式中的常数项为80-40=40.1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中(1)各项系数之和为f (1). (2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.3.(1-x +x 2)3(1-2x 2)4=a 0+a 1x +a 2x 2+…+a 14x 14,则a 1+a 3+a 5+…+a 13的值为。

高考总复习一轮数学精品课件 第11章 计数原理、概率、随机变量及其分布 第1节 排列与组合

高考总复习一轮数学精品课件 第11章 计数原理、概率、随机变量及其分布 第1节 排列与组合
各个步骤之间不重复、不遗漏.
2.排列与组合的概念
名称
排列
组合
定义
一定的顺序
按照__________排成一列
从n个不同元素中取出m(m≤n)个元素
作为一组
微点拨定义中规定m≤n,如果m<n,则这样的排列只是取一部分元素作排列,
叫做选排列;如果m=n,则这样的排列是取出所有元素作排列,叫做全排列.
微思考排列问题与组合问题的区别是什么?
解析 (方法 1 直接法)甲在 6 种课外读物中任选 2 种,有C62 种选法,乙在甲选
的 2 种课外读物中挑一种有C21 种选法,乙在甲选 2 种课外读物后剩下的 4 种
中选一种有C41 种选法,则这两人选读的课外读物中恰有一种相同的选法共有
C62
·C21
·C41
=
6×5
×2×4=120
种.
2×1
第13题
第13题
第19题 第21题 第12题
优化 备考策略
1.概率与统计在高考命题中常整体统筹,本章在高考中至少命制一道客观
题,对于解答题,要么倾向于考查概率和分布列,要么侧重成对数据的统计
分析.有时也把二者综合命题.
2.从考查内容上看,选择、填空题中主要考查排列组合、古典概型、条件
概率、正态分布等.解答题常以现实生产、生活、科技等真实情境为背景,

.


A
-1
有 种方法.
自主诊断
题组一 思考辨析(判断下列结论是否正确,正确的画“√”,错误的画“×”)
1.在分类加法计数原理中,每类方案中的每种方法都能直接完成这件事.
( √ )
2.所有元素完全相同的两个排列为相同排列.( × )

人教版高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布-第七节 正态分布

人教版高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布-第七节 正态分布
× . = ,故此次考试成绩在区间 , 内的学生大约有954人.
02
研考点 题型突破
题型一 正态密度曲线的运用
典例1(多选题)某工厂加工一种零件,有两种不同
的工艺选择,用这两种工艺加工一个零件所需时间
(单位:h)均近似服从正态分布,用工艺1加工一个
零件所用时间~ 1, 12 ,用工艺2加工一个零件所
B.40
C.228
D.455
[解析]由正态分布 , 可知 = , = ,∴ + = , + = ,
∴ ≤ ≤ ≈
. −.

= . , ≥ ≈
−.

= . ,
直径高于22的个数大约为 ÷ . × . = .故选D.

,

,无法比较
[对点训练1]已知随机变量服从正态分布 , 2 ,若函数 = ≤ ≤ + 1
为偶函数,则 =() C
1
2
1
2
A.− B.0C. D.1
[解析]因为函数 为偶函数,所以 − = ,即
− ≤ ≤ − + = ≤ ≤ + ,所以 =
B.曲线关于直线 = 对称
C.曲线呈现“中间高,两边低”的钟形形状
D.曲线与轴之间的面积为1
[解析]由正态曲线的特点,易知B,C,D说法正确;对于A,曲线与轴不相交,故
A错误.故选.
2.已知随机变量服从正态分布 1, 2 ,若 > 2 = 0.15,则 0 ≤ ≤ 1 =
知,当 > 时,的密度曲线与轴所围成的面积大于的密度曲线与轴所围成的面
积,即 > > > ,所以 ≤ < ≤ ,所以应选择工艺2,所以C

高考数学一轮复习第十一章计数原理、随机变量及其分布第6讲离散型随机变量的均值与方差练习理

高考数学一轮复习第十一章计数原理、随机变量及其分布第6讲离散型随机变量的均值与方差练习理

第十一章 计数原理、随机变量及其分布 第6讲 离散型随机变量的均值与方差练习 理基础巩固题组 (建议用时:40分钟)一、填空题1.(2016·茂名模拟)若离散型随机变量X 的概率分布为则X 的数学期望E (X )=解析 由概率分布的性质,a 2+a 22=1,∴a =1.故E (X )=12×0+12×1=12.答案 122.已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值分别为________,________.解析 由二项分布X ~B (n ,p )及E (X )=np ,V (X )=np ·(1-p )得2.4=np ,且1.44=np (1-p ),解得n =6,p =0.4. 答案 6 0.43.罐中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设X 为取得红球的次数,则X 的方差V (X )的值为________.解析 因为是有放回地摸球,所以每次摸球(试验)摸得红球(成功)的概率均为35,连续摸4次(做4次试验),X 为取得红球(成功)的次数,则X ~B ⎝ ⎛⎭⎪⎫4,35,∴V (X )=4×35⎝ ⎛⎭⎪⎫1-35=2425.答案24254.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X 表示取出的球的最大号码,则X 的数学期望E (X )的值是________. 解析 由题意知,X 可以取3,4,5,P (X =3)=1C 35=110,P (X =4)=C 23C 35=310,P (X =5)=C 24C 35=610=35,所以E (X )=3×110+4×310+5×35=4.5.答案 4.55.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 解析 记“不发芽的种子数为Y ”,则Y ~B (1 000,0.1),所以E (Y )=1 000×0.1=100, 而X =2Y ,故E (X )=E (2Y )=2E (Y )=200. 答案 2006.已知X 的概率分布为设Y =2X +1,则Y 解析 由概率分布的性质,a =1-12-16=13,∴E (X )=-1×12+0×16+1×13=-16,因此E (Y )=E (2X +1)=2E (X )+1=23.答案 237.(2016·青岛模拟)设X 为随机变量,X ~B ⎝ ⎛⎭⎪⎫n ,13,若随机变量X 的数学期望E (X )=2,则P (X =2)等于________.解析 由X ~B ⎝ ⎛⎭⎪⎫n ,13,E (X )=2,得np =13n =2,∴n =6, 则P (X =2)=C 26⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫1-134=80243.答案 802438.(2014·浙江卷)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则V (ξ)=________.解析 设P (ξ=1)=a ,P (ξ=2)=b ,则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎪⎨⎪⎧a =35,b =15,所以V (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.答案 25二、解答题9.(2016·常州调研)某公园设有自行车租车点,租车的收费标准是每小时2元(不足一小时的部分按一小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为14,12,一小时以上且不超过两小时还车的概率分别为12,14,两人租车时间都不会超过三小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的概率分布与数学期望E (ξ). 解 (1)甲、乙两人所付车费用相同即为2,4,6元.由题意知甲、乙超过两小时还车的概率分别为1-14-12=14,1-12-14=14.都付2元的概率为P 1=14×12=18,都付4元的概率为P 2=12×14=18,都付6元的概率为P 3=14×14=116,故所付费用相同的概率为P =P 1+P 2+P 3=18+18+116=516.(2)依题意知,ξ的可能取值为4,6,8,10,12.P (ξ=4)=14×12=18, P (ξ=6)=14×14+12×12=516, P (ξ=8)=14×14+12×14+12×14=516, P (ξ=10)=14×14+12×14=316,P (ξ=12)=14×14=116.故ξ的概率分布为所求数学期望E (ξ)=4×8+6×16+8×16+10×16+12×16=2.10.(2016·南京、盐城模拟)某中学有4位学生申请A ,B ,C 三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的. (1)求恰有2人申请A 大学的概率;(2)求被申请大学的个数X 的概率分布与数学期望E (X ). 解 (1)记“恰有2人申请A 大学”为事件A , P (A )=C 24×2234=2481=827.即恰有2人申请A 大学的概率为827.(2)X 的所有可能值为1,2,3.P (X =1)=334=127,P (X =2)=C 24×A 23+C 24A 23A 2234=4281=1427, P (X =3)=C 24×A 3334=3681=49.X 的概率分布为所以X 的数学期望E (X )=1×27+2×27+3×9=27.能力提升题组 (建议用时:25分钟)11.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得白球数为X ,已知E (X )=3,则V (X )=________.解析 由题意,X ~B ⎝ ⎛⎭⎪⎫5,3m +3, 又E (X )=5×3m +3=3,∴m =2,则X ~B ⎝ ⎛⎭⎪⎫5,35,故V (X )=5×35×⎝ ⎛⎭⎪⎫1-35=65. 答案 6512.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b 、c ∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab 的最大值为________.解析 设投篮得分为随机变量X ,则X 的分布列为依题意,E (X )=3a +2b =2,又∴2=3a +2b ≥26ab ,则ab ≤16,当且仅当3a =2b ,即a =13,b =12时上式取等号.答案 1613.(2016·青岛调研)某项游戏活动的奖励分成一、二、三等奖且相应获奖概率是以a 1为首项,公比为2的等比数列,相应资金是以700元为首项,公差为-140元的等差数列,则参与该游戏获得资金的数学期望为________元. 解析 由概率分布性质a 1+2a 1+4a 1=1, ∴a 1=17,从而2a 1=27,4a 1=47.因此获得资金ξ的概率分布为∴E (ξ)=700×17+560×7+420×7=500(元).答案 50014.(2016·苏北四市质检)某学校为了丰富学生的业余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取题目,背诵正确加10分,背诵错误减10分,只有“正确”和“错误”两种结果,其中某班级的背诵正确的概率为p =23,背诵错误的概率为q =13,现记“该班级完成n 首背诵后总得分为S n ”.(1)求S 6=20且S i ≥0(i =1,2,3)的概率; (2)记ξ=|S 5|,求ξ的概率分布及数学期望.解 (1)当S 6=20时,即背诵6首后,正确4首,错误2首,若第一首和第二首正确,则其余4首可任意背诵对2首;若第一首正确,第二首背诵错误,则第三首背诵正确,其余3首可任意背诵对2首.故所求的概率P =⎝ ⎛⎭⎪⎫232·C 24·⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫132+23·13·23·C 23·⎝ ⎛⎭⎪⎫232·13=1681.(2)因为ξ=|S 5|的取值为10,30,50. 所以P (ξ=10)=C 35⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫132+C 25⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫133=4081; P (ξ=30)=C 45⎝ ⎛⎭⎪⎫234⎝ ⎛⎭⎪⎫131+C 15⎝ ⎛⎭⎪⎫231⎝ ⎛⎭⎪⎫134=3081; P (ξ=50)=C 55⎝ ⎛⎭⎪⎫235+C 05⎝ ⎛⎭⎪⎫135=1181.所以ξ的概率分布为所以E (ξ)=10×4081+30×81+50×81=81.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时达标检测(五十五) 古典概型与几何概型[小题对点练——点点落实]对点练(一) 古典概型1.已知袋子中装有大小相同的6个小球,其中有2个红球、4个白球.现从中随机摸出3个小球,则至少有2个白球的概率为( )A.34B.35C.45D.710解析:选C 所求问题有两种情况:1红2白或3白,则所求概率P =C 12C 24+C 34C 36=45. 2.(2018·陕西模拟)现有2名女教师和1名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说课,其中恰有一男一女抽到同一道题的概率为( )A.13 B.23 C.12D.34解析:选C 记两道题分别为A ,B ,所有抽取的情况为AAA ,AAB ,AB A ,AB B ,BAA ,BAB ,BBA ,BBB (其中第1个,第2个分别表示两个女教师抽取的题目,第3个表示男教师抽取的题目),共有8种;其中满足恰有一男一女抽到同一道题目的情况为AB A ,AB B ,BAA ,B AB ,共4种.故所求事件的概率为12.故选C .3.在实验室进行的一项物理实验中,要先后实施6个程序A ,B ,C ,D ,E ,F ,则程序A 在第一或最后一步,且程序B 和C 相邻的概率为( )A.15B.115C.415D.215解析:选D 程序A 在第一或最后一步,且程序B 和C 相邻的概率为P =A 12A 22A 44A 66=215.4.已知集合M ={}1,2,3,4,N ={},,b∈M ,A 是集合N 中任意一点,O 为坐标原点,则直线OA 与y =x 2+1有交点的概率是( )A.12B.13C.14D.18解析:选C 易知过点(0,0)与y =x 2+1相切的直线为y =2x (斜率小于0的无需考虑),集合N 中共有16个元素,其中使直线OA 的斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,故所求的概率为416=14.5.(2018·重庆适应性测试)从2,3,4,5,6这5个数字中任取3个,则所取3个数之和为偶数的概率为________.解析:依题意,从2,3,4,5,6这5个数字中任取3个,共有10种不同的取法,其中所取3个数之和为偶数的取法共有1+3=4种(包含两种情形:一种情形是所取的3个数均为偶数,有1种取法;另一种情形是所取的3个数中2个是奇数,另一个是偶数,有3种取法),因此所求的概率为410=25.答案:256.(2016·江苏高考)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.解析:将一颗质地均匀的骰子先后抛掷2次,所有等可能的结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,6),共36种情况.设事件A =“出现向上的点数之和小于10”,其对立事件A =“出现向上的点数之和大于或等于10”,A 包含的可能结果有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6种情况.所以由古典概型的概率公式,得P (A )=636=16,所以P (A)=1-16=56. 答案:56对点练(二) 几何概型1.(2018·武汉调研)在区间[0,1]上随机取一个数x ,则事件“log 0.5(4x -3)≥0”发生的概率为( )A.34B.23C.13D.14解析:选D 由log 0.5(4x -3)≥0,得0<4x -3≤1,解得34<x ≤1,所以所求概率P =1-341-0=14.2.设不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x≤4,y≥-2表示的平面区域为D.在区域D 内随机取一个点,则此点到直线y +2=0的距离大于2的概率是( )A.413 B.513 C.825D.925解析:选D 如图,各点的坐标为B (-2,0),C (4,0),D (-6,-2),E (4,-2),F (4,3),所以DE =10,EF =5,BC =6,C F =3.不等式对应的区域为三角形DEF ,当点在线段BC 上时,此点到直线y +2=0的距离等于2,所以要使此点到直线y +2=0的距离大于2,则此点应在三角形BCF 中.根据几何概型可知所求概率P =S △BCF S △DEF =12×6×312×10×5=925,故选D. 3.已知正棱锥S­AB C 的底面边长为4,高为3,在正棱锥内任取一点P ,使得V P ­AB C <12V S­AB C的概率是( )A.34B.78C.12D.14解析:选B 由题意知,当点P 在三棱锥的中截面以下时,满足V P ­AB C<12V S­AB C , 故使得V P ­AB C <12V S­AB C 的概率:P =大三棱锥的体积-小三棱锥的体积大三棱锥的体积=1-⎝ ⎛⎭⎪⎫123=78.4.如图,长方形的四个顶点为O(0,0),A(4,0),B(4,2),C(0,2),曲线y =x 经过点B.小军同学在学做电子线路板时有一电子元件随机落入长方形O AB C 中,则该电子元件落在图中阴影区域的概率是( )A .512B.12C .23D.34解析:选C 由题意可知S 阴=⎠⎛04x dx =23x 32| 40=163,S 长方形=4×2=8,则所求概率P =S 阴S 长方形=1638=23. 5.已知椭圆x 24+y 2=1的焦点为F 1,F 2,在长轴A 1A 2上任取一点M ,过M 作垂直于A 1A 2的直线交椭圆于点P ,则使得P F 1―→·P F 2―→<0的概率为________.解析:设P (x ,y ),则P F 1―→·P F 2―→<0即为(-3-x ,-y )·(3-x ,-y )<0,即为x 2-3+y 2<0,即为x 2-3+1-x 24<0,解得-263<x <263,故所求的概率为4634=63.答案:636.如图,正四棱锥S­ABCD 的顶点都在球面上,球心O 在平面ABCD 上,在球O 内任取一点,则这点取自正四棱锥内的概率为________.解析:设球的半径为R ,则所求的概率为P =V 锥V 球=13×12×2R×2R·R 43πR 3=12π. 答案:12π对点练(三) 概率与统计的综合问题1.如图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计数据落在[2,10)内的概率约为________. 解析:由题图可得(0.02+0.08)×4=0.4. 答案:0.42.如图所示的茎叶图记录了甲、乙两个学习小组各4名同学在某次考试中的数学成绩,乙组记录中有一个数字模糊,无法确认,在图中用m 表示,假设数字具有随机性,则乙组平均成绩超过甲组平均成绩的概率为________.解析:由14(87+89+91+93)=14(85+90+91+90+m ),得m =4,即m =4时,甲、乙两个小组的平均成绩相等.设“乙组平均成绩超过甲组平均成绩”为事件A ,m 的取值有0,1,2,…,9,共10种可能,其中,当m =5,6,…,9时,乙组平均成绩超过甲组平均成绩,故所求概率为510=12.答案:123.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据求得线性回归方程为y =-20x +a .若在这些样本点中任取一点,则它在回归直线左下方的概率为________.解析:由表中数据求出样本平均数x -=8.5,y -=80,代入线性回归方程,得a ^=250,所以线性回归直线方程为y ^=-20x +250.经验证,样本点在回归直线左下方的有(8.2,84),(9,68)两个,由古典概型的概率公式,得P =26=13.答案:13[大题综合练——迁移贯通]1.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:①若xy ≤3,则奖励玩具一个; ②若xy ≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解:用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S ={(x ,y )|x ∈N ,y ∈N,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素的个数是4×4=16, 所以基本事件总数n =16.(1)记“xy ≤3”为事件A ,则事件A 包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P (A )=516,即小亮获得玩具的概率为516.(2)记“xy ≥8”为事件B ,“3<xy <8”为事件C .则事件B 包含的基本事件数共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P (B )=616=38.事件C 包含的基本事件数共5个, 即(1,4),(2,2),(2,3),(3,2),(4,1). 所以P (C )=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.2.如图所示,从参加环保知识竞赛的学生中抽出40名,将其成绩(均为整数)整理后画出的频率分布直方图如下,观察图形,回答下列问题.(1)80~90这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛成绩的平均数、众数、中位数.(不要求写过程) (3)从成绩是80分以上(包括80分)的学生中选2人,求他们在同一分数段的概率. 解:(1)根据题意,50~60这一组的频率为0.015×10=0.15,60~70这一组的频率为0.025×10=0.25,70~80这一组的频率为0.035×10=0.35,90~100这一组的频率为0.005×10=0.05,则80~90这一组的频率为12×[1-(0.15+0.25+0.35+0.05)]=0.1,其频数为40×0.1=4.(2)这次竞赛成绩的平均数为45×0.1+55×0.15+65×0.25+75×0.35+85×0.1+95×0.05=68.5;70~80这一组的频率最大,人数最多,则众数为75; 70分左右两侧的频率为0.5,则中位数为70.(3)记“选出的2人在同一分数段”为事件E,80~90之间有40×0.1=4人,设为a ,b ,c ,d ;90~100之间有40×0.05=2人,设为A ,B .从这6人中选出2人,有(a ,b ),(a ,c ),(a ,d ),(a ,A ),(a ,B ),(b ,c ),(b ,d ),(b ,A ),(b ,B ),(c ,d ),(c ,A ),(c ,B ),(d ,A ),(d ,B ),(A ,B ),共15个基本事件,其中事件E 包括(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d ),(A ,B ),共7个基本事件,则P (E )=715.3.已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是12.(1)求n 的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .①记“2≤a +b ≤3”为事件A ,求事件A 的概率;②在区间[0,2]内任取2个实数x ,y ,求事件“x 2+y 2>(a -b )2恒成立”的概率. 解:(1)依题意共有小球n +2个,标号为2的小球n 个,从袋子中随机抽取1个小球,取到标号为2的小球概率为nn +2=12,得n =2. (2)①从袋子中不放回地随机抽取2个小球,(a ,b )所有可能的结果为(0,1),(0,2),(0,2),(1,2),(1,2),(2,2),(1,0),(2,0),(2,0),(2,1),(2,1),(2,2),共有12种,而满足2≤a +b ≤3的结果有8种,故P (A )=812=23.②由①可知,(a -b )2≤4,故x 2+y 2>4,(x ,y )可以看成平面中的点的坐标,则全部结果所构成的区域为Ω={}x ,yx ≤2,0≤y ≤2,x ,y ∈R ,由几何概型得概率P =22-14π·2222=1-π4.。

相关文档
最新文档