22.1 二次函数的图象和性质(第1课时)
22. 二次函数y=a(x-h)2+k的图象和性质第1课时 二次函数y=ax2+k的图象和性质
解析式是( C )
A.y=(x-1)2+2 B.y=(x+1)2+2
C.y=x2+1
D.y=x2+3
10.(202X·德州)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+ a的图象可能是( C )
11.若抛物线y=ax2+c与抛物线y=-4x2+3关于x轴对称,则a=__4__, c=_-__3_.
15.已知抛物线y=-x2+4交x轴于A,B两点,顶点是C. (1)求△ABC的面积; (2)在抛物线y=-x2+4上是否存在点Q,使∠AQB=90°,若存在,要求出 点Q的坐标;若不存在,请说明理由.
解:(1)S△ABC=12×4×4=8 (2)存在.设 Q(m,-m2+4),连接 OQ,易知 OQ=12AB=2,∴m2+(4-m2)2=4,解得 m=±2,m=± 3. 但 m=±2 时,点 Q 在 x 轴上,不合题意,∴点 Q 坐标为( 3,1)或(-
练习2:抛物线y=- 1 x2-3的顶点坐标是___(_0_,__-__3_)_____,对称轴 2
是__y_轴_____.
知识点1:二次函数y=ax2+k的图象和性质
1.已知点(x1,y1),(x2,y2)均在抛物线y=x2-1上,下列说法中正 确的是( D )
A.若y1=y2,则x1=x2 B.若x1=-x2,则y1=-y2 C.若0<x1<x2,则y1>y2 D.若x1<x2<0,则y1>y2
练 习 1 : 将 抛 物 线 y = x2 向 上 平 移 两 个 单 位 后 的 函 数 解 析 式 为 _______________.
y=x2+2
2 . 对 于 抛 物 线 y = ax2 + k , 当 a > 0 时 , 开 口 _向__上____ , 对 称 轴 是 ___y_轴___,顶点为__(_0_,__k_)__;当x>0时,y随x的增大而_增__大_____;当x <0时,y随x的增大而__减__小____.当a<0时,开口_向__下_____,对称轴是 __y_轴___,顶点为___(_0_,__k_)__;当x>0时,y随x的增大而___减__小___;当x <0时,y随x2个单位得到抛物线y=-3x2+2,则a =____-,3c=____4.
二次函数的图象和性质(第1课时 )九年级数学上册课件(人教版)
然后描点、连线,得到图象如下图.
y
-4 -2 O 2 4
-2 4 6 8
由图象可知,这个函数 具有如下性质: 当x<-1时,函数值y随x
x
的增大而增大; 当x>-1时,函数值y随x 的增大而减小; 当x=-1时,函数取得最 大值,最大值y=3.
练一练 已知二次函数y=x2﹣6x+5. (1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式; (2)求该二次函数的图象的对称轴和顶点坐标; (3)当x取何值时,y随x的增大而减小.
( C) A.直线x=2
B.直线x=-2
C.直线x=1
D.直线x=-1
4.【2020·温州】已知(-3,y1),(-2,y2),(1,y3)是抛 物线y=-3x2-12x+m上的点,则( B )
A.y3<y2<y1 B.y3<y1<y2 C.y2<y3<y1 D.y1<y3<y2
5.【2020·河北】如图,现要在抛物线y=x(4-x)上找点 P(a,b),针对b的不同取值,所找点P的个数,三人的 说法如下,
6.【中考·温州】已知二次函数y=x2-4x+2,关于该函 数在-1≤x≤3的取值范围内,下列说法正确的是( D)
A.有最大值-1,有最小值-2 B.有最大值0,有最小值-1 C.有最大值7,有最小值-1 D.有最大值7,有最小值-2
7.【中考·成都】在平面直角坐标系xOy中,二次函数y= ax2+bx+c的图象如图所示,下列说法正确的是( B)
(1)求 b、c 的值;
解:把 A(0,3),B-4,-92的坐标分别代入
y=-136x2+bx+c,得 c-=1336,×16-4b+c=-92,解得bc==398.,
(2)二次函数 y=-136x2+bx+c 的图象与 x 轴是否有公共点? 若有,求出公共点的坐标;若没有,请说明理由.
人教版数学九年级上册22 二次函数(第一课时)课件
4
【典例】下列各式中,y 是 x 的二次函数的是( )
A.y=x12
B.y=2x+1
C.y=x2+x-2
D.y2=x2+3x
分析:y=x12中,x12为分式,不是二次函数,故 A 不符题意;y=2x+1 中,x 的
次数为 1,是一次函数,故 B 不符题意;y=x2+x-2 符合二次函数的定义,是二次
函数解析式是 y=3x+2 或 y=33+215
5x+5+23
5或 y=33-215
5x+5-23
5 .
(2) 若 函 数 y = (m2 - m - 2)xm2 - 5m - 4 + (m + 1)x + m 为 二 次 函 数 , 则
m2-5m-4=2, m2-m-2≠0.
解得 m=6.故当 m=6 时,函数 y=(m2-m-2)xm2-5m-4+(m
• (1)求直线AB的解析式; • (2)若设点P的横坐标为x,矩形PKDH的面积为S,求S关于x的函数解析
式.
17
解:(1)如图所示,∵OE=CD=80 m,OC=ED=100 m,AE=60 m,BC=70 m, ∴OA=20 m,OB=30 m,即 A(0,20)、B(30,0).设直线 AB 的解析式为 y=kx+b(k≠0),
►如果我们不曾相遇,你的梦里就不会有我的出现,我们都在不断地 和陌生人擦肩;如果人生不曾相遇,我的生命里就不会有你的片段,我 们都在细数着自己的日子。 ►当离别的脚步声越来越清晰,我们注定分散两地,继续彼此未完的 人生,如果我说放不下,短短一个月的光景,你是否愿意相信,我的 真诚,我的执着,只源于内心深处那一份沉沉的不舍。
►为你理想的人,否则,爱的只是你在他身上找到的你的影子。 ►有时候,我们愿意原谅一个人,并不是我们真的愿意原谅他,而是我们 不愿意失去他。不想失去他,惟有假装原谅他。不管你爱过多少人,不管 你爱得多么痛苦或快乐。最后,你不是学会了怎样恋爱,而是学会了,怎 样去爱自己。
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质 (第1课时)教案
22.1 二次函数的图象和性质22.1.3 二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2 ,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:然后描点画图:(出示课件8)教师问:抛物线y=2x2+1 , y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x <0时,y 随x 的增大而减小; 当x >0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理. 解:如图所示.出示课件12:在同一坐标系内画出下列二次函数的图象:;;. 学生自主操作,画图,教师巡视加以指导.231x y -=23121--=x y 23122+-=x y出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6) 函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷( 0,2),(0,0),( 0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x=0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将( )A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k 中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:4.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2),则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看. (五)课前预习预习下节课(22.1.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。
第1讲 二次函数的图像及性质
第1讲二次函数的图形及性质题型1:二次函数的概念1.下列函数表达式中,一定为二次函数的是()A.y=5x−1B.y=ax2+bx+c C.y=3x2+1D.y=x2+1x题型2:利用二次函数定义求字母的值2.已知y=(m+1)x|m−1|+2m是y关于x的二次函数,则m的值为()A.−1B.3C.−1或3D.0题型3:二次函数的一般形式3.二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分別是()A.2、0、﹣3B.2、﹣3、0C.2、3、0D.2、0、3A.2B.﹣2C.﹣1D.﹣4题型4:根据实际问题列二次函数4.一个矩形的周长为16cm,设一边长为xcm,面积为y cm2,那么y与x的关系式是【变式4-1】如图,用长为20米的篱笆(AB+BC+CD=20),一边利用墙(墙足够长),围成一个长方形花圃.设花圃的宽AB为x米,围成的花圃面积为y米2,则y关于x的函数关系式是.【变式4-2】某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y (单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=(200﹣5x)(40﹣20+x)B.y=(200+5x)(40﹣20﹣x)C.y=200(40﹣20﹣x)D.y=200﹣5x题型5:自变量的取值范围5..若y=(a−2)x2−3x+4是二次函数,则a的取值范围是()A.a≠2B.a>0C.a>2D.a≠0【变式5-1】函数y=√x+2的自变量取值范围是()x−1A.x≥−2B.−2≤x<1C.x>1D.x≥−2且x≠1【变式5-2】若y=(m+1)x m2−2m−1是二次函数,则m=,其中自变量x的取值范围是.22.1.2二次函数y=ax2的图像和性质二次函数y=ax2(a≠0)的图象用描点法画出二次函数y=ax2(a≠0)的图象,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.二次函数y=ax2(a ≠0)的图象的画法用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值,这样的对应值选取越密集,描出的图象越准确.注意:用描点法画二次函数y=ax 2(a≠0)的图象,该图象是轴对称图形,对称轴是y 轴.画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.题型1:利用描点法作函数图像1.在直角坐标系中,画出函数y =2x 2的图象(取值、描点、连线、画图).【变式1-1】在如图所示的同一平面直角坐标系中,画出函数y =2x 2,y =x 2,y =﹣2x 2与y =﹣x 2的图象.x y =2x 2 y =x 2 y =﹣2x 2 y =﹣x 2x ya>0a<0题型2:二次函数y=ax2的图像2.在同一坐标系中画出y1=2x2,y2=﹣2x2,y3=x2的图象,正确的是()A.B.C.D.【变式2-1】下列图象中,是二次函数y=x2的图象的是()A.B.C.D.【变式2-2】如图,在同一平面直角坐标系中,作出函数①y=3x2;②y=;③y=x2的图象,则从里到外的三条抛物线对应的函数依次是()A.①②③B.①③②C.②③①D.③②①题型3:二次函数y=ax2的性质3.抛物线y=﹣3x2的顶点坐标为()A.(0,0)B.(0,﹣3)C.(﹣3,0)D.(﹣3,﹣3)【变式3-1】抛物线,y=x2,y=﹣x2的共同性质是:①都开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴.其中正确的个数有()A.0个B.1个C.2个D.3个【变式3-2】.对于函数y=4x2,下列说法正确的是()A.当x>0时,y随x的增大而减小B.当x>0时,y随x的增大而增大C.y随x的增大而减小D.y随x的增大而增大【变式3-3】二次函数y=﹣3x2的图象一定经过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限题型4:函数图像位置的识别4.已知a≠0,b<0,一次函数是y=ax+b,二次函数是y=ax2,则下面图中,可以成立的是()A.B.C.D.【变式4-1】函数y=ax2与y=ax+a,在第一象限内y随x的减小而减小,则它们在同一平面直角坐标系中的图象大致位置是()A.B.C.D.【变式4-2】在图中,函数y=﹣ax2与y=ax+b的图象可能是()A.B.C.D.题型5:函数值的大小比较5.二次函数y1=﹣3x2,y2=﹣x2,y3=5x2,它们的图象开口大小由小到大的顺序是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y1<y3题型6:简单综合-三角形面积6.求直线y=3x+4与抛物线y=x2的交点坐标,并求出两交点与原点所围成的三角形面积.22.1.3二次函数y=a(x-h)²+k的图像和性质二次函数y=ax2+c(a≠0)的图象(1)(2)0 a>0 a<题型1:二次函数y=ax²+k的图象1.建立坐标系,画出二次函数y=﹣x2及y=﹣x2+3的图象.向上向下题型2:二次函数y=ax²+k的性质2.抛物线的开口方向是()A.向下B.向上C.向左D.向右【变式2-2】抛物线y=2x2+1的对称轴是()A.直线x=B.直线x=﹣C.直线x=2D.y轴题型3:二次函数y=a(x-h)²的图象3.画出二次函数(1)y=(x﹣2)2(2)y=(x+2)2的图象.课堂总结:题型4:二次函数y=a(x-h)²的性质4.对于二次函数y=﹣(x﹣1)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=1C.顶点坐标为(1,0)D.当x<1时,y随x的增大而减小题型5:二次函数y=a(x-h )²+k 的图象和性质5.对于二次函数y =﹣5(x +4)2﹣1的图象,下列说法正确的是( ) A .图象与y 轴交点的坐标是(0,﹣1) B .对称轴是直线x =4C .顶点坐标为(﹣4,1)D .当x <﹣4时,y 随x 的增大而增大 【变式5-1】再同一直角坐标系中画出下列函数的图象 (1)y =(x ﹣2)2+3 (2)y =(x +2)2﹣3【变式5-2】画函数y =(x ﹣2)2﹣1的图象,并根据图象回答: (1)当x 为何值时,y 随x 的增大而减小.(2)当x 为何值时,y >0.【变式5-3】写出下列二次函数图象的开口方向、对称轴和顶点坐标. (1)y =5(x +2)2﹣3;(2)y =﹣(x ﹣2)2+3;(3)y =(x +3)2+6.二次函数的平移 1.平移步骤:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: ()2y a x h k =-+()h k ,2y ax =()h k ,2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左h k加右减,上加下减”.题型6:二次函数几种形式之间的关系(平移)6.将抛物线y=(x﹣3)2﹣4先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的函数表达式为()A.y=(x﹣4)2﹣6B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣2D.y=(x﹣4)2﹣2【变式6-1】将抛物线向上平移2个单位长度,再向右平移1个单位长度,能得到抛物线y =2(x﹣2)2+3的是()A.y=2(x﹣1)2+1B.y=2(x﹣3)2+1C.y=﹣2(x﹣1)2+1D.y=﹣2x2﹣1【变式6-2】将二次函数y=x2﹣3的图象向右平移3个单位,再向上平移5个单位后,所得抛物线的表达式是.题型7:利用增减性求字母取值范围7.抛物线y=(k﹣7)x2﹣5的开口向下,那么k的取值范围是()A.k<7B.k>7C.k<0D.k>0【变式7-1】已知点(x1,y1)、(x2,y2)是函数y=(m﹣3)x2的图象上的两点,且当0<x1<x2时,有y1>y2,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【变式7-2】二次函数y=(x﹣h)2+k(h、k均为常数)的图象经过P1(﹣3,y1)、P2(﹣1,y2)、P3(1,y3)三点.若y2<y1<y3,则h的取值范围是.题型8:识别图象位置8.如果二次函数y=ax2+c的图象如图所示,那么一次函数y=ax+c的图象大致是()A.B.C.D.【变式8-1】在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是()A.B.C.D.【变式8-2】已知m是不为0的常数,函数y=mx和函数y=mx2﹣m2在同一平面直角坐标系内的图象可以是()A.B.C.D.题型9:比较函数值的大小9.已知二次函数y=(x﹣1)2+h的图象上有三点,A(0,y1),B(2,y2),C(3,y3),则y1,y2,y3的大小关系为()A.y1=y2<y3B.y1<y2<y3C.y1<y2=y3D.y3<y1=y2题型10:简单综合问题10.已知抛物线y=(x﹣5)2的顶点为A,抛物线与y轴交于点B,过点B作x轴的平行线交抛物线于另外一点C.(1)求A,B,C三点的坐标;(2)求△ABC的面积;(3)试判断△ABC 的形状并说明理由.【变式10-1】如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y =x 2于点B 、C ,求BC 的长度.【变式10-2】在同一坐标系内,抛物线y =ax 2与直线y =x +b 相交于A ,B 两点,若点A 的坐标是(2,3).(1)求B 点的坐标;(2)连接OA ,OB ,AB ,求△AOB 的面积.22.1.4 二次函数y=ax 2+bx+c 的图象与性质二次函数一般式与顶点式之间的相互关系 1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式. 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++⎪⎝⎭代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.题型1:一般式化成顶点式-配方法1.将二次函数y=x2−4x+5用配方法化为y=(x−ℎ)2+k的形式,结果为()A.y=(x−4)2+1B.y=(x−4)2−1C.y=(x−2)2−1D.y=(x−2)2+1题型2:一般式化成顶点式-应用2.已知:二次函数y=x2﹣2x﹣3.将y=x2﹣2x﹣3用配方法化成y=a(x﹣h)2+k的形式,并求此函数图象与x轴、y轴的交点坐标.题型3:公式法求顶点坐标及对称轴3.已知二次函数 y =−12x 2+bx +3 ,当 x >1 时,y 随x 的增大而减小,则b 的取值范围是( ) A .b ≥−1B .b ≤−1C .b ≥1D .b ≤10a >0a <题型4:二次函数y=ax2+bx+c图像与性质4.若二次函数y=ax2+bx+c的图象如图所示,则下列说法不正确的是()A.当1<x<3时,y>0B.当x=2时,y有最大值C.图像经过点(4,−3)D.当y<−3时,x<0【变式4-2】二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是()A.y⩽9B.y⩽2C.y<2D.y⩽3 4题型5:利用二次函数的性质比较函数值5.函数y=﹣x2﹣2x+m的图象上有两点A(1,y1),B(2,y2),则()A.y1<y2B.y1>y2几种常考的关系式的解题方法题型6:二次函数y=ax2+bx+c图像与系数的关系6.已知二次函数y=ax2+bx+c(a≠0,a,b,c为常数),如果a>b>c,且a+b+c=0,则它的图象可能是()A.B.C.D.【变式6-1】已知函数y=ax2+bx+c(a≠0)的对称轴为直线x=−4.若x1,x2是方程ax2+bx+c=0的两个根,且x1<x2,1<x2<2,则下列说法正确的是A.x1x2>0B.−10<x1<−9C.b2−4ac<0D.abc>0【变式6-2】如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),,有下列结论:①b<0;②a+b>0;③4a+2b+3c<0;④无且对称轴为直线x=12,0).其中正确结论有()论a,b,c取何值,抛物线一定经过(c2aA.1个B.2个C.3个D.4个【变式6-3】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线x=−1,点B的坐标为(1,0),则下列结论:①AB=4;②b2−4ac>0;③b>0;④a−b+c<0,其中正确的结论有()个.A.1个B.2个C.3个D.4个7.二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32题型8:利用二次函数的性质求字母的范围8.已知二次函数y=x2+bx+1当0<x<12的范围内,都有y≥0,则b的取值范围是A.b≥0B.b≥﹣2C.b≥﹣52D.b≥﹣32a题型9:利用二次函数的性质求最值9.二次函数y=−x2+2x+4的最大值是.题型10:给定范围内的最值问题10.已知二次函数y=ax2+bx+1.5的图象(0≤x≤4)如图,则该函数在所给自变量的取值范围内,最大值为,最小值为.。
人教版九年级上册二次函数y=ax2+bx+c的图象和性质(第1课时)课件
b 4ac b 2
y=a(x-h)2+k。
a x
2
2a
4a
2
b
4
ac
b
a x
.
2a
4a
2
引入
y=ax 2 +bx+c的性质
探究
归纳总结
举个栗子
2
b
4
ac
b
y ax 2 bx c a x
1 2
y x 6 x 21
2
1 2
( x 12 x 42)
2
1 2
( x 12 x 62 62 42)
2
1
2
[( x 6) 6]
2
1
( x 6)2 3.
2
y=ax 2 +bx+c的性质
探究 将 =
1 2
2
引入
探究
归纳总结
举个栗子
22.1 二次函数的图像和性质
22.1.4 y=ax 2+bx+c的图像性质
y=ax 2 +bx+c的性质
引入
探究
二次函数的一般式y=ax2+bx+c,有什么性质?
它的开口由什么决定?
对称轴是什么?
顶点是什么?
归纳总结
举个栗子Βιβλιοθήκη 练习y=ax 2 +bx+c的性质
引入
用配方法解一元二次方程:x2+2x+2=0
1 2
= − 6 + 21
人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计
人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计一. 教材分析人教版数学九年级上册第22.1节《二次函数的图象和性质(1)》是本册教材的重要内容,主要介绍二次函数的一般形式、图象特点以及一些基本性质。
通过本节内容的学习,学生可以掌握二次函数的基本知识,为后续学习二次函数的应用打下基础。
二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,具备一定的函数知识基础。
但二次函数相对复杂,学生对其理解和掌握可能存在一定的困难。
因此,在教学过程中,需要注重引导学生通过观察、思考、探索等方式,自主发现和总结二次函数的性质。
三. 教学目标1.理解二次函数的一般形式和图象特点。
2.掌握二次函数的顶点坐标、开口方向和判别式的概念。
3.能够运用二次函数的性质解决一些实际问题。
四. 教学重难点1.二次函数的一般形式和图象特点。
2.二次函数的顶点坐标、开口方向和判别式的理解与应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探索等方式自主学习。
2.利用多媒体课件辅助教学,直观展示二次函数的图象和性质。
3.注重数学语言的训练,引导学生规范表达。
六. 教学准备1.多媒体课件。
2.相关练习题。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生思考如何用数学模型来描述这些问题。
例如,抛物线运动、物体抛掷等。
从而引出二次函数的概念。
2.呈现(10分钟)利用多媒体课件,呈现二次函数的一般形式和图象特点。
引导学生观察并总结二次函数的性质。
3.操练(10分钟)让学生通过计算器或者绘图软件,自己动手绘制一些二次函数的图象,并观察其性质。
同时,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生运用所学的二次函数知识解决问题。
教师及时批改并给予反馈,帮助学生巩固所学知识。
5.拓展(10分钟)引导学生思考二次函数在实际生活中的应用,例如抛物线射门、跳水运动等。
22.1 二次函数的图象和性质(第1课时)
使学生经历探索二次函数y=ax2图像性质的过程,培养学生观察、思考、归纳的良好思维习惯。
教学重点
1.二次函数 的图象的画法及性质。
2.能确定二次函数y=ax2的解析式。
教学难点
1.用描点法画二次函数y=ax2的图像,探究其性质。
2.能依据二次函数y=ax2的有关性质解决问题。
教学用具
某种产品现在的年产量是20 t,计划今后两年增加产量.如果每一年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应该怎样表示?
这三个函数关系式有什么共同点?
二次函数的定义:一般地,形如
(a,b,c是常数,a≠0)
的函数,叫做二次函数.其中,x是自变量,a,
授课时间
第周年月日星期
序号
主备人
崔婷
复备人
课题
备课时间
2014-7-24
复备时间
组长签字
课型
课时
第2课时
教
学
目
标
知识
与技能
1.会用描点法画二次函数y=ax2的图像,理解抛物线的有关概念
2.掌握二次函数 的性质,能确定二次函数y=ax2的表达式
过程
与方法
通过画具体的简单二次函数的图像,探索出二次函数y=ax2的性质及图像特征
板书
设计
八、教学过程
教师活动
学生活动
设计意图
激情导入
观察图片,这些曲线能否用函数关系式来表示?它
们的形状是怎样画出来的?
展示目标
学习目标:
通过对实际问题的分析,体会二次函数的意义.
学习重点:
理解二次函数的定义
明确学习目标
人教版九年级数学上册22.1.3-二次函数的图像和性质(第1课时)一等奖优秀教学设计
人教版九年级数学上册22.1.3-二次函数的图
像和性质(第1课时)
一等奖优秀教学设计-CAL-FENGHAI.-(YICAI)-Company One1
人教版义务教育课程标准实验教科书九年级上册
22.1.3. 二次函数的图像和性质教学设计
一、教材分析 1、地位作用:
二次函数y=ax 2+k 的图像和性质是人教版九年级数学上册第二十一章第三节第一课时的内容,是在学生学习了二次函数的基本概念及y=ax 2的图像和性质之后引入的新内容。
本节课的教学内容既是对y=ax 2的图像和性质的引申,也是后面研究y=a(x-h)2+k 和一般形式的二次函数图像性质的基础。
所以,学习本节内容我们既要对前段的内容进行升华,又要对后段内容进行启发。
2、教学目标:
(1)能够准确绘制y=ax 2+k 二次函数图像;通过图像发现和研究二次函数y=ax 2+k 的性质。
(2)会应用二次函数的性质解决问题.
(3)经历观察,推理和交流等过程,获得研究问题与合作交流的方法和经验;体验数学活动中的探索性和创造性。
3、教学重、难点
教学重点:用描点法画二次函数的图像;探索二次函数y=ax 2+k 的图像特点和性质。
教学难点:二次函数y=ax 2+k 的性质的应用。
突破难点的方法:类比一次函数的平移和二次函数2ax y 的性质学习,构建一个知识体系。
二、教学准备:多媒体课件,几何画板.。
22.1.1 二次函数的图像及性质1 课件 人教版数学九年级上册
(2)a,b,c为常数,且 a≠0.
(3 )等式的右边最高次数为 2 ,可以没有
一次项和常数项,但不能没有二次项。
(4)x的取值范围是 任意实数 。
二次函数的一般形式: y=ax2+bx+c , (其中a、b、c是常数 a≠0)
二次函数的特殊形式:
(5)y= _x1_²-x
(否) (6)v= 3 r ²
(7) y=x²+x³+25 (否) (8)y=2²+2x
(是) (否)
(9)y=mx²+nx+p (m,n,p为常数)
例1、下列函数中,哪些是二次函数?若是,分别
指出二次项系数,一次项系数,常数项.
(1) y=3(x-1)²+1
(2)
y=x+
的关系,对于x的每一个值, y都有一个对应值,即y是x的
函数.
观察
函数①②③有什么共同点?
y=6x2①
d
1 2
n2
3 2
n②
y 20 x2 40x 20③
y是x的函数吗?y是x的一次函数?反比例函数?
在上面的问题中,函数都是用自变量的二次式 表示的,
定义:一般地,形如y=ax²+bx+c(a,b,c是 常数,a≠ 0)的函数叫做x的二次函数。
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10 8 6 4 2
y=x2
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=ax_h2 k的图象和性质第1课时二
ቤተ መጻሕፍቲ ባይዱ2019/5/26
最新中小学教学课件
17
谢谢欣赏!
2019/5/26
最新中小学教学课件
18
全的人,主要是担心漏掉重要内容,影响以后的复习与思考.,这样不仅失去了做笔记的意义,也将课堂“听”与“记”的关系本末倒置了﹙太忙于记录, 便无暇紧跟老师的思路﹚。 如果只是零星记下一些突出的短语或使你感兴趣的内容,那你的笔记就可能显得有些凌乱。 做提纲式笔记因不是自始至终全都埋头做笔记,故可在听课时把时间更多地用于理解所听到的内容.事实上,理解正是做好提纲式笔记的关键。 课堂笔记要注意这五种方法:一是简明扼要,纲目清楚,首先要记下所讲章节的标题、副标题,按要点进行分段;二是要选择笔记语句,利用短语、数 字、图表、缩写或符号进行速记;三是英语、语文课的重点词汇、句型可直接记在书页边,这样便于复习时查找﹙当然也可以记在笔记本上,前提是你 能听懂﹚;四是数理化生等,主要记老师解题的新思路、补充的定义、定理、公式及例题;五是政治、历史等,着重记下老师对问题的综合阐述。
讲课内容——对实际材料的讲解课可能需要做大量的笔记。 最讲授的主题是否熟悉——越不熟悉的学科,笔记就越需要完整。 所讲授的知识材料在教科书或别的书刊上是否能够很容易看到——如果很难从别的来源得到这些知识,那么就必须做完整的笔记。 有的同学一味追求课堂笔记做得“漂亮”,把主要精力放在做笔记上,常常为看不清黑板上一个字或一句话,不断向四周同学询问。特意把笔记做得很
22.1.3 二次函数y=a(x-h)2+k的 图象和性质
第1课时 二次函数y=ax2+k的 图象和性质
编后语
做笔记不是要将所有东西都写下,我们需要的只是“详略得当“的笔记。做笔记究竟应该完整到什么程度,才能算详略得当呢?对此很难作出简单回答。 课堂笔记,最祥可逐字逐句,有言必录;最略则廖廖数笔,提纲挈领。做笔记的详略要依下面这些条件而定。
人教版数学九年级上册22.1.2二次函数y=ax2的图象和性质(第1课时)教学设计
三、课堂练习
1.让学生独立绘制二次函数y=ax^2的图象,并描述其性质。
2.通过小组合作,讨论并总结二次函数图象和性质的特点。
四、巩固拓展
1.让学生思考:如何通过观察二次函数图象,判断其开口方向和对称轴?
2.引导学生运用二次函数的图象和性质,解决实际问题。
4.注重分层教学,关注个体差异:
(1)针对不同层次的学生,设计不同难度的练习题,使每个学生都能在原有基础上得到提高。
(2)鼓励学生主动提问,及时解答他们的疑惑,帮助他们建立信心。
5.强化课堂小结,巩固所学知识:
(1)让学生用自己的话总结二次函数y=ax^2的图象和性质,加深对知识的理解和记忆。
(2)通过课堂小结,检查学生的学习效果,及时发现问题并进行针对性的辅导。
3.组织学生进行小组合作交流,培养学生团队协作能力和表达能力,激发他们学习数学的兴趣。
(三)情感态度与价值观
1.培养学生勇于探索、积极思考的学习态度,使他们体会数学学习的乐趣,增强学习数学的自信心。
2.通过对二次函数y=ax^2图象和性质的探究,使学生感受数学的对称美、秩序美,提高他们的审美情趣。
3.使学生认识到数学知识在实际生活中的广泛应用,激发他们学习数学的积极性,培养他们运用数学知识解决实际问题的意识。
3.培养学生运用数形结合思想,通过观察、分析、归纳二次函数图象和性质,提高解决问题的能力。
(二)过程与方法
1.通过引导学生在探索二次函数y=ax^2图象和性质的过程中,培养他们提出问题、分析问题、解决问题的能力。
2.引导学生运用数形结合思想,将二次函数的图象与性质相互验证,提高他们的逻辑思维能力和推理能力。
人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时教学设计
人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时教学设计一. 教材分析人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时,主要介绍了二次函数的图象和性质。
本节课的内容是学生对二次函数知识的深入理解,也是对之前学习的函数知识的巩固。
教材通过生动的实例和丰富的练习,帮助学生掌握二次函数的图象和性质,提高他们解决实际问题的能力。
二. 学情分析学生在之前的学习中,已经掌握了函数的基本概念和一次函数的知识,具备了一定的数学思维能力。
但是,对于二次函数的图象和性质,学生可能还存在一些困惑和误解。
因此,在教学过程中,需要关注学生的学习需求,针对性地进行讲解和辅导。
三. 教学目标1.知识与技能:使学生了解二次函数的图象和性质,能够运用二次函数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,培养学生研究函数问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:二次函数的图象和性质。
2.难点:二次函数的图象和性质的内在联系和运用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极思考,提高他们解决实际问题的能力。
六. 教学准备1.教师准备:熟读教材,了解学生的学习情况,准备相关教学资源和案例。
2.学生准备:预习教材,了解二次函数的基本概念,准备参与课堂讨论。
七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生对二次函数的图象和性质的思考。
例如:有一块长方形土地,欲将其分割成一个面积为100平方米的矩形和两个面积相等的圆形,如何设计分割方案?2.呈现(15分钟)呈现二次函数的图象和性质,引导学生观察、分析,发现其中的规律。
例如,通过展示二次函数y=x^2的图象,让学生观察其在不同象限的取值情况,总结其性质。
3.操练(15分钟)让学生通过实际操作,加深对二次函数图象和性质的理解。
人教版九年级数学上册教案 22.1.1 二次函数(第1课时)
22.1二次函数的图象和性质22.1.1二次函数(第1课时)一、基本目标【知识与技能】1.理解并掌握二次函数的概念,能判断一个给定的函数是否为二次函数.2.根据实际问题中的条件确定二次函数的解析式,体会函数的模型思想.【过程与方法】经历与一次函数类比学习的过程,学会与人合作,并获得代数学习的一些常用方法:类比法、合情推理、抽象概括等.【情感态度与价值观】通过对几个特殊的二次函数的讲解,体验数学中的探索精神,初步体会二次函数的数学模型.二、重难点目标【教学重点】二次函数的概念.【教学难点】能根据已知条件写出二次函数的解析式.环节1自学提纲,生成问题【5 min阅读】阅读教材P28~P29的内容,完成下面练习.【3 min反馈】1.正比例的函数的表达式为y=kx(k为常数,且k≠0);一次函数的表达式为__y=ax +b__(a、b为常数,且a≠0).2.二次函数的概念:一般地,形如__y=ax2+bx+c__(a、b、c是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为__a、b、c__.3.下列函数中,是二次函数的有__①②③__.①y =(x -3)2-1;②y =1-2x 2;③y =13(x +2)(x -2);④y =(x -1)2-x 2. 4.二次函数y =-x 2+2x 中,二次项系数是__-1__,一次项系数是___2____,常数项是___0____.5.半径为R 的圆,半径增加x ,圆的面积增加y ,则y 与x 之间的函数关系式为__y =πx 2+2πRx (x ≥0)__.环节2 合作探究,解决问题【活动1】 小组讨论(师生互学)【例1】已知关于x 的函数y =(m +1)xm 2-m 是二次函数, 求m 的值.【互动探索】(引发学生思考)已知含参函数的解析式为二次函数,那么二次函数的自变量及各项系数应该满足哪些条件?【解答】 由题意,得⎩⎪⎨⎪⎧m 2-m =2,m +1≠0, 解得m =2.【互动总结】(学生总结,老师点评)y =ax 2+bx +c 为二次函数的前提条件是a ≠0,且自变量x 的最高次数为2,注意不要忽略二次项系数不为0这一隐含条件.【例2】某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个.如果超市将篮球售价定为x 元(x >50),每月销售这种篮球获利y 元,求y 与x 之间的函数关系式.【互动探索】(引发学生思考)解决实际应用问题的一般步骤是什么?本题中所隐含的等量关系是什么?【解答】根据题意,得每个篮球的利润为50+x -40=10+x ;篮球的销售量为500-10x . 则y =(10+x )(500-10x )=-10x 2+400x +5000.【互动总结】(学生总结,老师点评)根据实际问题写出二次函数的解析式的一般步骤:(1)阅读并理解题意;(2)找出问题的变量与常量,并分析它们之间的关系,若有图形,则要注意结合图形进行分析;(3)设适当的未知数,用二次函数表示出变量之间的关系,建立二次函数模型,写出二次函数解析式.【活动2】 巩固练习(学生独学)1.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x 米,花圃面积为S 平方米,则S 关于x 的函数解析式是__S =-2x 2+10x __.(不写定义域)2.如果函数y =(k +1)x k 2+1+1是y 关于x 的二次函数,则k 的值为多少?解:根据题意,得⎩⎪⎨⎪⎧ k +1≠0,k 2+1=2.解得k =1.【活动3】 拓展延伸(学生对学)【例3】已知关于x 的二次函数,当x =-1时,函数值为10,当x =1时,函数值为4,当x =2时,函数值为7,求这个二次函数的解析式.【互动探索】(引发学生思考)我们学过了一次函数以及一次函数解析式的求法——待定系数法,求二次函数的解析式用这种方法同样适用吗?【解答】设所求的二次函数的解析式为y =ax 2+bx +c .根据题意,得⎩⎪⎨⎪⎧ a -b +c =10,a +b +c =4,4a +2b +c =7.解得a =2,b =-3,c =5.故所求二次函数为y =2x 2-3x +5.【互动总结】(学生总结,老师点评)求二次函数的解析式与求一次函数的解析式的方法相同,都是待定系数法,二次函数有三个未知数,所以求二次函数的解析式需要三个方程.环节3 课堂小结,当堂达标(学生总结,老师点评) 二次函数⎩⎪⎨⎪⎧ 定义:形如y =ax 2+bx +c (a 、b 、c 为常数,a ≠0)的函数二次函数y =ax 2+bx +c 中隐含的条件:a ≠0请完成本课时对应练习!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中集体备课活动记录
学科:数学 时间:2014.10 地点:九年级办公室 课题
22.1 二次函数的图象和性质(第1课时) 主备教师
参加人员 教学设计意图综述 本课是在学生已经学习了一次函数的基础上,继续进行函数的学习,学习二次函数的定义,这是对函数知识的完善与提高.
活动
目标及重
难点 学习目标: 通过对实际问题的分析,体会二次函数的意义. 学习重点:
理解二次函数的定义.
教具准备
直尺、三角板、圆规、量角器、PPT
教学设计
1.由实际生活引入二次函数 观察图片,这些曲线能否用函数关系式来表示?它们的形状是怎样画出来的?
2.通过实例,归纳二次函数的定义 正方体的棱长为 x ,那么正方体的表面积 y 与 x 之间有什么关系? n 个球队参加比赛,每两队之间进行一场比赛.比赛的场次数 m 与球队数 n 有什么关系?
某种产品现在的年产量是 20 t ,计划今后两年增加产量.如果每一年都比上一年的产量增加 x 倍,那么两年后这种产品的产量 y 将随计划所定的 x 的值而确定,y 与 x 之间的关系应该怎样表示? 上面这三个函数关系式有什么共同点?
二次函数的定义:一般地,形如(a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.其中, x 是自变量,a ,b ,c 分别是函数解析式的二次项系数、一次项系数和常数项.
3.练习、巩固二次函数的定义
例 某小区要修建一块矩形绿地,设矩形的长为x m ,宽为 y m ,面积为 S (x >y ).
(1)如果用 18 m 的建筑材料来修建绿地的边缘(即周长),求 S 与 x 的函数关系,并求出 x 的取值范围.
(2)根据小区的规划要求, 所修建的绿地面积必须是 18 m 2,在满足(1)的条件下,矩形的长和宽各为多少 m ?
解:(1)由题意,得 .
自我修改
26y x =21122m n n =-2204020y x x =++x
y y x -==+91822,
∵x>y>0,
∴x 的取值范围是9/2<x<9,
∴S矩形= xy = x (9 - x ) = -x^2+9x.
(2)当矩形面积S矩形= 18 时,即
- x 2 + 9x = 18,
解得x1 = 3,x2 = 6.
当x = 3 时,y = 9 - 3 = 6,但y>x ,不合题意,舍去.
当x = 6 时,y = 9 - 6 = 3.
所以当绿地面积为18 m 2 时,矩形的长为6 m ,宽为3 m.
练习1函数y=(m-2)x^2+mx-3 (m 为常数).
(1)当m ______时,这个函数为二次函数;
(2)当m ______时,这个函数为一次函数.
练习2填空:
(1)一个圆柱的高等于底面半径,则它的表面积S 与底面半径r 之间的关系式是: S = 4πr 2
(2)n 支球队参加比赛,每两队之间进行两场比赛,则比赛场次数m 与球队数n 之间的关系式是: m=n(n-1)
4.小结
(1)一个函数是否为二次函数的关键是什么?
(2)实际问题中列二次函数解析式需要考虑什么?
5.布置作业
教科书习题22.1第1,2 题.
反思:。