二次函数的图像及性质
二次函数的性质及其图像变化
二次函数的性质及其图像变化二次函数是高中数学中的重要概念之一,它具有独特的性质和图像变化。
本文将详细介绍二次函数的性质,并探讨其图像在参数变化时的变化规律。
一、二次函数的定义和一般式二次函数是指形如y = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。
其中,a决定了二次函数的开口方向和图像的开合程度,b决定了图像在x轴方向的平移,c则是二次函数的纵坐标偏移。
二、二次函数的性质1. 开口方向二次函数的开口方向由系数a的正负决定。
当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。
2. 零点二次函数的零点是指函数图像与x轴相交的点,即y = 0的解。
对于一般的二次函数y = ax^2 + bx + c,可以使用求根公式x = (-b ± √(b^2 - 4ac)) / (2a)求得零点。
3. 顶点二次函数的顶点是指函数图像的最高点(开口向下时)或最低点(开口向上时)。
顶点的横坐标可以通过公式x = -b / (2a)求得,纵坐标则是将横坐标代入函数中得到的值。
4. 对称轴二次函数的对称轴是指通过顶点且垂直于x轴的直线。
对称轴的方程可以通过将顶点的横坐标代入x = -b / (2a)得到。
5. 单调性二次函数的单调性是指函数图像在某个区间内的变化趋势。
当a>0时,二次函数在对称轴两侧递增;当a<0时,二次函数在对称轴两侧递减。
三、二次函数图像的变化规律在探讨二次函数图像的变化规律时,我们将分别讨论a、b、c的变化对图像的影响。
1. a的变化当a的绝对值增大时,二次函数图像的开合程度增加,即图像变得更加尖锐;当a的绝对值减小时,二次函数图像的开合程度减小,即图像变得更加平缓。
当a 的符号改变时,图像的开口方向也会改变。
2. b的变化当b增大时,二次函数图像整体向左平移;当b减小时,二次函数图像整体向右平移。
b的符号改变时,平移方向也会相应改变。
二次函数的图像及性质
与对数函数的比较
值域:二次函数值域为全体实 数,而对数函数值域为实数加 一个常数
图像:二次函数图像为抛物线, 而对数函数图像为单调递增或 递减的曲线
定义域:二次函数定义域为全 体实数,而对数函数定义域为 正实数
性质:二次函数具有对称性, 而对数函数具有反函数性质
汇报人:
性质:二次函数有最小 值或最大值,反比例函 数在x>0时单调递减, 在x<0时单调递增。
应用:二次函数在数学、 物理等领域有广泛应用, 反比例函数在解决一些 实际问题时也很有用。
与指数函数的比较
开口方向:二次函数开口向上或向下,指数函数开口向右 顶点:二次函数有顶点,指数函数无顶点 函数值:二次函数有最大值或最小值,指数函数无最大值或最小值 图像:二次函数图像是抛物线,指数函数图像是指数曲线
开口变化规律
二次函数的开口方向由系数a决定,a>0时开口向上,a<0时开口向下。
二次函数的开口大小由系数a和b共同决定,a的绝对值越大,开口越小;b的绝对值越大,开口 越大。
二次函数的对称轴为x=-b/2a,对于开口向上的函数,对称轴左侧函数值随x的增大而减小;对 于开口向下的函数,对称轴左侧函数值随x的增大而增大。
图像的对称性
二次函数的对称中心是(k,0)
二次函数的顶点坐标是(h,k)
二次函数的对称轴是x=h
二次函数的开口方向由a决定, a>0向上开口,a<0向下开口
与一次函数的比较
函数表达式:二次函数的一般形式 为y=ax^2+bx+c,一次函数的一 般形式为y=kx+b
开口方向:二次函数的开口方向由 a的符号决定,一次函数的图像是 一条直线,没有开口方向
二次函数图像与性质ppt课件
D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式
《二次函数的图像和性质》PPT课件 人教版九年级数学
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
二次函数图像与性质完整归纳
3 2 -2
3 2 0 5…
2
【例 2】 求作函数 y x 2 4 x 3 的图象。
【解】 y x 2 4x 3 ( x2 4x 3)
[( x 2) 2 7] [( x 2) 2 7 先画出图角在对称轴 x 2 的右边部分,列表
x -2 -1 0 1 2 y 76 5 4 3
【点评】 画二次函数图象步骤: (1) 配方; (2) 列表; (3) 描点成图; 也可利用图象的对称性,先画出函数的左(右)边部分图象,再利 用对称性描出右(左)部分就可。
, 3 ] 上是增函数,在区间 [ 3, 10
29 ymaz 20 ) 上是减函数。
【点评】 要研究二次函数顶点、对称轴、最值、单调区间等性质时,方法有两个:
(1) 配方法;如例 3
(2) 公式法:适用于不容易配方题目 ( 二次项系数为负数或分数 ) 如例 4,可避免出错。
任何一个函数都可配方成如下形式:
b 时, y 随 x 的增大而增大; 当 x b
2a
2a
b ,顶点坐标为 2a
b ,4ac b2 .当 2a 4a
x b 时, y 随 x 的增大而增大;当 x 2a
2
有最大值 4ac b . 4a
b 时, y 随 x 的增大而减小;当 x 2a
b 时, y 2a
六、二次函数解析式的表示方法
1. 一般式: y ax 2 bx c ( a , b , c 为常数, a 0 ); 2. 顶点式: y a ( x h)2 k ( a , h , k 为常数, a 0 );
向下
h ,k
x h 时, y 随 x 的增大而减小; x h 时, y X=h
随 x 的增大而增大; x h 时, y 有最大值 k .
二次函数的图像和性质(共48张PPT)
即当 x<-2ba时, 当 x<-2ba时,y 随 x y 随 x 的增大而减
的增大而增大;在对 小;在对称轴的右
称轴的右侧,即当 x 侧,即当 x>-2ba >-2ba时,y 随 x 的 时,y 随 x 的增大
增大而减小,简记为 而增大,简记为
“左增右减” “左减右增”
15
最值
抛物线有最 抛物线有最
1、二次函数的图像和性质
函数
二次函数 y=ax2+bx+c
(a,b,c 为常数,a≠0)
a<0
a>0
图象
13
开口 对称轴、顶点
抛物线开口向 抛物线开口向
上,并向上无限 下,并向下无限
延伸
延伸
对称轴是x=-
b 2a
,顶点坐标是
-2ba,4ac4-a b2
14
增减性
在对称轴的左侧, 在对称轴的左侧,即
低点,当 高点,当
x=-2ba时, x=-2ba时,
y 有最小值, y 有最大值,
y = 最小值
y = 最大值
4ac-b2 4a
4ac-b2 4a
16
2、二次函数y=ax2+bx+c的图象特征
与系数a,b,c的关系
项目 字母
字母的符号
图象的特征
a>0 a
a<0
二次函数的图像及其性质
单调性
二次函数的开口 方向由系数a决 定,a>0时开口 向上,a<0时开 口向下
二次函数的对称 轴为x=-b/a
二次函数的最值 在对称轴上取得, 即x=-b/2a时的 函数值y=cb^2/4a
二次函数在区间 (-∞,-b/2a)和(b/2a,+∞)上单 调性相反
最值点
二次函数的最值点为顶点 顶点的坐标为(-b/2a, f(-b/2a)) 当a>0时,函数在顶点处取得最小值 当a<0时,函数在顶点处取得最大值
开口大小与一次项 系数和常数项无关
开口变化趋势
二次函数的开口方向由二次项系数a决定,a>0时向上开口,a<0时向下开口。 二次函数的开口大小由二次项系数a和一次项系数b共同决定,a的绝对值越大,开口越小。 二次函数的对称轴为x=-b/2a,当a>0时,对称轴为x=-b/2a;当a<0时,对称轴为x=-b/2a。 二次函数的最值点为顶点,顶点的坐标为(-b/2a, c-b^2/4a)。
在物理领域的应用
二次函数在抛物线运动中的应用 二次函数在弹簧振荡中的应用 二次函数在单摆运动中的应用 二次函数在简谐振动中的应用
在其他领域的应用
二次函数在经济学中的应用, 例如计算成本、收益、利润等。
二次函数在生物学中的应用, 例如种群增长、药物疗效等。
二次函数在物理学中的应用, 例如弹簧振动、单摆运动等。
二次函数的应用
解决实际问题
二次函数在物理学中的应用,例如计算抛物线的运动轨迹 二次函数在经济学中的应用,例如计算商品价格与销售量的关系
二次函数在日常生活中的应用,例如计算最优化问题,如最小费用、最大效率等
二次函数在科学实验中的应用,例如模拟实验数据,预测实验结果
第12节 二次函数的图象和性质
27+10a a<-5.
练习:若函数 f(x)解:=x函2+数afx(+xb)在=x2区+ax间+b[的0图,象1是]上开的口朝最上大且值以直是线Mx=,﹣最为小对值称是轴的m抛,物则线,
解:函数 y=x2+(1﹣a)x+2 的对称轴 x= 又函数在区间(﹣∞,4]上是减函 数,可得 ≥4,,得 a≥9. 故选 A.
典例分析:
(3)如果函数 f(x)=ax2+2x﹣3 在区间(﹣∞,4)上是单调递增的,则实数 a
的取值范围是( )
A.(- 1,+) 4
B.[- 1 ,+) 4
C.[- 1 ,0) 4
典例分析:
例 4:(1)已知函数 f(x)=mx2﹣mx﹣1,对一切实数 x,f(x)<0 恒成立,则
m 的范围为( )
A.(﹣4,0)
解:当 m=0 时,代B.入(得﹣f(4x),=0﹣]1<0 恒成立;
当 m≠0 时,由 f(x)<0 恒成立,
C.(﹣∞,﹣4)∪得(到0m,<+0,∞且)△=D(.﹣(m﹣)2∞﹣4,×m﹣(4﹣)1)∪=[m02+,4m+<∞0,)
∴(x﹣a)(1﹣x﹣a)<1,
D.﹣
即 a2﹣a﹣1<x2﹣x.
令 t=x2﹣x,只要 a2﹣a﹣1<tmin.
t=x2﹣x=
,当 x∈R,t≥﹣ .
∴a2﹣a﹣1<﹣ ,即 4a2﹣4a﹣3<0,
解得:﹣
.
故选:C.
练习:若函数 f(x)=x2﹣4x+a 对于一切 x∈[0,1]时,恒有 f(x)≥0 成立, 则实数 a 的取值范围是( ) A.[3,+∞) B.(3,+∞) C.(﹣∞,3] D.(﹣∞,3)
二次函数的图像与性质
二次函数的图像与性质二次函数的性质二次函数()02≠++=a c bx ax y 的顶点坐标是(-a b 2,a b ac 442-),对称轴直线x=-a b 2,二次函数y=ax 2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax 2+bx+c(a≠0)的开口向上,x<-a b 2时,y 随x 的增大而减小;x>-a b 2时,y 随x 的增大而增大;x=-a b 2时,y 取得最小值a b ac 442-,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax 2+bx+c(a≠0)的开口向下,x<-a b 2时,y 随x 的增大而增大;x>-a b 2时,y 随x 的增大而减小;x=-a b 2时,y 取得最大值a b ac 442-,即顶点是抛物线的最高点.③抛物线y=ax 2+bx+c(a≠0)的图象可由抛物线y=ax 2的图象向右或向左平移a b 2个单位,再向上或向下平移ab ac 442-个单位得到的.二次函数上点坐标的特征二次函数y=ax 2+bx+c(a≠0)的图象是抛物线,顶点坐标是(-a b 2,ab ac 442-).①抛物线是关于对称轴x=-a b 2成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.②抛物线与y 轴交点的纵坐标是函数解析中的c 值.③抛物线与x 轴的两个交点关于对称轴对称,设两个交点分别是(x 1,0),(x 2,0),则其对称轴为x=221x x +【例1】已知()()212232m x m x m m y m m +-+-=--是关于x 的二次函数,求出它的解析式,并写出其二次项系数、一次项系数及常数项.【例2】下列各式中,一定是二次函数的有()①y=2x 2﹣4xz +3;②y=4﹣3x +7x 2;③y=(2x ﹣3)(3x ﹣2)﹣6x 2;④y=21x﹣3x +5;⑤y=ax 2+bx +c (a ,b ,c 为常数);⑥y=(m 2+1)x 2﹣2x ﹣3(m 为常数);⑦y=m 2x 2+4x ﹣3(m 为常数).A .1个B .2个C .3个D .4个【例3】(2017•东莞市一模)在同一坐标系中,一次函数y=ax+b 与二次函数y=bx 2+a 的图象可能是()A.B.C.D.【例4】(2017•辽阳)如图,抛物线y=x 2﹣2x﹣3与y 轴交于点C,点D 的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD 是以CD 为底边的等腰三角形,则点P 的横坐标为()A.1+2B.1﹣2C.2﹣1D.1﹣2或1+2【例5】(2017•唐河县三模)如图,在平面直角坐标系中,抛物线y=31x 2经过平移得到抛物线y=ax 2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为38,则a、b 的值分别为()A.31,34B.31,﹣38C.31,﹣34D.﹣31,34【例6】(2016•北仑区一模)如图,抛物线y=﹣x 2+5x﹣4,点D 是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD 的面积的最大值是多少?1、(2011秋•无锡期末)下列函数中,(1)y ﹣x 2=0,(2)y=(x +2)(x ﹣2)﹣(x ﹣1)2,(3)x x y 12+=,(4)322-+=x x y ,其中是二次函数的有()A .4个B .3个C .2个D .1个2、(2015秋•五指山校级月考)函数y=(m ﹣n )x 2+mx +n 是二次函数的条件是()A .m 、n 是常数,且m ≠0B .m 、n 是常数,且m ≠nC .m 、n 是常数,且n ≠0D .m 、n 可以为任何常数3、(2014•葫芦岛二模)在同一直角坐标系中,函数y=mx +m 和函数y=mx 2+2x +2(m 是常数,且m ≠0)的图象可能是()A .B .CD .4、(2017•扬州)如图,已知△ABC 的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x 2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b 的取值范围是()A.b≤﹣2B.b<﹣2C.b≥﹣2D.b>﹣25、(2012秋•高安市期末)把抛物线y=﹣2x 2﹣4x﹣6经过平移得到y=﹣2x 2﹣1,平移方法是()A.向右平移1个单位,再向上平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向左平移1个单位,再向下平移3个单位6、(2017•泸州)已知抛物线y=41x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线y=41x 2+1上一个动点,则△PMF 周长的最小值是()A .3B .4C .5D .67、(2016•陕西校级模拟)如图,已知点A(8,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=6时,这两个二次函数的最大值之和等于()A.5B.358C.10D.528、(2010秋•西城区校级期中)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,抛物线经过点(1,0),则下列结论:①ac>0;②方程ax2+bx+c=0的两根之和大于0;③y随x的增大而增大;④a﹣b+c<0,其中正确的是.9、(2017•孝感模拟)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确的结论有(填序号).10、(2016•黄冈校级自主招生)方程2x﹣x 2=x 2的正实数根有个.11、(2011•路南区一模)已知二次函数y=(x﹣3a)2﹣(3a+2)(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.图中分别是当a=﹣1,a=﹣31,a=1时二次函数的图象.则它们的顶点所满足的函数关系式为.12、(2015•泗洪县校级模拟)若直线y=m (m 为常数)与函数y=的图象恒有三个不同的交点,则常数m 的取值范围是.13、(2017春•昌江区校级期中)记实数x 1,x 2中的最小值为min{x 1,x 2},例如min{0,﹣1}=﹣1,当x 取任意实数时,则min{﹣x 2+4,3x}的最大值为.14、(2016•锡山区一模)二次函数y=﹣x 2﹣2x 图象x 轴上方的部分沿x 轴翻折到x 轴下方,图象的其余部分保持不变,翻折后的图象与原图象x 轴下方的部分组成一个“M”形状的新图象,若直线y=21x+b 与该新图象有两个公共点,则b 的取值范围为.15、(2017春•平南县月考)抛物线238942++-=x x y 与y 轴交于点A,顶点为B.点P 是x 轴上的一个动点,当点P 的坐标是时,|PA﹣PB|取得最小值.16、(2014•上城区二模)已知当x=2m+n+2和x=m+2n 时,多项式x 2+4x+6的值相等,且m﹣n+2≠0,则当x=6(m+n+1)时,多项式x 2+4x+6的值等于.17、(2017•港南区二模)二次函数y=(a﹣1)x 2﹣x+a 2﹣1的图象经过原点,则a 的值为.18、(2017•西华县二模)已知y=﹣41x 2﹣3x+4(﹣10≤x≤0)的图象上有一动点P,点P 的纵坐标为整数值时,记为“好点”,则有多个“好点”,其“好点”的个数为.19、(2017•鄂州)已知正方形ABCD 中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m 个单位(m>0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是.20、作出下列函数的图象:(1)y=x 2﹣4x +3;(2)y=x 2﹣4|x |+3;(3)y=|x 2﹣4|x |+3|.21、(2017•海安县一模)在平面直角坐标系xOy 中,直线y=﹣41x+n 经过点A(﹣4,2),分别与x,y 轴交于点B,C,抛物线y=x 2﹣2mx+m 2﹣n 的顶点为D.(1)求点B,C 的坐标;(2)①直接写出抛物线顶点D 的坐标(用含m 的式子表示);②若抛物线y=x 2﹣2mx+m 2﹣n 与线段BC 有公共点,求m 的取值范围.22、(2011•泰州)已知二次函数y=x 2+bx ﹣3的图象经过点P (﹣2,5)(1)求b 的值并写出当1<x ≤3时y 的取值范围;(2)设P 1(m ,y 1)、P 2(m +1,y 2)、P 3(m +2,y 3)在这个二次函数的图象上,①当m=4时,y 1、y 2、y 3能否作为同一个三角形三边的长?请说明理由;②当m 取不小于5的任意实数时,y 1、y 2、y 3一定能作为同一个三角形三边的长,请说明理由.23、(2017•邵阳县模拟)(1)已知函数y=2x+1,﹣1≤x≤1,求函数值的最大值.(2)已知关于x的函数y=(m≠0),试求1≤x≤10时函数值的最小值.(3)己知直线m:y=2kx﹣2和抛物线y=(k2﹣1)x2﹣1在y轴左边交于A、B两点,直线l 过点P(﹣2、0)和线段AB的中点M,求直线1与y轴的交点纵坐标b的取值范围.24、(2015秋•长兴县月考)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=5,点E在CB边上,以每秒1个单位的速度从点C向点B运动,运动时间为t(s),过点E作AB的平行线,交AC边于点D,以DE为边向上作等边△DEF,设△ABC与△DEF重叠部分的面积为S.(1)当点F恰好落在AB边上时,求t的值;(2)当t为何值时,S有最大值?最大值是多少?。
二次函数的图像与性质
弹簧振动:描述弹 簧振动的规律
波动:描述波动现 象,如声波、水波 等
电路:在交流电路 中,二次函数用于 描述电流与电压的 关系
与一次函数的比较
表达式不同:二次函数的一般形式为y=ax^2+bx+c,一次函数的一般形式为y=kx+b 图像不同:二次函数的图像是抛物线,一次函数的图像是直线 开口方向不同:二次函数的开口方向由a的符号决定,一次函数没有开口方向 顶点不同:二次函数有顶点,一次函数没有顶点
程
对称轴的证明
证明方法:利用 二次函数的对称 性,通过代入法 证明对称轴的存 在
证明过程:通过 计算二次函数在 x轴上的交点, 推导出对称轴的 方程
证明结论:二次 函数的图像关于 对称轴对称,且 对称轴的方程为 x=-b/2a
证明意义:理解 二次函数图像的 对称性质,有助 于解决与二次函 数相关的数学问 题
与坐标轴交点坐标的证明
证明方法:通过令二次函数等于0,解出x的值,得到与y轴交点的坐标
证明过程:将二次函数的一般形式代入x=0,得到y的值,即为与y轴的交点坐标
证明结果:当x=0时,y的值即为与y轴的交点坐标 证明结论:通过以上步骤,可以证明二次函数与y轴的交点坐标为(0,c)
汇报人:XX
与反比例函数的比较
函数形式:二次 函数的一般形式
为 y=ax^2+bx+c,
反比例函数的一 般形式为y=k/x,
其中k为常数且 k≠0
添加标题
图像:二次函数的 图像是一个抛物线, 反比例函数的图像 是两条渐近线,当 k>0时,图像在第
一、三象限;当 k<0时,图像在第
二、四象限
添加标题
性质:二次函数有 最小值或最大值, 而反比例函数没有 最小值和最大值, 当k>0时,函数在 x>0时单调递减, 在x<0时也单调递 减;当k<0时,函 数在x>0时单调递 增,在x<0时也单
课件1二次函数的图像和性质
(2)在平面直角坐标系中描点:
y
-4
-3
-2
-1
o
1
2
3
4
x
-2
-4
-6
-8
y = - x2
-10
(3)用光滑曲线顺次连接各点,便得到函数y= -x2 的图象.
二次函数的图象是不是跟投篮路线很像?
知识要点
抛物线: 像这样的曲线通常叫做抛物线。 二次函数的图象都是抛物线。
一般地,二次函数 y ax2 bx c 的图象叫做抛物线 y ax2 bx c。
()
A.江南制造总局的汽车
B.洋人发明的火车
C.轮船招商局的轮船
D.福州船政局的军舰
[解析] 由材料信息“19世纪七十年代,由江苏沿江居民 到上海”可判断最有可能是轮船招商局的轮船。
二、近代以来交通、通讯工具的进步对人们社会生活的影 响
(1)交通工具和交通事业的发展,不仅推动各地经济文化交 流和发展,而且也促进信息的传播,开阔人们的视野,加快 生活的节奏,对人们的社会生活产生了深刻影响。
(2)通讯工具的变迁和电讯事业的发展,使信息的传递变得 快捷简便,深刻地改变着人们的思想观念,影响着人们的社 会生活。
y= 2x2
y=x2
y 10
9 8 7 6 5 4
3 2 1
y= 0.5x2
-5 -4 -3 -2 -1 o 1 2 3 4 5 x
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x -2
-3 -4
-5
-6
-7
-8 -9
y=-21 x
-10
y=-2x2 y=x2
a的符号决定抛物线的开口方向,|a|的 大小决定抛物线开口的大小,|a|越大开 口越小
二次函数的图像和性质总结
二次函数的图像和性质1.二次函数的图像与性质:解析式a 的取值开口方向函数值的增减顶点坐标对称轴图像与y轴的交点y = ax2当a0时;开口向上;在对称轴的左侧y随x的增大而减小,在对称轴的右侧 y 随 x 的增大而增大。
当a0时;开口向下;在对称轴的左侧y随 x 的增大而增大,在对称轴的右侧 y 随 x 的增大而减小。
(0,0)x=0(0,0)y = ax2+ k(0,c)x =0 (0,k)y = a( x + h)2(- h,0)x = - h(0,ah2)y=a(x+h)2+k(- h,k)x = - h(0,ah2+ k)y = ax2+bx+c b 4ac - b2 (- , )2a4a b x=-2a(0,c)2.抛物线的平移法则:(1)抛物线y = ax2+ k的图像是由抛物线y = ax2的图像平移k个单位而得到的。
当k 0时向上平移;当k0时向下平移。
(2)抛物线y = a(x + h)2的图像是由抛物线y = ax2的图像平移h个单位而得到的。
当h0时向左平移;当h0时向右平移。
(3)抛物线的y = a(x + h)2+ k图像是由抛物线y = ax2的图像上下平移k个单位,左右平移h个单位而得到的。
当k0时向上平移;当k0时向下平移;当h0时向左平移;当h0 时向右平移。
3.二次函数的最值公式:形如y =ax + bx + c的二次函数。
当a0时,图像有最低点,函数有最小值4ac-b24ac-b2y最小值=4a;当a0时,图像有最高点,函数有最大值,y最大值=4a;4.抛物线y =ax + bx + c与y轴的交点坐标是(0,c)5.抛物线的开口大小是由a决定的,a越大开口越小。
6.二次函数y =ax + bx + c的最值问题:(1)自变量的取值范围是一切实数时求最值的方法有配方法、公式法、判别式法。
(2)自变量的取值范围不是一切实数:b 自变量的取值范围不是一切实数时,应当抓住对称轴x = -2a ,把他与取值范围相比较,再进行求最值。
二次函数的图像和性质
二次函数复习二:二次函数的图像和性质班级:姓名:知识点一.二次函数的图像和性质1.二次函数图像的画法: 五点作图法(1)顶点坐标;(2)与x轴的交点坐标;(3)与y轴的交点坐标,再找到该点关于对称轴对称的对称点坐标。
2.抛物线c bx ax y ++=2中, a 、b 、c 的作用(1)a 决定开口方向及开口大小.a >0时,抛物线开口向上 ,a <0时,抛物线开口向下(a 的绝对值越大,抛物线的开口越小)。
(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线ab x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧.(口诀:左同右异 ,即a 、b 同号,对称轴在y 轴左侧) (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴; ③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab. 3.二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x 轴的交点横坐标。
因此一元二次方程中的ac 4b 2-=∆,在二次函数中表示图像与x 轴是否有交点。
当∆>0时,图像与x 轴有两个交点;当∆=0时,图像与x 轴有一个交点;当∆<0时,图像与x 轴没有交点。
对称轴122x x x +=,在x 轴上截的线段长是||AB a =。
4.二次函数图象的平移① 对于抛物线y =ax 2+bx +c 的平移.通常先将一般式转化成顶点式()2y a x h k =-+,再遵循左加右减,上加下减的的原则,化为顶点式有两种方法:配方法,顶点坐标公式法。
二次函数的图像与性质
二次函数的图像与性质二次函数在数学中占有重要的地位,它的图像和性质可以帮助我们更好地理解和应用数学知识。
本文将从图像和性质两个方面来探讨二次函数的特点。
一、二次函数的图像二次函数的标准形式为:y = ax^2 + bx + c,其中a、b、c为实数且a不等于0。
我们先来讨论a的取值对图像的影响。
1. 当a大于0时,二次函数的图像开口向上。
这表明两侧的函数值随着自变量的增大而增大,函数的最低点为最值点。
2. 当a小于0时,二次函数的图像开口向下。
这表明两侧的函数值随着自变量的增大而减小,函数的最高点为最值点。
接下来,我们来探讨二次函数图像的平移和缩放效果。
1. 平移:对于二次函数y = ax^2 + bx + c,向右平移h个单位,可以得到y = a(x - h)^2 + b(x - h) + c。
向左平移h个单位,则为y = a(x +h)^2 + b(x + h) + c。
这里h为实数。
2. 缩放:对于二次函数y = ax^2 + bx + c,通过改变a的绝对值可以得到不同的缩放效果。
当|a|大于1时,图像会被纵向拉伸;当0<|a|<1时,图像会被纵向压缩。
二、二次函数的性质除了图像外,二次函数还有许多重要的性质,我们将逐一介绍。
1. 零点:零点是指二次函数的图像与x轴的交点。
二次函数的零点可以通过求解方程ax^2 + bx + c = 0得到。
当判别式b^2 - 4ac大于0时,二次函数有两个不同的实根;当判别式等于0时,二次函数有两个相等的实根;当判别式小于0时,二次函数没有实根。
2. 对称轴:对称轴是指二次函数图像的中心对称线。
对称轴的方程可以通过求解方程x = -b/2a得到,即二次函数的顶点坐标为(-b/2a, f(-b/2a))。
3. 首项系数a的正负性:首项系数a的正负性决定了二次函数的开口方向。
当a大于0时,函数图像开口向上,最值点为最低点;当a小于0时,函数图像开口向下,最值点为最高点。
二次函数的性质及其图象
象经过一、三、四象限,反比例函数 y
c x
经过二、四象限.故选择B.
经典考题
【例2】(2016年达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴
交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),
对称轴为直线x=1,下列结论:
( D)
①abc>0
(2)c<0时,抛物线与y轴的交点在y轴负半轴上.
(3)c=0时,抛物线过原点.
3.4.5 二次函数图象的平移
y=ax2
平移 |h|个 左 单 位 加 向右 右 (h 减 0)、 左 (h 0) y=a(x-h)2
上加下减 向上(k>0)、下(k<0)
平移|k|个单位
上加下减 向上(k>0)、下(k<0)
经典考题
得
4a 2b 4 36a 6b 0
,解得
a
1 2
;
b 3
(2)如图,过A作x轴的垂线,垂足为D(2,0),
连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E、
F.则:S△OAD
1 2
OD
AD
1 2
2
4
4.
S△ACD
1 2
AD
CE
1 2
4x
2
2x
4.
S△BCD
1 2
BD
CF
1 2
3.4.2 二次函数的图象及性质
要点梳理
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象是抛物线.
1.当a>0时,抛物线开口向上,对称轴是直线x= b .当x= b 时, y有最小
值为4ac b2 .在对称轴左边(即x<
二次函数的图像和性质
二次函数的图像和性质一、二次函数的一般形式二次函数是一种形式为f(x)=ax2+bx+c的函数,其中a、b、c是实数且a eq0。
二、二次函数的图像1.抛物线二次函数的图像是一条抛物线。
当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
2.判别法利用二次函数的判别式 $\\Delta = b^2 - 4ac$ 的正负性可以确定二次函数的图像开口方向和与x轴的交点情况。
3.最值点二次函数的顶点为抛物线的最值点,当a>0时,最小值在顶点处取得;当a<0时,最大值在顶点处取得。
顶点的横坐标为 $-\\frac{b}{2a}$,纵坐标为 $f\\left(-\\frac{b}{2a}\\right)$。
三、二次函数的性质1.对称轴二次函数的对称轴为直线 $x = -\\frac{b}{2a}$,即抛物线关于对称轴对称。
2.单调性当a>0时,二次函数在对称轴左侧递增,在对称轴右侧递减;当a<0时,二次函数在对称轴左侧递减,在对称轴右侧递增。
3.零点二次函数的零点为方程f(x)=0的解,可以利用求根公式 $x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$ 求得。
4.图像的平移如f(x)=a(x−ℎ)2+k,其中(ℎ,k)为平移后的顶点坐标,抛物线上下平移,方向与a的正负有关。
四、应用二次函数在几何、物理、经济等领域有着广泛的应用。
例如几何问题中的抛物线轨迹、物体自由落体运动方程、经济学中的成本、收益关系等均可用二次函数描述。
结语二次函数作为高中数学中重要的函数类型,在图像和性质上有着独特的表现,通过对其图像和性质的深入理解,可以更好地应用于解决实际问题。
希望本文的介绍能帮助读者更好地掌握二次函数的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二次函数的图像及性质》教学案例及反思
教师:同学们,我们上一节课一起研究了二次函数的表达式,那么我们一起来回忆一下表达式是什么?
学生齐答:y=ax2+bx+c(a,b,c是常数,a不为0)
教师:好,那么请同学们在黑板上写出一些常数较简单的二次函数表达式.
(学生表现很踊跃,一下写出了十多个)
教师:黑板上这些二次函数大致有几个类型?
学生:(讨论了3分钟)四大类!有y=ax2+bx+c;y=ax2+bx;y=ax2+c;y=ax2!
教师:太棒了!同学们归纳的很好,今天我们就一起来研究比较简单的一种y=ax2的图像及性质!
教师在学生板书的函数中选了四个,并把复杂的系数换成简单的常数,找到如下函数:y=x2;y=-x2;y=2x2;y=-2x2.(教师在这里让学生自己准备素材!)
教师启发学生利用函数中的“列表,描点,连线”的方法,把画上述四个函数的任务分配给A,B,C,D小组,一组一个在已画好的坐标系的小黑板上动手操作.生在自己提供的素材上进行再“加工”,兴趣很大,合作交流充分,课堂气氛活跃.教师到每组巡视、指导,在确认画图全部正确的情况下,提出了要求,开始了探究之旅.
教师:请同学们小组之间比较一下,你们画的图象位置一样吗?
学生;不一样.
教师:有什么不一样?(开始聚焦矛盾)
学生:开口不一样.
学生A:走向不一样.
学生B:经过的象限不一样.
学生C:我们的图象在原点的上方,他们的图象在原点的下方.
教师:看来是有些不一样,那么它们位置的不一样是由什么要素决定的?(教师指明了探究方向,但未指明具体的探究之路,这是明智的)
学生:是由二次项系数的取值确定的.
教师:好了,根据同学们的回答,能得到图象或函数的那些结论?(顺水推舟,放手让学生一搏)
热烈讨论后,学生D回答并板书,当a>0时,图象在原点的上方,当a<0时,图象在原点的下方。
学生E:当a>0时,图象开口向上;当a<0时,图象开口向下.
学生A站起来补充:还有顶点,顶点坐标(0,0),对称轴为y轴!
(这个过程约用了十多分时间,学生体会非常充分,从学生的神情看,绝大多数学生已接受了这几个学生的板书,但教师未对结论进行优化。
怎么没有一个学生说出二次函数的性质呢?短暂停顿后,教师确定了思路)
教师:刚才你们是研究图象的性质,你们能否由图象性质得出相应的函数的性质?
看着学生茫然的目光,我在思考是不是我的问题----
教师:请看同学们的板书,能揣摩图象“走向”的意思吗?
学生:(七嘴八舌)当a>0时,图象从左上向下走到原点后在向右上爬;当a<0时,图象从左下向上爬到原点后在向右下走(未出现教师所预期的结论)
教师:好,你们从图象的直观形象来理解的图象性质,很贴切,你们能从自变量与函数值之间的变化角度来说明“向上爬”和“向下走”吗?
学生:当a>0时,x>0,x与y同向变化;x<0,x与y异向变化..
教师:也就是说a>0,x>0,y随x的增大而---
学生:增大!
学生:a>0,x<0,y随x的增大而减小.
教师:好,那a<0时呢?
学生齐答:与a>0时相反!
(在这里,教师努力避免了“告诉”的知识传授方式。
间接引导需要智慧,是一种艺术)教师:好了,我们就用x与y之间的变化规律来表述二次函数的性质,好吗?请同学们在书上补充一下图象的性质,并熟悉一下二次函数的性质。
(接下来学生练习几道题)(教师看时间差不多了,如果不马上小结的话就拖堂了)
教师:好了,我们一起总结一下今天我们所学的内容:(1)二次函数的图像的画法(2)二次函数的性质.希望同学们课后认真整理!。