2007年全国普通高等学校招生统一考试(上海卷)文科数学WORD版(含答案)
2007年高考上海卷及答案
2007年上海高考试卷考生注意:1.答卷前,考生务必将姓名、准考证号、校验码等填写清楚.2.本试卷共10页,满分150分. 考试时间120分钟. 考生应用蓝色或黑色的钢笔或圆珠笔将答案直接写在试卷上.3.本试卷一、四大题中,小题序号后标有字母A 的试题,适合于使用一期课改教材的考生;标有字母B 的试题,适合于使用二期课改教材的考生;其它未标字母A 或B 的试题为全体考生必做的试题。
不同大题可以选择不同的A 类或B 类试题,但同一大题的选择必须相同,若在同一大题内同时选做A 类、B 类两类试题,阅卷时只以A 类试题计分,4.第19、20、21、22、23题要求写出必要的文字说明、方程式和重要的演算步骤. 只写出最后答案,而未写出主要演算过程的,不能得分. 有关物理量的数值计算问题,答案中必须明确写出数值和单位. 一.(20分)填空题. 本大题共5小题,每小题4分. 答案写在题中横线上的空白处或指定位置,不要求写出演算过程.本大题中第1、2、3小题为分叉题;分A 、B 两类,考生可任选一类答题,若两类试题均做,一律按A 类题计分.A 类题(适合于使用一期课改教材的考生) 1A .磁场对放入其中的长为l 、电流强度为I 、方向与磁场垂直的通电导线有力F 的作用,可以用磁感应强度B 描述磁场的力的性质,磁感应强度的大小B =___________,在物理学中,用类似方法描述物质基本性质的物理量还有___________等。
2A .沿x 轴正方向传播的简谐横波在t =0时的波形如图所示,P 、Q 两个质点的平衡位置分别位于x =3.5m 和x =6.5m 处。
在t 1=0.5s 时,质点P 恰好此后第二次处于波峰位置;则t 2=_________s 时,质点Q 此后第二次在平衡位置且向上运动;当t 1=0.9s 时,质点P 的位移为_____________cm 。
3A .如图所示,AB 两端接直流稳压电源,U AB =100V ,R 0=40Ω,滑动变阻器总电阻R =20Ω,当滑动片处于变阻器中点时,C 、D 两端电压U CD 为___________V ,通过电阻R 0的电流为_____________A 。
2007年全国统一高考数学试卷(文科)(全国卷一)及答案
2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.2.(5分)α是第四象限角,cosα=,则sinα=()A.B.C.D.3.(5分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(5分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(5分)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种6.(5分)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)7.(5分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(5分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.49.(5分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(5分)函数y=2cos2x的一个单调增区间是()A.B.C.D.11.(5分)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.12.(5分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8二、填空题(共4小题,每小题5分,满分20分)13.(5分)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为.14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.16.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.三、解答题(共6小题,满分80分)17.(10分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.18.(12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.19.(12分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(12分)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.21.(12分)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.22.(12分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P (Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅰ)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.【分析】集合S、T是一次不等式的解集,分别求出再求交集.【解答】解:S={x|2x+1>0}={x|x>﹣},T={x|3x﹣5<0}={x|x<},则S∩T=,故选D.2.(5分)(2007•全国卷Ⅰ)α是第四象限角,cosα=,则sinα=()A.B.C.D.【分析】根据同角的三角函数之间的关系sin2+cos2α=1,得到余弦的值,又由角在第四象限,确定符号.【解答】解:∵α是第四象限角,∴sinα=,故选B.3.(5分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(5分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(5分)(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种【分析】根据题意,先分析甲,有C42种,再分析乙、丙,有C43•C43种,进而由乘法原理计算可得答案.【解答】解;根据题意,甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,有C42种,乙、丙各选修3门,有C43•C43种,则不同的选修方案共有C42•C43•C43=96种,故选C.6.(5分)(2007•全国卷Ⅰ)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)【分析】本题考查的是不等式所表示的平面区域内点所满足的条件的问题,解决此问题只需将点代入验证即可【解答】解:将四个点的坐标分别代入不等式组,解可得,满足条件的是(0,﹣2),故选C.7.(5分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(5分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(5分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g (x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g (x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(5分)(2007•全国卷Ⅰ)函数y=2cos2x的一个单调增区间是()A.B.C.D.【分析】要进行有关三角函数性质的运算,必须把三角函数式变为y=Asin(ωx+φ)的形式,要先把函数式降幂,降幂用二倍角公式.【解答】解:函数y=2cos2x=1+cos2x,由﹣π+2kπ≤2x≤2kπ,解得﹣π+kπ≤x≤kπ,k为整数,∴k=1即有它的一个单调增区是,故选D.11.(5分)(2007•全国卷Ⅰ)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.【分析】(1)首先利用导数的几何意义,求出曲线在P(x0,y0)处的切线斜率,进而得到切线方程;(2)利用切线方程与坐标轴直线方程求出交点坐标(3)利用面积公式求出面积.【解答】解:若y=x3+x,则y′|x=1=2,即曲线在点处的切线方程是,它与坐标轴的交点是(,0),(0,﹣),围成的三角形面积为,故选A.12.(5分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为0.25.【分析】由题意知本题是一个统计问题,需要用样本的概率估计总体中位于这个范围的概率,试验发生包含的事件数时20,袋装食盐质量在497.5g~501.5g之间的可以数出有5,利用概率公式,得到结果.【解答】解:从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为P==0.25.故答案为:0.2514.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x 对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.【分析】先确定球心位置,再求球的半径,然后可求球的体积.【解答】解:正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的球心恰好是底面ABCD的中心,球的半径是1,体积为.故答案为:16.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为三、解答题(共6小题,满分80分)17.(10分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC为锐角三角形可得答案.(2)根据(1)中所求角B的值,和余弦定理直接可求b的值.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.【分析】(1)3位购买该商品的顾客中至少有1位采用一次性付款的对立事件是3位顾客中无人采用一次性付款,根据独立重复试验公式得到3位顾客中无人采用一次性付款的概率,再根据对立事件的公式得到结论.(2)3位顾客每人购买1件该商品,顾客的付款方式为一次性付款和分期付款,且购买该商品的3位顾客中有1位采用分期付款,根据互斥事件的公式得到结果.【解答】解:(Ⅰ)记A表示事件:“3位顾客中至少1位采用一次性付款”,则表示事件:“3位顾客中无人采用一次性付款”.P()=(1﹣0.6)3=0.064,.(Ⅱ)记B表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.B0表示事件:“购买该商品的3位顾客中无人采用分期付款”.B1表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则B=B0+B1.P(B0)=0.63=0.216,P(B1)=C31×0.62×0.4=0.432.P(B)=P(B0+B1)=P(B0)+P(B1)=0.216+0.432=0.648.19.(12分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC 的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(12分)(2007•全国卷Ⅰ)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.【分析】(1)依题意有,f'(1)=0,f'(2)=0.求解即可.(2)若对任意的x∈[0,3],都有f(x)<c2成立⇔f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围.【解答】解:(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即解得a=﹣3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3﹣9x2+12x+8c,f'(x)=6x2﹣18x+12=6(x﹣1)(x﹣2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<﹣1或c>9,因此c的取值范围为(﹣∞,﹣1)∪(9,+∞).21.(12分)(2007•全国卷Ⅰ)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.【分析】(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.22.(12分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.。
2007年普通高等学校招生全国统一考试文科数学试卷及答案-陕西卷
试卷类型:A2007年普通高等学校招生全国统一考试(陕西)文科数学(必修+选修Ⅰ)注意事项:1.本试卷分第一部分和第二部分。
第一部分为选择题,第二部分为非选择题。
2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息点。
3.所有答案必须在答题卡上指定区域内作答。
考试结束后,将本试卷和答题卡一并交回。
第一部分(共60分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)。
1.已知全集{}{}632,6,5,4,3,2,1,,集合==A U ,则集合C u A 等于 (A ){1,4} (B ){4,5} (C ){1,4,5} (D ){2,3,6}2.函数21lg )(x x f -=的定义域为 (A )[0,1](B )(-1,1) (C )[-1,1](D )(-∞,-1)∪(1,+∞)3.抛物线y x =2的准线方程是 (A )014=+x(B )014=+y (C )012=+x(D )012=+y4.已知55sin =∂,则∂-∂44cos sin 的值为 (A )53-(B )51-(C )51 (D )53 5.等差数列{a n }的前n 项和为S n ,若等于则442,10,2S S S ==(A )12 (B )18 (C )24 (D )426.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测。
若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是(A )4 (B )5 (C )6 (D )77.Rt △ABC 的三个顶点在半径为13的球面上,两直角边的长分别为6和8,则球心到平面ABC 的距离是 (A )5 (B )6 (C )10 (D )12 8.设函数f (x )=2+1(x ∈R)的反函数为f -1(x ),则函数y = f -1(x )的图象是9.已知双曲线C ∶a by a x (12222==>0,b >0),以C 的右焦点为圆心且与C 的渐近线相切的圆的半径是 (A )a(B)b(C)ab(D)22b a +10.已知P 为平面a 外一点,直线l ⊂a,点Q ∈l ,记点P 到平面a 的距离为a,点P 到直线l 的距离为b ,点P 、Q 之间的距离为c ,则 (A )c b a ≤≤ (B )c b a ≤≤ (C)b c a ≤≤ (D)a c b ≤≤ 11.给出如下三个命题: ①设a,b ∈R,且a b ab 若,0≠>1,则ba<1; ②四个非零实数a 、b 、c 、d 依次成等比数列的充要条件是ad =bc ;③若f (x )=log i x ,则f (|x |)是偶函数. 其中正确命题的序号是 (A )①② (B )②③ (C )①③ (D )①②③ 12.某生物生长过程中,在三个连续时段内的增长量都相等,在各时段内平均增长速度分别为v 1,v 2,v 3,该生物在所讨论的整个时段内的平均增长速度为(A )3321v v v ++(B )3111321v v v ++(C )3321v v v(D )3211113v v v ++第二部分(共90分)二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分). 13.5)21(x +的展开式中2x 项的系数..是 .(用数字作答) 14.已知实数x 、y 满足条件⎪⎩⎪⎨⎧≥≥≤--≥+-,0,0,033,042y x y x y x 则y x z 2+=的最大值为 .15.安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有 种.(用数字作答)16.如图,平面内有三个向量、、,其中与的夹角为120°,OA 与OC 的夹角为30°,=1=22.若=μλμλμλ+∈+则R),,(的值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分). 17.(本小题满分12分)设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且. (Ⅰ)求实数m 的值; (Ⅱ)求函数)(x f 的最小值.18.(本小题满分12分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为54、53、52、51,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手进入第四轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率. (注:本小题结果可用分数表示) 19.(本小题满分12分)如图,在底面为直角梯形的四棱锥,//,BC AD ABCD P 中-,90︒=∠ABC 平面⊥PA v32,2,3===AB AD PA ,BC =6.(Ⅰ)求证:BD ;PAC BD 平面⊥ (Ⅱ)求二面角A BD P --的大小. 20. (本小题满分12分)已知实数列是}{n a 等比数列,其中5547,14,,1a a a +=且成等差数列.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)数列}{n a 的前n 项和记为,n S 证明: ,n S <128,3,2,1(=n …). 21. (本小题满分12分)已知cx bx ax x f ++=23)(在区间[0,1]上是增函数,在区间),1(),0,(+∞-∞上是减函数,又.23)21(='f (Ⅰ)求)(x f 的解析式;(Ⅱ)若在区间],0[m (m >0)上恒有)(x f ≤x 成立,求m 的取值范围. 22. (本小题满分14分)已知椭圆C :2222by a x +=1(a >b >0)的离心率为36,短轴一个端点到右焦点的距离为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为23,求△AOB 面积的最大值.2007年普通高等学校招生全国统一考试(陕西卷)数 学(文史类)参考答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)1.C 2.B 3.B 4.A 5.C 6.C 7.D 8.A 9.B 10.A 11.C 12.D二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分).13.40 14.8 15.60 16.6三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分) 17.(本小题满分12分) 解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为118.(本小题满分12分)解:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(1234)i A i =,,,,则14()5P A =,23()5P A =,32()5P A =,41()5P A =,∴该选手进入第四轮才被淘汰的概率41234123432496()()()()()5555625P P A A A A P A P A P A P P ===⨯⨯⨯=. (Ⅱ)该选手至多进入第三轮考核的概率3112123()P P A A A A A A =++112123()()()()()()P A P A P A P A P A P A =++142433101555555125=+⨯+⨯⨯=. 19.(本小题满分12分) 解法一:(Ⅰ)PA ⊥平面ABCD ,BD ⊂平面ABCD .BD PA ∴⊥.又tan AD ABD AB ==tan BC BAC AB ==. 30ABD ∴=∠,60BAC =∠,90AEB ∴=∠,即BD AC ⊥.又PAAC A =.BD ∴⊥平面PAC .(Ⅱ)连接PE .BD ⊥平面PAC .BD PE ∴⊥,BD AE ⊥. AEP ∴∠为二面角P BD A --的平面角.在Rt AEB △中,sin AE AB ABD == tan APAEP AE∴==60AEP ∴=∠, ∴二面角P BD A --的大小为60.解法二:(Ⅰ)如图,建立坐标系,则(000)A ,,,0)B ,,0)C ,,(020)D ,,,(003)P ,,, (003)AP ∴=,,,0)AC =,,(0)BD =-,, 0BD AP ∴=,0BD AC =.BD AP ∴⊥,BD AC ⊥,又PAAC A =,BD ∴⊥面PAC .(Ⅱ)设平面ABD 的法向量为(001)=,,m ,设平面PBD 的法向量为(1)x y =,,n , 则0BP =n ,0BD =n ,AEDPCBC3020y⎧-+=⎪∴⎨-+=⎪⎩,,解得32xy⎧=⎪⎪⎨⎪=⎪⎩,312⎫∴=⎪⎪⎝⎭,,n.cos∴<m,12>==m nnm n.∴二面角P BD A--的大小为60.20.(本小题满分12分)解:(Ⅰ)设等比数列{}n a的公比为()q q∈R,由6711a a q==,得61a q-=,从而3341a a q q-==,4251a a q q-==,5161a a q q-==.因为4561a a a+,,成等差数列,所以4652(1)a a a+=+,即3122(1)q q q---+=+,122(1)2(1)q q q---+=+.所以12q=.故116111642nn nna a q q q----⎛⎫=== ⎪⎝⎭.(Ⅱ)116412(1)1128112811212nnnna qSq⎡⎤⎛⎫-⎢⎥⎪⎡⎤⎝⎭-⎢⎥⎛⎫⎣⎦===-<⎢⎥⎪-⎝⎭⎢⎥⎣⎦-.21.(本小题满分12分)解:(Ⅰ)2()32f x ax bx c'=++,由已知(0)(1)0f f''==,即320ca b c=⎧⎨++=⎩,,解得32cb a=⎧⎪⎨=-⎪⎩,.2()33f x ax ax'∴=-,13332422a af⎛⎫'∴=-=⎪⎝⎭,2a∴=-,32()23f x x x∴=-+.(Ⅱ)令()f x x≤,即32230x x x-+-≤,(21)(1)0x x x∴--≥,12x∴≤≤或1x≥.又()f x x≤在区间[]0m,上恒成立,12m∴<≤.22.(本小题满分14分)解:(Ⅰ)设椭圆的半焦距为c,依题意c a a ⎧=⎪⎨⎪=⎩1b ∴=,∴所求椭圆方程为2213x y +=.(Ⅱ)设11()A x y ,,22()B x y ,. (1)当AB x ⊥轴时,AB = (2)当AB 与x 轴不垂直时, 设直线AB 的方程为y kx m =+.=223(1)4m k =+.把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,122631km x x k -∴+=+,21223(1)31m x x k -=+. 22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦ 22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++ 2422212121233(0)34196123696k k k k k k=+=+≠+=++⨯+++≤.当且仅当2219k k =,即k =时等号成立.当0k =时,AB = 综上所述max 2AB =.∴当AB 最大时,AOB △面积取最大值max 12S AB =⨯=. B卷选择题答案:1.B 2.C 3.A 4.C 5.B 6.B 7.A 8.D 9.D 10.C11.D 12.B。
2007年普通高等学校全国招生统一考试(广东卷)数学文科试题(WORD精校版)
试卷类型:A2007年普通高等学校招生全国统一考试(广东卷)数 学(文科)本试卷共4页,21小题。
满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再填涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答。
答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题号(或题组号),对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式V=31Sh ,其中S 是锥体的底面积,h 是锥体的高.如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ).用最小二乘法求线性回归方程系数公式x b y n xn x yx n y x b ni i ni i i-=-∑-∑===,2121一、选择题:本大题共l0小题,每小题5分,满分50分。
在每小题给出的四个选项中。
只有一项是符合题目要求的。
1.已知集合{|10}M x x =+>,1{|0}1N x x=>-,则M N = A .{x|-1≤x <0} B .{x |x>1} C .{x|-1<x <0} D .{x |x ≥-1}2.若复数(1+bi )(2+i )是纯虚数(i 是虚数单位,b 是实数),则b=A .-2B .12- C.12D .23.若函数f (x )=x 3(x ∈R ),则函数y=f (-x )在其定义域上是A .单调递减的偶函数B .单调递减的奇函数C .单凋递增的偶函数D .单涮递增的奇函数4.若向量a 、b 满足||||1a b ==,a 与b 的夹角为60︒,则a ·a+a ·b=A .12B .32C.312+ D .25.客车从甲地以60km /h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km /h 的速度匀速行驶l 小时到达丙地。
2007年高考上海卷数学理科试卷含答案.doc
2007年全国普通高等学校招生统一考试(上海卷)数学试卷(理工农医类)考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2.本试卷共有21道试题,满分150分.考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.函数3)4lg(--=x x y 的定义域是 .2.若直线1210l x my ++=: 与直线231l y x =-:平行,则=m .3.函数1)(-=x xx f 的反函数=-)(1x f .4.方程 96370x x -∙-=的解是 .5.若x y ∈+R ,,且14=+y x ,则x y ∙的最大值是 . 6.函数⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=2πsin 3πsin x x y 的最小正周期=T .7.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).8.以双曲线15422=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是 . 9.对于非零实数a b ,,以下四个命题都成立: ① 01≠+aa ; ② 2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是 . 10.在平面上,两条直线的位置关系有相交、平行、重合三种. 已知αβ,是两个相交平面,空间两条直线12l l ,在α上的射影是直线12s s ,,12l l ,在β上的射影是直线12t t ,.用1s 与2s ,1t 与2t 的位置关系,写出一个总能确定1l 与2l 是异 面直线的充分条件: . 11.已知P 为圆1)1(22=-+y x 上任意 一点(原点O 除外),直线OP 的倾斜角为θ弧度,记||OP d =. 在右侧的坐标系中,画出以()d θ, 为坐标的点的轨迹的大致图形为二.选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.已知a b ∈R ,,且i ,i 2++b a (i 是虚数单位)是实系数一元二次方程02=++q px x 的两个根,那么p q ,的值分别是( ) A.45p q =-=, B.43p q =-=, C.45p q ==,D.43p q ==,13.设a b ,是非零实数,若b a <,则下列不等式成立的是( ) A.22b a < B.b a ab 22< C.ba ab 2211< D.b aa b < 14.直角坐标系xOy 中,i j ,分别是与x y ,轴正方向同向的单位向量.在直角三角形 ABC 中,若j k i AC j i AB+=+=3,2,则k 的可能值个数是( )A.1 B.2 C.3 D.415.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推 出(1)f k +≥2)1(+k 成立”.那么,下列命题总成立的是( ) A.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立 B.若(5)25f ≥成立,则当5k ≤时,均有2()f k k ≥成立CB1C 1B1AAC.若49)7(<f 成立,则当8k ≥时,均有2)(k k f <成立 D.若25)4(=f 成立,则当4k ≥时,均有2()f k k ≥成立三.解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)如图,在体积为1的直三棱柱111C B A ABC -中,1,90===∠BC AC ACB.求直线B A 1与平面C C BB 11所成角的大小(结果用反三角函数值表示).17.(本题满分14分)在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos=B ,求ABC △的面积S .18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分. 已知函数0()(2≠+=x xa x x f ,常数)a ∈R .(1)讨论函数)(x f 的奇偶性,并说明理由;(2)若函数)(x f 在[2)x ∈+∞,上为增函数,求a 的取值范围.20.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如果有穷数列123n a a a a ,,,,(n 为正整数)满足条件n a a =1,12-=n a a ,…,1a a n =,即1+-=i n i a a (12i n =,,,),我们称其为“对称数列”.例如,由组合数组成的数列01m m m m C C C ,,,就是“对称数列”.(1)设{}n b 是项数为7的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项;(2)设{}n c 是项数为12-k (正整数1>k )的“对称数列”,其中121k k k c c c +-,,,是首项为50,公差为4-的等差数列.记{}n c 各项的和为12-k S .当k 为何值时,12-k S 取得最大值?并求出12-k S 的最大值;(3)对于确定的正整数1>m ,写出所有项数不超过m 2的“对称数列”,使得211222m -,,,,依次是该数列中连续的项;当m 1500>时,求其中一个“对称数列”前2008项的和2008S .21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆12222=+cx b y (0)x ≤合成的曲线称作“果圆”,其中222c b a +=,0>a ,0>>c b .如图,点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 分别是“果圆”与x ,y轴的交点.(1)若012F F F △是边长为1的等边三角形,求 “果圆”的方程;(2)当21A A >21B B 时,求ab的取值范围; (3的弦.试研究:是否存在实数k ,使斜率为k 平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的k 值;若不存在,说明理由.2007年全国普通高等学校招生统一考试(上海卷)数学试卷(理工农医类)答案要点一、填空题(第1题至第11题) 1. {}34≠<x x x 且 2. 32-3.)(11≠-x x x4.7log 3 5.161 6. π 7. 3.0 8. )3(122+=x y 9.②④10. 21//s s ,并且1t 与2t 相交(//1t 2t ,并且1s 与2s 相交)11.二、选择题(第12题至第15题)三、解答题(第16题至第21题) 16.解法一: 由题意,可得体积11111122ABC V CC S CC AC BC CC ====△, ∴ 211==CC AA .连接1BC .1111111AC B C AC CC ⊥⊥,,⊥∴11C A 平面C C BB 11,11BC A ∠∴是直线B A 1与平面C C BB 11所成的角. 52211=+=BC CC BC ,51t a n11111==∠∴BC C A BC A ,则 11BC A ∠=55arctan . 即直线B A 1与平面C C BB 11所成角的大小为55arctan . 解法二: 由题意,可得CB1B1A A1C体积11111122ABC V CC S CC AC BC CC ∆====, 21=∴CC ,如图,建立空间直角坐标系. 得点(010)B ,,, 1(002)C ,,,1(102)A ,,. 则1(112)A B =--,,, 平面C C BB 11的法向量为(100)n =,,. 设直线B A 1与平面C C BB 11所成的角为θ,A 1与的夹角为ϕ, 则116cos 6A B n A Bn ϕ==-66arcsin ,66|cos |sin ===∴θϕθ,即直线B A 1与平面C C BB 11所成角的大小为66arcsin. 17.解: 由题意,得3cos 5B B =,为锐角,54sin =B ,10274π3sin )πsin(sin =⎪⎭⎫ ⎝⎛-=--=B C B A , 由正弦定理得 710=c , ∴ 111048sin 222757S ac B ==⨯⨯⨯=.18.解:(1)由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为 %36,%38,%40,%42.则2006年全球太阳电池的年生产量为8.249942.140.138.136.1670≈⨯⨯⨯⨯(兆瓦).(2)设太阳电池的年安装量的平均增长率为x ,则441420(1)95%2499.8(142%)x ++≥. 解得0.615x ≥.因此,这四年中太阳电池的年安装量的平均增长率至少应达到%5.61. 19.解:(1)当0=a 时,2)(x x f =, 对任意(0)(0)x ∈-∞+∞,,,)()()(22x f x x x f ==-=-, )(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,, 取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,,(1)(1)(1)f f f f ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数. (2)解法一:设122x x <≤, 22212121)()(x a x x a x x f x f --+=-[]a x x x x x x x x -+-=)()(21212121, 要使函数)(x f 在[2)x ∈+∞,上为增函数,必须0)()(21<-x f x f 恒成立.121204x x x x -<>,,即)(2121x x x x a +<恒成立.又421>+x x ,16)(2121>+∴x x x x . a ∴的取值范围是(16]-∞,.解法二:当0=a 时,2)(x x f =,显然在[2)+∞,为增函数.当0<a 时,反比例函数xa在[2)+∞,为增函数, xax x f +=∴2)(在[2)+∞,为增函数. 当0>a 时,同解法一.20.解:(1)设{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d , ∴数列{}n b 为25811852,,,,,,.(2)12112112-+--+++++++=k k k k k c c c c c c S k k k k c c c c -+++=-+)(2121 ,50134)13(42212-⨯+--=-k S k ,∴当13=k 时,12-k S 取得最大值.12-k S 的最大值为626. (3)所有可能的“对称数列”是: ① 22122122222221m m m ---,,,,,,,,,,; ② 2211221222222221m m m m ----,,,,,,,,,,,; ③ 122221222212222m m m m ----,,,,,,,,,,;④ 1222212222112222m m m m ----,,,,,,,,,,,. 对于①,当2008m ≥时,1222212008200722008-=++++= S . 当15002007m <≤时,200922122008222221----+++++++=m m m m S 2009212212---+-=m m m 1222200921--+=--m m m . 对于②,当2008m ≥时,1220082008-=S . 当15002007m <≤时,2008S 122200821--=-+m m .对于③,当2008m ≥时,2008200822--=m m S .当15002007m <≤时,2008S 3222009-+=-mm .对于④,当2008m ≥时,2008200822--=m m S .当15002007m <≤时,2008S 2222008-+=-mm .21. 解:(1) ()()012(0)00F c F F ,,,,,021211F F b F F ∴=====,,于是22223744c a b c ==+=,,所求“果圆”方程为2241(0)7x y x +=≥,2241(0)3y x x +=≤. (2)由题意,得 b c a 2>+,即a b b a ->-222.2222)2(a c b b =+> ,222)2(a b b a ->-∴,得54<a b . 又21,222222>∴-=>a b b a c b .45b a ⎫∴∈⎪⎪⎝⎭,. (3)设“果圆”C 的方程为22221(0)x y x a b +=≥,22221(0)y x x b c+=≤.记平行弦的斜率为k .当0=k 时,直线()y t b t b =-≤≤与半椭圆22221(0)x y x a b +=≥的交点是P t ⎛⎫ ⎪ ⎪⎝⎭,与半椭圆22221(0)y x x b c +=≤的交点是Q t ⎛⎫- ⎪ ⎪⎝⎭.∴ P Q ,的中点M ()x y ,满足 221,2a c t x b y t ⎧-⎪=-⎨⎪=⎩,得 122222=+⎪⎭⎫ ⎝⎛-b y c a x . b a 2<,∴ 22220222a c a c b a c b b ----+⎛⎫-=≠ ⎪⎝⎭. 综上所述,当0=k 时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.当0>k 时,以k 为斜率过1B 的直线l 与半椭圆22221(0)x y x a b+=≥的交点是22232222222ka b k a b b k a b k a b ⎛⎫- ⎪++⎝⎭,.由此,在直线l 右侧,以k 为斜率的平行弦的中点轨迹在直线x ka b y 22-=上,即不在某一椭圆上. 当0<k 时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.。
2007年普通高等学校招生全国统一考试数学卷(上海.理)含答案 (2)
2007年全国普通高等学校招生统一考试(上海卷)数学试卷(理工农医类)考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚. 2.本试卷共有21道试题,满分150分.考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.函数3)4lg(--=x x y 的定义域是 .2.若直线1210l x my ++=: 与直线231l y x =-:平行,则=m . 3.函数1)(-=x xx f 的反函数=-)(1x f .4.方程 96370x x -•-=的解是 .5.若x y ∈+R ,,且14=+y x ,则x y •的最大值是 .6.函数⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=2πsin 3πsin x x y 的最小正周期=T .7.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).8.以双曲线15422=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是. 9.对于非零实数a b ,,以下四个命题都成立: ① 01≠+aa ; ② 2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是 .10.在平面上,两条直线的位置关系有相交、平行、重合三种. 已知αβ,是两个相交平面,空间两条直线12l l ,在α上的射影是直线12s s ,,12l l ,在β上的射影是直线12t t ,.用1s 与2s ,1t 与2t 的位置关系,写出一个总能确定1l 与2l 是异 面直线的充分条件:. 11.已知P 为圆1)1(22=-+y x 上任意 一点(原点O 除外),直线OP 的倾斜角为θ弧度,记||OP d =. 在右侧的坐标系中,画出以()d θ, 为坐标的点的轨迹的大致图形为二.选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.已知a b ∈R ,,且i ,i 2++b a (i 是虚数单位)是实系数一元二次方程 02=++q px x 的两个根,那么p q ,的值分别是( ) A.45p q =-=, B.43p q =-=, C.45p q ==,D.43p q ==,1C 1B1A13.设a b ,是非零实数,若b a <,则下列不等式成立的是( ) A.22b a < B.b a ab 22< C.ba ab 2211< D.b aa b < 14.直角坐标系xOy 中,i j ,分别是与x y ,轴正方向同向的单位向量.在直角三角形ABC 中,若j k i j i+=+=3,2,则k 的可能值个数是( ) A.1 B.2 C.3 D.4 15.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”.那么,下列命题总成立的是( ) A.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立 B.若(5)25f ≥成立,则当5k ≤时,均有2()f k k ≥成立 C.若49)7(<f 成立,则当8k ≥时,均有2)(k k f <成立 D.若25)4(=f 成立,则当4k ≥时,均有2()f k k ≥成立三.解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)如图,在体积为1的直三棱柱111C B A ABC -中,1,90===∠BC AC ACB .求直线B A 1与平面C C BB 11所成角的大小(结果用反三角函数值表示).17.(本题满分14分)在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos=B ,求ABC △的面积S .18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.已知函数0()(2≠+=x xa x x f ,常数)a ∈R .(1)讨论函数)(x f 的奇偶性,并说明理由;(2)若函数)(x f 在[2)x ∈+∞,上为增函数,求a 的取值范围.20.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如果有穷数列123n a a a a ,,,,(n 为正整数)满足条件n a a =1,12-=n a a ,…,1a a n =,即1+-=i n i a a (12i n =,,,),我们称其为“对称数列”.例如,由组合数组成的数列01mm m m C C C ,,,就是“对称数列”.(1)设{}n b 是项数为7的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b , 114=b .依次写出{}n b 的每一项;(2)设{}n c 是项数为12-k (正整数1>k )的“对称数列”,其中121k k k c c c +-,,,是首项为50,公差为4-的等差数列.记{}n c 各项的和为12-k S .当k 为何值时,12-k S 取得最大值?并求出12-k S 的最大值;(3)对于确定的正整数1>m ,写出所有项数不超过m 2的“对称数列”,使得211222m -,,,,依次是该数列中连续的项;当m 1500>时,求其中一个“对称数列”前2008项的和2008S .21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆12222=+cx b y (0)x ≤合成的曲线称作“果圆”,其中222c b a +=,0>a ,0>>c b .如图,点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 分别是“果圆”与x ,y 轴的交点.(1)若012F F F △是边长为1“果圆”的方程;(2)当21A A >21B B 时,求ab的取值范围;(3)连接“果圆”上任意两点的线段称为“果圆” 的弦.试研究:是否存在实数k ,使斜率为k 的“果圆”平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的k 值;若不存在,说明理由.2007年全国普通高等学校招生统一考试(上海卷)数学试卷(理工农医类)答案要点一、填空题(第1题至第11题) 1. {}34≠<x x x 且2. 32-3. )(11≠-x x x 4.7log 35. 161 6. π 7. 3.08. )3(122+=x y9.②④10. 21//s s ,并且1t 与2t 相交(//1t 2t ,并且1s 与2s 相交)11.二、选择题(第12题至第15题)题 号12131415答 案ACBD三、解答题(第16题至第21题)16.解法一: 由题意,可得体积11111122ABC V CC S CC AC BC CC ====△, ∴ 211==CC AA .连接1BC .1111111AC B C AC CC ⊥⊥,,⊥∴11C A 平面C C BB 11,11BC A ∠∴是直线B A 1与平面C C BB 11所成的角. 52211=+=BC CC BC , 51tan 11111==∠∴BC C A BC A ,则 11BC A ∠=55arctan . CB1B1A A1C即直线B A 1与平面C C BB 11所成角的大小为55arctan. 解法二: 由题意,可得 体积11111122ABC V CC S CC AC BC CC ∆====, 21=∴CC ,如图,建立空间直角坐标系. 得点(010)B ,,,1(002)C ,,,1(102)A ,,. 则1(112)A B =--,,, 平面C C BB 11的法向量为(100)n =,,. 设直线B A 1与平面C C BB 11所成的角为θ,A 1与的夹角为ϕ, 则116cos 6A B n A Bn ϕ==-66arcsin ,66|cos |sin ===∴θϕθ,即直线B A 1与平面C C BB 11所成角的大小为66arcsin . 17.解: 由题意,得3cos 5B B =,为锐角,54sin =B , 10274π3sin )πsin(sin =⎪⎭⎫ ⎝⎛-=--=B C B A , 由正弦定理得 710=c , ∴ 111048sin 222757S ac B ==⨯⨯⨯=.18.解:(1)由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为%36,%38,%40,%42.则2006年全球太阳电池的年生产量为8.249942.140.138.136.1670≈⨯⨯⨯⨯(兆瓦).(2)设太阳电池的年安装量的平均增长率为x ,则441420(1)95%2499.8(142%)x ++≥.解得0.615x ≥.因此,这四年中太阳电池的年安装量的平均增长率至少应达到%5.61. 19.解:(1)当0=a 时,2)(x x f =,对任意(0)(0)x ∈-∞+∞,,,)()()(22x f x x x f ==-=-,)(x f ∴为偶函数. 当0≠a 时,2()(00)af x x a x x=+≠≠,,取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,, (1)(1)(1)(1)f f f f ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数. (2)解法一:设122x x <≤, 22212121)()(x a x x a x x f x f --+=-[]a x x x x x x x x -+-=)()(21212121, 要使函数)(x f 在[2)x ∈+∞,上为增函数,必须0)()(21<-x f x f 恒成立.121204x x x x -<>,,即)(2121x x x x a +<恒成立.又421>+x x ,16)(2121>+∴x x x x . a ∴的取值范围是(16]-∞,.解法二:当0=a 时,2)(x x f =,显然在[2)+∞,为增函数.当0<a 时,反比例函数xa在[2)+∞,为增函数,xax x f +=∴2)(在[2)+∞,为增函数. 当0>a 时,同解法一.20.解:(1)设{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d , ∴数列{}n b 为25811852,,,,,,.(2)12112112-+--+++++++=k k k k k c c c c c c S k k k k c c c c -+++=-+)(2121 , 50134)13(42212-⨯+--=-k S k , ∴当13=k 时,12-k S 取得最大值. 12-k S 的最大值为626. (3)所有可能的“对称数列”是:① 22122122222221m m m ---,,,,,,,,,,; ② 2211221222222221m m m m ----,,,,,,,,,,,; ③ 122221222212222m m m m ----,,,,,,,,,,; ④ 1222212222112222m m m m ----,,,,,,,,,,,. 对于①,当2008m ≥时,1222212008200722008-=++++= S . 当15002007m <≤时,200922122008222221----+++++++=m m m m S 2009212212---+-=m m m 1222200921--+=--m m m . 对于②,当2008m ≥时,1220082008-=S .当15002007m <≤时,2008S 122200821--=-+m m . 对于③,当2008m ≥时,2008200822--=m m S . 当15002007m <≤时,2008S 3222009-+=-m m . 对于④,当2008m ≥时,2008200822--=m m S . 当15002007m <≤时,2008S 2222008-+=-m m .21. 解:(1)()()012(0)00F c F F -,,,,,021211F F b F F ∴=====,,于是22223744c a b c ==+=,,所求“果圆”方程为2241(0)7x y x +=≥,2241(0)3y x x +=≤.(2)由题意,得 b c a 2>+,即a b b a ->-222. 2222)2(a c b b =+> ,222)2(a b b a ->-∴,得54<a b . 又21,222222>∴-=>a b b a c b . 45b a ⎫∴∈⎪⎪⎝⎭,. (3)设“果圆”C 的方程为22221(0)x y x a b +=≥,22221(0)y x x b c+=≤.记平行弦的斜率为k .当0=k 时,直线()y t b t b =-≤≤与半椭圆22221(0)x y x a b +=≥的交点是P t ⎛⎫ ⎪ ⎪⎝⎭,与半椭圆22221(0)y x x b c +=≤的交点是Q t ⎛⎫- ⎪ ⎪⎝⎭. ∴ P Q ,的中点M ()x y ,满足 221,2a ct x b y t ⎧-⎪=-⎨⎪=⎩,得122222=+⎪⎭⎫ ⎝⎛-b y c a x . b a 2<,∴ 22220222a c a c b a c b b ----+⎛⎫-=≠ ⎪⎝⎭. 综上所述,当0=k 时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.当0>k 时,以k 为斜率过1B 的直线l 与半椭圆22221(0)x y x a b +=≥的交点是22232222222ka b k a b b k a b k a b ⎛⎫- ⎪++⎝⎭,. 由此,在直线l 右侧,以k 为斜率的平行弦的中点轨迹在直线x kab y 22-=上,即不在某一椭圆上. 当0<k 时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.。
2007年普通高等学校招生全国统一考试(全国新课标)参考答案
1PD CBAAOSCB2007年普通高等学校招生全国统一考试(新课标全国卷)1.A 2.C 3.A 4.D 5.C 6.B7.C8.B9.C10.D11.D12.B13.3 14.1 15.44i - 16.121.【解析】由{}{}|1|22A x x B x x =>-=-<<,,可得A B = {}|2x x >-.答案:A 2.【解析】p ⌝是对p 的否定,故有:,x ∃∈R sin 1.x >答案:C3.【解析】π3()sin 2,32f ππ⎛⎫=-=- ⎪⎝⎭排除B、D,π()sin 20,663f ππ⎛⎫=⨯-= ⎪⎝⎭排除C。
也可由五点法作图验证。
答案:A 4.【解析】1322-=a b (12).-,答案:D 5.【解析】由程序知,15021222502502550.2S +=⨯+⨯++⨯=⨯⨯= 答案:C 6.【解析】曲线223y x x =-+的顶点是(12),,则:1, 2.b c ==由a b c d ,,,成等比数列知,12 2.ad bc ==⨯=答案:B7.【解析】由抛物线定义,2132()()(),222p p px x x +=+++即:2132FP FP FP =+.答案:C 8.【解析】如图,18000202020.33V =⨯⨯⨯=答案:B(8题图) (11题图)9.【解析】22cos 2cos sin 22(sin cos ),π22sin (sin cos )42αααααααα-==-+=-⎛⎫-- ⎪⎝⎭1cos sin .2αα⇒+=答案C10.【解析】:(),x x y e e ''⇒==曲线在点2(2)e ,处的切线斜率为2e ,因此切线方程为22(2),y e e x -=-2C BFAOyx则切线与坐标轴交点为2(1,0),(0,),A B e -所以:2211.22AOBe S e ∆=⨯⨯=答案:D 11.【解析】如图,2,90,2,AB r ACB BC r ⇒=∠==3111122,3323ABC V SO S r r r r ∆∴=⨯⨯=⋅⋅⋅⋅=三棱锥 333441,::4.333V r V V r r πππ=∴==球球三棱锥答案:D12.【解析】(78910)58.5,20x +++⨯== 甲2222215[(78.5)(88.5)(98.5)(108.5)]1.25,20s ⨯-+-+-+-== (710)6(89)48.5,20x +⨯++⨯==乙2222226[(78.5)(108.5)]4[(88.5)(98.5)]1.45,20s ⨯-+-+⨯-+-== (710)4(89)68.5,20x +⨯++⨯==丙2222234[(78.5)(108.5)]6[(88.5)(98.5)]1.05,20s ⨯-+-+⨯-+-== 22213213.s s s s s s >>>>2由得 答案:B13.【解析】如图,过双曲线的顶点A 、焦点F 分别向其渐近线作垂线, 垂足分别为B 、C ,则:||||63.||||2OF FC c OA AB a =⇒== 答案:3 14.【解析】(1)(1)2(1)0, 1.f f a a =-⇒+=∴=- 答案:-1 15.【解析】238i 2i 3i 8i i -2-3i +4+5i -6+7i +8=4-4i.++++= 答案:44i -16.【解析】46563,a a a +=⇒=1515135510 1.22a a a S a ++=⨯=⨯=⇒= 511.512a a d -∴==-答案:1217.解:在BCD △中,πCBD αβ∠=--.由正弦定理得sin sin BC CDBDC CBD=∠∠.所以sin sin sin sin()CD BDC s BC CBD βαβ∠==∠+·.在ABC Rt △中,tan sin tan sin()s AB BC ACB θβαβ=∠=+·.318.解:(Ⅰ)取AB 的中点E ,连结DE CE ,,因为ADB 是等边三角形,所以DE AB ⊥.当平面ADB ⊥平面ABC 时,因为平面ADB 平面ABC AB =,所以DE ⊥平面ABC ,可知DE CE ⊥ 由已知可得31DE EC ==,,在DEC Rt △中,222CD DE EC =+=.(Ⅱ)当ADB △以AB 为轴转动时,总有AB CD ⊥. 证明:(ⅰ)当D 在平面ABC 内时,因为AC BC AD BD ==,,所以C D ,都在线段AB 的垂直平分线上,即AB CD ⊥.(ⅱ)当D 不在平面ABC 内时,由(Ⅰ)知AB DE ⊥.又因AC BC =,所以AB CE ⊥. 又DE CE ,为相交直线,所以AB ⊥平面CDE ,由CD ⊂平面CDE ,得AB CD ⊥. 综上所述,总有AB CD ⊥.19.解:()f x 的定义域为32⎛⎫-+ ⎪⎝⎭,∞.(Ⅰ)224622(21)(1)()2232323x x x x f x x x x x ++++'=+==+++. 当312x -<<-时,()0f x '>;当112x -<<-时,()0f x '<;当12x >-时,()0f x '>.从而,()f x 分别在区间312⎛⎫-- ⎪⎝⎭,,12⎛⎫-+ ⎪⎝⎭,∞单调增加,在区间112⎛⎫--⎪⎝⎭,单调减少. (Ⅱ)由(Ⅰ)知()f x 在区间3144⎡⎤-⎢⎥⎣⎦,的最小值为11ln 224f ⎛⎫-=+ ⎪⎝⎭.又31397131149lnln ln 1ln 442162167226f f ⎛⎫⎛⎫⎛⎫--=+--=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0<. 所以()f x 在区间3144⎡⎤-⎢⎥⎣⎦,的最大值为117ln 4162f ⎛⎫=+ ⎪⎝⎭.20.解:设事件A 为“方程2220a ax b ++=有实根”.当0a >,0b >时,方程2220x ax b ++=有实根的充要条件为a b ≥.(Ⅰ)基本事件共12个:(00)(01)(02)(10)(11)(12)(20)(21)(22)(30)(31)(32),,,,,,,,,,,,,,,,,,,,,,,.其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为93()124P A ==. (Ⅱ)试验的全部结束所构成的区域为{}()|0302a b a b ,,≤≤≤≤. 构成事件A 的区域为{}()|0302a b a b a b ,,,≤≤≤≤≥. EDBCA4所以所求的概率为2132222323⨯-⨯==⨯.21.解:(Ⅰ)圆的方程可写成22(6)4x y -+=,所以圆心为(60)Q ,,过(02)P ,且斜率为k 的直线方程为2y kx =+.代入圆方程得22(2)12320x kx x ++-+=,整理得22(1)4(3)360k x k x ++-+=.① 直线与圆交于两个不同的点A B ,等价于2222[4(3)]436(1)4(86)0k k k k ∆=--⨯+=-->, 解得304k -<<,即k 的取值范围为304⎛⎫- ⎪⎝⎭,. (Ⅱ)设1122()()A x y B x y ,,,,则1212()OA OB x x y y +=++ ,,由方程①,1224(3)1k x x k -+=-+ ②又1212()4y y k x x +=++.③ 而(02)(60)(62)P Q PQ =-,,,,,. 所以OA OB + 与PQ 共线等价于1212()6()x x y y +=+, 将②③代入上式,解得34k =-.由(Ⅰ)知304k ⎛⎫∈ ⎪⎝⎭,,故没有符合题意的常数k .22.A(Ⅰ)证明:连结OP OM ,. 因为AP 与O 相切于点P ,所以OP AP ⊥. 因为M 是O 的弦BC 的中点,所以OM BC ⊥. 于是180OPA OMA ∠+∠=°.由圆心O 在PAC ∠的内部,可知四边形APOM 的对角互补,所以A P O M ,,,四点共圆. (Ⅱ)解:由(Ⅰ)得A P O M ,,,四点共圆,所以OAM OPM ∠=∠.由(Ⅰ)得OP AP ⊥.由圆心O 在PAC ∠的内部,可知90OPM APM ∠+∠=°. 所以90OAM APM ∠+∠=°. 22.B解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(Ⅰ)cos x ρθ=,sin y ρθ=,由4cos ρθ=得24cos ρρθ=. 所以224x y x +=.即2240x y x +-=为1O 的直角坐标方程. 同理2240x y y ++=为2O 的直角坐标方程.APO MCB5(Ⅱ)由22224040x y x x y y ⎧+-=⎪⎨++=⎪⎩,解得1100x y =⎧⎨=⎩,,2222x y =⎧⎨=-⎩. 即1O ,2O 交于点(00),和(22)-,.过交点的直线的直角坐标方程为y x =-. 22.C解:(Ⅰ)令214y x x =+--,则1521334254x x y x x x x ⎧---⎪⎪⎪=--<<⎨⎪⎪+⎪⎩, ,, ,, .≤≥...............3分作出函数214y x x =+--的图象,它与直线2y =的交点为(72)-,和523⎛⎫ ⎪⎝⎭,.所以2142x x +-->的解集为5(7)3x x ⎛⎫--+ ⎪⎝⎭,,.(Ⅱ)由函数214y x x =+--的图像可知,当12x =-时,214y x x =+--取得最小值92-.12- O 2y =4xy。
2007年全国普通高校招生统一考试(全国Ⅰ卷)文科数学
2007年普通高等学校招生全国统一考试文科数学第Ⅰ卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓号和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A、B互斥,那么 球的表面积公式 P(A+B)=P(A)+P(B) S=4πR2 如果事件A、B相互独立,那么 其中R 表示球的半径 P(A·B)=P(A)·P(B) 球的体积公式 如果事件A在一次试验中发生的概率是P,那么 V=πR3 n次独立重复试验中事件A恰好发生k次的概率 P n(k)=CP k(1-P)n-k(k=0,1,2,…,n)一、选择题 (1)设S=,T=,则S∩T=(A)Ø (B)(C) (D)(2)α是第四象限角,cosα=,则sinα=(A) (B)- (C) (D)-(3)已知向量a=(-5,6),b=(6,5),则a与b(A)垂直 (B)不垂直也不平行 (C)平行且同向 (D)平行且反向(4)已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为(A)(B)(C)(C)(5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有(A)36种(B)48种(C)96种(D)192种(6)(A)(0,2) (B)(-2,0) (C)(0,-2) (D)(2,0)(7)如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为(A)(B)(C)(D)(8)设a>1,函数f(x)=log,x在区间[a,2a]上的最大值与最小值之差为则a=(A) (B)2 (C)2 (D)4(9)f(x),g(x)是定义在R上的函数,h(x)=f(x)+ g(x),则“f(x),g(x)均为偶函数”,是“h(x)为偶数”的(A)充分条件(B)充分而不必要的条件(C)必要而不充分的条件(D)既不充分也不必要的条件(10)函数y=2cos2x的一个单调增区间是(A)()(B)()(C)()(D)()(11)曲线y=在点(1,)处的切线与坐标轴围成的三角形面积为(A)(B)(C)(D)(12)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,满足为K,则△AKF的面积是(A)4 (B)3 (C) 4 (D)82007年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2007年普通高等学校招生全国统一考试文科数学试卷及答案-湖北卷
2007年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷上无效.3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.tan 690°的值为( )A.D.2.如果{}|9U x x =是小于的正整数,{}1234A =,,,,{}3456B =,,,,那么U UA B =痧( )A.{}12,B.{}34,C.{}56,D.{}78,3.如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( )A.10 B.6 C.5 D.34.函数21(0)21x x y x +=<-的反函数是( )A.21log (1)1x y x x +=<-- B.21log (1)1x y x x +=>-C.21log (1)1x y x x -=<-+ D.21log (1)1x y x x -=>+5.在棱长为1的正方体1111ABCD A B C D -中,E F ,分别为棱11AA BB ,的中点,G 为棱11A B 上的一点,且1(01)AG λλ=≤≤.则点G 到平面1D EF 的距离为( )6.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所1D1C得数据画出样本的频率分布直方图如右图所示.根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为( ) A .300 B .360 C .420 D .4507.将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( ) A .1564B .15128C .24125D .481258.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为( ) A .1B.CD .39.设(43)=,a ,a 在b上的投影为2,b 在x 轴上的投影为2,且||14≤b ,则b 为( )A .(214),B .227⎛⎫-⎪⎝⎭, C .227⎛⎫- ⎪⎝⎭,D .(28),10.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件; ③r 是q 的必要条件而不是充分条件; ④p ⌝是s ⌝的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是( ) A .①④⑤ B .①②④ C .②③⑤ D .②④⑤二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.设变量x y ,满足约束条件30023x y x y x -+⎧⎪+⎨⎪-⎩≥,≥,≤≤,则目标函数2x y +的最小值为 .12.过双曲线22143x y -=左焦点1F 的直线交曲线的左支于M N ,两点,2F为其右焦点,54.5 56.5 58.5 60.5 62.5 64.5 66.5 68.5 70.5 72.5 74.5 76.5kg )则22MF NF MN +-的值为______.13.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+=____.14.某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率为 .(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为116t ay -⎛⎫= ⎪⎝⎭(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(I )从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 .(II )据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过 小时后,学生才能回到教室. 三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数2π()2sin 24f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.17.(本小题满分12分)如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(I )求证:平面VAB ⊥平面VCD ;(II )试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6. 18.(本小题满分12分)某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,030x ≤≤)的平方成正比,已知商品单价降低2元时,一星期多卖出24件. (I )将一个星期的商品销售利润表示成x 的函数; (II )如何定价才能使一个星期的商品销售利润最大? 19.(本小题满分12分)设二次函数2()f x x ax a =++,方程()0f x x -=的两根1x 和2x 满足1201x x <<<.(I )求实数a 的取值范围; (II )试比较(0)(1)(0)f f f -与116的大小.并说明理由. 20.(本小题满分13分)已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >,n b =*n ∈N ),且{}n b 是以q 为公比的等比数列. (I )证明:22n n a a q +=;(II )若2122n n n c a a -=+,证明数列{}n c 是等比数列; (III )求和:1234212111111n na a a a a a -++++++. 21.(本小题满分14分)在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点.(I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.(此题不要求在答题卡上画图)2007年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.A 2.D 3.C 4.A 5.D 6.B 7.A 8.C 9.B 10.B二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.32-12.8 13.314.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力.解:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+⎪⎢⎥⎝⎭⎣⎦∵xπ12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),.17.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力. 解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 依题意π6CBH ∠=,所以在CHD Rt △中,sin CH θ=; 在BHC Rt △中,πsin62a CH a ==,sin θ=∴. π02θ<<∵,π4θ=∴. 故当π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a aVD θ⎛⎫=- ⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭,,,(0)AB a a =-,,.从而2211(0)0002222a aAB CD a a a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥.同理2211(0)tan 0022222a a AB VD a a a a a θ⎛⎫=--=-++= ⎪ ⎪⎝⎭,,,,··, 即AB VD ⊥.又CDVD D =,AB ⊥∴平面VCD .又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==,··n n .得0tan 0222ax ay a a x y θ-+=⎧⎪⎨+-=⎪⎩,.可取)θ=n ,又(00)BC a =-,,,于是πsin62BC BC a θ===n n ···, 即sin 2θ=π02θ<<∵,π4θ∴=.故交π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法3:(Ⅰ)以点D 为原点,以DC DB,所在的直线分别为x 轴、y轴,建立如图所示的空间直角坐标系,则(000)000000D A B C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,0tan 22V a a θ⎛⎫-⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪⎪⎝⎭,,,002DC ⎛⎫=- ⎪⎪⎝⎭,,,(00)AB =,.从而(00)AB DC =,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 022ABDV a a θ⎛⎫=-= ⎪ ⎪⎝⎭,,,·,即AB DV ⊥.又DCDV D =,AB ⊥∴平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==,··n n,得0tan 0θ=⎨+=⎪⎩,. 可取(tan 01)n θ=,,,又022BC a ⎛⎫=-- ⎪ ⎪⎝⎭,,,于是tan π2sin 62BC BC a θθ===n n ···, 即πππsin 0224θθθ=<<,,∵∴=. 故交π4θ=时,即直线BC 与平面VAB 所成角为π6.18.本小题主要考查根据实际问题建立数学模型,以及运用函数、导数的知识解决实际问题的能力.解:(Ⅰ)设商品降价x 元,则多卖的商品数为2kx ,若记商品在一个星期的获利为()f x , 则依题意有22()(309)(432)(21)(432)f x x kx x kx =--+=-+,又由已知条件,2242k=·,于是有6k =, 所以32()61264329072[030]f x x x x x =-+-+∈,,.(Ⅱ)根据(Ⅰ),我们有2()1825243218(2)(12)f x x x x x '=-+-=---.故12x =时,()f x 达到极大值.因为(0)9072f =,(12)11264f =,所以定价为301218-=元能使一个星期的商品销售利润最大.19.本小题主要考查二次函数、二次方程的基本性质及二次不等式的解法,考查推理和运算A能力.解法1:(Ⅰ)令2()()(1)g x f x x x a x a =-=+-+,则由题意可得01012(1)0(0)0a g g ∆>⎧⎪-⎪<<⎪⎨⎪>⎪>⎪⎩,,,,01133a a a a ⎧>⎪⇔-<<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a的取值范围是(03-,.(II )2(0)(1)(0)(0)(1)2f f f g g a -==,令2()2h a a =.当a >时,()h a 单调增加,∴当03a <<-时,20()2)2(22)2(17122)h a h <<=-- 121617122=<+,即1(0)(1)(0)16f f f -<.解法2:(I )同解法1. (II )2(0)(1)(0)(0)(1)2f f f g g a-==,由(I )知03a <<-1170-<<∴.又10+>,于是221112(321)1)0161616a a -=-=-+<, 即212016a -<,故1(0)(1)(0)16f f f -<. 解法3:(I )方程()0f x x -=⇔2(1)0x a x a +-+=,由韦达定理得121x x a +=-,12x x a =,于是121212121200010(1)(1)0(1)(1)0x x x x x x x x x x ∆>⎧⎪+>⎪⎪<<<⇔>⎨⎪-+->⎪⎪-->⎩,,,,0133a a a a ⎧>⎪⇔<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a 的取值范围是(03-,.(II )依题意可设12()()()g x x x x x =--,则由1201x x <<<,得12121122(0)(1)(0)(0)(1)(1)(1)[(1)][(1)]f f f g g x x x x x x x x -==--=--2211221112216x x x x +-+-⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭,故1(0)(1)(0)16f f f -<. 20.本小题主要考查等比数列的定义,通项公式和求和公式等基本知识及基本的运算技能,考查分析问题能力和推理能力. 解法1:(I )证:由1n n b q b +=n q ==,∴ 22()n n a a q n +=∈N*.(II )证:22n n a q q -=,22221231n n n a a q a q ---∴===,222222n n n a a q a q --===,22222222212121222(2)5n n n n n n n c a a a q a q a a q q -----∴=+=+=+=.{}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )得2221111nn qa a --=,222211n n q a a -=,于是 1221321242111111111n n n a a a a a a a a a -⎛⎫⎛⎫+++=+++++++⎪ ⎪⎝⎭⎝⎭24222422121111111111n n a q q q a q q q --⎛⎫⎛⎫=+++++++++⎪⎪⎝⎭⎝⎭2122311112n q qq -⎛⎫=++++⎪⎝⎭. 当1q =时,2422122111311112n n a a a q qq -⎛⎫+++=++++ ⎪⎝⎭32n =. 当1q ≠时,2422122111311112n n a a a q qq -⎛⎫+++=++++⎪⎝⎭223121nq q --⎛⎫-=⎪-⎝⎭2222312(1)n n q q q -⎡⎤-=⎢⎥-⎣⎦.故21222223121111 1.(1)nn n n q q a a a q q q -⎧=⎪⎪+++=⎨⎡⎤3-⎪≠⎢⎥⎪2-⎣⎦⎩, ,, 解法2:(I )同解法1(I ).(II )证:222*1212221221221222()22n n n n nn n n n nc a a q a q a q n c a a a a +++---++===∈++N ,又11225c a a =+=, {}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )的类似方法得222221212()3n n n n a a a a q q ---+=+=,34212121221234212111n nn n na a a a a a a a a a a a a a a --++++++=+++,2222212442123322k k k k k k k a a q qa a q --+---+==,12k n =,,,. 2221221113(1)2n k q q a a a --+∴+++=+++.下同解法1.21.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,, 直线AB 的方程为y k x p =+,与22x p y =联立得22x p y y k x p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-. 于是12122AMN BCN ACN S SS p x x =+=-△△△·.12px x =-=2p == ∴当0k =,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,设AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H ,则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.12O P AC '===∵ 111222y p O H a a y p +'=-=--, 222PH O P O H ''=-∴221111()(244y p a y =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-=2=又由点到直线的距离公式得d =.从而112222ABN S d AB p ===△···∴当0k =时,2max ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.。
2007年普通高等学校招生全国统一考试数学卷(上海.文)含答案
1CCB1B1AA2007年全国普通高等学校招生统一考试(上海卷)数学试卷(文史类)考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2.本试卷共有21道试题,满分150分.考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.方程9131=-x 的解是 . 2.函数11)(-=x x f 的反函数=-)(1x f .3.直线014=-+y x 的倾斜角=θ . 4.函数πsec cos 2y x x ⎛⎫=+⎪⎝⎭的最小正周期=T . 5.以双曲线15422=-y x 的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是 .6.若向量a b ,的夹角为60,1==b a ,则()a ab -= . 7.如图,在直三棱柱111C B A ABC -中,90=∠ACB , 21=AA ,1==BC AC ,则异面直线B A 1与AC 所成角的 大小是 (结果用反三角函数值表示).8.某工程由A B C D ,,,四道工序组成,完成它们需用时间依次为254x ,,,天.四道工 序的先后顺序及相互关系是:A B ,可以同时开工;A 完成后,C 可以开工;B C , 完成后,D 可以开工.若该工程总时数为9天,则完成工序C 需要的天数x 最大是 . 9.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). 10.对于非零实数a b ,,以下四个命题都成立:A BlC① 01≠+aa ; ② 2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是 . 11.如图,A B ,是直线l 上的两点,且2=AB .两个半径相等的动圆分别与l 相切于A B ,点,C 是这两个圆的公共点,则圆弧AC ,CB 与线段AB 围成图形面积S 的取值范围是 .二.选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.已知a b ∈R ,,且i 3,i 2++b a (i 是虚数单位)是一个实系数一元二次方程的两个根,那么a b ,的值分别是( )A.32a b =-=, B.32a b ==-, C.32a b =-=-, D.32a b ==,13.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( ) A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x14.数列{}n a 中,22211100010012n n n a n n n n⎧⎪⎪=⎨⎪⎪-⎩,≤≤,,≥, 则数列{}n a 的极限值( ) A.等于0 B.等于1C.等于0或1D.不存在15.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推 出(1)f k +≥2)1(+k 成立”. 那么,下列命题总成立的是( ) A.若1)1(<f 成立,则100)10(<f 成立 B.若4)2(<f 成立,则(1)1f ≥成立C.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立D.若(4)25f ≥成立,则当4k ≥时,均有2()f k k ≥成立三.解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)在正四棱锥ABCD P -中,2=PA ,直线PA 与平面ABCD 所成的角为60,求 正四棱锥ABCD P -的体积V .17.(本题满分14分)在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos=B ,求ABC △的面积S .PBCA D18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%. 以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.已知函数0()(2≠+=x xax x f ,常数)a ∈R .(1)当2=a 时,解不等式12)1()(->--x x f x f ; (2)讨论函数)(x f 的奇偶性,并说明理由.小题满分9分.如果有穷数列123ma a a a ,,,,(m 为正整数)满足条件m a a =1,12-=m a a ,…,1a a m =,即1+-=i m i a a (12i m =,,,),我们称其为“对称数列”. 例如,数列12521,,,,与数列842248,,,,,都是“对称数列”. (1)设{}n b 是7项的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项;(2)设{}n c 是49项的“对称数列”,其中252649c c c ,,,是首项为1,公比为2的等比数列,求{}n c 各项的和S ;(3)设{}n d 是100项的“对称数列”,其中5152100d d d ,,,是首项为2,公差为3的等差数列.求{}n d 前n 项的和n S (12100)n =,,,.y O 1A2B2A 1B. . . M1FF2Fx. 小题满分9分.我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆12222=+cx b y (0)x ≤合成的曲线称作“果圆”,其中222c b a +=,0>a ,0>>c b .如图,设点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 是“果圆” 与x ,y轴的交点,M 是线段21A A 的中点.(1)若012F F F △是边长为1的等边三角形,求该 “果圆”的方程;(2)设P 是“果圆”的半椭圆12222=+cx b y(0)x ≤上任意一点.求证:当PM 取得最小值时,P 在点12B B ,或1A 处;(3)若P 是“果圆”上任意一点,求PM 取得最小值时点P 的横坐标.PBCADO2007年全国普通高等学校招生统一考试(上海卷)数学试卷(文史类)答案要点一、填空题(第1题至第11题) 1. 1-=x 2. )0(11≠+x x3. 4arctan π- 4. π 5. x y 122= 6.217. 66arccos8. 39. 3.010. ② ④11. π022⎛⎤- ⎥⎝⎦,二、选择题(第12题至第15题)题 号 1213 1415答 案ACB D三、解答题(第16题至第21题)16.解:作⊥PO 平面ABCD ,垂足为O .连接AO ,O 是 正方形ABCD 的中心,PAO ∠是直线PA 与平面 A B C D 所成的角.PAO ∠= 60,2=PA .∴ 3=PO .1=AO ,2=AB ,112332333ABCD V PO S ∴==⨯⨯=.17.解: 由题意,得3cos 5B B =,为锐角,54sin =B ,10274π3sin )πsin(sin =⎪⎭⎫ ⎝⎛-=--=B C B A , 由正弦定理得 710=c , ∴ 111048sin 222757S ac B ==⨯⨯⨯=.18.解:(1) 由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为%36,%38,%40,%42. 则2006年全球太阳电池的年生产量为8.249942.140.138.136.1670≈⨯⨯⨯⨯(兆瓦).(2)设太阳电池的年安装量的平均增长率为x ,则441420(1)95%2499.8(142%)x ++≥.解得0.615x ≥.因此,这四年中太阳电池的年安装量的平均增长率至少应达到%5.61.19.解: (1)1212)1(222->----+x x x x x , 0122>--x x ,0)1(<-x x . ∴ 原不等式的解为10<<x . (2)当0=a 时,2)(x x f =, 对任意(0)(0)x ∈-∞+∞,,,)()()(22x f x x x f ==-=-,)(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,, 取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,, (1)(1)(1)f f ff ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数.20.解:(1)设数列{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d , ∴数列{}n b 为25811852,,,,,,.(2)4921c c c S +++= 25492625)(2c c c c -+++= ()122212242-++++= ()3211222625-=--==67108861.(3)51100223(501)149d d ==+⨯-=,.由题意得 1250d d d ,,,是首项为149,公差为3-的等差数列. 当50n ≤时,n n d d d S +++= 21 n n n n n 230123)3(2)1(1492+-=--+=.当51100n ≤≤时,n n d d d S +++= 21()n d d d S ++++= 525150 (50)(51)37752(50)32n n n --=+-+⨯75002299232+-=n n . 综上所述,22330115022329975005110022n n n n S n n n ⎧-+⎪⎪=⎨⎪-+⎪⎩,≤≤,,≤≤.21.解:(1) ()()2222012(0)00F c F b c F b c ---,,,,,, ()222220212121F F bc c b F F b c ∴=-+===-=,,于是22223744c a b c ==+=,,所求“果圆”方程为2241(0)7x y x +=≥,2241(0)3y x x +=≤.(2)设()P x y ,,则2222||y c a x PM +⎪⎭⎫ ⎝⎛--=22222()1()04b a c x a c x b c x c ⎛⎫-=---++- ⎪⎝⎭,≤≤, 0122<-cb ,∴ 2||PM 的最小值只能在0=x 或c x -=处取到.即当PM 取得最小值时,P 在点12B B ,或1A 处.(3)||||21MA M A = ,且1B 和2B 同时位于“果圆”的半椭圆22221(0)x y x a b +=≥和半椭圆22221(0)y x x b c +=≤上,所以,由(2)知,只需研究P 位于“果圆”的半椭圆22221(0)x y x a b +=≥上的情形即可. 2222||y c a x PM +⎪⎭⎫ ⎝⎛--=22222222224)(4)(2)(c c a a c a b c c a a x a c ---++⎥⎦⎤⎢⎣⎡--=.当22()2a a c x a c -=≤,即2a c≤时,2||PM 的最小值在222)(c c a a x -=时取到, 此时P 的横坐标是222)(cc a a -. 当a cc a a x >-=222)(,即c a 2>时,由于2||PM 在a x <时是递减的,2||PM 的最小值在a x =时取到,此时P 的横坐标是a .综上所述,若2a c ≤,当||PM 取得最小值时,点P 的横坐标是222)(cc a a -;若c a 2>,当||PM 取得最小值时,点P 的横坐标是a 或c -.。
2007年全国1卷文科数学含答案
2007年普通高等学校招生全国统一考试文科数学如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k n n P k C p p n n -=-=,,,,一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T =( ) A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513B.513-C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A.36种 B.48种 C.96种 D.192种(6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-,C.(02)-,D.(20),(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )1A 1D1C1B DBCAA.15B.25 C.35D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =(B.2 C. D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( )A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭,D.ππ2⎛⎫ ⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( )A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则A K F △的面积是( )A.4B.C.D.8第Ⅱ卷(13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ):492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499 根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g ~501.5g 之间的概率约为_____.(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x =____________.(15)正四棱锥S ABCD -,点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_________.(16)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)若a =5c =,求b .(18)(本小题满分12分) 某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. (Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. (19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD ,已知45ABC ∠=︒,2AB =,BC =SA SB == (Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小. (20)(本小题满分12分)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围. (21)(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .20071.D 2.B3.A 4.A5.C 6.C7.D8.D 9.B10.D 11.A12.C13.0.25 14.3()x x ∈R 15.4π3 16.13三、解答题17.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =,由ABC △为锐角三角形得π6B =.(Ⅱ)根据余弦定理,得2222cos b a c ac B =+-272545=+-7=.SCDAB所以,b =. 18.解:(Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.01()()P B P B B =+01()()P B P B =+ 0.2160.43=+ 0.648=.19.解法一:(1)作S O B C ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥, 依题设AD BC ∥,故SA AD ⊥,由AD BC ==SA =SD =又sin 452AO AB ==DE BC ⊥,垂足为E ,则DE ⊥平面SBC ,连结SE .ESD ∠为直线SD 与平面SBC 所成的角.sin ED AO ESD SD SD ====∠ 所以,直线SD 与平面SBC 所成的角为arcsin11. DCASO E解法二(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥.如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,因为2AO BO AB ===1SO =,又BC =0)A ,,(0B,(0C ,. (001)S ,,,(21)SA =-,,, (0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)(21)SD SA AD SA CB =+=-=--,,(20)OA =,,. OA 与SD 的夹角记为α,SD 与平面ABC 所成的角记为β,因为OA 为平面SBC的法向量,所以α与β互余.22cos 11OA SD OA SDα==,sin 11β=,所以,直线SD 与平面SBC 所成的角为. 20.解:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>. 所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<,解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞,,. 21.解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =. 所以1(1)21n a n d n =+-=-,112n n n b q --==.(Ⅱ)1212n n n a n b --=. 122135232112222n n n n n S ----=+++++,① 3252321223222n n n n n S ----=+++++,②②-①得22122221222222n n n n S ---=+++++-,221111212212222n n n ---⎛⎫=+⨯++++- ⎪⎝⎭ 1111212221212n n n ----=+⨯-- 12362n n -+=-.。
2007年普通高等学校招生全国统一考试含答案(上海卷)
绝密★启用前2007年普通高等学校招生全国统一考试(上海卷) 生物试卷(山东 刘菲菲 孙芸廷 整理)本试卷分第I 卷(1~4页)和第1I 卷(5~12页)两部分。
全卷共12页。
满分150分。
考试时间120分钟。
第II 卷的第39题和第40题为分叉题。
第1卷(共60分)考生注意:1.答第I卷前.考生务必在答题卡上用钢笔或圆珠笔清楚填写姓名、准考证号、校验码,并用2B 铅笔正确涂写准考证号和校验码。
2.第I卷(1~32题),由机器阅卷,答案必须全部涂写在答题卡上。
考生应将代表正确答案的小方格用2B 铅笔涂黑。
注意试题题号和答题卡编号一一对应,不能错位。
答题需要更改时.必须将原选项用橡皮擦去,重新选择。
答案不能涂写在试卷上,涂写在试卷上一律不给分。
一、单选题(共60分。
每小置只有一个正确选项)(一)1分题(共8题)1.我国控制人口增长的基本国策是A .优生B .教育C .计划生育D .降低出生率2.密码子存在于A .DNAB .mRNAC .tRNAD .核糖体3.人体调节体温的神经中枢位于A .下丘脑B .延髓C .大脑D .小脑4.下列细胞中属于暂不增殖细胞的是A .肾细胞B .筛管细胞C .神经细胞D .骨髓细胞5.Rh 血型由一对等位基因控制。
一对夫妇的Rh 血型都是Rh 血型都是Rh 阳性,已生3个孩子中有一个是Rh 阳性,其他两个是Rh 阴性,再生一个孩子是Rh 阳性的概率是A .14B .13C .12D .346.沙漠植物常具有较小的叶片,且叶片的气孔较小。
这是利于A .减少呼吸作用B .减少水分散失C .提高光合作用效率D .不被动物食用7.下图是神经细胞的细胞膜结构模式图,正确的是8.叶绿素溶液在透射光下和反射光下分别是A .红色、红色B .绿色、绿色C .红色、绿色D .绿色、红色(二)2分题(共20题)9.血液正常凝固基因H 对不易凝固基因h 为显性,则右图中甲、乙的基因型分别为A .X H Y ,X H X HB .X H Y ,X H X hC .X h Y ,X H X hD .X h Y ,X H X H10.人的一个上皮细胞中DNA 含量约为5.6× 10—6ug ,则人的一个受精卵、成熟红细胞和精子中的DNA 含量分别约为A .5.6×10—6、5.6×10—6和2.8×10—6 ugB .5.6×10—6、0和2.8×10—6 ugC .2.8×10—6、5.6×10—6和5.6×10—6 ugD .11.2×10—6、0和5.6×10—6 ug11.右图表示一草原土壤中硝酸盐含量与牧草数量的关系。
2007年全国高考文科数学试卷及答案
2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T =( )A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513B.513-C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种 C.96种 D.192种(6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-,C.(02)-,D.(20),(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( ) A.15B.25C.35D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) B.2C.D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( ) A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭,D.ππ2⎛⎫ ⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A.4B.C.D.8第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g ~501.5g 之间的概率约为_____.(14)函数()y f x =的图像与函数3log (0)y xx =>的图像关于直线y x =对称,则()f x =____________.(15)正四棱锥S ABCD -,点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_________.(16)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)若a =,5c =,求b .(18)(本小题满分12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. (19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD ,已知45ABC ∠=︒,2AB =,BC =SA SB == (Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小. (20)(本小题满分12分)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围. (21)(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,SCDAB5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S . (22)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于B ,D 两点,过2F 的直线交椭圆于A ,C 两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.2007年普通高等学校招生全国统一考试文科数学试题(必修+选修1)参考答案一、选择题1.D 2.B 3.A 4.A 5.C 6.C 7.D 8.D 9.B 10.D 11.A 12.C 二、填空题13.0.25 14.3()xx ∈R 15.4π3 16.13三、解答题 17.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)根据余弦定理,得2222cos b a c ac B =+-272545=+-7=.所以,b =18.解:(Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.0.648=.19.解法一:(1)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥, 依题设AD BC ∥,故SA AD ⊥,由AD BC ==SA =SD又sin 452AO AB ==DE BC ⊥,垂足为E ,则DE ⊥平面SBC ,连结SE .ESD ∠为直线SD 与平面SBC 所成的角. 所以,直线SD 与平面SBC所成的角为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,因为2AO BO AB ===1SO =,DBCASE又BC =0)A ,,(0B,(0C ,. (001)S ,,,(21)SA =-,,, (0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)(21)SD SA AD SA CB =+=-=--,,(20)OA =,,. OA 与SD 的夹角记为α,SD 与平面ABC 所成的角记为β,因为OA 为平面SBC 的法向量,所以α与β互余.22cos 11OA SD OASDα==,sin 11β=,所以,直线SD 与平面SBC 所成的角为. 20.解:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>. 所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<, 解得 1c <-或9c >, 因此c 的取值范围为(1)(9)-∞-+∞,,.21.解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==.(Ⅱ)1212n n n a n b --=. 122135232112222n n n n n S ----=+++++,① 3252321223222n n n n n S ----=+++++,②②-①得22122221222222n n n n S ---=+++++-,12362n n -+=-.22.证明(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200001132222x y x y ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+,2221222121)(1)()432k BD x xk x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点p ,且AC 的斜率为1k-. 所以,2222111)12332k k AC k k⎫+⎪+⎝⎭==+⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥.当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625.。
2007年普通高等学校招生全国统一考试文科数学试卷及答案-陕西卷
景云制作
(Ⅰ)求数列 {a n } 的通项公式; (Ⅱ)数列 {a n } 的前 n 项和记为 S n , 证明: S n , <128 ( n 1,2,3, …). 21. (本小题满分 12 分) 已知 f ( x) ax bx cx 在区间 [0,1] 上是增函数 , 在区间 ( ,0), (1,) 上是减函数 , 又
(Ⅱ)该选手至多进入第三轮考核的概率
P3 P ( A1 A1 A2 A1 A2 A3 ) P ( A1 ) P ( A1 ) P ( A2 ) P ( A1 ) P ( A2 ) P ( A3 ) 1 4 2 4 3 3 101 . 5 5 5 5 5 5 125
19. (本小题满分 12 分) 解法一: (Ⅰ) 又 tan ABD
PA ⊥ 平面 ABCD , BD 平面 ABCD . BD ⊥ PA .
P
AD 3 BC , tan BAC 3. AB 3 AB
A
∠ABD 30 ,∠BAC 60 , ∠AEB 90 ,即 BD ⊥ AC . AC A . BD ⊥ 平面 PAC . (Ⅱ)连接 PE . BD ⊥ 平面 PAC . BD ⊥ PE , BD ⊥ AE . ∠AEP 为二面角 P BD A 的平面角.
景云制作
试卷类型:A
2007 年普通高等学校招生全国统一考试(陕西)
文科数学(必修+选修Ⅰ)
注意事项: 1.本试卷分第一部分和第二部分。第一部分为选择题,第二部分为非选择题。 2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的 试卷类型信息点。 3.所有答案必须在答题卡上指定区域内作答。 考试结束后, 将本试卷和答题卡一并交回。 第一部分(共 60 分) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共 12 小题,每小题 5 分,共 60 分) 。 1.已知全集 U 1,2,3,4,5,6, 集合A 2, 3, 6 ,则集合 CuA 等于 (A){1,4} (B){4,5} (C){1,4,5} (D){2,3,6}
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.文)含答案
页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。
——培根2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)文科数学(必修+选修Ⅰ)第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k n n P k C p p k n -=-=,,,…,一、选择题 1.cos330=( )A .12 B .12- CD.2.设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B =ð( )A .{2}B .{3}C .{124},,D .{14}, 3.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭, B .3ππ⎛⎫ ⎪44⎝⎭, C .3π⎛⎫π ⎪2⎝⎭, D .32π⎛⎫π⎪2⎝⎭, 4.下列四个数中最大的是( )A .2(ln 2)B .ln(ln 2)C.lnD .ln 25.不等式203x x ->+的解集是( ) A .(32)-, B .(2)+∞, C .(3)(2)-∞-+∞,, D .(2)(3)-∞-+∞,, 6.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23 B .13 C .13- D .23-7.已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( )ABC.2D8.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .49.把函数e xy =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x+ B .e 2x- C .2e x - D .2e x +10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A .10种B .20种C .25种D .32种 11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13BC .12D12.设12F F ,分别是双曲线2219y x +=的左、右焦点.若点P 在双曲线上,且120PF PF =,则12PF PF +=( )AB.CD.第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .14.已知数列的通项52n a n =-+,则其前n 项和n S = . 15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.821(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式.18.(本小题满分12分)在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .20.(本小题满分12分)如图,在四棱锥S ABCD -中, 底面ABCD 为正方形,侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点.(1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小.21.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x =相切.(1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB 的取值范围.22.(本小题满分12分)已知函数321()(2)13f x ax bx b x =-+-+在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<. (1)证明0a >; (2)若z =a +2b ,求z 的取值范围。
2007年普通高等学校招生全国统一考试文科数学试卷及答案-北京卷
2007年普通高等学校招生全国统一考试数学(文史类)(北京卷)本试卷分第I 卷(选择题)和第II (非选择题)两部分,第I 卷1至2页,第II 卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I 卷(选择题 共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知cos tan 0θθ<,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 2.函数()3(02)x f x x =<≤的反函数的定义域为( )A.(0)+∞,B.(19],C.(01),D.[9)+∞,3.函数()sin 2cos 2f x x x =-的最小正周期是( ) A.π2B.πC.2πD.4π4.椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是( )A.102⎛⎤⎥⎝⎦,B.0⎛ ⎝⎦C.112⎡⎫⎪⎢⎣⎭,D.1⎫⎪⎪⎣⎭5.某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( ) A.()2142610CA 个 B.242610A A 个C.()2142610C 个D.242610A 个6.若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是( )A.5a <B.7a ≥ C.57a <≤D.5a <或7a ≥7.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥ 8.对于函数①()2f x x =+,②2()(2)f x x =-,③()c os(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( ) A.①② B.①③ C.② D.③2007年普通高等学校招生全国统一考试数学(文史类)(北京卷) 第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 .10.若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为.11.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是.12.在ABC △中,若1tan 3A =,150C =,1BC =,则AB = .13.2002年在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于 .14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;当[()]2g f x =时,x =.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共12分)记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . (I )若3a =,求P ;(II )若Q P ⊆,求正数a 的取值范围. 16.(本小题共13分)数列{}n a 中,12a =1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值;(II )求{}n a 的通项公式. 17.(本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点.(I )求证:平面COD ⊥平面AOB ;(II )求异面直线AO 与CD 所成角的大小.18.(本小题共12分)某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求:(I )这6位乘客在其不相同的车站下车的概率; (II )这6位乘客中恰有3人在终点站下车的概率; 19.(本小题共14分)如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上. (I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,OCADB求动圆P 的圆心的轨迹方程. 20.(本小题共14分)已知函数y kx =与22(0)y x x =+≥的图象相交于11()A x y ,,22()B x y ,,1l ,2l 分别是22(0)y x x =+≥的图象在A B ,两点的切线,M N ,分别是1l ,2l 与x 轴的交点.(I )求k 的取值范围;(II )设t 为点M 的横坐标,当12x x <时,写出t 以1x 为自变量的函数式,并求其定义域和值域;(III )试比较OM 与ON 的大小,并说明理由(O 是坐标原点).2007年普通高等学校招生全国统一考试 数学(文史类)(北京卷)参考答案一、选择题(本大题共8小题,每小题5分,共40分) 1.C 2.B 3.B 4.D 5.A6.C7.D 8.C二、填空题(本大题共6小题,每小题5分,共30分)9.310.211n -11.3-1213.72514.11三、解答题(本大题共6小题,共80分) 15.(共12分) 解:(I )由301x x -<+,得{}13P x x =-<<. (II ){}{}1102Q x x x x =-=≤≤≤.由0a >,得{}1P x x a =-<<,又Q P ⊆,所以2a >, 即a 的取值范围是(2)+∞,. 16.(共13分)解:(I )12a =,22a c =+,323a c =+, 因为1a ,2a ,3a 成等比数列, 所以2(2)2(23)c c +=+, 解得0c =或2c =.当0c =时,123a a a ==,不符合题意舍去,故2c =. (II )当2n ≥时,由于21a a c -=, 322a a c -=,1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-=. 又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+=,,. 当1n =时,上式也成立, 所以22(12)n a n n n =-+=,,.17.(共14分) 解法一:(I )由题意,CO AO ⊥,BO AO ⊥, BOC ∴∠是二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O =,CO ∴⊥平面AOB , 又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角.在Rt COE △中,2CO BO ==,112OE BO ==,CE ∴==又12DE AO == ∴在Rt CDE △中,tan 3CE CDE DE ===. ∴异面直线AO 与CD 所成角的大小为. 解法二:(I )同解法一.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(00A ,,(200)C ,,,D ,OCADBE(00OA ∴=,,(CD =-, cos OA CD OACD OA CD∴<>=,322==∴异面直线AO 与CD 所成角的大小为 18.(共13分) 解:(I )这6位乘客在互不相同的车站下车的概率为610661512.15121010A P ==0≥.(II )这6位乘客中恰有3人在终点站下车的概率为33666914580.014581010C P ⨯===. 19.(共14分)解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-.又因为点(11)T -,在直线AD 上,所以AD 边所在直线的方程为13(1)y x -=-+.320x y ++=.(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,,因为矩形ABCD 两条对角线的交点为(20)M ,. 所以M 为矩形ABCD 外接圆的圆心.又AM ==从而矩形ABCD 外接圆的方程为22(2)8x y -+=.(III )因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M外切, 所以PM PN =+即PM PN -=故点P 的轨迹是以M N ,为焦点,实轴长为因为实半轴长a =2c =.所以虚半轴长b ==从而动圆P的圆心的轨迹方程为221(22x y x -=≤. 20.(本小题共14分)解:(I )由方程22y kx y x =⎧⎨=+⎩,消y 得220x kx -+=. ················· ① 依题意,该方程有两个正实根,故212800k x x k ⎧∆=->⎨+=>⎩,,解得k > (II )由()2f x x '=,求得切线1l 的方程为1112()y x x x y =-+,由2112y x =+,并令0y =,得1112x t x =- 1x ,2x 是方程①的两实根,且12x x <,故1x ==k > 1x 是关于k 的减函数,所以1x的取值范围是(0.t 是关于1x的增函数,定义域为(0,所以值域为()-∞,0,(III )当12x x <时,由(II )可知1112x OM t x ==-+. 类似可得2212x ON x =-.1212122x x x x OM ON x x ++-=-+. 由①可知122x x =. 从而0OM ON -=.当21x x <时,有相同的结果0OM ON -=. 所以OM ON =.。
2007年普通高等学校招生全国统一考试理科数学试卷及答案-上海卷
2007年全国普通高等学校招生统一考试(上海卷)数学试卷(理工农医类)考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2.本试卷共有21道试题,满分150分.考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.函数3)4lg(--=x x y 的定义域是 .2.若直线1210l x my ++=: 与直线231l y x =-:平行,则=m . 3.函数1)(-=x xx f 的反函数=-)(1x f .4.方程 96370x x -∙-=的解是 .5.若x y ∈+R ,,且14=+y x ,则x y ∙的最大值是 . 6.函数⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=2πsin 3πsin x x y 的最小正周期=T .7.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).8.以双曲线15422=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是 . 9.对于非零实数a b ,,以下四个命题都成立: ① 01≠+aa ; ② 2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是 . 10.在平面上,两条直线的位置关系有相交、平行、重合三种. 已知αβ,是两个相交平面,空间两条直线12l l ,在α上的射影是直线12s s ,,12l l ,在β上的射影是直线12t t ,.用1s 与2s ,1t 与2t 的位置关系,写出一个总能确定1l 与2l 是异 面直线的充分条件: .11.已知P 为圆1)1(22=-+y x 上任意 一点(原点O 除外),直线OP 的倾斜角为θ弧度,记||OP d =. 在右侧的坐标系中,画出以()d θ,为坐标的点的轨迹的大致图形为二.选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.已知a b ∈R ,,且i ,i 2++b a (i 是虚数单位)是实系数一元二次方程02=++q px x 的两个根,那么p q ,的值分别是( ) A.45p q =-=, B.43p q =-=, C.45p q ==,D.43p q ==,13.设a b ,是非零实数,若b a <,则下列不等式成立的是( ) A.22b a < B.b a ab 22< C.ba ab 2211< D.b a a b < 14.直角坐标系xOy 中,i j ,分别是与x y ,轴正方向同向的单位向量.在直角三角形 ABC 中,若j k i AC j i AB+=+=3,2,则k 的可能值个数是( )A.1 B.2 C.3 D.415.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”.那么,下列命题总成立的是( )A.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立 B.若(5)25f ≥成立,则当5k ≤时,均有2()f k k ≥成立CB1C 1B1AAC.若49)7(<f 成立,则当8k ≥时,均有2)(k k f <成立 D.若25)4(=f 成立,则当4k ≥时,均有2()f k k ≥成立三.解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)如图,在体积为1的直三棱柱111C B A ABC -中,1,90===∠BC AC ACB .求直线B A 1与平面C C BB 11所成角的大小(结果用反三角函数值表示). 17.(本题满分14分)在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos=B ,求ABC △的面积S .18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分. 已知函数0()(2≠+=x xax x f ,常数)a ∈R .(1)讨论函数)(x f 的奇偶性,并说明理由;(2)若函数)(x f 在[2)x ∈+∞,上为增函数,求a 的取值范围.20.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如果有穷数列123n a a a a ,,,,(n 为正整数)满足条件n a a =1,12-=n a a ,…,1a a n =,即1+-=i n i a a (12i n =,,,),我们称其为“对称数列”.例如,由组合数组成的数列01mm m mC C C ,,,就是“对称数列”. (1)设{}n b 是项数为7的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b , 114=b .依次写出{}n b 的每一项;(2)设{}n c 是项数为12-k (正整数1>k )的“对称数列”,其中121k k k c c c +-,,,是首项为50,公差为4-的等差数列.记{}n c 各项的和为12-k S .当k 为何值时,12-k S 取得最大值?并求出12-k S 的最大值;(3)对于确定的正整数1>m ,写出所有项数不超过m 2的“对称数列”,使得211222m -,,,,依次是该数列中连续的项;当m 1500>时,求其中一个“对称数列”前2008项的和2008S .21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆12222=+cx b y (0)x ≤合成的曲线称作“果圆”,其中222c b a +=,0>a ,0>>c b .如图,点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 分别是“果圆”与x ,y轴的交点.(1)若012F F F △是边长为1的等边三角形,求“果圆”的方程;(2)当21A A >21B B 时,求ab的取值范围; (3的弦.试研究:是否存在实数k ,使斜率为k 平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的k 值;若不存在,说明理由.2007年全国普通高等学校招生统一考试(上海卷)数学试卷(理工农医类)答案要点一、填空题(第1题至第11题) 1. {}34≠<x x x 且 2. 32-3.)(11≠-x x x4.7log 3 5.161 6. π 7. 3.0 8. )3(122+=x y 9.②④10. 21//s s ,并且1t 与2t 相交(//1t 2t ,并且1s 与2s 相交)11.二、选择题(第12题至第15题)三、解答题(第16题至第21题) 16.解法一: 由题意,可得体积11111122ABC V CC S CC AC BC CC ====△, ∴ 211==CC AA .连接1BC .1111111AC B C AC CC ⊥⊥,,⊥∴11C A 平面C C BB 11,11BC A ∠∴是直线B A 1与平面C C BB 11所成的角. 52211=+=BC CC BC ,51t a n 11111==∠∴BC C A BC A ,则 11BC A ∠=55arctan . CB1B1A A1C即直线B A 1与平面C C BB 11所成角的大小为55arctan. 解法二: 由题意,可得 体积11111122ABC V CC S CC AC BC CC ∆====, 21=∴CC ,如图,建立空间直角坐标系. 得点(010)B ,,, 1(002)C ,,,1(102)A ,,. 则1(112)A B =--,,,平面C C BB 11的法向量为(100)n =,,.设直线B A 1与平面C C BB 11所成的角为θ,B A 1与n 的夹角为ϕ, 则116cos 6A B n A Bnϕ==-66arcsin ,66|cos |sin ===∴θϕθ, 即直线B A 1与平面C C BB 11所成角的大小为66arcsin. 17.解: 由题意,得3cos 5B B =,为锐角,54sin =B ,10274π3sin )πsin(sin =⎪⎭⎫ ⎝⎛-=--=B C B A , 由正弦定理得 710=c , ∴ 111048sin 222757S ac B ==⨯⨯⨯=.18.解:(1)由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为 %36,%38,%40,%42.则2006年全球太阳电池的年生产量为8.249942.140.138.136.1670≈⨯⨯⨯⨯(兆瓦).(2)设太阳电池的年安装量的平均增长率为x ,则441420(1)95%2499.8(142%)x ++≥. 解得0.615x ≥.因此,这四年中太阳电池的年安装量的平均增长率至少应达到%5.61.19.解:(1)当0=a 时,2)(x x f =,对任意(0)(0)x ∈-∞+∞,,,)()()(22x f x x x f ==-=-, )(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,, 取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,, (1)(1)(1)f f f f ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数. (2)解法一:设122x x <≤, 22212121)()(x a x x a x x f x f --+=-[]a x x x x x x x x -+-=)()(21212121, 要使函数)(x f 在[2)x ∈+∞,上为增函数,必须0)()(21<-x f x f 恒成立.121204x x x x -<>,,即)(2121x x x x a +<恒成立.又421>+x x ,16)(2121>+∴x x x x . a ∴的取值范围是(16]-∞,. 解法二:当0=a 时,2)(x x f =,显然在[2)+∞,为增函数. 当0<a 时,反比例函数xa在[2)+∞,为增函数, xax x f +=∴2)(在[2)+∞,为增函数. 当0>a 时,同解法一.20.解:(1)设{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d , ∴数列{}n b 为25811852,,,,,,. (2)12112112-+--+++++++=k k k k k c c c c c c S k k k k c c c c -+++=-+)(2121 , 50134)13(42212-⨯+--=-k S k , ∴当13=k 时,12-k S 取得最大值.12-k S 的最大值为626. (3)所有可能的“对称数列”是: ① 22122122222221m m m ---,,,,,,,,,,;② 2211221222222221m m m m ----,,,,,,,,,,,; ③ 122221222212222m m m m ----,,,,,,,,,,;④ 1222212222112222m m m m ----,,,,,,,,,,,.对于①,当2008m ≥时,1222212008200722008-=++++= S . 当15002007m <≤时,200922122008222221----+++++++=m m m m S 2009212212---+-=m m m1222200921--+=--m m m .对于②,当2008m ≥时,1220082008-=S . 当15002007m <≤时,2008S 122200821--=-+m m .对于③,当2008m ≥时,2008200822--=m m S . 当15002007m <≤时,2008S 3222009-+=-mm.对于④,当2008m ≥时,2008200822--=m m S . 当15002007m <≤时,2008S 2222008-+=-mm.21. 解:(1) ()()012(0)00F c F F ,,,,,021211F F b F F ∴====,,于是22223744c a b c ==+=,,所求“果圆”方程为2241(0)7x y x +=≥,2241(0)3y x x +=≤. (2)由题意,得 b c a 2>+,即a b b a ->-222.2222)2(a c b b =+> ,222)2(a b b a ->-∴,得54<a b . 又21,222222>∴-=>a b b a c b . 45b a ⎫∴∈⎪⎪⎝⎭,. (3)设“果圆”C 的方程为22221(0)x y x a b +=≥,22221(0)y x x b c+=≤.记平行弦的斜率为k .当0=k 时,直线()y t b t b =-≤≤与半椭圆22221(0)x y x a b+=≥的交点是P t ⎛⎫ ⎪ ⎪⎝⎭,与半椭圆22221(0)y x x b c +=≤的交点是Q t ⎛⎫- ⎪ ⎪⎝⎭. ∴ P Q ,的中点M ()x y ,满足 221,2a c t x b y t ⎧-⎪=-⎨⎪=⎩, 得 122222=+⎪⎭⎫ ⎝⎛-b y c a x . b a 2<,∴ 22220222a c a c b a c b b ----+⎛⎫-=≠ ⎪⎝⎭. 综上所述,当0=k 时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.当0>k 时,以k 为斜率过1B 的直线l 与半椭圆22221(0)x y x a b+=≥的交点是22232222222ka b k a b b k a b k a b ⎛⎫- ⎪++⎝⎭,. 由此,在直线l 右侧,以k 为斜率的平行弦的中点轨迹在直线x ka b y 22-=上,即不在某一椭圆上. 当0<k 时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.。
2007年高考上海卷及答案
2007年上海高考试卷考生注意:1.答卷前,考生务必将姓名、准考证号、校验码等填写清楚.2.本试卷共10页,满分150分. 考试时间120分钟. 考生应用蓝色或黑色的钢笔或圆珠笔将答案直接写在试卷上.3.本试卷一、四大题中,小题序号后标有字母A 的试题,适合于使用一期课改教材的考生;标有字母B 的试题,适合于使用二期课改教材的考生;其它未标字母A 或B 的试题为全体考生必做的试题。
不同大题可以选择不同的A 类或B 类试题,但同一大题的选择必须相同,若在同一大题内同时选做A 类、B 类两类试题,阅卷时只以A 类试题计分,4.第19、20、21、22、23题要求写出必要的文字说明、方程式和重要的演算步骤. 只写出最后答案,而未写出主要演算过程的,不能得分. 有关物理量的数值计算问题,答案中必须明确写出数值和单位. 一.(20分)填空题. 本大题共5小题,每小题4分. 答案写在题中横线上的空白处或指定位置,不要求写出演算过程.本大题中第1、2、3小题为分叉题;分A 、B 两类,考生可任选一类答题,若两类试题均做,一律按A 类题计分.A 类题(适合于使用一期课改教材的考生) 1A .磁场对放入其中的长为l 、电流强度为I 、方向与磁场垂直的通电导线有力F 的作用,可以用磁感应强度B 描述磁场的力的性质,磁感应强度的大小B =___________,在物理学中,用类似方法描述物质基本性质的物理量还有___________等。
2A .沿x 轴正方向传播的简谐横波在t =0时的波形如图所示,P 、Q 两个质点的平衡位置分别位于x =3.5m 和x =6.5m 处。
在t 1=0.5s 时,质点P 恰好此后第二次处于波峰位置;则t 2=_________s 时,质点Q 此后第二次在平衡位置且向上运动;当t 1=0.9s 时,质点P 的位移为_____________cm 。
3A .如图所示,AB 两端接直流稳压电源,U AB =100V ,R 0=40Ω,滑动变阻器总电阻R =20Ω,当滑动片处于变阻器中点时,C 、D 两端电压U CD 为___________V ,通过电阻R 0的电流为_____________A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1CCB1B1A2007年全国普通高等学校招生统一考试(上海卷)数学试卷(文史类)考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2.本试卷共有21道试题,满分150分.考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分. 1.方程9131=-x 的解是 .234567.如图,在直三棱柱111C B A A B C -中,90=∠ACB , 21=AA ,1==BC AC ,则异面直线B A 1与AC 所成角的 大小是 (结果用反三角函数值表示).8.某工程由A B C D ,,,四道工序组成,完成它们需用时间依次为254x ,,,天.四道工 序的先后顺序及相互关系是:A B ,可以同时开工;A 完成后,C 可以开工;B C , 完成后,D 可以开工.若该工程总时数为9天,则完成工序C 需要的天数x 最大是 . 9.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). 10.对于非零实数a b ,,以下四个命题都成立:B① 01≠+aa ; ②2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是 . 11.如图,A B ,是直线l 上的两点,且2=AB A B,点,C 是这两个圆的公共点,则圆弧AC ,CB 线段AB 围成图形面积S 的取值范围是 .二.选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.已知a b ∈R ,,且2+个根,那么a b , A.32a b =-=, C.32a b =-=-,13.圆1222=--+x y x ) A.()3(2-++y x 21=C.()3(2-++y x 2=14.数列{}n a 中,221100010012n n na n n n n ⎪=⎨⎪⎪-⎩≤≤,,≥, 则数列{}n a 的极限值( )A.等于0 B.等于1 C.等于0或1 D.不存在15.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推 出(1)f k +≥2)1(+k 成立”. 那么,下列命题总成立的是( ) A.若1)1(<f 成立,则100)10(<f 成立 B.若4)2(<f 成立,则(1)1f ≥成立C.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立D.若(4)25f ≥成立,则当4k ≥时,均有2()f k k ≥成立三.解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)在正四棱锥ABCD P -中,2=PA ,直线PA 与平面ABCD 所成的角为 60,求 正四棱锥ABCD P -的体积V .17.(本题满分14分)在ABC △中,a bc ,,分别是三个内角A B C ,,的对边.若4π,2==C a,cos的面积S .18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%. 以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).A(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?19.(本题满分147分.已知函数)(2+=x x f (1)当2=a (2)讨论函数)(x f20.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如果有穷数列123ma a a a ,,,,(m 为正整数)满足条件m a a =1,12-=m a a ,…,1a a m =,即1+-=i m i a a (12i m = ,,,),我们称其为“对称数列”.1例如,数列12521,,,,与数列842248,,,,,都是“对称数列”. (1)设{}n b 是7项的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项;(2)设{}n c 是49项的“对称数列”,其中252649c c c ,,,是首项为1,公比为2的等比数列,求{}n c 各项的和S ;(3)设{}n d 是100项的“对称数列”,其中5152100d d d ,,,是首项为2,公差为3的等差数列.求{}n d 前n 项的和n S (12100)n = ,,,.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分5分,第3小题满分9分.122=by (0)x ≥与半椭圆12222=+cx by (0)x ≤合成的曲线称2c ,0>a ,0>>c b .2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 是“果圆” 与x ,y轴的交点,M 是线段21A A 的中点.(1)若012F F F △是边长为1的等边三角形,求该 “果圆”的方程;(2)设P 是“果圆”的半椭圆12222=+cx by(0)x ≤上任意一点.求证:当PM 取得最小值时,P 在点12B B ,或1A 处;(3)若P是“果圆”上任意一点,求PM 取得最小值时点P 的横坐标.2007年全国普通高等学校招生统一考试(上海卷)数学试卷(文史类)答案要点一、填空题(第1题至第11题) 1. 5. 9.16 1=AO ,2=AB ,112333ABC D V PO S ∴==⨯=17.解: 由题意,得3cos 5B B =,为锐角,54sin =B ,10274π3sin )πsin(sin =⎪⎭⎫⎝⎛-=--=B C B A , 由正弦定理得 710=c ,∴ 111048sin 222757S ac B ==⨯⨯⨯= .18.解:(1) 由已知得2003,2004,2005,2006%36,%38,%40,%42. 则20068.249942.140.138.136.1670≈⨯⨯⨯⨯(兆瓦).(2)设太阳电池的年安装量的平均增长率为x 解得0.615x ≥.%5. 19.解: (1)(22-+x x122--x x )1(<-x x ∴ 原不等式的解为0 (2)当0=a 时,(f 对任意(0)(0)x ∈-∞+∞ ,,,)()()(22x f x x x f ==-=-, )(x f ∴为偶函数.当0≠a 时,2()(00)a f x x a x x=+≠≠,,取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,, (1)(1)(1)f f ff ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数.20.解:(1)设数列{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d , ∴数列{}n b 为25811852,,,,,,.(2)4921c c c S +++= 25492625)(2c c c c -+++=()122212242-++++= ()3211222625-=--==67108861. (3)51100223(501)149d d ==+⨯-=,.由题意得 1250d d d ,,,是首项为149,公差为3-的等差数列. 当50n ≤时,n n d d d S +++= 21 n n n n n 230123)3(2)1(1492+-=--+=.当51100n ≤≤时,n n d d d S +++= 21()n d d d S ++++= 525150321.解:(1)02F F ∴=24c +=,2241(0)7x y x +=≥,2241(0)3y x x +=≤.222y c a +⎪⎭⎫⎝-22222()1()04b a c x a c x b c x c ⎛⎫-=---++- ⎪⎝⎭,≤≤,0122<-cb ,∴ 2||PM 的最小值只能在0=x 或c x -=处取到.即当PM 取得最小值时,P 在点12B B ,或1A 处.(3)||||21MA M A = ,且1B 和2B 同时位于“果圆”的半椭圆22221(0)x y x ab+=≥和半椭圆22221(0)y x x bc+=≤上,所以,由(2)知,只需研究P 位于“果圆”的半椭圆22221(0)x y x ab+=≥上的情形即可.2222||y c a x PM +⎪⎭⎫ ⎝⎛--=22222224)(2)(c a b c c a a x ac --++⎥⎦⎤⎢⎣⎡--=当22()2a a c x a c-=≤,即2a c ≤时,2||PM 此时P2当x =2|的最小值在a x = ;若c a 2>,当||PM。