MAX365CSE+T中文资料

合集下载

MAXIM MAX364 MAX365 数据手册

MAXIM MAX364 MAX365 数据手册

________________General DescriptionThe MAX364/MAX365 are precision, quad, single-pole single-throw (SPST) analog switches. The MAX364 has four normally closed (N C), and the MAX365 has four normally open (N O) switches. Both parts offer low-channel on -resistance (less than 85Ω), guaranteed to match within 2Ω between channels and to remain flat over the analog signal range (∆9Ω max). Both parts also offer low leakage (less than 500pA at +25°C and less than 4nA at +85°C) and fast switching (turn-on time less than 250ns and turn-off time less than 170ns).The MAX364/MAX365 are fabricated with Maxim’s new improved 44V silicon-gate process. Design improve-ments guarantee extremely low charge injection (10pC), low power consumption (35µW), and electro-static discharge (ESD) greater than 2000V. The 44V maximum breakdown voltage allows rail-to-rail analog signal handling capability.These monolithic switches operate with a single positive supply (+10V to +30V) or with split supplies (±4.5V to ±20V) while retaining CMOS-logic input compatibility and fast switching. CMOS inputs provide reduced input loading.________________________ApplicationsSample-and-Hold Circuits Communication Systems Guidance and Control Systems Battery-Operated Systems Heads-Up Displays PBX, PABX Test EquipmentMilitary Radios____________________________Features♦ Low On-Resistance: < 45Ω Typical (85Ω Max)♦ Guaranteed Matched On-Resistance Between Channels: < 2Ω♦ Guaranteed Flat On-Resistance over Full Analog Signal Range: ∆9ΩMax♦Guaranteed Charge Injection: < 10pC♦Guaranteed Off-Channel Leakage: < 4nA at +85°C ♦ESD Guaranteed > 2000V per Method 3015.7♦Single-Supply Operation (+10V to +30V)Bipolar-Supply Operation (±4.5V to ±20V)♦TTL-/CMOS-Logic Compatible♦Rail-to-Rail Analog Signal Handling CapabilityOrdering InformationMAX364/MAX365Precision, Quad, SPST Analog Switches_____________________ Pin Configurations/Functional Diagrams/Truth Tables19-0181; Rev 2; 6/04________________________________________________________________Maxim Integrated Products 1For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .* Contact factory for dice specifications.M A X 364/M A X 365Precision, Quad, SPST Analog SwitchesABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS—Dual Supplies(V+ = 15V, V- = -15V, VL = 5V, GND = 0V, V INH = 2.4V, V INL = 0.8V, T A = T MIN to T MAX , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functionaloperation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage Referenced to V-V+........................................................................................44V GND....................................................................................25V VL..................................................(GND - 0.3V) to (V+ + 0.3V)IN_, COM_, NO_, or NC_..........(V- - 2V) to (V+ + 2V) or 30mA (whichever occurs first)Continuous Current (any terminal)......................................30mA Peak Current COM_, NO_, or NC_(pulsed at 1ms, 10% duty cycle max)...........................100mA ESD....................................................................................2000V Note 1: All leads are soldered or welded to PC board.Continuous Power Dissipation (T A = +70°C) (Note 1)Plastic DIP (derate 10.53mW/°C above +70°C )............842mW Thin QFN (derate 33.3mW/°C above +70°C )..............2667mW Narrow SO (derate 8.70mW/°C above +70°C) .............696mW Operating Temperature Ranges:MAX36_C_ _ ........................................................0°C to +70°C MAX36_E_ _......................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°CMAX364/MAX365Precision, Quad, SPST Analog Switches_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)(V+ = 15V, V- = -15V, VL = 5V, GND = 0V, V INH = 2.4V, V INL = 0.8V, T A = T MIN to T MAX , unless otherwise noted.)M A X 364/M A X 365Precision, Quad, SPST Analog Switches 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—Single Supply(V+ = 12V, V- = 0V, VL = 5V, GND = 0V, V INH = 2.4V, V INL = 0.8V, T A = T MIN to T MAX , unless otherwise noted.)Note 2:The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used inthis data sheet.Note 3:Guaranteed by design.Note 4:Note 5:See Figure 2. Off Isolation = 20 log 10COM = output, V NO or V NC = input to off switch.Note 6:Between any two switches. See Figure 5.MAX364/MAX365Precision, Quad, SPST Analog Switches_______________________________________________________________________________________5__________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)ON LEAKAGE CURRENTSI C O M (n A )-2-112-1515V NC , V NO , V COM (V)OFF LEAKAGE CURRENTSI N C o r I N O (n A )-101-1515V NC , V NO, V COM (V)SWITCHING THRESHOLD vs. BIPOLAR SUPPLY VOLTAGEV I N (V )0.51.52.02.53.03.5±5±10±15±20BIPOLAR SUPPLY VOLTAGE (V)ON RESISTANCE vs. V COM AND UNIPOLAR SUPPLY VOLTAGE02550751001255101520V COM (V)R O N (Ω)150ON RESISTANCE vs. V COM , UNIPOLAR SUPPLY VOLTAGE AND TEMPERATURE255075100125150R O N (Ω)4812VCOM (V)ON RESISTANCE vs. V COM AND BIPOLAR SUPPLY VOLTAGER O N (Ω)306090120-20-1001020V COM(V)0ON RESISTANCE vs. V COM ,BIPOLAR SUPPLY VOLTAGE AND TEMPERATURER O N (Ω)20406080100-14-70714V COM (V)SWITCHING TIME vs. BIPOLAR SUPPLY VOLTAGET I ME (n s )04080120160±5±10±15±20BIPOLAR SUPPLY VOLTAGE (V)SWITCHING TIMES vs. UNIPOLAR SUPPLY VOLTAGET I M E (n s )05010015020010152024UNIPOLAR SUPPLY VOLTAGE (V)M A X 364/M A X 365Precision, Quad, SPST Analog Switches 6_________________________________________________________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)Q (p C )-20020-14-1001014V COM (V)Q (p C )-1051012V COM (V)10______________________________________________________________Pin DescriptionCHARGE INJECTION vs.V COM VOLTAGECHARGE INJECTION vs.V COM VOLTAGE__________Applications InformationApplication Hints1. Switches are open when power is off.2. IN_, COM_, NO_, and NC_ should not exceed V+ orV-, even with the power off.3. Switch leakage is from each analog switch terminalto V+ or V-, not to the other switch terminal.Operation with Supply VoltagesOther than ±15V O The main limitation of supply voltages other than ±15V is reduction in the analog signal range. The MAX364/MAX365 switches operate with ±5V to ±20V bipolar supplies. The Typical Operating Characteristics graphs show typical on resistance for ±15V, ±10V, and ±5V supplies. Switching times increase by a factor of two or more for ±5V opera-tion. The MAX364/MAX365 operate from unipolar sup-plies of +10V to +24V. Both parts can be powered from a single +10V to +24V supply, as well as from unbalanced supplies, such as +24V and -5V. Connect V- to 0V when operating with a single supply. VL must be connected to +5V to be TTL compatible or to V+ for CMOS logic input levels.Overvoltage Protection Proper power-supply sequencing is recommended for all CMOS devices. It is important not to exceed the absolute maximum ratings, because stresses beyond those listed may cause permanent damage to the devices. Always sequence V+ on first, followed by VL, V-, and logic inputs. If power-supply sequencing is not possible, protect the devices from overvoltage bypins (Figure 1). Adding the diodes reduces the analogsignal range to 1V below V+ and 1V below V-, but low switch resistance and low leakage characteristics are unaffected. Device operation is unchanged, and the difference between V+ to V- should not exceed +44V.MAX364/MAX365Precision, Quad, SPST Analog Switches _______________________________________________________________________________________7M A X 364/M A X 365Precision, Quad, SPST Analog Switches 8_______________________________________________________________________________________Figure 3. Charge-Injection Test Circuit______________________________________________Test Circuits/Timing DiagramsMAX364/MAX365Precision, Quad, SPST Analog Switches_______________________________________________________________________________________9FREQUENCY TESTED SIGNAL GENERATORANALYZER100Hz to 13MHzAUTOMATIC SYNTHESIZERSPECTRUM ANALYZERFigure 6. COM_, NC_, NO_ Off CapacitanceFigure 7. COM_, NC_, NO_ On Capacitance_________________________________Test Circuits/Timing Diagrams (continued)M A X 364/M A X 365Precision, Quad, SPST Analog Switches 10____________________________________________________________________________________________Pin Configurations/Functional Diagrams (continued)MAX364/MAX365Precision, Quad, SPST Analog Switches______________________________________________________________________________________11Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)M A X 364/M A X 365Precision, Quad, SPST Analog Switches 12______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)MAX364/MAX365Precision, Quad, SPST Analog SwitchesMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________13©2004 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)。

Maxxt中文使用说明书

Maxxt中文使用说明书

, .

:

:

.
.
,
.
.
. BW
.
,
.
180 6
2
GasAlert MAX XT II
GasAlertMax XT II

.

50% LEL .
.

,
,
BW
,
,
BW
. ,
,
.

:
LEL
.

,
,
.

20.9%(V/V)
GasAlertMax XT II
. ,
.
.
,
. .

BW

: : 1-800-663-4164
: 86-800-988-1586
1
GasAlert MAX XT II
GasAlertMax XT II
.
GasAlertMax XT II
. GasAlertMax XT II
.
.
.
GasAlertMax XT II
-
)
○30
.
Latched Alarms ,
, .
, LCD Latching Alarms
Fleet Manager II .
, .
10
GasAlert MAX XT II
GasAlertMax XT II :
Fleet Manager II
, Fleet Manager II . l.

:

:

(
on Self-Test

:

:

ELM365资料

ELM365资料

The ELM365 provides all of the logic necessary for a complete security system in an 8 pin package.The circuit is capable of monitoring two normally closed input loops and one normally open panic circuit, provides a constant level and a pulsing alarm output, and the logic to drive a status LED.Internal timers are provided for alarm blocking during zone entry and exit as well as circuit resetting, should alarms go unacknowledged.Debouncing of all of the inputs is also provided internally, to allow for the direct interfacing to mechanical switches.Due to the digital techniques employed, no external support components are required for any of the timing functions, resulting in considerable cost savings over other designs.Description•Home or cottage security systems •Auto or RV security systems•Individual zone monitoring in a multizone system •High or low limit warning alarmsApplicationsBlock Diagram•Low power CMOS design - typically 1mA at 5V •Wide supply range - 3.0 to 5.5 volt operation •Simultaneous monitoring of three circuits •45 second delay for entry and exit•Automatic reset of alarm outputs after 5 minutes •Status LED output driver•High current drive outputs - up to 25 mA •Panic input for instant triggering of the alarmFeaturesOutPOutCILoopDLoopLEDAll rights reserved. Copyright ©1999 Elm Electronics.Every effort is made to verify the accuracy of information provided in this document, but no representation or warranty can be given and no liability assumed by Elm Electronics with respect to the accuracy and/or use of any products or informationdescribed in this document. Elm Electronics will not be responsible for any patent infringements arising from the use of these products or information, and does not authorize or warrant the use of any Elm Electronics product in life support devices and/or systems. Elm Electronics reserves the right to make changes to the device(s) described in this document in order to improve reliability, function, or design.V DD (pin 1)This pin is the positive supply pin, and should always be the most positive point in the circuit.Internal circuitry connected to this pin is used to provide power on reset of the microprocessor, so an external reset signal is not required. Refer to the Electrical Characteristics section for further information.OutP (pin 2)This is the (active high) pulsed alarm output.When in an alarm state, it alternates between a logic high level (V DD ) for 1.5 seconds and a low level (V SS ) for 0.5 seconds. This output automatically resets after 5 minutes.OutC (pin 3)This is the constant level alarm output. It is switched to a high level (V DD ) during an alarm condition, and is otherwise at a logic low level.This output automatically resets to a low level after 5 minutes.panic (pin 4)This active low input is debounced and used to immediately trigger an alarm from normally open inputs such as panic pushbuttons or tamper switches. If unused, this input can be left open circuited, as there is an internal pullup resistor on the pin (see the specs).LED (pin 5)This is an active low LED drive output. It will pulse rapidly to warn that the system is in a 45second delayed alarm period, or will pulse slowly (about 1.5 seconds on, 0.5 seconds off) if an alarm is in progress or has previously occurred.By adding a suitable series resistor, an LED can be directly driven from this pin.ILoop (pin 6)This pin is used for monitoring a normally closed loop, connected between the pin and V SS . To reduce the possibility of nuisance triggers, a 0.5second debounce period is provided on this input.An alarm will be initiated immediately after the loop is determined to be open, but will not retrigger an alarm if the loop remains open, after the five minute timeout. This pin is not enabled for the first 45 seconds after the system is first turned on.DLoop (pin 7)This pin is similar to pin 6, with the one exception being that the alarm is delayed by 45 seconds to allow time for entry or exit.V SS (pin 8)Circuit common is connected to this pin. This is the most negative point in the circuit.Note:Stresses beyond those listed here will likely damage the device. These values are given as a design guideline only. The ability to operate to these levels is neither inferred nor recommended.All values are for operation at 25°C and a 5V supply, unless otherwise noted. For further information, refer to note 1 below.CharacteristicMinimumTypicalMaximum ConditionsUnitsSupply Voltage, V DD 3.0 5.05.5V V DD rate of rise0.05V/msAverage Supply Current, I DD 1.02.4mA V DD = 5V, see note 3Notes:1.This integrated circuit is produced with a Microchip Technology Inc.’s PIC12C5XX as the core embedded microcontroller. For further device specifications, and possibly clarification of those given, please refer to the appropriate Microchip documentation.2.This spec must be met in order to ensure that a correct power on reset occurs. It is quite easily achieved using most common types of supplies, but may be violated if one uses a slowly varying supply voltage, as may be obtained through direct connection to solar cells, or some charge pump circuits.3.Pullup resistor currents are not included in this figure.4.The value of the internal pullup resistance is both supply and temperature dependent.5.Times are approximate. LED output can only be reset by powering down.6.Both the OutP and OutC outputs will be internally reset after this time. If a loop continues to remain open, it will not retrigger an alarm. In contrast, the panic input will always retrigger an alarm if it remains closed.Input low voltage - reset pin V SS 0.15 V DDV Input high voltage - reset pin V DD V 0.85 V DDOutput low voltage 0.6V Output high voltageVV DD - 0.7Current (sink) = 8.7mA Current (source) = 5.4mAInternal pullup resistances300500600K ΩPanic input, see note 4see note 2203050K ΩLoop inputs, see note 4Output Pulse Duration- High1.5sec OutP and LED outputs,see note 50.5sec - Low Auto Reset Time Period 5minsee note 6Figure 1. Home Security SystemFigure 1 shows the ELM365 as the controller in a typical home security system.Series connected magnetic switches monitor door positions, and connect to the delayed loop input. Several window switches are connected in series to the instant loop input, and panic switches are provided in the bedrooms to cause an alarm when pressed.Four LEDs are included in the circuit to show power on (circuit armed), alarm, and loop status. In addition to status, these LEDs also provide loop current for switch wetting, and assist with the input pullup function.Although not essential, it is recommended that the LEDs be installed.The series resistors on pins 4, 6, and 7 have been included in this design for protection from electrostatic discharge, or induced currents. Although the circuit will function correctly without them, they are recommended for the added protection that they afford.The circuit supports two outputs, and both have been included with this design. The pulsed output drives an alarm buzzer, while the constant output can drive yard lights, etc. Both outputs use a conventional transistor circuit to energize a 12V relay coil.Power for the circuit is from an AC supplied 12V DC source, with only temporary backup provided by a 9V battery. Both inputs are diode coupled, passedPulsed OutputConstant OutputOptional 9V Backup Supply。

MEMORY存储芯片MAX202CWE+T中文规格书

MEMORY存储芯片MAX202CWE+T中文规格书

●Saves Board Space •Integrated Charge Pump CircuitryEliminates the Need for a Bipolar ±12V SupplyEnables Single Supply Operation From Either +5Vor 9V to +12V•Integrated 0.1μF Capacitors (MAX203, MAX205)•24 pin SSOP Package Saves Up to 40% VersusSO Package●Saves Power for Longer Battery Operation•5μW Shutdown Mode (MAX200, MAX205,MAX206, MAX211)•75μW Ring Indicator Monitoring with Two ActiveReceivers (MAX213)Applications ●Battery-Powered Equipment ●Handheld Equipment ●Portable Diagnostics Equipment Selector Guide continued at end of data sheet.19-0065; Rev 8; 1/15PART POWER-SUPPLYVOLTAGE (V)NUMBER OF RS-232 DRIVERS NUMBER OF RS-232 RECEIVERS NUMBER OF RECEIVERS ACTIVE IN SHUTDOWN NUMBER OF EXTERNAL CAPACITORS (0.1μF)LOW-POWER SHUTDOWN/TTL THREE-STATE MAX200+55004Yes/No MAX201+5 and +9.0 to +13.22202No/No MAX202+52204No/No MAX203+5220None No/No General DescriptionMAX200-MAX209, MAX211, and MAX213 are a family of RS-232 and V.28 transceivers with integrated charge pump circuitry for single +5V supply operation.The drivers maintain the ±5V EIA/TIA-232E output signal levels at data rates in excess of 120kbps when loaded in accordance with the EIA/TIA-232E specification.The MAX211 and MAX213 are available in a 28-pin, wide small-outline (SO) package and a 28-pin shrink small-outline (SSOP) package, which occupies only 40% of the area of the SO. The MAX207 is available in a 24-pin SO package and a 24-pin SSOP . The MAX203 and MAX205 use no external components and are recommended for applications with limited circuit board space.Bene its and FeaturesSelector GuideTypical Operating Circuit 找MEMORY、二三极管上美光存储MAX200–MAX209/ MAX211/MAX213+5V, RS-232 Transceivers with 0.1μF External CapacitorsIntegrated │9MAX200 Pin Configuration/Typical Operating Circuit。

MAX793T中文资料

MAX793T中文资料
o Guaranteed Reset Assertion to VCC = 1V o Backup-Battery Power Switching—Battery
Voltage Can Exceed VCC o On-Board Gating of Chip-Enable Signals—7ns
Max Propagation Delay
元器件交易网
19-0366; Rev 1; 1/96
MAX793/MAX794/MAX795
3.0V/3.3V Adjustable Microprocessor Supervisory Circuits
_______________General Description
MAX793
WDO
CE IN
MR
WDI
PFO
LOWLINE
ADDRESS DECODER
VCC
VCC A0-A15
I/O NMI
µP
PFI
RESET
BATT OK
GND
RESET
________________________________________________________________ Maxim Integrated Products 1
Output Current VOUT................................................................................200mA All Other Outputs ..............................................................20mA
Pin Configurations appear at end of data sheet.

试验机软件MaxTest说明书

试验机软件MaxTest说明书

目录第一章简介 (4)一、前言 (4)二、特点 (4)三、控制性能 (4)第二章安装和运行 (6)一、运行环境 (6)二、安装 (6)三、卸载 (9)四、修复 (9)第三章界面操作 (10)一、主窗口 (10)二、力和变型显示板 (12)三、位移显示板 (13)四、曲线显示板 (14)五、控制板 (17)六、刻度板 (23)七、数据板 (24)八、分析板 (27)九、调试参数窗口 (28)第四章试验过程 (32)一、选择试验类型 (32)二、输入试件信息 (32)三、打开历史数据 (32)四、试验操作 (37)五、结果保存 (40)六、数据分析 (40)七、报告打印 (43)第五章系统设置和调整 (46)一、关于试验力过载 (46)二、系统设置 (46)三、选择力传感器和引伸计 (51)四、标定校正 (51)五、硬件调零 (52)六、检定记录 (52)七、控制观察 (53)八、增加试验方法 (54)九、重新注册 (55)十、用户自定义项目 (55)十一、保存调试参数文件 (56)第六章调试工具箱MaxIni使用说明 (57)一、安装和运行 (57)二、使用 (57)第七章程序编制和程序执行 (62)一、用途 (62)二、程序执行 (62)三、程序编制 (63)第八章批量处理MaxBatch使用说明 (70)一、用途 (70)二、安装 (70)三、操作 (70)第九章如何利用Word或Excel打印报表 (76)一、简介 (76)二、安装 (76)三、MaxDoc使用 (77)四、MaxXls使用 (80)第十章如何重新压环检定力传感器 (82)一、察看测量方式和控制方式 (82)二、有手动控制分档测量系统的检定 (83)三、有手动控制不分档测量系统的检定 (84)四、无手动控制分档测量系统的检定 (86)五、无手动控制不分档测量系统的检定 (88)六、注意事项 (91)第十一章错误信息 (92)一、安装时 (92)二、启动时 (92)三、运行时 (93)第十二章AD700/800万能试验卡 (94)一、概述 (94)二、安装和拆卸 (94)三、检测硬件是否正常(PCIADTEST软件使用方法) (96)四、传感器接口定义 (97)第十三章高级自定义报告打印格式 (98)一、为什么要自定义报告打印格式 (98)二、特点 (98)三、art文件 (98)四、srt文件 (106)第十四章使用Micorsoft Excel打印报表 (112)修订2005年8月16日第一章简介一、前言MaxTest程序根据不同的配置参数,适用于不同的类型的材料试验机,如微机屏显万能试验机、微机控制电液伺服万能试验机、微机控制电液比例万能试验机以及微机控制电子万能试验机等。

公寓智能化系统设计方案

公寓智能化系统设计方案

X X X公寓智能化系统设计方案目录一、方案总体设计思想 (3)(一)人们对现代型公寓的需求分析 (4)1.1安全性 (4)1.2舒适方便 (5)1.3经济性 (5)(二)XX公寓智能化系统工程概述 (6)(三)社区智能化设计依据 (6)(四)智能化子系统性能分析 (7)4.1综述 (7)二、各子系统分析 (10)(一)结构化综合布线系统 (10)1.1综合布线系统综述 (10)1.2综合布线系统优点 (10)1.3综合布线系统设计目标 (12)1.4综合布线系统设计依据 (13)1.5综合布线系统的结构 (14)1.6xx综合布线系统说明 (15)1.7接地系统 (19)1.8线缆铺设及路线 (20)1.9系统的测试、验收及文档 (20)(二)、卫星及有线电视系统 (21)2.1设计综述 (21)(三)楼宇自控系统 (31)3.1总述 (31)3.2楼宇自控系统的监控内容 (32)3.3设备选型 (37)(四)停车场管理子系统设计方案 (39)4.1停车场系统概述 (39)4.2系统设计特点 (40)4.3系统主要功能 (41)4.4系统软件简介 (42)(五)消防系统 (44)5.1设计依据 (44)5.2设计目标 (44)5.3设计原则 (45)5.4监控范围和功能 (46)5.5系统集成 (52)(六)、闭路电视监控系统 (62)6.1系统概述 (62)6.2.产品选型 (62)6.3功能描述 (63)6.4方案设计 (64)6.5质量标准 (64)(七)、背景音乐(公共广播系统) (69)7.1设计依据 (69)7.2设计原则 (69)7.3广播系统说明 (70)7.4紧急广播 (71)7.5系统特点 (72)(八)巡更系统的分类 (82)(九)、手机接受系统 (84)(九)、手机接受系统 (84)(十)、电子公告牌系统 (84)10.1 256色显示系统 (84)10.2 256色LED视频显示系统总述 (85)(十一)、自动抄表系统 (88)11.1自动抄表系统的构成 (89)11.2自动抄表系统的原理 (89)11.3抄表系统的主要功能 (90)11.4产品选型及LONWORKS技术 (91)(十二)、可视对讲系统 (93)12.1 可视对讲系统简介 (93)12.2系统要求 (93)12.3系统配置 (93)12.4系统功能介绍: (94)三、XX公司关于XX公寓的建议 (97)(一)、资讯增值服务建议 (97)(二)、IP电话的建议 (98)(三)、实现系统集成 (101)3.1综述 (101)3.2集成内容 (103)3.3实现集成的方法 (104)四、服务承诺 (107)(一)、帮助开发单位建设资讯服务软件 (107)(二)、帮助开发单位建设IP电话系统 (107)(三)、帮助开发单位建立D IRECT PC,高速卫星下载系统 (107)(四)、售后服务承诺 (109)(五)、对人员培训的承诺: (109)一、方案总体设计思想首先十分感谢xx公寓给我们这个机会、参加xx公寓智能化系统的二次设计。

siwarex_CS

siwarex_CS

西门子SIWAREX®CS装置手册状态:2004年6月警告和安全术语本手册包含有为了保护你的人身安全和防止损坏装置或周围环境而应该遵守的注意事项。

这些注意事项由一个警告三角形表示,根据不同的危险程度代表下列意义:危险意思是:如果未能认真遵守相应的安全预防措施,将肯定会导致严重的财产损失、严重的人身伤害、甚至死亡。

警告意思是:如果未能认真遵守相应的安全预防措施,将能够导致严重的财产损失、严重的人身伤害、甚至死亡。

小心意思是:如果未能认真遵守相应的安全预防措施,将能够导致财产损失或轻微的伤害。

小心意思是:如果未能认真遵守相应的安全预防措施,将能够导致财产损失。

注意指的是需要加以特别关注的重要信息;这些信息涉及到产品、产品的处置或资料中的一个对应段落。

合格人员装置的安装和操作只能由合格人员执行。

在本手册的范围内,从技术安全意义出发的合格人员指的是这样一些人:他们有资格按照适用于技术安全标准,从事所有装置、系统和回路的安装、接地和标识工作。

预定用途警告本装置只能利用样本和技术描述中规定的替换件,而且只能利用由西门子公司批准或建议的外部装置和部件。

产品的安全可靠、无故障的运行不仅取决于合适的运输,还依赖于合适的贮存、组装、安装、操作和维护。

产品牌号 / 商标SIWAREX®、SIMATIC®、SIMATIC HMI®和SIMATIC NET®都是西门子AG公司的注意商标。

任何第三方为了他们自己的目的而使用本文件中涉及商标的其它名称都将侵犯商标所有人的权利。

版权© 西门子AG 2003;版权所有,不得翻印。

未经明确许可,严禁传播或复制本资料,严禁使用和披露本资料的内容。

违者应对相关损失承担法律责任。

保留所有权利,包括由一种实用新型或设计的专利许可或注册所形成的权利。

西门子AG自动化与驱动集团SIWAREX称重系统A&D PI 14Östliche Rheinbrückenstr. 50D-76187 Karlsruhe(卡尔斯鲁厄)责任放弃声明我们已经校验了本手册中的内容与所述硬件和软件的一致性。

MAX3656ETG中文资料

MAX3656ETG中文资料

IN+ SERIAL DATA SOURCE 100Ω IN-
BIASMAX
VCC OUTOUT+ BIAS+ VCC BIASLONGB MD
VCC
MD
TOP VIEW
BIASMAX
MODSET
APCSET
MAX3656
BEN+ BURST CONTROL 100Ω BEN-
MAX3656
15 14 13
MAX3656
Ordering Information
PART MAX3656E/D MAX3656ETG TEMP RANGE — PIN-PACKAGE Dice* PKG CODE — T2444-1 —
-40°C to +85°C 24 Thin QFN-EP**
MAX3656ETG+ -40°C to +85°C 24 Thin QFN-EP**
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MAX1978中文数据手册

MAX1978中文数据手册

用于Peltier模块的集成温度控制器概论MAX1978 / MAX1979是用于Peltier热电冷却器(TEC)模块的最小, 最安全, 最精确完整的单芯片温度控制器。

片上功率FET和热控制环路电路可最大限度地减少外部元件, 同时保持高效率。

可选择的500kHz / 1MHz开关频率和独特的纹波消除方案可优化元件尺寸和效率, 同时降低噪声。

内部MOSFET的开关速度经过优化, 可降低噪声和EMI。

超低漂移斩波放大器可保持±0.001°C的温度稳定性。

直接控制输出电流而不是电压, 以消除电流浪涌。

独立的加热和冷却电流和电压限制提供最高水平的TEC保护。

MAX1978采用单电源供电, 通过在两个同步降压调节器的输出之间偏置TEC, 提供双极性±3A输出。

真正的双极性操作控制温度, 在低负载电流下没有“死区”或其他非线性。

当设定点非常接近自然操作点时, 控制系统不会捕获, 其中仅需要少量的加热或冷却。

模拟控制信号精确设置TEC 电流。

MAX1979提供高达6A的单极性输出。

提供斩波稳定的仪表放大器和高精度积分放大器, 以创建比例积分(PI)或比例积分微分(PID)控制器。

仪表放大器可以连接外部NTC或PTC热敏电阻, 热电偶或半导体温度传感器。

提供模拟输出以监控TEC温度和电流。

此外, 单独的过热和欠温输出表明当TEC温度超出范围时。

片上电压基准为热敏电阻桥提供偏置。

MAX1978 / MAX1979采用薄型48引脚薄型QFN-EP 封装, 工作在-40°C至+ 85°C温度范围。

采用外露金属焊盘的耐热增强型QFN-EP封装可最大限度地降低工作结温。

评估套件可用于加速设计。

应用光纤激光模块典型工作电路出现在数据手册的最后。

WDM, DWDM激光二极管温度控制光纤网络设备EDFA光放大器电信光纤接口ATE特征♦尺寸最小, 最安全, 最精确完整的单芯片控制器♦片上功率MOSFET-无外部FET♦电路占用面积<0.93in2♦回路高度<3mm♦温度稳定性为0.001°C♦集成精密积分器和斩波稳定运算放大器♦精确, 独立的加热和冷却电流限制♦通过直接控制TEC电流消除浪涌♦可调节差分TEC电压限制♦低纹波和低噪声设计♦TEC电流监视器♦温度监控器♦过温和欠温警报♦双极性±3A输出电流(MAX1978)♦单极性+ 6A输出电流(MAX1979)订购信息* EP =裸焊盘。

MAX306中文资料

MAX306中文资料

_______________General DescriptionThe MAX306/MAX307 precision, monolithic, CMOS analog multiplexers (muxes) offer low on-resistance (less than 100Ω), which is matched to within 5Ωbetween channels and remains flat over the specified analog signal range (7Ωmax). They also offer low leak-age over temperature (I NO(OFF)less than 2.5nA at +85°C) and fast switching speeds (t TRANS less than 250ns). The MAX306 is a single-ended 1-of-16 device,and the MAX307 is a differential 2-of-8 device.The MAX306/MAX307 are fabricated with Maxim’s improved 44V silicon-gate process. Design improve-ments yield extremely low charge injection (less than 10pC) and guarantee electrostatic discharge (ESD)protection greater than 2000V.These muxes operate with a single +4.5V to +30V sup-ply, or bipolar ±4.5V to ±20V supplies, while retaining TTL/CMOS-logic input compatibility and fast switching.CMOS inputs provide reduced input loading. These improved parts are plug-in upgrades for the industry-standard DG406, DG407, DG506A, and DG507A.________________________ApplicationsSample-and-Hold Circuits Test Equipment Heads-Up DisplaysGuidance and Control Systems Military RadiosCommunications Systems Battery-Operated Systems PBX, PABXAudio Signal Routing____________________________Featureso Guaranteed On-Resistance Match Between Channels, <5ΩMaxo Low On-Resistance, <100ΩMaxo Guaranteed Flat On-Resistance over Specified Signal Range, 7ΩMaxo Guaranteed Charge Injection, <10pC o I NO(OFF)Leakage <2.5nA at +85°C o I COM(OFF)Leakage <20nA at +85°C o ESD Protection >2000Vo Plug-In Upgrade for Industry-Standard DG406/DG407/DG506A/DG507Ao Single-Supply Operation (+4.5V to +30V)Bipolar-Supply Operation (±4.5V to ±20V)o Low Power Consumption, <1.25mW o Rail-to-Rail Signal Handling o TTL/CMOS-Logic CompatibleMAX306/MAX307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers________________________________________________________________Maxim Integrated Products 1_____________________Pin Configurations/Functional Diagrams/Truth TablesCall toll free 1-800-998-8800 for free samples or literature.19-0270; Rev 0; 8/94Ordering Information continued at end of data sheet.* Contact factory for dice specifications.M A X 306/M A X 307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS—Dual Supplies(V+ = +15V, V- = -15V, GND = 0V, V AH = +2.4V, V AL = +0.8V, T A = T MIN to T MAX , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage Referenced to V-V+............................................................................-0.3V, 44V GND.........................................................................-0.3V, 25V Digital Inputs, NO, COM (Note 1)...........(V- - 2V) to (V+ + 2V) or30mA (whichever occurs first)Continuous Current (any terminal)......................................30mA Peak Current, NO or COM(pulsed at 1ms, 10% duty cycle max)..........................100mA Continuous Power Dissipation (T A = +70°C)Plastic DIP (derate 9.09mW/°C above +70°C)............727mW Wide SO (derate 12.50mW/°C above +70°C)............1000mW PLCC (derate 10.53mW/°C above +70°C)..................842mW CERDIP (derate 16.67mW/°C above +70°C).............1333mW Operating Temperature RangesMAX30_C_ _.......................................................0°C to +70°C MAX30_E_ _.....................................................-40°C to +85°C MAX30_MJI....................................................-55°C to +125°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10sec).............................+300°CNote 1:Signals on NO, COM, A0, A1, A2, A3, or EN exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings.MAX306/MAX307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)(V+ = +15V, V- = -15V, GND = 0V, V= +2.4V, V = +0.8V, T = T to T , unless otherwise noted.)M A X 306/M A X 307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—Single Supply(V+ = +12V, V- = 0V, GND = 0V, V AH = +2.4V, V AL = +0.8V, T A = T MIN to T MAX , unless otherwise noted.)Note 2:The algebraic convention where the most negative value is a minimum and the most positive value a maximum is used inthis data sheet.Note 3:Guaranteed by design.Note 4:∆R ON = R ON(MAX)- R ON(MIN).On-resistance match between channels and flatness are guaranteed only with specifiedvoltages. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured at the extremes of the specified analog signal range.Note 5:Leakage parameters are 100% tested at the maximum rated hot temperature and guaranteed by correlation at +25°C.Note 6:Off isolation = 20log V COM /V NO , where V COM = output and V NO = input to off switch.MAX306/MAX307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers_______________________________________________________________________________________5120140160ON-RESISTANCE vs. V COM(DUAL SUPPLIES)1000204060-2020-1515-1010-5580V COM (V)R O N (Ω)120ON-RESISTANCE vs. V COM AND TEMPERATURE (DUAL SUPPLIES)1000204060-1515-1010-55080V COM (V)R O N (Ω)280320360400ON-RESISTANCE vs. V COM (SINGLE SUPPLY)24040801201601520105200V COM (V)R O N (Ω)120140160ON-RESISTANCE vs. V COM AND TEMPERATURE (SINGLE SUPPLY)10002040601510580V COM (V)R O N (Ω)30CHARGE INJECTION vs. V COM20-30-20-100-1515-1010-55010V COM (V)Q j (p C )100.0001-55125OFF LEAKAGE vs. TEMPERATURE1TEMPERATURE (°C)O F F L E A K A G E (n A )250.010.001-35-15650.1100100045851055100.0001-55125ON LEAKAGE vs. TEMPERATURE1TEMPERATURE (°C)O N L E A K A G E (n A )250.010.001-35-15650.11001000458510551000.001-55125SUPPLY CURRENT vs. TEMPERATURE10TEMPERATURE (°C)I +, I - (µA )250.10.01-35-1565145851055__________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)__________Applications InformationOperation with Supply VoltagesOther than ±15VUsing supply voltages other than ±15V will reduce the analog signal range. The MAX306/MAX307 switches operate with ±4.5V to ±20V bipolar supplies or with a +4.5V to +30V single supply; connect V- to GND when operating with a single supply. Also, both device types can operate with unbalanced supplies such as +24V and -5V. The Typical Operating Characteristics graphs show typical on-resistance with 20V, 15V, 10V, and 5V supplies. (Switching times increase by a factor of two or more for operation at 5V.)Overvoltage ProtectionProper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maxi-mum ratings because stresses beyond the listed rat-ings may cause permanent damage to the devices.Always sequence V+ on first, then V-, followed by either the logic inputs, NO, or COM. If power-supply sequencing is not possible, add two small signal diodes in series with supply pins for overvoltage pro-tection (Figure 1). Adding diodes reduces the analogsignal range to 1V above V+ and 1V below V-, but low switch resistance and low leakage characteristics are unaffected. Device operation is unchanged, and the difference between V+ and V- should not exceed +44V.M A X 306/M A X 307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers 6_______________________________________________________________________________________Output–bidirectionalCOM28Address Inputs A3–A014–17Enable InputsEN 18Analog Inputs–bidirectional NO1–NO819–26Negative Supply Voltage Input V-27Ground GND 12Analog Inputs–bidirectional NO16–NO94–11MAX306PINNo Internal Connections N.C.2, 3, 13Positive Supply Voltage Input V+1FUNCTIONNAME_____________________________________________________________Pin DescriptionsDiodesMAX306/MAX307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers_______________________________________________________________________________________7______________________________________________Test Circuits/Timing DiagramsM A X 306/M A X 307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers 8________________________________________________________________________________________________________________________Test Circuits/Timing Diagrams (continued)Figure 5. Charge InjectionMAX306/MAX307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers_______________________________________________________________________________________9_________________________________Test Circuits/Timing Diagrams (continued)Figure 8. NO/COM CapacitanceM A X 306/M A X 307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers 10______________________________________________________________________________________________Pin Configurations/Functional Diagrams/Truth Tables (continued)A2A1A0EN ON Switch X 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1X 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1X 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1None 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16MAX306LOGIC “0” V AL ≤ 0.8V, LOGIC “1” = V AH ≥ 2.4VA3X 0 0 0 0 0 0 0 0 1 1 1 1 1 1 11A2A1A0EN ON Switch X 0 0 0 0 1 1 1 1X 0 0 1 1 0 0 1 1X 0 1 0 1 0 1 0 10 1 1 1 1 1 1 1 1None 1 2 3 4 5 6 7 8MAX307LOGIC “0” V AL ≤ 0.8V, LOGIC “1” = V AH ≥ 2.4VMAX306/MAX307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers______________________________________________________________________________________11________Pin Configurations/Functional Diagrams/Truth Tables (continued)_Ordering Information (continued)* Contact factory for dice specifications.Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12__________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600©1994 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.M A X 306/M A X 307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers __________________________________________________________Chip TopographiesGNDNO1 NO2 NO3 N04 NO5 NO6 NO7 NO80.184" (4.67mm)0.078" (1.98mm)NO9NO10NO11NO12N013NO14NO15NO16N.C.V-COM V+GND NO1A NO2A NO3A N04A NO5A NO6A NO7A NO8A0.184" (4.67mm)0.078" (1.98mm)NO1B NO2B NO3B NO4B N05B NO6B NO7B NO8B COMBV-COMA V+TRANSISTOR COUNT: 269SUBSTRATE IS INTERNALLY CONNECTED TO V+TRANSISTOR COUNT: 269SUBSTRATE IS INTERNALLY CONNECTED TO V+MAX306MAX307N.C. = NO INTERNAL CONNECTION。

CH365中文手册(一)

CH365中文手册(一)
MEM_WR (IOP_HIT)
SYS_EX (INT_REQ)
本地 8位 总线
2、特点
● 实现基于 32 位 PCI 总线的从设备接口。 ● 转换为主动并行接口:8 位数据,16 位地址,I/O 读和写,存储器读和写。 ● 可以设定 PCI 板卡的设备标识(Vendor ID,Device ID,Class Code 等)。 ● 支持以字节、字或双字为单位对 I/O 端口或者存储器进行读写。 ● 非突发存取的实测速度可达每秒 7MB,读写脉冲的宽度从 30nS 到 240nS 可选。 ● 自动分配 I/O 基址,支持长度达 240 字节的 I/O 端口。 ● 支持本地硬件定址功能,自由选择 I/O 地址,在指定地址实现 I/O 端口。 ● 直接升级 ISA 的 I/O 板卡到 PCI 总线,完全不需要修改原 ISA 卡的相关软件。 ● 直接映射支持容量为 32KB 的存储器 SRAM 或者扩展 ROM(Boot ROM)。 ● 无需外接元器件扩容支持容量为 64KB 以及 128KB 的存储器或者扩展 ROM。
WW WW WRRRRRRW WW WW RRRRRWWW WRRWRWWW RR (禁止使用)
复位后的默认值 连接到 I/O 设备
xxxxxxxx 000000xx (禁止使用) 连接到存储器
xxH 00000000
00H 00H rrrrr00x 0rr0r111 xxH (禁止使用)
6.4. 寄存器的位说明
6.2. 配置空间 0FFH-00H
类别
标准 PCI 设备 配置 空间
地址 01H-00H 03H-02H 05H-04H 07H-06H
08H 0BH-09H 0FH-0CH
13H-10H
17H-14H 2FH-18H 33H-30H

MAX98365评估系统说明书

MAX98365评估系统说明书

MAX98365AEVSYS#Evaluates: MAX98365A/MAX98365B/MAX98365C/MAX98365DMAX98365 Evaluation SystemsOne Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2022 Analog Devices, Inc. All rights reserved.© 2022 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.Click here to ask an associate for production status of specific part numbers.General DescriptionThe MAX98365 evaluation system (EV system) is a fully assembled and tested system that evaluates the MAX98365A/B/C/D mono Class-D audio amplifier. The EV system consists of the MAX98365 Development Board (DEV board), Maxim’s Audio Interface Board III (AUDINT3), and a USB cable.It is recommended that the DEV board be evaluated with the AUDINT3 board, as an EV system. MAX98365A and MAX98365C support the standard I 2S interface, and MAX98365B and MAX98365D support standard left-jus-tified mode. All MAX98365 variants support an 8-channel TDM digital audio interface.The AUDINT3 board provides a USB-to-PCM interface in addition to a 1.8V VDD supply needed to evaluate the DEV board. The MAX98365 DEV board requires one additional supply input, 3V to 14V (PVDD) when evaluat-ing using the AUDINT3 board. Figure 1 details the DEV board and the AUDINT3 board.319-100884; Rev 0; 2/22Ordering Information appears at end of data sheet.Features●3V to 14V Single-Supply Operation ●I 2S, Left-Justified, or TDM Input●Five Selectable Gains (9.5dB, 12.5dB, 15.5dB,18.5dB, and 21.5dB) ●Audio Channel Select (Left, Right, and Mono Mix) ●Filter-Less Operation ●Low EMI●Complete Hardware System with Easy Setup; NoTools or Special Software RequiredEV System Contents●MAX98365 Development Board ●Audio Interface Board III ●Micro-USB CableFigure 1. MAX98365 Evaluation SystemMAX98365 Evaluation SystemsEvaluates: MAX98365A/MAX98365B/MAX98365C/MAX98365DQuick Start GuideRequired Equipment●MAX98365 EV system• MAX98365 development board (DEV board)• Audio Interface Board III (AUDINT3 board)• Micro-USB cable ●DC power supply (3V to 14V, 3A) ●4Ω to 8Ω speaker●PC with Windows ® 7 or Windows 10 with availableUSB port ●USB audio source (e.g., Windows Media Player ® oriTunes ®)Reference Material●MAX98365 IC data sheetProcedureThe MAX98365 and AUDINT3 boards are fully assembled and tested. Follow the steps below to set up the EV sys-tem for device evaluation.Note: In the following sections, software-related items are identified by bolding. Text in bold refers to items directly from the evaluation software. Text in bold and under-lined refers to items from the Windows operating system.AUDINT3 Board Setup:1) Connect the MAX98365 DEV board (3 row J1 con-nector) to the AUDINT3 board (3 row J1 connector). To avoid damage, it is important to make sure the connectors of the two boards are properly aligned. The bottom row of both J1 connectors should be lined up so the standoffs on the corners of the AUDINT3 and DEV board are level.2) With the audio source disabled, connect the Micro-USB cable from your computer to the USB port (J2) on the AUDINT3 board. The AUDINT3 board pro-vides the BCLK and LRCLK signals as well as the power for VDDIO, sourcing 1.8V to the DEV board through the J1 connector.3) The multi-color LED D1 initially flashes blue, andthen should change to slow flashing magenta when the computer successfully registers the AUDINT3 as a USB audio playback device.DEV Board Setup:1) Connect the AUDINT3 VDD jumper. Place one shunton jumper J13 across pins labeled 1.8V and VDD. This allows the AUDINT3 to provide 1.8V to the VDD pin on MAX98365.2) Configure I 2S channel jumper. Place triple shunt onjumper J5, DAI C for mono-mix. Remove any shunts from J4, J3, and J2.3) Set the gain jumper. Place one shunt on jumper J7for desired gain (can use 21dB for PVDD = 14V).4) Enable the IC jumper. Place the shunt on jumper J6across pins VDD and EN.5) Connect the speaker. Connect the speaker leadsacross the FOUTP and FOUTN binding posts.6) Connect PVDD. With the DC supply not powered,connect the 3V to 14V power supply across the PVDD and GND binding posts.USB Audio Playback Test:1) Enable the PVDD supply voltage (3V to 14V, 3A).2) Open the Windows’ Sound dialog and select thePlayback tab. A Speakers item such as Figure 2 should be listed as an available playback device.3) Verify that the Speakers item is set as the defaultdevice. Once this is done, the AUDINT3 board out-puts PCM data to the DIN pin on the DEV board. 4) Adjust the audio source volume to a low level.5) Enable the audio source and verify that audio isheard through the connected speaker. Adjust the audio source volume as needed.6) Quick Start for USB Audio Playback is now complete.7) For details on how to connect in a standalone modeto audio test equipment, such as Audio Precision, see the Detailed Description of Hardware section.iTunes is a registered trademark of Apple Inc.Windows is a registered trademark and registered service mark of Microsoft Corporation.Windows Media is a registered trademark and registered service mark of Microsoft Corporation.Figure 2. Playback DeviceMAX98365 Evaluation Systems Evaluates: MAX98365A/MAX98365B/MAX98365C/MAX98365DDetailed Description of HardwareThe MAX98365 EV system is designed to allow for a thorough evaluation of the MAX98365 digital input Class-D audio amplifier IC. The EV system includes the MAX98365 Development Board (DEV board), the Audio Interface Board III (AUDINT3), and a micro-USB cable.To simplify evaluation, the MAX98365 DEV board can be used together with the AUDINT3 and only one external power supply for PVDD. The AUDINT3 supplies 1.8V for VDD and a plug-and-play USB-to-I2S interface, allowing any computer to become a 48kHz digital audio source. The AUDINT3 board provides a fast and easy-to-use method for exercising the main capabilities of the device with no additional audio equipment.The AUDINT3 board automatically senses the MAX98365 DEV board and configures its LDO regulators to power the MAX98365 DEV board’s VDD pin through connec-tor J1. The USB-to-PCM converter accepts a USB audio stream from a USB connected computer and converts to I2S (MAX98365A/C) or left-justified (MAX98365B/D) data stream, allowing for USB audio playback through the MAX98365 device. The AUDINT3 board should not be used to deliver audio input when directly driving the DEV board’s PCM interface with external audio test equipment. The digital audio interface (DAI) pins on the DEV board and AUDINT3 digital audio outputs are connected through the J1 header, creating a signal conflict. Disable all DAI signals using the AUDINT3 software if using external audio stimuli. However, the AUDINT3 can still provide VDD if an external power supply is not available.For maximum flexibility, the MAX98365 DEV board can also be evaluated as a standalone board, with two exter-nal power supplies (PVDD and VDD), and the digital audio signal is driven directly by specialized audio test equip-ment (Audio Precision, etc.)Power SuppliesWhen evaluated as a standalone board, the MAX98365 DEV board requires two external power supplies: PVDD, which is the supply voltage for the main Class-D power stage, and VDD, which supplies low level system power to the IC.The voltage applied to VDD determines the logic level of the EN pin when J6 is in the ENABLE position. The power supplies and their ranges are listed in Table 1. The exter-nal supply voltages can be connected at the respective supply test-points and/or binding posts. The AUDINT3 board, when properly connected to the DEV Board, senses, and automatically provides 1.8V to VDD of MAX98365 DEV Board through jumper J1, when active USB power is supplied. Note that with the AUDINT3 board connected, VDD is automatically provided, but an external PVDD is still required. If an external VDD is desired with AUDINT3 still connected to the DEV Board, jumper J13 (DEV board) can be used to disconnect the AUDINT3’s 1.8V. See Table 2 for the J13 jumper selection. Jumper SelectionShutdown ModeThe DEV Board includes header J6 for device enable. The MAX98365 device features a low-power shutdown mode that is activated by setting J6 shunt in the “DISABLE” position. To exit shutdown mode, place J6 shunt to the “ENABLE” position. When the PCM master is disabled and J6 is in the “ENABLE” position, the device is in standby mode. Enabling the PCM interface while J6 is in the “ENABLE” position puts the device in active play-back mode, and the device output begins switching. See Table 3 for reference.Table 1. Power SuppliesTable 3. Jumper ConfigurationTable 2. J13 Jumper Selection (VDD) SuppliesPOWER SUPPLY RANGE (V)VDD 1.71 to 5.5PVDD 3 to 14HEADER SHUNT POSITION DESCRIPTION J6EN to VDD Normal operationEN to GND Shutdown SHUNT POSITION INPUT VOLTAGE (VDD)1-2VDD supplied by AUDINT3 board con-nected to J1 headerOPENUser-supplied external power supplyapplied at VDD and GND test postsMAX98365 Evaluation Systems Evaluates: MAX98365A/MAX98365B/MAX98365C/MAX98365DGain and Channel Selection(I2S/Left-Justified Mode)The MAX98365’s GAIN_SLOT pin is connected to the center pin (pin 1) of the J7 header. When operating the device in I2S or left-justified mode, shunting pin 1 to the adjacent pins of the J7 header controls the PCM gain. Table 4 shows the available gain settings in I2S and left-justified modes.In I2S and left-justified modes, channel selection is con-trolled by placing three shunts across the DAI configura-tion headers J3, J4, or J5. Each of the DAI configuration headers represent one valid mapping of the DAI pins to the PCM input signals. See Table 5 for the valid jumper settings for the DAI configuration headers. Only one DAI configuration may be used at a time. Figure 3 shows the shunt positions used for DAI configuration A.Channel Selection (TDM Mode)In TDM mode, the MAX98365 has a fixed gain of 21.5dB and the GAIN_SLOT pin becomes repurposed for TDM channel selection. The MAX98365 accepts 8-channel TDM data with either 16-bit or 32-bit data. The GAIN_ SLOT pin and DAI configuration are used to select which of the 8 channels of TDM data the part responds to, as shown in Table 6.Table 4. J7 Jumper Selection(GAIN_SLOT)Table 5. J3-J5 Header Selection (DAI Configuration)Figure 3. DAI Configuration A (Left-Channel for I2S/Left-Justified Operation)GAIN (dB)J7 SHUNTPOSITION GAIN_SLOT21.51-5Connected to GND18.5Not Installed Unconnected15.51-3Connected to VDD12.51-2Connected to VDD through 100kΩ resistor R19.51-4Connected to GND through100kΩ resistor R2I2S/LJ CHANNEL SHUNTHEADERDAICONFIGURATIONLeft J3ARight J4BMono-mix(Left/2 + Right/2)J5CMAX98365 Evaluation Systems Evaluates: MAX98365A/MAX98365B/MAX98365C/MAX98365DDAI HeaderThe DAI header J2 provides access to MAX98365’s PCM bus (BCLK, LRCLK, and DIN). This DAI header facilitates evaluation with audio equipment I/O. See Table 7 for the pinout of the DAI header. Figure 4 shows a close-up image of the MAX98365 DAI interface header (J2) to be used if connecting external DAI inputs, such as those pro-vided by Audio Precision or other audio test equipment. Speaker OutputThe MAX98365 audio output is routed to the FOUTP and FOUTN connections on the DEV board. The DEV board is, by default, assembled to allow the MAX98365 output to connect directly to a speaker load without the need for filtering.EMI FilterWhen long speaker cables are used with the MAX98365 output (exceeding ≈12in (30 cm)), a ferrite bead plus capacitor filter can be installed to prevent excessive EMI radiation. Although it is best to choose filter components based on EMI test results, the combination of 100pF capacitors (C8, C9) and ferrite beads (L1, L2) generally work well. Before adding the filters to the design, first remove the small PCB traces shorting the pads of L1 and L2 (see the MAX98365 DEV Board PCB Schematic and the MAX98365 DEV Board PCB Layout diagrams). Table 6. TDM Mode Channel Selection Table 7. DAI Header (J2)Figure 4. MAX98365 DAI Interface Headers (PCM)TDM CHANNEL J4 SHUNTPOSITION DAI CONFIGURATION01-5A11-3A2Open A31-3B41-5B51-5C6Open C71-3CSIGNAL PIN PIN SIGNAL GND12BCLK GND34LRCLK GND56DINMAX98365 Evaluation Systems Evaluates: MAX98365A/MAX98365B/MAX98365C/MAX98365DAudio Interface Board IIIMaxim’s Audio Interface Board III (AUDINT3) facilitates the evaluation of the DEV board by providing a set of features that can be used to exercise the capabilities of the DEV board without the need for additional audio equipment. The main components of the AUDINT3 board are its LDO supply voltages and its USB-to-PCM interface. The supply voltages allow the DEV board to be evaluated with minimal amount of external supplies. The USB-to-PCM converter allows any computer to be used as an audio source for the DEV board’s digital audio PCM interface.The MAX98365 DEV board connects to the AUDINT3 board through connector J1. The physical connections made between the DEV board and AUDINT3 board are listed in T able B Audio InputTo use the USB streaming feature of the AUDINT3 board, ensure that the AUDINT3 board is connected to the DEV board, then connect the USB cable from your computer to the USB connector J2 on the AUDINT3 board. Configure the desired audio signal inputs using the Audio Controls panel of the AUDINT3 interface software (Figure 5). As described earlier, a computer can be used to supply audio inputs over USB interface in several selectable formats, found under the DAI mode drop-down menu. The AUDINT3 board can also generate test signal tones of various type, frequency, and amplitude as shown in Figure 6.Table 8. AUDINT3 Connector (J1)SIGNAL PIN SIGNAL PIN SIGNAL PIN —1MCLK2GND3 BCLK24BCLK15GPIO16 LRCLK27LRCLK18GPIO29 DAC210DAC111GPIO312 ADC213ADC114GPIO415—16ID17 3.3V18 AVDD19DVDD20GND21 HPVD22VDDIO23GND24 GND25SDA265V27—28SCL295V30 GND31IRQ32RST33—34—35—36 GND37—38—39MAX98365 Evaluation Systems Evaluates: MAX98365A/MAX98365B/MAX98365C/MAX98365DFigure 5. AUDINT3 Configured for Computer Audio Input Over USBMAX98365 Evaluation SystemsEvaluates: MAX98365A/MAX98365B/MAX98365C/MAX98365DFigure 6. AUDINT3 Configured for a -12dBFS 1kHz Sine Input Using Internal Signal Generator#Denotes RoHS compliant.PARTTYPEMAX98365AEVSYS#Complete I 2S evaluation system with no volume rampingMAX98365BEVSYS#Complete left-justified evaluation system with no volume ramping MAX98365CEVSYS#Complete I 2S evaluation system with volume rampingMAX98365DEVSYS#Complete left-justified evaluationsystem with volume rampingOrdering InformationMAX98365 Evaluation SystemsEvaluates: MAX98365A/MAX98365B/MAX98365C/MAX98365DMAX98365 DEV Board Bill of MaterialsITEM QTY REF DES MFG PART #MANUFACTURERVALUE DESCRIPTION11C4GMC10X5R106K25NT CAL-CHIP ELECTRONIC INC 10UF CAP; SMT (0603); 10UF; 10%; 25V; X5R; CERAMIC ;NOTE:SPECIAL ORDER ONLY 21C5C1005X5R1V105K050BC TDK 1UF CAP; SMT (0402); 1UF; 10%; 35V; X5R; CERAMIC 31C6CL05A105KO5NNN SAMSUNG 1UF CAP; SMT (0402); 1UF; 10%; 16V; X5R; CERAMIC41C7EEE-FPE101XAP PANASONIC100UFCAP; SMT (CASE_D8); 100UF; 20%; 25V; ALUMINUM-ELECTROLYTIC ;NOTE:PURCHASE DIRECT FROM THE MANUFACTURER51C12CL21B106KOQNNN;GRM21BZ71C106KE15;GMC21X7R106K16NT SAMSUNG;MURATA;CAL-CHIP 10UFCAP; SMT (0805); 10UF; 10%; 16V; X7R; CERAMIC61J1TSW-113-08-G-T-RA SAMTECTSW-113-08-G-T-RA EVKIT PART; CONNECTOR; MALE; THROUGH HOLE; 0.025IN SQ POST HEADER; RIGHT ANGLE; 39PINS; MODIFY PIN NUMBERING ARRANGEMENT74J2-J5PEC03DAAN SULLINS ELECTRONICS CORP.PEC03DAAN CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT THROUGH; 6PINS; -65 DEGC TO +125 DEGC81J6PCC03SAAN SULLINS PCC03SAAN CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT THROUGH; 3PINS; -65 DEGC TO +125 DEGC91J7TSW-105-07-L-S SAMTEC TSW-105-07-L-S EVKIT PART-CONNECTOR; THROUGH HOLE; TSW SERIES; SINGLE ROW; STRAIGHT; 5PINS 105J8, J9, J12, J14, J159020 BUSS WEICO WIRE MAXIMPAD EVK KIT PARTS; MAXIM PAD; WIRE; NATURAL; SOLID; WEICO WIRE; SOFT DRAWN BUS TYPE-S; 20AWG111J13PCC02SAANSULLINSPCC02SAANCONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT THROUGH; 2PINS; -65 DEGC TO +125 DEGC124MTH1-MTH491772A108;PHILLIPS-PAN_4-40X3/8IN; PMSSS4400038PH; 9901GENERIC PART N/A MACHINE SCREW; PHILLIPS; PAN; 4-40; 3/8IN; 18-8 STAINLESS STEEL; NOTE: SET TO OBSOLETE FOR PART NUMBER CORRECTION. KINDLY REFER TO PART NUMBER 91772A108;9901134MTH1-MTH4MCH_SO_F_HEX_4-40X1/2GENERIC PART N/A STANDOFF; FEMALE-THREADED; HEX; 4-40; 1/2IN; ALUMINUM 141R1ERJ-2RKF1782PANASONIC 17.8K RES; SMT (0402); 17.8K; 1%; +/-100PPM/DEGC; 0.1000W 155R2-R5, R7ERJ-2GE0R00PANASONIC 0RES; SMT (0402); 0; JUMPER; JUMPER; 0.1000W 162R8, R9CRCW0402100KFK;RC0402FR-07100KL VISHAY;YAGEO 100K RES; SMT (0402); 100K; 1%; +/-100PPM/DEGC; 0.0630W171SU1C33-GAG1-2X3-G VALCONC33-GAG1-2X3-GCONNECTOR; FEMALE; 2.54MM MULTI-POSITION JUMPER LINK; WIREMOUNT; 6PINS 182SU2, SU4S1100-B;SX1100-B;STC02SYAN KYCON;KYCON;SULLINS ELECTRONICS CORP.SX1100-B TEST POINT; JUMPER; STR; TOTAL LENGTH=0.24IN; BLACK; INSULATION=PBT;PHOSPHOR BRONZE CONTACT=GOLD PLATED191SU3M7687-05HARWINM7687-05CONNECTOR; FEMALE; CLOSED-BOX JUMPER SOCKET WITH HANDLE; BLUE; STRAIGHT; 2PINS204TP1, TP6, TP7, TP165011KEYSTONE N/ATEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; BLACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH; RECOMMENDED FOR BOARD THICKNESS=0.062IN; NOT FOR COLD TEST213TP2-TP45008KEYSTONE N/ATEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.35IN; BOARD HOLE=0.063IN; ORANGE; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH; RECOMMENDED FOR BOARD THICKNESS=0.062IN; NOT FOR COLD TEST222TP5, TP85009KEYSTONEN/A TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.35IN; BOARD HOLE=0.063IN; YELLOW; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH; RECOMMENDED FOR BOARD THICKNESS=0.062IN; NOT FOR COLD TEST234TP9, TP10, TP13, TP14111-2223-001EMERSON NETWORK POWER 111-2223-001MACHINE SCREW; THUMBSCREW; BANANA; 1/4-32IN; 11/32IN; NICKEL PLATED BRASS 242TP11, TP125007KEYSTONEN/ATEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.35IN; BOARD HOLE=0.063IN; WHITE; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH; RECOMMENDED FOR BOARD THICKNESS=0.062IN; NOT FOR COLD TEST251TP155010KEYSTONEN/A TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; RED; PHOSPHOR BRONZE WIRE SIL; NOT FOR COLD TEST261U1MAX98365AMAXIM MAX98365A EVKIT PART - IC; MAX98365; WLP9; PACKAGE CODE: W121D1+1; PACKAGE OUTLINE: 21-100536271PCBMAX98365A_WLP_APPS_P1MAXIMPCBPCB:MAX98365A_WLP_APPS_P1TOTAL56ITEM QTY REF DES MFG PART #MANUFACTURERVALUE DESCRIPTION17C1-C3, C8-C11N/AN/AOPEN PACKAGE OUTLINE 0402 NON-POLAR CAPACITOR - EVKIT 22L1, L2RC1608J000CS SAMSUNG ELECTRONICS 0RESISTOR; 0603; 0 OHM; 5%; JUMPER; 0.10W; THICK FILM 31R6ERJ-2GE0R00PANASONICRES; SMT (0402); 0; JUMPER; JUMPER; 0.1000WTOTAL10ITEM QTY REF DESMFG PART #MANUFACTURERVALUEDESCRIPTIONTOTALPACKOUT (These are purchased parts but not assembled on PCB and will be shipped with PCB)DO NOT PURCHASE(DNP)MAX98365C/MAX98365DMAX98365C/MAX98365DMAX98365A DEV Board—Top Side MAX98365A DEV Board—Top SilkscreenMAX98365A DEV Board—Bottom Side MAX98365A DEV Board—TopMAX98365 DEV Board PCB LayoutMAX98365C/MAX98365DMAX98365A DEV Board—Inner 1MAX98365A DEV Board—BottomMAX98365A DEV Board—Inner 2MAX98365A DEV Board—Bottom SilkscreenMAX98365 DEV Board PCB Layout (continued)MAX98365C/MAX98365DInformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use.Specifications subject to change without notice. No license is granted by implicationor otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.REVISION NUMBERREVISION DATEDESCRIPTIONPAGES CHANGED2/22Initial release—Revision HistoryMAX98365AEVSYS#。

郑州众智科技股份有限公司CMM365-2G云监控通信模块用户手册说明书

郑州众智科技股份有限公司CMM365-2G云监控通信模块用户手册说明书

郑州众智科技股份有限公司SMARTGEN (ZHENGZHOU) TECHNOLOGY CO., LTD.CMM365-2G 云监控通信模块用户手册目次前言 (3)1概述 (4)2性能特点 (4)3规格 (5)4面板和接线端子描述 (6)4.1面板指示灯和内部按键 (6)4.2GPRS天线接口 (7)4.3主RS485接口 (7)4.4从RS485接口 (7)4.5LINK接口 (8)4.6USB Device接口 (8)4.7接线端子 (9)5编程参数 (10)5.1参数范围及定义 (10)5.2PC参数设置界面 (14)6SMS短信报警与遥控 (15)6.1SMS短信报警 (15)6.2SMS短信遥控 (15)7系统应用图 (17)8外形及安装尺寸 (18)9故障排除 (19)10附:装箱清单 (20)前言是众智的中文商标是众智的英文商标SmartGen ―Smart的意思是灵巧的、智能的、聪明的,Gen是generator(发电机组)的缩写,两个单词合起来的意思是让发电机组变得更加智能、更加人性化、更好的为人类服务。

不经过本公司的允许,本文档的任何部分不能被复制(包括图片及图标)。

本公司保留更改本文档内容的权利,而不通知用户。

公司地址:中国·河南省郑州高新技术开发区金梭路28号电话:0086-371-679888880086-371-679818880086-371-679915530086-371-679929510086-371-67981000(外贸)全国免费电话:400-0318-139传真: 0086-371-67992952网址://邮箱:*****************表1 版本发展历史1 概述CMM365-2G云监控通信模块是一个GPRS无线网络通信协议转换模块,可以实现发电机组(带有串行通信接口)连入因特网。

模块从SmartGen、DeepSea、ComAp等国际一流品牌发电机组控制模块的RS485接口,LINK接口获取发电机组的数据信息,通过GPRS无线网络将获取的数据信息传送到相应的云服务器,用户可通过手机APP(IOS或安卓系统)、电脑等终端设备实时监控发电机组的运行状态和查询发电机组的运行记录。

MAX34561T+;中文规格书,Datasheet资料

MAX34561T+;中文规格书,Datasheet资料

_________________________________________________________________Maxim Integrated Products__1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, MAX3456112V/5V Hot-Plug Switch 19-5621; Rev 1; 1/12General Description The MAX34561 is a dual, self-contained, hot-plug switch intended to be used on +12V and +5V power rails to limit through current and to control the power-up output-volt-age ramp. The device contains two on-board n-channel power MOSFETs that are actively closed-loop controlled to ensure that an adjustable current limit is not exceed-ed. The maximum allowable current through the device is adjusted by external resistors connected between the LOAD and ILIM pins.The device can control the power-up output-voltage ramp. Capacitors connected to the VRAMP pins set the desired voltage-ramp rate. The output voltages are unconditionally clamped to keep input overvoltage stresses from harming the load. The device also contains adjustable power-up timers. Capacitors connected to the TIMER pins determine how long after power-on reset (POR) the device should wait before starting to apply power to the loads. The TIMER pins can be driven with a digital logic output to create a device-enable function. The device contains an on-board temperature sensor with hysteresis. If operating conditions cause the device to exceed an internal thermal limit, the device either unconditionally shuts down and latches off awaiting a POR, or waits until the device has cooled by the hyster-esis amount and then restarts.Applications RAID/Hard DrivesServers/RoutersPCI/PCI Express MInfiniBand TM/SMBase StationsFeatures S Completely_Integrated_Hot-Plug_Functionality_for_ +12V_and_+5V_Power_RailsS Dual_Version_of_the_DS4560S On-Board_Power_MOSFETs_(68m I_and_43m I)S No_High-Power_R SENSE_Resistors_NeededS Adjustable_Current_LimitsS Adjustable_Output-Voltage_Slew_RatesS Adjustable_Power-Up_Enable_TimingS Output_Overvoltage_LimitingS On-Board_Thermal_ProtectionS On-Board_Charge_PumpS User-Selectable_Latchoff_or_Automatic_Retry_ OperationOrdering Information+Denotes a lead(Pb)-free/RoHS compliant package.T = Tape and reel.*EP = Exposed pad.PCI Express is a registered trademark of PCI-SIG Corp. InfiniBand is a trademark and service mark of InfiniBand TradeAssociation.PART TEMP_RANGE PIN-PACKAGE MAX34561T+-40N C to +85N C24 TQFN-EP* MAX34561T+T-40N C to +85N C24 TQFN-EP*M A X 3456112V/5V Hot-Plug Switch 2Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage Range on V CC5 Relative to GND ............-0.3V to +6.5V Voltage Range on V CC12 Relative to GND ...........-0.3V to +18V Voltage Range on ILIM5, VRAMP5,TIMER5, ARD5 Relative to GND .........-0.3V to (V CC5 + 0.3V),not to exceed +6.5VVoltage Range on ILIM12, VRAMP12Relative to GND ................................-0.3V to (V CC12 + 0.3V),not to exceed +18VVoltage Range on TIMER12, ARD12Relative to GND .......................................-0.3V to +5V (V REG )5V Drain CurrentContinuous ............................................................................2A Peak ......................................................................................4A12V Drain CurrentContinuous ............................................................................3A Peak ......................................................................................4A Continuous Power Dissipation (T A = +70N C)TQFN (derate 20.8mW/N C above +70N C) ...............1666.7mW Operating Junction Temperature Range .........-40N C to +135N C Operating Temperature Range ..........................-40N C to +85N C Storage Temperature Range ..........................-55N C to +135N C Lead Temperature (soldering, 10s) ................................+300N C Soldering Temperature (reflow) ......................................+260N CRECOMMENDED_OPERATING_CONDITIONS(T J = -40N C to +135N C)ELECTRICAL_CHARACTERISTICS(V CC5 = +5V, V CC12 = +12V, T J = +25N C, unless otherwise noted.)ABSOLUTE_MAXIMUM_RATINGSPARAMETERSYMBOL CONDITIONSMIN TYP MAX UNITS V CC5 Voltage V CC5(Notes 1, 2) 4.0 5.0 5.5V V CC12 Voltage V CC12(Notes 1, 2)91213.2V R ILIM_ Value R ILIM_20400I C VRAMP_ Value C VRAMP_0.045F F C TIMER_ ValueC TIMER_0.045F F TIMER_ Turn-On Voltage V ON TIMER5 2.1V CC5 + 0.3V TIMER12 2.6 5.0TIMER_ Turn-Off VoltageV OFF-0.3+1.5VPARAMETERSYMBOL CONDITIONSMINTYP MAX UNITS V CC5 Supply Current I CC5(Note 3) 1.52mA V CC12 Supply Current I CC12(Note 3)1.52.25mA 5V UVLO: Rising V UR53.7 3.95V 5V UVLO: Falling V UF5 2.73.2V 5V UVLO: Hysteresis V UH50.5V 12V UVLO: Rising V UR1288.5V 12V UVLO: Falling V UF12 6.57V 12V UVLO: Hysteresis V UH121V 5V On-Resistance R ON54356m I 12V On-ResistanceR ON126888m I 5V Internal Voltage Reference V REF5 1.80V 12V Internal Voltage ReferenceV REF122.35VMAX3456112V/5V Hot-Plug Switch3ELECTRICAL_CHARACTERISTICS_(continued)(V CC5 = +5V, V CC12 = +12V, T J = +25N C, unless otherwise noted.)Note_1: All voltages are referenced to ground. Currents entering the device are specified positive, and currents exiting the deviceare negative.Note_2: This supply range guarantees that the LOAD voltage is not clamped by the overvoltage limit.Note_3: Supply current specified with no load on the LOAD pin.Note_4: Guaranteed by design; not production tested.PARAMETERSYMBOL CONDITIONSMINTYP MAXUNITS 5V MOSFET Output Capacitance C OUT (Note 4)400pF 12V MOSFET Output CapacitanceC OUT(Note 4)400pF5V and 12V Delay Time from Enable to Beginning of Conductiont POND C VRAMP_ = 1F F 8ms5V and 12V Gate-Charging Time from Conduction to 90% of V OUT t GCT C VRAMP_ = 1F F, C LOAD_ = 1000F F 486480ms Shutdown Junction Temperature T SHDN (Note 4)120135150N C Thermal Hysteresis T HYS (Note 4)40N C TIMER_ Charging Current I TIMER 648096F A VRAMP_ Charging Current I VRAMP 648096F A 5V Overvoltage Clamp V OVC5 5.5 6.0 6.5V 12V Overvoltage Clamp V OVC1213.21516.5V 5V Power-On Short-Circuit Current LimitI SCL5R ILIM5 = 47I (Note 5)0.6 1.0 1.5A 12V Power-On Short-Circuit Current LimitI SCL12R ILIM12 = 47I (Note 5)0.6 1.0 1.5A 5V Operating Overload Current LimitI OVL5R ILIM5 = 47I (Notes 4, 6) 1.5 2.5 3.7A 12V Operating Overload Current LimitI OVL12R ILIM12 = 47I (Notes 4, 6) 1.00 1.8 2.6A 5V VRAMP5 Slew Rate SR VRAMP C VRAMP5 = 1F F 0.160.190.23V/ms 12V VRAMP12 Slew Rate SR VRAMP C VRAMP12 = 1F F0.130.150.18V/ms ARD5 Pullup Resistor R PU5100k I ARD12 Pullup ResistorR PU12k IM A X 3456112V/5V Hot-Plug Switch 4Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)ON-RESISTANCE vs. TEMPERATURETEMPERATURE (°C)R O N (m Ω)10012080604020-20102030405060700-40OVERVOLTAGE CLAMP vs. TEMPERATURETEMPERATURE (°C)O V E R V O L T A G E C L A M P (V )10012080604020-2015.015.215.415.615.816.016.214.8-40OVERVOLTAGE CLAMP vs. TEMPERATURETEMPERATURE (°C)O V E R V O L T A G E C L A M P (V )120100608002040-206.106.156.206.256.306.356.406.456.506.556.05-40CURRENT LIMIT vs. TEMPERATURETEMPERATURE (°C)C U R R E N T L I M I T (A )10012080604020-200.51.01.52.02.50-40CURRENT LIMIT vs. TEMPERATURETEMPERATURE (°C)C U R R E N T L I M I T (A )10012080604020-200.51.01.52.02.53.03.50-4012V CURRENT LIMIT vs. ILIM RESISTANCER ILIM (Ω)12V C U R R E N T L I M I T (A )100500.51.01.52.02.501505V CURRENT LIMIT vs. ILIM RESISTANCER ILIM (Ω)5V C U R R E N T L I M I T (A )501000.20.40.60.81.01.21.41.61.82.02.22.42.60150SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)I C C (m A )120100608002040-200.20.40.60.81.01.21.41.61.80-40MAX3456112V/5V Hot-Plug Switch5Typical Operating Characteristics (continued)(T A = +25°C, unless otherwise noted.)THERMAL SHUTDOWN WITH AUTORETRY ENABLEDV CC = 12V, 2Ω RESISTIVE LOADMAX34561 toc16500ms/divV CC12LOAD125V/divLOAD CURRENT500mA/divTHERMAL SHUTDOWN WITH AUTORETRY ENABLEDV CC = 5V, 2Ω RESISTIVE LOADMAX34561 toc151s/div V CC5LOAD52V/divLOAD CURRENT500mA/divTURN-ON WAVEFORMSV CC = 12V, 3300µF CAPACITIVE LOAD10ms/divV CC12LOAD12LOAD CURRENT500mA/div5V/divTURN-ON WAVEFORMSV CC = 5V, 3300µF CAPACITIVE LOAD5ms/div V CC5LOAD5LOAD CURRENT500mA/div2V/divTURN-ON WAVEFORMSV CC = 12V, 20Ω RESISTIVE LOAD5ms/div V CC12LOAD12LOAD CURRENT500mA/div5V/divTURN-ON WAVEFORMS V CC = 5V, 20Ω RESISTIVE LOAD5ms/divTYPICAL MAX34561 TURN-ON WAVEFORMSV CC = 12V, 20Ω RESISTIVE LOAD5ms/div 2V /d i vTYPICAL MAX34561 TURN-ON WAVEFORMSV CC = 5V, 20Ω RESISTIVE LOAD2ms/div 1V /d i vM A X 3456112V/5V Hot-Plug SwitchPin ConfigurationPin DescriptionMAX3456112V/5V Hot-Plug Switch7Detailed DescriptionThe MAX34561 has hot-plug controls for both +12V and +5V power rails. The circuitry for the +12V and +5V con-trols are independent of each other and can be treated as two separate hot-plug switches, even though the GND pin is common between the two switches. The sections that follow are written from the +12V circuit perspective, but also apply for the +5V switch control.The device begins to operate when the supply voltage V CC12 (or V CC5) exceeds its undervoltage lockout level, V UR12 (or V UR5). At this level, the corresponding enable circuit and TIMER12 (TIMER5) become active. Once the device has been enabled, a gate voltage is applied to the corresponding power MOSFET, allowing current to begin flowing from V CC12 (V CC5) to LOAD12 (LOAD5). The speed of the output-voltage ramp is controlled by the capacitance placed at the VRAMP12 (VRAMP5) pin. The load current is continuously monitored during the initial conduction (I SCL12 or I SCL5) and after the cor-responding MOSFET is fully on (I OVL12 or I OVL5). If the current exceeds the current limit that is set by the exter-nal resistance at ILIM12 (ILIM5), the gate voltage of the corresponding power MOSFET is decreased, reducing the output current to the set current limit.Current is limited by the device comparing the volt-age difference between LOAD12 (LOAD5) and ILIM12 (ILIM5) to an internal reference voltage. If the output cur-rent exceeds the limit that is set by the R ILIM12 (R ILIM5) resistor, the gate voltage of the corresponding power MOSFET is decreased, which reduces the output current to the load.When the output power is initially ramping up, the current limit is I SCL12 (I SCL5). Once the corresponding MOSFET is fully on, the current limit is I OVL12 (I OVL5). The I SCL12 (I SCL5) current limit protects the source if there is a dead short on initial power-up.The device acts as a fuse and automatically disables the current flowing to the load when the temperature of the power corresponding MOSFET has exceeded the shut-down junction temperature, T SHDN .Enable/TimerThe voltage level of TIMER12 (TIMER5) is compared to an internal source (see the Functional Diagram ). When the level on the pin exceeds V ON , the comparator out-puts a low level. This then turns on the voltage ramp circuit, enabling the device’s output. TIMER12 (TIMER5) can be configured into one of four different modes of operation as listed in Table 1. TIMER12 (TIMER5) pin was designed to work with most logic families. TIMER12 (TIMER5) has at least 250mV of hysteresis between V ON and V OFF . It is recommended that any logic gate used to drive TIMER12 (TIMER5) be tested to ensure proper operation.Pin Description (continued)Table_1._TIMER__Pin_ModesPINNAMEFUNCTION22ARD55V Autoretry Disable. Connect this pin to GND to disable automatic retry functionality; the device latches off during an overtemperature fault. Leave this pin open to enable automatic retry function. This pin contains a pullup (R PU5) to V CC5. This pin is only sampled on device power-on. If the 5V side is not used, connect this pin to GND.23VRAMP55V Voltage Ramp Control. A capacitor connected to this pin determines the voltage ramp of the LOAD5 output during turn-on according to the equation: dV LOAD5 = 2.3332 x (I VRAMP /C VRAMP5).24TIMER55V Enable Delay Control. A capacitor connected to this pin determines the enable delay according to the equation: Enable Delay = C TIMER5 x (V REF5/I TIMER ).—EPExposed Pad. Connect to ground. The EP must be soldered to ground for proper thermal and elec-trical operation.OPERATION_MODE TIMER_PIN_SETUP Automatic Enable No connection to TIMER12 (TIMER5)Delayed Automatic EnableCapacitor C TIMER_ connected to TIMER12 (TIMER5)Enable/Disable Open-collector device Enable with Delay/DisableOpen-collector device and C TIMER _M A X 3456112V/5V Hot-Plug SwitchFunctional DiagramMAX3456112V/5V Hot-Plug Switch9Once the device has been enabled, there is a delay (t POND ) until conduction begins from V CC12 (V CC5) to LOAD12 (LOAD5). This delay is the time required for the charge pump to bring the gate voltage of the cor-responding power MOSFET above its threshold level. Once the gate is above the threshold level, conduction begins and the output voltage begins ramping.Automatic-Enable ModeWhen V CC12 (V CC5) exceeds V UR12 (V UR5), the gate holding the TIMER12 (TIMER5) node low is released. The internal current source brings the node to a level greater than V ON , enabling the device.Delayed Automatic-Enable ModeWhen V CC12 (V CC5) exceeds V UR12 (V UR5), the gate holding the TIMER12 (TIMER5) node low is released. The internal current source (I TIMER ) then begins charging C TIMER_. When C TIMER_ is charged to a level greater than V REF12 (V REF5), the device turns on. The equation for the delay time is:t DELAY = (C TIMER12 x V REF12)/I TIMER t DELAY = (C TIMER5 x V REF5)/I TIMEREnable/Disable ModeA logic gate or open-collector device can be connected to TIMER12 (TIMER5) to enable or disable the device. When TIMER12 (TIMER5) is held low, the device is dis-abled. When an open-collector device is used to drive TIMER12 (TIMER5), the device is enabled when the open collector is in its high-impedance state by the internal current source bringing the TIMER12 (TIMER5) node high. TIMER12 (TIMER5) is also compatible with most logic families if the output high voltage level of the gate exceeds the V ON level, and the gate can sink the I TIMER current.Enable with Delay/Disable ModeAn open-collector device is connected in parallel with C TIMER_. When the pin is held low, the device is dis-abled. When the open-collector driver is high imped-ance, the internal current source begins to charge C TIMER_ as in the delayed mode.Output-Voltage RampThe voltage ramp circuit uses an operational ampli-fier to control the gate bias of the corresponding n-channel power MOSFET. When the timer/enable circuit is disabled, a FET is used to keep C VRAMP_ discharged, which forces the output voltage to GND. Once the enable/timer circuit has been enabled, aninternal current source, I VRAMP , begins to charge the external capacitor, C VRAMP_, connected to VRAMP12 (VRAMP5). The amplifier controls the gate of the corre-sponding power MOSFET so that the LOAD12 (LOAD5) output voltage divided by two tracks the rising voltage level of C VRAMP_. The output voltage continues to ramp until it reaches either the input V CC12 (V CC5) level or the overvoltage clamp limits. The equation for the output-voltage ramp function is:dV LOAD /dt = 2 x (I VRAMP /C VRAMP12) for +12V circuit dV LOAD /dt = 2.3332 x (I VRAMP /C VRAMP5) for +5V circuitThermal ShutdownThe device enters a thermal shutdown state when the temperature of the corresponding power MOSFET reaches or exceeds T SHDN , approximately +135N C. When T SHDN is exceeded, the thermal-limiting cir-cuitry disables the device using the enable circuitry. Depending on the state of ARD12 (ARD5), the device attempts to autoretry once the device has cooled, or it latches off.AutoretryIf ARD12 (ARD5) is unconnected or connected high, the device continually monitors the temperature once it has entered thermal shutdown. If the junction temperature falls below approximately +95N C (T SHDN - T HYS ), the corresponding power MOSFET is re-enabled. See the Thermal Shutdown with Autoretry Enabled typical operat-ing curves for details.LatchoffIf ARD12 (ARD5) is pulled low and the device has entered thermal shutdown, it does not attempt to turn back on. The only way to turn the device back on is to cycle the power to the device. When power is reapplied to V CC12 (V CC5), the junction temperature needs to be less than T SHDN for the device to be enabled.Overvoltage LimitThe overvoltage-limiting clamp monitors the VRAMP12 (VRAMP5) level compared to an internal voltage ref-erence. When the voltage on VRAMP12 (VRAMP5) exceeds V OVC12/2 (or V OVC5/2.3332), the gate volt-age of the corresponding n-channel power MOSFET is reduced, limiting the voltage on LOAD12 (LOAD5) to V OVC12 (V OVC5) even as V CC12 (V CC5) increases. If the device is in overvoltage for an extended period of time, the device could overheat and enter thermal shutdown. This is caused by the power created by the voltageM A X 3456112V/5V Hot-Plug Switch 10drop across the corresponding power MOSFET and the load current. See the Thermal Shutdown with Autoretry Enabled typical operating curves for details.Applications InformationExposed PadThe exposed pad is also a heatsink for the device. The exposed pad should be connected to a large trace or plane capable of dissipating heat from the device.Decoupling CapacitorsIt is of utmost importance to properly bypass the device's supply pins. A decoupling capacitor absorbs the energy stored in the supply and board parasitic inductance when the FET is turned off, thereby reducing the magni-tude of overshoot at V CC . This can be accomplished by using a high-quality (low ESR, low ESL) ceramic capaci-tor connected directly between the V CC and GND pins. Any series resistance with this bypass capacitor lowers its effectiveness and is not recommended. A minimum 0.5µF ceramic capacitor is required. However, depend-ing on the parasitic inductances present in the end appli-cation, a larger capacitor could be necessary.Unused PinsIf only one side (5V or 12V) of the device is being used, it is required that the unused V CC , AR, CTIMER, and VRAMP pins be connected to GND. Leaving these input pins unconnected can result in interference of the proper operation of the active portion of the device.LOAD and ILIM ConnectionsSmall parasitic resistances in the bond wires of the LOAD pins and in the traces connected to the LOAD pins can result in a voltage offset while current is flowing. Since the voltage drop across RILIM is used to set the I SCL and I OVL limits, this induced offset can increase the value of I SCL and I OVL from the specified values for any given R ILIM . To greatly reduce this offset, it is recommended that one of the LOAD pins have a dedicated connection to ILIM though R ILIM , and not be used to pass the LOAD current (Figure 1). This would leave three LOAD pins to pass I LOAD , which should be sufficient. Because there is only a small amount of current passed from this lone LOAD pin to ILIM, there is a negligible voltage offset applied to the internal comparator. This method is the best way to attain an accurate current limit for I LOAD .Package InformationFor the latest package outline information and land patterns, go to /packages . Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.Figure 1. LOAD and ILIM ConnectionsPACKAGE_TYPE PACKAGE_CODE OUTLINE_ND_PATTERN_NO.24 TQFN-EPT2444+421-013990-0022分销商库存信息: MAXIMMAX34561T+。

MAX266中文数据手册

MAX266中文数据手册

MAX266中文数据手册MAX266/265中文数据手册By Hi_Cracker @whu引脚电阻可编程通用高效滤波器-----MAX266/265General Description和MAX265是高效的容滤波器,专门设计用于需要高精度滤波的应用MAX266场合。

内置了两个独立的滤波模块,可以配置成低通,高通,带通,带阻,全通滤波器。

中心频率或者截止频率的控制需要外接电阻以及6 Pin-Strapped 的输入特性来编程实现,然而,Q值仅用电阻连接实现。

各种各样类型的滤波器都可以实现(巴特沃斯,切比雪夫,椭圆滤波器等等)。

内部集成了两个运算放大器。

MAX265可以将中心/截止频率可以最高调到40Khz,然而,MAX266,通过使用一个低范围的fclk/fo比例系数,可以将fos 调到140Khz。

4MHZ系统时钟,可以通过一个晶振或是额外的源获得。

滤波器的操作电压为从±2.37v到±6.3v或者+5V的单电源供电。

Application:声纳电子设备Anti-Aliasing 滤波器数字信号处理震动音频分析远程通信测试仪器Features滤波器参数设置软件化256bit的频率控制字电阻调整Q值和fo140Khz频率调节范围±5V或者单电源﹢5V操作电压Introduction每个MAX266/265都包含的两个可配置滤波器模块已经显示在数据手册前面的功能框图上。

fclk/fo编程输入(F0-F5)被两个滤波模块共用,然而,每个部分的fo仍然受到各自外接电阻的独立调节。

各个模块的的Q值也是受到各自的外接电阻的独立调节的。

MAX266使用比MAX265更低范围的取样比率(fclk/fo),这样就可以产生更高的信号带宽以及fo的可编程范围。

降低fclk/fo产生的影响主要就是比MAX265的滤波器参数的连续性稍微差了一些,但是这些不同可以通过使用图23所示的图形或是美信得滤波器软件来补偿。

PC365中文资料

PC365中文资料
shown in Fig.2 to 5 *2 Pulse width≤100µs, Duty ratio=0.001(shown in Fig.6) *3 40 to 60%RH, AC for 1 min, f=60Hz *4 For 10 s
s Outline Dimensions
3.6±0.3 2.54±0.25
4
3
365
(Unit : mm)
4.4±0.2
0.1±0.1 2.6±0.2 0.2±0.05
1
Anode mark
2 0.4±0.1
Epoxy resin
5.3±0.3 45°

0.5−+00..24
7.0−+00..72
Internal connection diagram
1
4
1 Anode
2 Cathode
s Applications
1. Programmable controllers 2. Facsimiles 3. Telephones
s Absolute Maximum Ratings
(Ta=25°C)
Parameter
Symbol Rating Unit
*1 Forward current IF Input *2 Peak forward current IFM
PC365
PC365
Low Input Current Photocoupler
s Features
1. Low input drive current (IF=0.5mA) 2. High sensitivity
(Darlington type, CTR:MIN.600%) 3. Mini-flat package 4. Isolation voltage (Viso (rms):3.75kV)

maxtec maxventuri 用户手册 - 中文(简体)说明书

maxtec maxventuri 用户手册 - 中文(简体)说明书

866.4.Maxtec
I
警告
表示潜在的危险情况,如果不避免,可能导致死亡或严重损伤。
» 本器械不适于与生命支持器械/系统联用。 » 未遵从本手册中的警告或预防措施可能导致仪器损坏并威胁到患者和/或医护人员的福祉。 » 不正确使用本器械可能造成流量和氧气读数不准确,从而导致不正确的治疗、缺氧症或高氧
症、以及其他患者损伤或不适。请遵照本用户手册中概括的流程。
» 请勿在火焰、易燃/易爆物质、蒸气或氛围附近使用本器械。 在上述环境中操作氧气分析器
可能导致火灾或爆炸。 » 请勿在 MRI 环境中使用本器械。 » 本器械整体(包括电极)不适于在易燃麻醉剂混合物存在下或在易爆气体氛围中使用。 在上
述环境中操作氧气分析器可能导致火灾或爆炸。 » 如果 O2% 偏离了设定的水平,请检查患者界面的鼻腔插管未被痰液或鼻中隔堵塞。对回路或
患者界面的流量限制将导致氧气水平的升高。 对喉管的流量限制将不能被流量计检测出。 » 本器械在氧气供应中断时不会发出警报。 » 在调整氧气含量前确保氧气读数稳定。 » 本器械在氧气水平过高或过低时不会发出警报。 » 请勿在患者头部或颈部附近保留过长导管,以避免导致窒息。 » 请仅使用 Maxtec 替换传感器。 使用其他任何传感器将导致保修失效并可能导致产品损坏、
Maxtec 建议控制阀的 o 型环每 2 年更换或保养一次。
本保修不包含常规维护项目,如电池。对因使用后或因设备的滥用、误用、错误应用、改造、疏 忽或意外而造成的购买者或其他人的附带或后果损害,Maxtec 概不负责。
本有限产品保证取代所有其他明示或默示保证,包括但不限于适销性或特定目的适用性的任何默示 保证。
电话 (800) 748.5355 传真 (801) 270.5590 电子邮件:sales@ 网址:

TweenMax中文手册与参数说明

TweenMax中文手册与参数说明

TweenMax中文手册与参数说明TweenMax 建立在TweenLite 和TweenFilterLite 基础之上,因此,又揉合了这二者的功能,使得功能更加的齐备,但是如果说易用性,觉得还是 TweenLite 来得方便一些。

我的译文是从 TweenLite 开始的,接着是 TweenFilterLite 最后是 TweenMax ,这也恰好是这个类发展的轨迹,沿着这个轨迹一路读过来,会觉得容易理解很多。

描述:TweenMax 建立在TweenLite 核心类以及它的大哥TweenFilterLite 基础之上,它为Tween 家族增加了新的受欢迎的功能(尽管只是锦上添花),从而使家族更加的壮大,比如贝赛尔缓动、暂停/继续能力,简便的连续缓、16进制颜色缓动、以及更多的内容。

TweenMax 采用了与它的兄弟相似的易于学习的语法结构。

实事上,因为它扩展自它们,TweenMax 可以做任何TweenLite 和/或者TweenFilterLite 能做的事,还加上了更多的特色。

那么为什么要建立3 个类,而不是1 个呢?问的好,我的目标是:效率最大化,尺寸最小化。

坦白的说,TweenLite 可能是所有的程序员在90% 的项目中都需要用到的,而它仅有3k。

相对它的功能来说,它是非常高效和紧凑的。

但是如果你需要对滤镜进行缓动,或者更丰富的图像效果,比如说饱和度(saturation)、对比度(contrast)、色相(hue)、调色等等进行控制,那就装上TweenFilterLite 总共6k 。

还想要的更多?No problem (没问题)– TweenMax 已经在总共8k 的大小里面塞满了足够多的功能。

想查看相关的功能对比图,请访问/doc/8a4572108.html, 以获取更多信息。

( TweenMax 类包中直接包含有独立的TweenLite 和TweenFilterLite 类,因此下载这一个包就可以了,在Flash 类路径中添加的时候,也只需要添加这一个路径就可以了—-译者注) TweenMax 创造了一种全新的功能,叫做―bezierThrough‖(暂译为贝塞尔通路),这个功能允许你定义一些点,通过贝塞尔曲线连接这些点,(通常的控制点只是用来拉近曲线,这里的点直接在曲线的路径上)。

Max script基本知识

Max script基本知识

Max script基本知识内容图文并茂,语言高度概括,文采形象生动,思路清晰可见;指出要害,抓住关键,透彻理解那些难懂的编程概念;不用担心数学基础很差,无需害怕英文单词不懂,只需初中数学知识,把英文单词作图形符号看待,拿脚本编程当文字游戏把玩。

能够提高解决问题的能力,可以降低学习脚本的门槛。

不用费力看英文帮助,何需辛苦找编程资料,减轻学习负担,节省宝贵时间!发挥自己的聪明才智,运用科学的学习方法,首先认真学好入门教程,然后虚心请教各位高手,脚本编程从此不再难!一、MAXScript简介1、MAXScriptMAXScript语言是为了扩展3ds MAX 功能而专门设计的一种脚本语言,是面向对象编程语言中的一种。

用它创建的场景物体和材质与在3ds MAX界面中创建的场景物体和材质完全对应。

可以生成自动关键帧的动画模式,并可以通过层级路径名来访问场景中的物体。

有记录在3ds MAX界面中的交互操作过程的能力,在使用界面操作的同时可以使用MAXScript来自由创作。

可以实现3D Studio MAX的全部用途,如建模、动画、材质、渲染等。

MAXScript可以运用各种数学工具来完成高级复杂的程序设计任务。

可以对含有大量对象的集合进行操作。

例如在复杂的场景中选择物体,可以把大量物体放置在精确的位置上,例如在山或路边放置一些树木,使用MAXScript操作起来是非常的方便。

它也能将一些功能定义为界面元素,例如工具栏按钮、菜单、浮动窗口,程序面板卷帘窗。

可以建行批处理操作提高工作效率。

例如建立一次可以渲染多个场景文件的脚本程序。

可以自定义输入输出工具,可以定义修改器,渲染效果插件等。

2、访问脚本2.1、认识MAXScript界面:包括MAXScript卷帘窗,脚本监听器窗口,脚本编辑窗口。

2.1.1、MAXScript卷帘窗单击命令面板中的按钮,打开应用程序面板,再单击MAXScript按钮,在应用程序面板出现MAXScript卷帘窗,如图1-1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

________________________Applications
Sample-and-Hold Circuits Guidance and Control Systems Heads-Up Displays Test Equipment Communication Systems Battery-Operated Systems PBX, PABX Military Radios
MAX364/MAX365
Ordering Information
PART MAX364CPE MAX364CSE MAX364C/D MAX364ETE MAX364EPE MAX364ESE MAX365CPE MAX365CSE MAX365C/D MAX365ETE MAX365EPE MAX365ESE TEMP RANGE 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C PIN-PACKAGE 16 Plastic DIP 16 Narrow SO Dice* 16 Thin QFN (5mm x 5mm) 16 Plastic DIP 16 Narrow SO 16 Plastic DIP 16 Narrow SO Dice* 16 Thin QFN (5mm x 5mm) 16 Plastic DIP 16 Narrow SO
元器件交易网
Precision, Quad, SPST Analog Switches MAX364/MAX365
ABSOLUTE MAXIMUM RATINGS
Voltage Referenced to VV+........................................................................................44V GND ....................................................................................25V VL ..................................................(GND - 0.3V) to (V+ + 0.3V) IN_, COM_, NO_, or NC_ ..........(V- - 2V) to (V+ + 2V) or 30mA ................................................................(whichever occurs first) Continuous Current (any terminal) ......................................30mA Peak Current COM_, NO_, or NC_ (pulsed at 1ms, 10% duty cycle max) ...........................100mA ESD ....................................................................................2000V Note 1: All leads are soldered or welded to PC board. Continuous Power Dissipation (TA = +70°C) (Note 1) Plastic DIP (derate 10.53mW/°C above +70°C )............842mW Thin QFN (derate 33.3mW/°C above +70°C )..............2667mW Narrow SO (derate 8.70mW/°C above +70°C) .............696mW Operating Temperature Ranges: MAX36_C_ _ ........................................................0°C to +70°C MAX36_E_ _......................................................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
MAX364 LOGIC SWITCH 16 IN2 15 COM2 14 NC2 13 V+
IN1 1 COM1 2 NO1 3 V- 4 GND 5 NO4 6 COM4 7 IN4 8 DIP/SO
16 IN2 15 COM2 14 NO2 13 V+
MAX364
12 VL 11 NC3 10 COM3 9

MAX365
12 VL 11 NO3 10 COM3 9
IN3
IN3
MAX365 LOGIC SWITCH
Pin Configurations continued at end of data sheet.
0 1
ON OFF
SWITCHES SHOWN FOR LOGIC "0" INPUT
0 1
OFF ON
____________________________Features
♦ Low On-Resistance: < 45Ω Typical (85Ω Max) ♦ Guaranteed Matched On-Resistance Between Channels: < 2Ω ♦ Guaranteed Flat On-Resistance over Full Analog Signal Range: ∆9Ω Max ♦ Guaranteed Charge Injection: < 10pC ♦ Guaranteed Off-Channel Leakage: < 4nA at +85°C ♦ ESD Guaranteed > 2000V per Method 3015.7 ♦ Single-Supply Operation (+10V to +30V) Bipolar-Supply Operation (±4.5V to ±20V) ♦ TTL-/CMOS-Logic Compatible ♦ Rail-to-Rail Analog Signal Handling Capability
ELECTRICAL CHARACTERISTICS—Dual Supplies
(V+ = 15V, V- = -15V, VL = 5V, GND = 0V, VINH = 2.4V, VINL = 0.8V, TA = TMIN to TMAX, unless otherwise noted.) PARAMETER ANALOG Analog-Signal Range VCOM_, VNO_, VNC (Note 3) -15 15 V SYMBOL CONDITIONS MIN TYP (Note 2) MAX UNITS
* Contact factory for dice specifications.
_____________________ Pin Configurations/Functional Diagrams/Truth Tables
TOP VIEW
IN1 1 COM1 2 NC1 3 V- 4 GND 5 NC4 6 COM4 7 IN4 8 DIP/SO
元器件交易网
19-0181; Rev 2; 6/04
Precision, Quad, SPST Analog Switches
________________General Description
The MAX364/MAX365 are precision, quad, single-pole single-throw (SPST) analog switches. The MAX364 has four normally closed (NC), and the MAX365 has four normally open (NO) switches. Both parts offer lowchannel on-resistance (less than 85Ω), guaranteed to match within 2Ω between channels and to remain flat over the analog signal range (∆9Ω max). Both parts also offer low leakage (less than 500pA at +25°C and less than 4nA at +85 °C) and fast switching (turn-on time less than 250ns and turn-off time less than 170ns). The MAX364/MAX365 are fabricated with Maxim’s new improved 44V silicon-gate process. Design improvements guarantee extremely low charge injection (10pC), low power consumption (35µW), and electrostatic discharge (ESD) greater than 2000V. The 44V maximum breakdown voltage allows rail-to-rail analog signal handling capability. These monolithic switches operate with a single positive supply (+10V to +30V) or with split supplies (±4.5V to ±20V) while retaining CMOS-logic input compatibility and fast switching. CMOS inputs provide reduced input loading.
相关文档
最新文档