学案:一元二次方程
2022年人教版《一元二次方程(导学案)》精品学案
第二十一章一元二次方程——一元二次方程的相关概念一、新课导入1.导入课题:情景:要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比等于下部与全部(全身)的高度比,则雕像的下部应设计多少米高?问题1:列方程解应用题的一般步骤是什么?(导出审题的关键是寻找等量关系)问题2:你能画出示意图表示这个问题吗?(用线段AB表示雕像的高度,雕像上部的高度表示为AC,下部的高度表示为BC,在黑板上画出示意图,把这个问题转化为数学问题)问题3:能反映问题的等量关系的是哪一句话?(根据题意导出关系式BC2=2AC)问题4:设雕像下部高BC=x m,请说出你所列的方程,并化简.这个方程是一元一次方程吗?它有什么特点?这个方程就是本节课我们将要学习的一元二次方程.(板书课题)2.学习目标:(1)会设未知数,列一元二次方程.(2)了解一元二次方程及其根的概念.(3)能熟练地把一元二次方程化成一般形式,并准确地指出各项系数.3.学习重、难点:重点:一元二次方程的一般形式及相关概念.难点:寻找等量关系.二、分层学习1.自学指导:(1)自学内容:教材第1页到第2页的问题1、问题2.(2)自学时间:5分钟.(3)自学方法:先寻找问题中的等量关系,再根据等量关系列出方程.(4)自学参考提纲:①问题1中,要制作一个无盖的方盒,四角都要剪去一个相同的正方形,我们设正方形边长为x cm,则盒底的宽为(50-2x) cm,盒底的长为(100-2x) cm,根据矩形的面积公式及方盒的底面积3600 cm2可列方程为(100-2x)(50-2x)=3600,你能把它整理为课本上的方程②吗?试说明具体经过哪几步变形得到.先去括号5000-100x-200x+4x2=3600移项合并同类项4x2-300x+1400=0系数化为1(两边同除以4) x2-75x+350=0②问题2中,本次排球比赛的总比赛场数为28场.设邀请x支队参赛,则每支队与其余(x-1) 支队都要赛一场.整个比赛中总比赛场数是多少?你是怎样算出来的?本题的等量关系是什么?你列出的方程是x(x-1)=28.你能把它整理为课本上的方程③吗?试说明具体经过哪几步变形得到.去括号x2-12x=28系数化为1(两边同乘以2) x2-x=562.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察了解学生是否会寻找等量关系,是否会化简方程.②差异指导:简要说明问题2中单循环比赛与双循环比赛的区别,对不会寻找等量关系的学生给予辅导,说明化简方程的基本要求.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)总结寻找等量关系的策略,简要指出哪些公式经常被我们作为寻找等量关系的依据.(2)练习:根据下列问题列方程①一个圆的面积是2πm2,求半径.πr2=2π②一个直角三角形的两条直角边相差3cm,面积为9cm2,求较长的直角边的长.1x(x-3)=92③4个完全相同的正方形面积之和是25,求正方形的边长x. 4x2=25④一个长方形的长比宽多2,面积是100,求长方形的长x. x(x-2)=100⑤把长为1的木条分成两段,使较短一段的长与全长的积等于较长一段的长的平方,求较短一段的长x.x=(1-x)21.自学指导:(1)自学内容:教材第3页的内容.(2)自学时间:5分钟.(3)自学方法:观察方程①②③,从方程所含的未知数的个数及其次数等方面找出它们共同的特点.(4)自学参考提纲:①结合一元一次方程的定义,请对一元二次方程进行定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.②一元二次方程的一般形式是a x2+b x+c=0(a≠0),为什么要规定a≠0?因为a=0时,未知数的最高次数小于2.③同桌之间相互说说方程①②③的二次项,二次项系数,一次项,一次项系数,常数项各是什么.方程①x2+2x-4=0 二次项:x2二次项系数:1 一次项:2x 一次项系数:2常数项:-4方程②x2-75x+350=0 二次项:x2二次项系数:1 一次项:-75x 一次项系数:-75 常数项:350方程③x2-x=56 二次项:x2二次项系数:1 一次项:-x 一次项系数:-1常数项:-56④举例说明什么是一元二次方程的根.⑤自学例题,说说把一元二次方程化为一般形式,要经过哪些变形?去括号,移项,合并同类项.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察学生在回答一元二次方程各项及各项系数时,是否注意了符号.②差异指导:提醒学生一元二次方程的每一项(系数)都应包括它前面的符号.(2)生助生:生生互动交流、订正错误.4.强化:(1)交流总结:确定一元二次方程各项的系数时,若方程不是一般形式,要先经过去括号、移项、合并同类项等步骤把它化成一般形式,通常习惯把二次项系数化为正数,且各项系数均为整数且互质,在指出各项系数时,一定要带上各项前面的符号.(2)练习:①将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项:5x2-1=4x;4x2=81;解:原式化为5x2-4x-1=0解:原式化为4x2-81=0二次项系数:5一次项系数:-4常数项:-1二次项系数:4一次项系数:0常数项:-81 4x(x+2)=25;(3x-2)(x+1)=8x-3.解:原式化为4x2+8x-25=0解:原式化为3x2-7x+1=0二次项系数:4一次项系数:8常数项:-25二次项系数:3一次项系数:-7常数项:1②若方程(m-1)x2+x=1是关于x的一元二次方程,则m的取值范围是m≥0且m≠1.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有什么困惑?2.教师对学生的评价:(1)表现性评价:点评学生参与学习的情况,回答问题,小组互动情况以及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)注重知识的前后联系,在温故而知新的过程中孕育新知,按照由特殊到一般的规律,降低学生理解的难度.(2)教师创设情境,给出实例,学生积极主动探究,教师引导与启发、点拨与设疑相结合,师生互动,体现教师的组织者、引导者与合作者的地位.(3)增设例题难度,让学生产生困惑,避免今后犯类似错误,增加课堂练习,巩固知识.(4)对于一元二次方程的根的概念形成过程,要让学生大胆猜测,经过思考、讨论、分析的过程,让学生在交流中体会成功.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)一元二次方程3x2=5x的二次项系数和一次项系数分别是(C)A. 3,5B. 3,0C. 3,-5D. 5,02.(10分)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3, 4.解:-4,33.(20分)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.(1)3x2+1=6x;(2)4x2=81-5x;解:原式化为3x2-6x+1=0 解:原式化为4x2+5x-81=0二次项系数:3 二次项系数:4一次项系数:-6 一次项系数:5常数项:1 常数项:-81(3)x(x+5)=5x-10; (4)(3x-2)(x+1)=x(2x-1).解:原式化为x2+10=0 解:原式化为x2+2x-2=0二次项系数:1 二次项系数:1一次项系数:0 一次项系数:2常数项:10 常数项:-24.(30分)根据下列问题列方程,并将其化成一元二次方程的一般形式.(1)一个长方形的长比宽多1cm,面积是132cm2,长方形的长和宽各是多少?解:设长方形的长为x cm,则宽为(x-1)cm,根据题意,得x(x-1)=132,整理,得x2-x-132=0.2的平方的长方形?解:设长方形的长为xx)m.根据题意,得xx)=0.06,整理,得50x2-25x+3=0.(3)参加一次聚会的每两人都握了一次手,所有人共握手10次.有多少人参加这次聚会?解:设有x人参加了这次聚会,根据题意,得x(x-1)=10整理,得x2-x-20=0二、综合应用(20分)5.(20分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,则x满足的方程是(B)A. x2+130x-1400=0B. x2+65x-350=0C. x2-130x-1400=0D. x2-65x-350=0三、拓展延伸(10分)6.(10分)如果2是方程x2-c=0的一个根,求常数c及方程的另一个根.解:将2代入原方程中,得22-c=0,得c=4.将c=4代入原方程,得x2x=±2.即方程的另一个根为-2.角的平分线的性质(一)教学目标(一)教学知识点角平分线的画法、角平分线的性质1.(二)能力训练要求1.掌握角平分线的性质1 2.会用尺规作一个已知角的平分线.(三)情感与价值观要求在利用尺规作图的过程中,培养学生动手操作能力与探索精神.教学重点利用尺规作已知角的平分线.角平分线的性质1.教学难点角的平分线的性质1教学方法引导发现、讲练结合法.教具准备多媒体课件教学过程一.提出问题,创设情境问题:图中哪条线段的长可以表示点P 到直线l 的距离 ?导入新课,明确学习目标如果老师手里只有直尺和圆规,你能帮忙设计一个作角的平分线的操作方案吗?二.合作交流 探究新知探究1想一想:下图是一个平分角的仪器,其中AB=AD ,BC=DC .将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE ,AE 就是角平分线.你能说明它的道理吗? 教师活动:播放多媒体课件,演示角平分仪器的操作过程,使学生直观了解得到射线AC 的方法.学生活动:观看多媒体课件,讨论操作原理.[生1]要说明AC 是∠DAC 的平分线,其实就是证明∠CAD=∠CAB .[生2]∠CAD 和∠CAB 分别在△CAD 和△CAB 中,那么证明这两个三角形全等就可以了.[生3]我们看看条件够不够.AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩所以△ABC ≌△ADC (SSS ).所以∠CAD=∠CAB .即射线AC 就是∠DAB 的平分线.[生4]原来用三角形全等,就可以解决角相等.线段相等的一些问题.看来温故是可以知新的.试一试:老师再提出问题:通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)讨论结果展示:作已知角的平分线的方法:已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以O 为圆心,适当长为半径作弧,分别交OA 、OB 于M 、N .(2)分别以M、N为圆心,大于12MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.(教师根据学生的叙述,作多媒体课件演示,使学生能更直观地理解画法,提高学习数学的兴趣).点拨:1.在上面作法的第二步中,去掉“大于12MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?(设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯)学生讨论结果总结:1.去掉“大于12MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于12MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.探究2:做一做1[师]请同学们拿出准备好的折纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?[生]我发现第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对. [师]你的叙述太精彩了.这说明角的平分线除了有平分角的性质,还有其他性质,今天我们就来研究这个问题.做一做2角平分线的性质即已知角的平分线,能推出什么样的结论.操作:1.折出如图所示的折痕PD、PE.2.你与同伴用三角板检测你们所折的折痕是否符合图示要求.画一画:按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?拿出两名同学的画图,请大家评一评,以达明确概念的目的.[生]同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点画两边的垂线段,所以同学甲的画法不符合要求.[生甲]噢,对,我知道了.[师]同学甲,你再做一遍加深一下印象.教师提出问题:你能叙述所画图形的性质吗?生回答后,教师进一步引导:观察操作得到的结论有时并不可靠,你能否用推理的方法验证你的结论呢?证一证:引导学生证明角平分线的性质 1,分清题设、结论,将文字变成符号并加以证明(一生板演)说一说: 引导学生结合图形从文字和符号的角度分别叙述问题1:你能用文字语言叙述所画图形的性质吗?[生]角平分线上的点到角的两边的距离相等.问题2:(出示)能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.学生通过讨论作出下列概括:∵ OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.三、用一用:1、如图,△ABC的角平分线BM、CN相交于点P.此例放到第二课时讲求证:点P到三边AB、BC、CA的距离相等.[师生共析]点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,•也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.因为BM是△ABC的角平分线,点P在BM上.所以PD=PE.同理PE=PF.所以PD=PE=PF.即点P到三边AB、BC、CA的距离相等.巩固所学及时点拨四.丰收乐园学生充分交流、各抒己见教后反思:本节知识的应用主要存在以下问题:1、对距离把握不到位,点到直线的垂线段长才叫距离2、不会直接使用角平分线的性质,而是使用全等将性质再证一3、采用角平分线性质解题强调三个条件。
_一元二次方程复习学案
《一元二次方程》复习导学案》考点分析:必考点:一元二次方程的解法及应用常考点:一元二次方程的概念及根的情况 本节重难点知识及体系构建3.易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负. 【基础知识提前整理】---------课前预习1、只含 未知数,并且未知数的最高次数是 的整式方程叫一元二次方程。
2、一元二次方程的常见解法有 、 、配方法、 。
3、一元二次方程的求根公式是 。
4、一元二次方程)0(02≠=++a c bx ax ,Δ= ,Δ>0,方程 , Δ=0,方程 ,Δ<0,方程 ,Δ≥0,方程 。
5、一元二次方程)0(02≠=++a c bx ax ,x 1 、x 2是方程的两个实数根,则x 1 +x 2= , x 1 x 2= 。
应用问题中常用的数量关系及题型: 6、数字问题: (1)设个位数字为c ,十位数字为b ,百位数字为a ,则这个三位数为 ; (2)日历中前后两日差 ,上下两日差 。
7、体积变化问题: 8、打折销售问题(1)利润= -成本;(2)利润率=利润×100%. 9、行程问题10、教育储蓄问题(1)利息= ;(2)本息和= =本金х(1+利率х期数);(3)利息税= ;(4)贷款利息=贷款数额х利率х期数考点、易错点探究:二、课内探究探究一:一元二次方程的基本概念典例1:已知方程24(2)(3)50m m m x m x --++++=是一元二次方程,求你M 的值。
变式训练:关于x 的方程是一元二次方程,则a=__________典例2:已知关于X 的方程x 2-kx-6=0的一个根为x=3,则实数k 的值为( ) A .1 B .-1 C .2 D .-2变式训练:若0是关于x 的方程(m-2)x 2+3x+ m 2+2m-8=0的解,求实数m 的值,并讨论方程解的情况。
中职数学2.1一元二次方程学案
1、一元二次方程 学案学习目标:1、掌握用配方法解数字系数的一元二次方程;2、理解解方程中的程序化,体会化归思想。
重点:用配方法解数字系数的一元二次方程;难点:配方的过程。
导学流程 一、自主学习1、概念学习:(1)一元二次方程:________________________________________________________________________;(2)一元二次方程的一般形式:______________________________,其中,____是二次项系数, ____ 是一次项系数, ____是常数项。
(3)方程的解:___________________________________________________________________________;(4)解方程:_____________________________________________________________________________.2、自学教科书例题,做到练习本上。
二、精讲点拨我们把方程x 2-4x +3=0变形为(x -2)2=1,它的左边是一个含有未知数的________式,右边是一个_______常数.这样,就能应用直接开平方的方法求解.这种解一元二次方程的方法叫做配方法. 练一练 :配方.填空:(1)x 2+6x +( )=(x + )2;(2)x 2-8x +( )=(x - )2; (3)x 2+23x +( )=(x + )2; 从这些练习中你发现了什么特点?(1)当二次项系数为1时,加的常数是________________________________________________;(2)依据的公式是________________________________________________。
三、合作交流1、用配方法解下列方程:(1)x 2 +2x -3=0; (2)x 2-4x-3=0. (3)x 2 -6x +10=02、总结规律用配方法解二次项系数是1的一元二次方程?有哪些步骤?四、深入探究用配方法解下列方程:(1)011242=--x x (2)03522=--x x这两道题与前面的两道题有何区别?请与同伴讨论如何解决这个问题?请两名同学到黑板展示自己的做法。
一元二次方程学案
一元二次方程一,教学目标1,让学生熟练的掌握一元二次方程的解法及应用二,教学重难点(1)一元二次方程的实际应用,进一步体验到列一元二次方程解应用题的应用价值。
(2)进一步掌握列一元二次方程解应用题的方法和技能。
三,教学过程(一)、一元二次方程的概念在整式方程中只含一个未知数,并且未知数的最高次数是2这样的整式方程叫一元二次方程1.理解并掌握一元二次方程的意义 未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式 02=++c bx ax ( 0≠a )例:1,已知关于x 的方程()2220m m xx m --+-=:(1) m 为何值时方程为一元一次方程; (2) m 为何值时方程为一元二次方程。
2.正确识别一元二次方程中的各项及各项的系数(1)让学生明确只有当二次项系数0≠a 时,整式方程02=++c bx ax 才是一元二次方程。
(2)各项的确定(包括各项的系数及各项的未知数).其中2ax 是二次项,a 叫二次项系数;bx 是一次项,b 叫一次项系数,c 是常数项。
例:1、(2009·日照中考)若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为 ( ).(A )1 (B )2 (C )-1 (D )-2解析:选D.将n 代入方程,方程两边同时除以n 求解,可得m +n=-2.2、(2008·烟台中考)已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( ) A .ab B .abC .a b +D .a b - 解析:选D.将-a 代入20x bx a ++=中,则a 2-ab+a=0,则a -b+1=0∴a -b=-1(恒为常数)3、(2008·东营中考)若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .0 答案:B4、(2007·荆州中考)若0x =是方程22(2)3280m x x m m -+++-=的解,则m = .答案:2或-4;(3).一元二次方程的解的定义与检验一元二次方程的解。
学案解一元二次方程的完全平方公式
学案解一元二次方程的完全平方公式一、引言解一元二次方程是数学中的基础知识之一,学习并掌握解方程的方法对于数学学习的进一步发展至关重要。
在本学案中,我们将重点学习一元二次方程的完全平方公式,探讨其应用和解题方法。
通过理论的学习和实际的练习,我们将能够更深入地理解和掌握这一重要概念。
二、理论知识一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为已知常数,x为未知数。
而完全平方公式是一种用于求解一元二次方程的公式,其表达形式为x = (-b ± √(b^2 - 4ac)) / (2a)。
借助完全平方公式,我们可以快速求解一元二次方程的解,并且能够得到方程的两个根,即方程图像与x轴交点的横坐标值。
三、应用举例为了更好地理解和应用完全平方公式,让我们通过一些具体的例子来进行实际操作。
例1:求解方程x^2 - 4x + 3 = 0首先,我们可以直观地观察到这是一个一元二次方程,将其与完全平方公式对照,可以得到a=1,b=-4,c=3。
根据完全平方公式,我们有:x = (-(-4) ± √((-4)^2 - 4 * 1 * 3)) / (2 * 1)x = (4 ± √(16 - 12)) / 2x = (4 ± √(4)) / 2x = (4 ± 2) / 2通过化简我们可以得到两个解:x1 = (4 + 2) / 2 = 3x2 = (4 - 2) / 2 = 1所以,方程x^2 - 4x + 3 = 0的解为x1 = 3和x2 = 1。
例2:应用完全平方公式解决实际问题假设一个矩形的长和宽分别是x和2,其面积为12平方单位。
我们可以通过建立一元二次方程来求解矩形的长。
已知矩形的面积为长乘以宽,即x * 2 = 12。
可以将这个方程转化为一元二次方程的标准形式,得到x^2 - 6x + 12 = 0。
根据完全平方公式,我们有:x = (6 ± √((-6)^2 - 4 * 1 * 12)) / 2x = (6 ± √(36 - 48)) / 2x = (6 ± √(-12)) / 2由于√(-12)为虚数,所以方程没有实数解。
一元二次方程优秀教案
一元二次方程优秀教案一元二次方程是初中数学的主要内容,在初中代数中占重要地位。
学生积极动手、动脑、动口为主线来完成。
在教学中渗透类比化归等数学思想,让学生充分观察、体验,同时营造轻松愉快的学习氛围,以此激发学生的学习兴趣并渗透环保内容。
以下是小编整理的关于一元二次方程教案,欢迎查阅!一元二次方程教案1教学目标1、知识与能力目标:要求学生会根据实际问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。
2、过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。
3.、情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识并与校园绿化相结合。
教学重点、难点教学重点:通过实际问题模型建立一元二次方程的概念,认识一元二次方程一般形式.2。
难点:通过实际问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念。
教学过程:(一)创设情景,导入新课问题一:学校有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽为多少分析:设长方形绿地的宽为x米,则列方程,整理可得。
问题二:有一块矩形绿化带,长100cm,宽50cm,在它的四角各栽种一个同样的正方形花坛,如果去掉四周矩形的底面积为3600cm2,那么四周花坛面积是多大的正方形分析:设长方形绿地的宽为x米,则列方程,整理可得。
问题三:要组织一次环保竞赛,参加的每两个班之间都要比赛一场。
根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个班参赛【设计意图】因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。
同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。
情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课,并激发学生环保意识。
人教版初中数学九年级第二十一章 一元二次方程21.2 解一元二次方程学案(1)
一元二次方程应用利用一元二次方程可以:一、一元二次方程主要是解决实际问题:主要解决:1、传播、分支问题;握手、写信,循环比赛问题;2、平均变化率问题;3、数字问题;4、利润问题;5、图形的面积问题;5、利润问题;6、方案设计问题等。
二、解分式方程(成平方关系、成倒数关系)三、对二次三项式ax2+bx+c(a≠0)进行因式分解:一、相互问题(传播、循环)例:(传染问题)有一人患了流感,经过两轮传染后共有169人患了流感.(1)求每一轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少人患上流感?练习:1.有两人患了红眼病,经过两轮传染后共有162人患了流感,每轮传染中平均一个人传染了个人。
列得方程:解得:x=2.某人患了流感,经过两轮传染后共64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?3.某电脑病毒传播非常快,如果一台电脑被感染,经过两轮传播后就会有144台电脑被感染,设每轮传染中平均一台电脑传染x台电脑,则依题意可列方程为______________-4.有一人患了流感,经过两轮传染后共有121人患了流感,按照这样的速度,第三轮传染后,患流感的人数是( ) A.1331 B.1210 C.1100 D.1000问题2:(分蘖问题)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?练习:为了宣传环保,小明写了一篇倡议书,决定利用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,依此类推,已知经过两轮传播后,共有111人参与了传播活动,则n=______.解:类型二:“握手”、“比赛”、“赠礼物”1.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。
(好)第22章_一元二次方程_全章学案
第二十二章一元二次方程一、教材内容一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.二、课标要求1、以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念.2、根据化归思想,抓住降次这一策略,掌握配方法,公式法和因式分解法等一元二次方程的基本解法.3、经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用这种重要数学工具的基本能力.三、教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出、分析问题,建立一元二次方程数学模型,并用解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.四、教学重点与难点教学重点:1. 一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3. 利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点:1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.五、课时划分本单元教学时间约需13课时,具体分配如下:22.1 一元二次方程2课时22.2 降次──解一元二次方程5课时22.3 实际问题与一元二次方程3课时教学活动、习题课、小结3课时22.1.1 《一元二次方程(1)》学案学习目标:1、进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;2、正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
一元二次方程的教案(必备3篇)
一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
《一元二次方程》学案
22.1 « 一元二次方程》(1)学案学习目标:1.通过设置问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义.2. 一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.学习过程:1、温故互查(1)一元一次方程定义 .(2)一元一次方程的一般形式 .2、设问导读合作预习章前页的问题和教材P25-P26问题1和2。
(1 )、问题:上述3个方程是不是一元一次方程?有何共同点?①;②;③。
(2)、一元二次方程的概念:像这样的等号两边都是_____________________ ,只含有个未知数,并且未知数的最高次数是的方程叫做一元二次方程。
(3)任何一个关于x的一元二次方程都可以化为(a,b,c为常数,)的形式,我们把它称为一元二次方程的一般形式。
a为, b为, c为。
(4)、注意点:①一元二次方程必须满足三个条件: a ;b ;c②任何一个一元二次方程都可以化为一般形式: .二次项系数、- 次项系数、常数项都要包含它前面的符号。
③ 二次项系数是一个重要条件,不能漏掉,为什么?3、自我检测(1)、下列列方程中,哪些是关于x的一元二次方程?① 5x2 0 ② V2x2 x V3x ③ J Z 3 0x x④ 3x3x 0 ⑤ x2xy 3 0 (2 )、把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项:① 3x2 5x 1 ②(x 2)(x 1) 6 ③ 4 7x2 0(3 )、关于x的方程(a-1 )x2+3x=0是一元二次方程,则a的取值范围是 .学生分小组交流解疑,教师点评升华。
4、巩固练习:课本27页练习1、2题5、拓展延伸(1 )、a满足什么条件时,关于x的方程a (x2+x) =V3x- (x+1)是一元二次方程?(2 )、关于x的方程(2m2+m) x m+1+3x=6可能是一元二次方程吗?为什么?评价1、这节课你学到了什么?2、组长对你这节课的表现进行评价:3 2.1 « 一元二次方程》(2)学案学习目标:1、会进行简单的一元二次方程的试解;2、理解方程的解的概念,发展有条理的思考与表达能力;3、会在简单的实际问题中估算方程的解,理解方程解的实际意义。
第二十二章 一元二次方程 复习学案
第二十二章一元二次方程复习学案一、学习目标;1、理解一元二次方程的意义。
2、能熟练掌握一元二次方程的四种解法,会选择适当的方法解方程,进一步体会相互之间的关系及其“转化”的思想。
3、能熟练分析数量之间的关系,列出一元二次方程来解应用题。
二、中考热点:本章的应用性较强,本章内容一直是命题的热点,填空题、选择题有,解答题也有,单独出现或和其它内容结合出现.三、本章知识框架图:四、知识点与方法:(一)定义:方程两边都是,只含有个未知数,且未知数的最高次是,这样的方程叫做一元二次方程。
一般形式:。
温馨提示:对有关一元二次方程定义的题目,要充分考虑定义的四个条件,千万不要忽视二次项系数不为0。
【练习】1、若方程(a-1)x12 a+5x-3=0是关于x的一元二次方程,则a= 。
2、已知方程2(m+1)x2 +4mx+3m-2 = 0 是关于x的一元二次方程,那么m的取值范围是3、下列方程中,是关于x的一元二次方程的是()A.()()12132+=+x xB.02112=-+x xC.02=++c bx axD. 1222-=+x x x4、把方程21+x =33-x 2化为一般形式 。
5、把方程(1-3x )(x +3)= 2x 2 + 1化成一般形式是 ,它的二次项是 ,一次项是 , 常数项是 。
(二)一元二次方程的判别式:(1)当 时,方程有两个..不相等...的实数根; (2)当 时,方程有两个..相等..的实数根; (3)当 时,方程没.有.实数..根.。
温馨提示:一元二次方程0c bx ax 2=++(a ≠0)的根的判别式正反都成立.其作用有:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.【练习】 6、方程022=-+-k kx x 的根的情况是( )(A )方程有两个不相等的实数根 (B )方程有两个相等的实数根(C )方程没有实数根 (D )无法确定7、若一元二次方程 2x (kx -4)-x 2+6=0 无实数根,则k 的最小整数值是( ) A 、-1 B 、2 C 、3 D 、48、下列方程中,有两个不相等实数根的是 ( )A.240x += B.24410x x -+= C.230x x ++= D.2210x x +-=9、关于x 的一元二次方程()220x mx m -+-=的根的情况是 ( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定10、a 、b 、c 分别是三角形的三边,则方程()022=++++b a cx x b a 的根的情况是A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根11、(2012·德州)若关于x 的方程()0222=+++a a ax 有实数解,求实数a 的取值范围。
初中九年级数学 第二章一元二次方程学案设计及测试题
1、花边有多宽(1)设计人:温现国教师寄语:没有自信,成功远在天涯。
拥有自信,你已成功了一半。
【学习目标】1、知识与技能:理解一元二次方程的定义,会判断满足一元二次方程的条件。
2、能力培养:能根据具体情景应用知识。
3、情感与态度:体验与他人合作的重要性及数学活动中的探索和创造性。
【学习重点】1、一元二次方程的定义;2、一元二次方程的一般形式。
【学习过程】(教师寄语:自信是成功的前提!)一、前置准备:1、什么是方程?什么样的方程是一元一次方程?2、多项式2x2-3x+1是几次几项式?每项的系数和次数分别是几?二、自学探究:理解一元二次方程的概念并会把一元二次方程化为一般形式。
自学教材42-43页,回答:(1)如果设花边的宽为xm,那么地毯中央长方形图案的长为m,宽为m 根据题意,可得方程(2)试再找出其他的五个连续整数,使前三个数的平方和等于后两个数的平方和:;如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为、、、,根据题意可得方程:(3)根据图2-2,由勾股定理可知,滑动前梯子底端距墙 m,如果设梯子底端滑动xm,那么滑动后梯子底端距墙 m,梯子顶端距地面的垂直距离为 m,根据题意,可得方程:三、合作交流:观察上述三个方程,它们的共同点为:①;②;象这样的方程叫做。
其中我们把称为一元二次方程的一般形式,ax2,bx,c分别称为、、,a、b分别称为、。
1、分别把上述三个方程化为ax2+bx+c=0的形式并说明每个方程的二次项系数、一次项系数和常数项:(1)(2)(3)(与同学交流你的想法)四、归纳总结:通过本节课的学习你学到了哪些知识?与同学交流一下。
五、当堂训练:1、判断下列方程是否为一元二次方程,如果是说明二次项及二次项系数、一次项及一次项系数和常数项:(1)2x 2+3x+5 (2)(x+5)(x+2)=x 2+3x+1 (3)(2x-1)(3x+5)=-5 (4)(3x+1)(x-2)=-5x2、把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项。
《一元二次方程》优秀教案(精选5篇)
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。
2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
一元二次方程教案第一课时
一元二次方程教案第一课时一、教学目标知识与技能:学生能够理解一元二次方程的概念,掌握一元二次方程的一般形式,并能正确地识别和转换一元二次方程。
过程与方法:通过观察、分析和归纳,学生能够掌握一元二次方程的解法,并能够运用一元二次方程解决实际问题。
情感态度与价值观:培养学生对数学的兴趣和爱好,激发学生的学习热情,培养学生的逻辑思维能力和创新精神。
二、教学重点和难点教学重点:一元二次方程的概念、一般形式及其解法。
教学难点:如何正确识别和转换一元二次方程,以及如何运用一元二次方程解决实际问题。
三、教学过程导入新课:通过实例引导学生了解一元二次方程的概念,并通过对比一元一次方程,突出一元二次方程的特点和差异。
知识讲解:详细讲解一元二次方程的一般形式、解法及其在实际问题中的应用,并配以相应的例题进行说明。
练习与巩固:提供相应的练习题目,让学生在课堂上进行练习,并引导学生通过自主思考和小组讨论解决问题。
总结与回顾:对本节课的知识点进行总结和回顾,加深学生对一元二次方程的理解和应用。
布置作业:根据学生的学习情况布置适量的作业,以巩固和拓展课堂所学知识。
四、教学方法和手段教学方法:采用讲解、演示、小组讨论等多种教学方法相结合的方式进行教学,以提高学生的参与度和学习效果。
教学手段:运用多媒体课件、板书等多种教学手段辅助教学,提高教学效果和学生的学习兴趣。
五、课堂练习、作业与评价方式课堂练习:提供相应的练习题目,让学生通过自主思考和小组讨论解决问题,巩固所学知识。
作业:根据学生的学习情况布置适量的作业,以巩固和拓展课堂所学知识。
作业可以分为基础题目和提高题目两个层次,以满足不同学生的需求。
评价方式:通过学生的课堂表现、练习和作业等多种方式进行评价,以全面了解学生的学习情况和进步程度。
同时,鼓励学生积极参与评价,提高评价的客观性和准确性。
六、辅助教学资源与工具教学课件:提供相应的多媒体课件,包括文字、图片、视频等多种形式的内容,以辅助教学。
苏科版九年级上册第一章:一元二次方程学案(一):概念和方程的根
一元二次方程(一):概念及一元二次方程的知识点一:一元二次方程的定义一元二次方程的三要素:①只含有1未知数 ②未知数的最高次数是 2 ③ 整式方程只有同时满足以上三个条件的方程才是一元二次方程,不满足其中任何一个条件的方程都不是一元二次方程.判断一个方程是不是一元二次方程,一般是先把这个方程化简,在看是否符合一元二次方程的定义.例1:下面关于x 的方程:①02=++c bx ax ②()119322=+--x x )(③x x 13=+④11-=+x x ,其中一元二次方程的是知识点二:一元二次方程的一般形式 一般形式 项及项的系数 其他形式02=++c bx ax (cb a 、、是常数,0≠a )二次项:2ax 二次项系数:a 02=++c bx ax (a 、b 是常数,a ≠0)一次项:bx 一次项系数:b02=+c ax (a 、c 是常数,a ≠0)同步知识点巩固0≠a 是一元二次方程一般形式的一个重要组成部分,如果明确指出方程02=++c bx ax 是一元二次方程,那么就隐含着0≠a 这个条件,如果出现“关于x 的方程”这样的语句,就要对方程中的a 进行讨论,这一点是重要的考点之一.指出一元二次方程的二次项系数,一次项系数,常数项时,一定要带上前面的符号. (3)将一个一元二次方程化为一般形式时,方程右边一定是0例2:把下列关于x 的方程化为一般形式,并写出二次项系数、一次项系数和常数项.327)4)(21(2+=++-x x x x)a (2)1()1(22≠=++-c bx x c x a知识点三:一元二次方程的解 详解例3:关于x 的一元二次方程()0112=-++-a x x a 的一个根是0,则实数a 的值是_____.知识点四:一元二次方程的解法:1.直接开平方法:适用于解形如 的一元二次方程.例:解方程:()29125x +=.2.配方法:解形如 的一元二次方程. 例:解方程:24830x x -+= 配方法解一元二次方程()200ax bx c a ++=≠的步骤:解:23204x x -+= ①二次项系数化为1. (两边都除以 .)2324x x -=-②移项.(把常数项移到=号右边.)22232114x x -+=-+ ③配方.(两边都加上 )()2114x -=④配方.(化成()2x m n +=的形式)112x -=±⑤求解.( 若0n ≥,直接开平方法得出方程的解.)则方程的解为:113122x =+=;211122x =-+=.3.公式法:设一元二次方程为()200ax bx c a ++=≠,其根的判别式为:24b ac ∆=-,1x ,2x 是方程的两根,则:①0∆⇔>方程()200ax bx c a ++=≠有1,22b x a -±=.②0∆=⇔方程()200ax bx c a ++=≠有122bx x a ==-.③0∆⇔<方程()200ax bx c a ++=≠ .若a 、b 、c 为有理数,且∆为完全平方式,则方程的解为有理根;若∆为完全平方式,同时b -2a 的整数倍,则方程的根为整数根.例:解方程:2273x x -= 公式法解一元二次方程的步骤: 解:22730x x --=①把方程化为一般形式:()200ax bx c a ++=≠∴2a =,7b =-,3c =- ②确定a ,b ,c 的值.∴()()2247423730b ac -=--⨯⨯-=> ③、求出24b ac -的值.∴()722x --±==⨯ ④若240b ac -≥,则代入公式求方程的根∴174x =,274x -= ⑤若240b ac -<,则方程无解.4.因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式. (1)提公因式分解因式法: ①解方程:250xx -= ②解方程:()()23230x x x -+-=解:原方程可变形为: 解:原方程可变形为:()50x x -= ()()3320x x x --+=∴0x =或50x -= ∴30x -=或320x x -+=∴10x =,25x = ∴13x =,21x =(2)运用公式分解因式法:①解方程:()()22213x x -=- ②解方程:()226952x x x -+=-解:原方程可变形为: 解:原方程可变形为:()()222130x x ---=()()22352x x -=-()()2132130x x x x -+---+= ()()223520x x ---=∴2130x x -+-=或2130x x --+= ()()3523520x x x x -+---+=∴12x =-,243x =∴3520x x -+-=或3520x x --+=∴12x =,283x =(3)十字相乘分解因式法(简单、常用、重要的一元二次方程解法):例6:解方程:2560x x --=解:原方程可变形为:()()610x x -+=∴60x -=或10x +=∴16x =,21x =-(4)其它常见类型举例:例7:①解方程:()()138x x ++= ②解方程:2221x x x x +-=+(换元法)解:原方程可变形为:2450x x +-= 解:令2y x x =+,原方程可化为:21y y -= ∴()()510x x +-= 即:220y y --=,∴()()210y y -+=∴50x +=或10x -= ∴20y -=或10y +=∴15x =-,21x = ∴12y =,21y =-∴22x x +=,即220x x +-=∴()()210x x +-=,∴12x =-,21x =或21x x +=-,即210x x ++=∴1a =,1b =,1c =∴224141130b ac -=-⨯⨯=-<∴方程2+1=0x x +无解。
23.1一元二次方程 学案
23.1 《一元二次方程》学案学习目标:1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。
2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。
重点:由实际问题列出一元二次方程和一元二次方程的概念。
难点:由实际问题列出一元二次方程。
准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。
导学流程:探究新知【问题1】小明把一张边长为10cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子,如果要求长方体的底面积为81cm2,那么剪去的正方形的边长是多少?设:剪去的正方形的边长为xcm,你能列出满足条件的方程吗?你是如何建立方程模型的?列出的方程是。
自主学习【做一做】根据题意列出方程:1、一个正方形的面积的2倍等于50,这个正方形的边长是多少?2、一个数比另一个数大3,且这两个数之积为这个数,求这个数。
3、一块面积是150cm2长方形铁片,它的长比宽多5cm,则铁片的长是多少?观察上述四个方程结构特征发现:归纳出一元二次方程的定义:1、只含有个未知数,并且未知数的最高次数是,这样的方程,叫做一元二次方程。
2、一元二次方程的一般形式: , 其中二次项,是一次项,是常数项,二次项系数,一次项系数。
展示反馈【挑战自我】判断下列方程是否为一元二次方程。
【问题2】将下列一元二次方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数。
错误!中用了哪些数学方法?【巩固练习】教材第19页练习归纳小结:1、本节课我们学习了哪些知识?2、学习过程中用了哪些数学方法?3、确定一元二次方程的项及系数时要注意什么?达标测评(A )1、判断下列方程是否是一元二次方程;(1)Equation.3 07142=+-xx ( )(3) 错误!和常数项:2、将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)3x 2-x =2; (2)7x -3=2x 2;(3)(2x -1)-3x (x -2)=0 (4)2x (x -1)=3(x +5)-4.3、判断下列方程后面所给出的数,那些是方程的解;(1)错误! (错误!二次方程错误!元一次方程?(2)错误!它的二次项系数、一次项系数及常数项。
新人教版九年级数学上册:《一元二次方程》名师学案
21. 1一元二次方程1.理解一元二次方程及其有关观点,能够娴熟地把一元二次方程化为一般形式.2.会应用一元二次方程的解的定义解决有关问题.3.在剖析、揭露实质问题中的数目关系,并把实质问题转变为数学模型的过程中,感觉方程是刻画现实世界中的数目关系的工具,加强对一元二次方程的感性认识.一、情境导入参加一次集合,假如有 x 个人,每两人之间都握一次手,共握了21 次手,请你列出切合上述条件的方程,并判断方程是什么种类?二、合作研究研究点一:一元二次方程的观点【种类一】一元二次方程的辨别以下选项中,是对于 x 的一元二次方程的是 ()21. x2-2A.x+2= 1 B xy- y =0x325C.( x-1)( x-2) =3 D .ax2+bx+ c= 0分析:选项 A 中的方程分母含有未知数,因此它不是一元二次方程;选项B中的方程含有 2 个未知数,因此它不是一元二次方程;当a=0 时,选项 D 中的方程不含二次项,因此它不是一元二次方程,清除A 、B 、D ,应选 C.方法总结:判断一个方程是不是一元二次方程, 一定将方程化简后再进行判断.一元二次方程的三个条件: 一是方程两边都是整式; 二是只含有一个未知数;三是未知数的最高次数是 2. 上述三个条件一定同时知足,缺一不行.【种类二】利用一元二次方程的观点确立字母系数对于 x 的方程 (k + 1)x | k - 1| +kx + = 0是一元二次方程,则k 的值为1 ________.| k -1| =2, k =3或 k =- 1,分析:由题意得 k + ≠0,∴k ≠-1.1∴k =3.方法总结: 由一元二次方程的观点知足的条件:未知数最高次数为方程,解出字母取值, 并利用二次项系数不为 0 清除使二次项系数为值,进而确立字母取值.2,结构0 的字母取研究点二:一元二次方程的一般形式将以下方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数及常数项.(1)3 x 2 -2= 5x ;(2)9 x 2 =16;(3)2 x(3 x +1) =17;(4)(3 x -5)( x +1) = 7x -2.分析:先分别将各方程化为一般形式,再指出它们的各部分的名称.解: (1) 方程化为一般形式为 3x 2- 5x -2=0,二次项系数是 3,一次项系数是- 5,常数项是- 2.(2) 方程化为一般形式为 9x 2-16= 0,二次项系数是 9,一次项系数是 0,常数项是- 16.(3) 方程化为一般形式为 6x 2+2x - 17=0,二次项系数是 6,一次项系数是 2,常数项是- 17.(4)方程化为一般形式为 3x2-9x- 3=0,二次项系数是 3,一次项系数是-9,常数项是- 3.方法总结:求一元二次方程的各项系数和常数项,一定先把方程化为一般形式,特别要注意确认各项系数和常数项必定要包含前方的符号.研究点三:列一元二次方程(2015 ·深圳一模 ) 在一张矩形的床单周围绣上宽度相等的花边,剩下部分面积为 1.6m2. 已知床单的长是2m,宽是 1.4m,求花边的宽度.请依据题意列出方程.分析:设花边的宽度为xm,则由图可知剩下部分的长为(2 - 2x)m,剩下部分的宽为 (1.4 - 2x)m. ∵剩下部分面积为 1.6m2,∴可列方程 (2 - 2x)(1.4 - 2x)=1.6.方法总结:列方程最重要的是审题,只有理解题意,才能适合的设出未知数,正确地找出已知量和未知量之间的等量关系,正确的列出方程.研究点四:一元二次方程的解【种类一】判断一元二次方程的解方程 x2-x=0的解为()2A.x1=1,x2=2 B .x1= 0, x2=11C.x1=0,x2=2 D .x1=2, x2=2分析:把各选项中未知数的值分别代入方程的左右两边,只有选项 C 中的x1= 0, x2= 2 都能使方程 x2-2x= 0 的左右两边相等,因此选 C.方法总结:判断一个未知数的值是不是一元二次方程的解,能够把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解.【种类二】利用一元二次方程的解的意义求字母或代数式的值已知 1 是对于 x 的一元二次方程 ( m- 1) x2+x+1=0 的一个根,则 m的值是()A.1 B .-1C.0 D .没法确立分析:依据方程的根的观点,直接代入方程,左右两边相等,但考虑到是一元二次方程,因此二次项系数不可以等于0.由此得,(m-1)++=,解得 m=1 1 0-1,此时m-=-≠0,∴ m=-1.应选B.12方法总结:方程的根是能使方程左右两边相等的未知数的值,在波及方程根的题目中,我们一般是把这个根代入方程左右两边转变为求待定系数的方程来解决问题.三、板书设计教课过程中,重申学生自主研究和合作沟通,经历将实质问题转变为数学识题,领会数学建模的思想方法 .。
一元二次方程教案(教案)一元二次方程的解法
一元二次方程教案(教案)一元二次方程的解法第1篇第2篇第3篇第4篇第5篇更多顶部第一篇:配方法解一元二次方程的教案第二篇:一元二次方程复习教案(正式)第三篇:4.2.3一元二次方程的解法(教案)第四篇:教案一元二次方程的应用第五篇:一元二次方程根的分布教案更多相关范文第一篇:配方法解一元二次方程的教案配方法解一元二次方程的教案教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。
一、教学目标(一)知识目标1、理解求解一元二次方程的实质。
2、掌握解一元二次方程的配方法。
(二)能力目标1、体会数学的转化思想。
2、能根据配方法解一元二次方程的一般步骤解一元二次方程。
(三)情感态度及价值观通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。
二、教学重点配方法解一元二次方程的一般步骤三、教学难点具体用配方法的一般步骤解一元二次方程。
四、知识考点运用配方法解一元二次方程。
五、教学过程(一)复习引入1、复习:解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
2、引入:二次根式的意义:若x2=a(a为非负数),则x叫做a的平方根,即x=±√a。
实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。
(二)新课探究通过实际问题的解答,引出我们所要学习的知识点。
通过问题吸引学生的注意力,引发学生思考。
问题1:一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?问题1重在引出用直接开平方法解一元二次方程。
这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:2解:设正方体的棱长为x dm,则一个正方体的表面积为6xdm2列出方程:60x2=1500x2=25x=±5因为x为棱长不能为负值,所以x=5即:正方体的棱长为5dm。
1.九年级数学一元二次方程(全章学案)
第二章 一元二次方程一元二次方程的概念教学目标:1、知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式02=++c bx ax (a ≠0) 2、能把实际问题转化为数学模型(一元二次方程)。
3、会用试验的方法估计一元二次方程的解。
重点难点:1.一元二次方程的意义及一般形式,会正确识别一般式中的“项”及“系数”。
2. 理解用试验的方法估计一元二次方程的解的合理性。
教学过程: 一、做一做:问题1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?问题2学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.思考、讨论这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?二、一元二次方程的概念上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程 通常可写成如下的一般形式:ax 2+bx +c =0(a 、b 、c 是已知数,a ≠0)。
其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b叫做一次项系数,c 叫做常数项。
. 三、 例题讲解与练习巩固例1、下列方程中哪些是一元二次方程?试说明理由。
(1)3523-=+x x (2)42=x (3)2112x x x =-+- (4)22)2(4+=-x x例2、将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)y y =26 (2)(x-2)(x+3)=8 (3)2)2()43)(3(+=-+x x x说明:一元二次方程的一般形式02=++c bx ax (a ≠0)具有两个特征:一是方程的右边为0; 二是左边的二次项系数不能为0。
例3、方程(2a —4)x 2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?例4 、已知关于x 的一元二次方程(m-1)x 2+3x-5m+4=0有一根为2,求m 。
新人教版九年级数学上册 第21章 第1课时 一元二次方程导学案
新人教版九年级数学上册第1课时一元二次方程学案一、学习目标1.理解一元二次方程的概念;2.知道一元二次方程的一般形式,会把一个一元二次方程化为一般形式;3.会判断一元二次方程的二次项系数、一次项系数和常数项;4.理解一元二次方程根的概念.二、知识回顾1.多项式3x2y-2x-1是三次二项式,其中最高次项是3x2y ,二次项系数为0 ,一次项系数为-2 ,常数项是-1 .2.含有未知数的等式叫方程,我们学过的方程类型有:一元一次方程、二元一次方程、分式方程等.三、新知讲解1.一元二次方程的概念等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程.概念解读:(1)等号两边都是整式;(2)只含有一个未知数;(3)未知数的最高次数是2.三个条件缺一不可.2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成ax2+bx+c=0(a≠0)的形式,这种形式叫做一元二次方程的一般形式.其中ax2是二次项, a 是二次项系数;bx 是一次项, b 是一次项系数; c 是常数项.概念解读:(1)“a≠0”是一元二次方程一般形式的重要组成部分. 如果明确了ax2+bx+c=0是一元二次方程,就隐含了a≠0这个条件;(2)二次项系数、一次项系数和常数项都是在一般形式下定义的,各项的系数包括它前面的符号.3.一元二次方程的根的概念使一元二次方程两边相等的未知数的值叫一元二次方程的解,也叫做一元二次方程的根..概念解读:(1)一元二次方程可能无解,但是有解就一定有两个解;(2)可用代入法检验一个数是否是一元二次方程的解.四、典例探究1.根据定义判断一个方程是否是一元二次方程【例1】(2015•浠水县校级模拟)下列方程是一元二次方程的是()A.x2+2x﹣y=3 B. C.(3x2﹣1)2﹣3=0 D.x2﹣8=x总结:一元二次方程必须满足四个条件:是整式方程;含有一个未知数;未知数的最高次数是2;二次项系数不为0.练1(2015•科左中旗校级一模)关于x的方程:(a﹣1)+x+a2﹣1=0,求当a= 时,方程是一元二次方程;当a= 时,方程是一元一次方程.2.把一元二次方程化成一般形式(写出其二次项系数、一次项系数和常数项)【例2】(2014秋•忠县校级期末)一元二次方程(1﹣3x)(x+3)=2x2+1的一般形式是;它的二次项系数是,一次项系数是,常数项是.总结:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)(2)在一般形式中,ax2叫二次项,bx叫一次项,c是常数项,其中a,b,c分别叫二次项系数、一次项系数和常数项.练2将方程x(x-1)=5(x-2)化为一元二次方程的一般形式,并写出二次项系数、一次项系数和常数.练3(2014•东西湖区校级模拟)将一元二次方程4x2+5x=81化成一般式后,如果二次项系数是4,则一次项系数和常数项分别是()A.5,81 B.5,﹣81 C.﹣5,81 D.5x,﹣813.根据一元二次方程的根求参数【例3】(2015•临淄区校级模拟)若0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,则m的值为()A.1 B.0 C.1或2 D.2总结:使一元二次方程两边相等的未知数的值叫一元二次方程的解,也叫做一元二次方程的根.一元二次方程可能无解,但是有解就一定有两个解.可用代入法检验一个数是否是一元二次方程的解.已知一元二次方程的一个解,将这个解直接代入原方程,原方程仍然成立,由此可求解原方程中的字母参数.若二次项系数含有字母参数,求出的字母参数值要保证二次项系数不为0.这一步容易被忽略,谨记.练4(2014•绵阳模拟)若关于x的一元二次方程(a+1)x2+4x+a2﹣1=0的一根是0,则a= .练5(2015•绵阳)关于m的一元二次方程nm2﹣n2m﹣2=0的一个根为2,则n2+n﹣2= .五、课后小测一、选择题1.(2015春•莒县期中)下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0 B.x+y=2 C.x2+3y﹣5=0 D.x2﹣1=02.(2014•泗县校级模拟)方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个 B.2个 C.3个 D.4个3.(2014秋•沈丘县校级期末)要使方程(a﹣3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0 B.a≠3C.a≠1且b≠﹣1 D.a≠3且b≠﹣1且c≠04.(2015•石河子校级模拟)把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,25.(2015•石河子校级模拟)关于x的方程(3m2+1)x2+2mx﹣1=0的一个根是1,则m的值是()A.0 B.﹣ C. D.0或,6.(2014•祁阳县校级模拟)已知x=3是关于方程3x2+2ax﹣3a=0的一个根,则关于y的方程y2﹣12=a的解是()A. B.﹣C.± D.以上答案都不对7.(2014秋•南昌期末)关于x的方程(k+2)x2﹣kx﹣2=0必有一个根为()A.x=1 B.x=﹣1 C.x=2 D.x=﹣2二、填空题8.(2015•东西湖区校级模拟)已知(m﹣2)x2﹣3x+1=0是关于x的一元二次方程,则m的取值范围是.9.(2014秋•西昌市校级期中)方程2x2﹣1=的二次项系数是,一次项系数是,常数项是.10.(2015•厦门校级质检)若m是方程x2﹣2x=2的一个根,则2m2﹣4m+2010的值是.三、解答题11.把方程先化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数和常数项.(1)5x2=3x;(2)(﹣1)x+x2﹣3=0;(3)(7x﹣1)2﹣3=0;(4)(﹣1)(+1)=0;(5)(6m﹣5)(2m+1)=m2.12.(2015春•亳州校级期中)已知关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,(1)求m的值;(2)求方程的解.13.(2015春•嵊州市校级月考)已知,下列关于x的一元二次方程(1)x2﹣1=0 (2)x2+x﹣2=0 (3)x2+2x﹣3=0 …(n)x2+(n﹣1)x﹣n=0(1)求出方程(1)、方程(2)、方程(3)的根,并猜测方程(n)的根.(2)请指出上述几个方程的根有什么共同特点,写出一条即可.14.关于y的方程my2﹣ny﹣p=0(m≠0)中的二次项的系数,一次项的系数与常数项的和为多少.典例探究答案:【例1】【解析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解:A、方程含有两个未知数,故选项错误;B、不是整式方程,故选项错误;C、含未知数的项的最高次数是4,故选项错误;D、符合一元二次方程的定义,故选项正确.故选:D.点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否只含有一个未知数且未知数的最高次数是2.练1.【解析】根据一元二次方程和一元一次方程的定义进行解答.解:依题意得,a2+1=2且a﹣1≠0,解得 a=﹣1.即当a=﹣1时,方程是一元二次方程.当a2+1=0或a﹣1=0即a=1时,方程是一元一次方程.故答案是:﹣1;1.点评:本题考查了一元二次方程和一元一次方程的定义.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.【例2】【解析】将方程整理为一般形式,找出二次项系数,一次项系数,以及常数项即可.解:一元二次方程(1﹣3x)(x+3)=2x2+1的一般形式是5x2+8x﹣2=0;它的二次项系数是5,一次项系数是8,常数项是﹣2.故答案为:5x2+8x﹣2=0,5,8,﹣2点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在解题过程中容易忽视的地方.在一般形式中ax2叫二次项,bx叫一次项,c 是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.练2.【解析】将一元二次方程化为一般形式,主要包括几个步骤:去括号、移项、合并同类项.去括号,得x2-x=5x-10.移项、合并同类项,得x2-6x+10=0.其中二次项系数是1,一次项系数为-6,常数项为10.练3.【解析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件,其中a,b,c分别叫二次项系数,一次项系数,常数项,可得答案.解:一元二次方程4x2+5x=81化成一般式为4x2+5x﹣81=0,二次项系数,一次项系数,常数项分别为4,5,﹣81,故选:B.点评:本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【例3】【解析】把方程的一个根0直接代入方程即可求出m的值.解:∵0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,∴(m﹣1)×0+5×0+m2﹣3m+2=0,即m2﹣3m+2=0,解方程得:m1=1(舍去),m2=2,∴m=2,故选:D.点评:本题考查了一元二次方程的解,解题的关键是直接把方程的一根代入方程,此题比较简单,易于掌握.练4.【解析】将一根0代入方程,再依据一元二次方程的二次项系数不为零,问题可求.解:∵一根是0,∴(a+1)×(0)2+4×0+a2﹣1=0∴a2﹣1=0,即a=±1;∵a+1≠0,∴a≠﹣1;∴a=1.练5.【解析】先根据一元二次方程的解的定义得到4n﹣2n2﹣2=0,两边除以2n得n+=2,再利用完全平方公式变形得到原式=(n+)2﹣2,然后利用整体代入的方法计算.解:把m=2代入nm2﹣n2m﹣2=0得4n﹣2n2﹣2=0,所以n+=2,所以原式=(n+)2﹣2=(2)2﹣2=26.故答案为:26.点评:本题考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式的变形能力.课后小测答案:一、选择题1.【解析】根据一元二次方程的定义进行判断.解:A、当a=0时,该方程不是关于x的一元二次方程,故本选项错误;B、该方程中含有2个未知数,且未知数的最高次数是1,它属于二元一次方程,故本选项错误;C、该方程中含有2个未知数,且未知数的最高次数是2,它属于二元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确.故选:D.点评:本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.【解析】直接根据一元二次方程的定义可得到在所给的方程中x2﹣2x﹣5=0,x2=0是一元二次方程.解:方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程是x2﹣2x﹣5=0,x2=0.故选:B.点评:本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程.3.【解析】本题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.解:根据一元二次方程的定义中二次项系数不为0得,a﹣3≠0,a≠3.故选:B.点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.当a=0时,上面的方程就不是一元二次方程了,当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.4.【解析】a、b、c分别指的是一元二次方程的一般式中的二次项系数、一次项系数、常数项.解:由方程x(x+2)=5(x﹣2),得x2﹣3x+10=0,∴a、b、c的值分别是1、﹣3、10;故选A.点评:本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.5.【解析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.解:把1代入方程得3m2+1+2m﹣1=0,解得m=0或,故选:D.点评:本题的关键是把x的值代入原方程,得到一个关于待定系数的一元二次方程,然后求解.6.【解析】由于x=3是关于x的方程3x2+2ax﹣3a=0的一个根,根据方程解的含义,把x=3代入原方程,即可解出a的值,然后再解出关于y的方程的解.解:∵x=3是关于x的方程3x2+2ax﹣3a=0的一个根,∴3×32+2a×3﹣3a=0,解得:a=﹣9,则关于y的方程是y2﹣12=﹣9,解得y=.故选:C.点评:本题考查一元二次方程解的含义,解题的关键是确定方程中待定系数的值.7.【解析】分别把x=1、﹣2、﹣2代入(k+2)x2﹣kx﹣2=0中,利用一元二次方程的解,当k为任意值时,则对应的x的值一定为方程的解.解:A、当x=1时,k+2﹣k﹣2=0,所以方程(k+2)x2﹣kx﹣2=0必有一个根为1,所以A选项正确;B、当x=﹣1时,k+2+k﹣2=0,所以当k=0时,方程(k+2)x2﹣kx﹣2=0有一个根为﹣1,所以B选项错误;C、当x=2时,4k+8﹣2k﹣2=0,所以当k=﹣3时,方程(k+2)x2﹣kx﹣2=0有一个根为2,所以C选项错误;D、当x=﹣2时,4k+8+2k﹣2=0,所以当k=﹣1时,方程(k+2)x2﹣kx﹣2=0有一个根为﹣2,所以D选项错误.故选A.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.二、填空题8.【解析】根据一元二次方程的定义得到m﹣2≠0,然后解不等式即可.解:根据题意得m﹣2≠0,所以m≠2.故答案为:m≠2.点评:本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.9.【解析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.解:方程2x2﹣1=化成一般形式是2x2﹣﹣1=0,二次项系数是2,一次项系数是﹣,常数项是﹣1.点评:要确定一次项系数和常数项,首先要把法方程化成一般形式.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号10.【解析】根据一元二次方程的解的定义得到m2﹣2m=2,再变形2m2﹣4m+2010得到2(m2﹣m)+2010,然后利用整体代入的方法计算.解:根据题意得m2﹣2m=2,所以2m2﹣4m+2010=2(m2﹣m)+2010=2×2+2010=2014.故答案为2014.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.三、解答题11.【解析】各项方程整理后,找出二次项系数,一次项系数,以及常数项即可.解:(1)方程整理得:5x2﹣3x=0,二次项系数为5,一次项系数为﹣3,常数项为0;(2)x2+(﹣1)x﹣3=0,二次项系数为1,一次项系数为﹣1,常数项为﹣3;(3)方程整理得:49x2﹣14x﹣2=0,二次项系数为49,一次项为﹣14,常数项为﹣2;(4)方程整理得:x2﹣1=0,二次项系数为,一次项系数为0,常数项为﹣1;(5)方程整理得:11m2﹣4m﹣5=0,二次项系数为11,一次项系数为﹣4,常数项为﹣5.点评:此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.12.【解析】(1)首先利用关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0得出m2﹣3m+2=0,进而得出即可;(2)分别将m的值代入原式求出即可.解:(1)∵关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,∴m2﹣3m+2=0,解得:m1=1,m2=2,∴m的值为1或2;(2)当m=2时,代入(m﹣1)x2+5x+m2﹣3m+2=0得出:x2+5x=0x(x+5)=0,解得:x1=0,x2=﹣5.当m=1时,5x=0,解得x=0.点评:此题主要考查了一元二次方程的解法,正确解一元二次方程是解题关键.13.【解析】(1)利用因式分解法分别求出方程(1)、方程(2)、方程(3)的根,根据以上3个方程的根,可猜测方程(n)的根;(2)观察即可得出上述几个方程都有一个公共根是1.解:(1)(1)x2﹣1=0,(x+1)(x﹣1)=0,x+1=0,或x﹣1=0,解得x1=﹣1,x2=1;(2)x2+x﹣2=0,(x+2)(x﹣1)=0,x+2=0,或x﹣1=0,解得x1=﹣2,x2=1;(3)x2+2x﹣3=0,(x+3)(x﹣1)=0,x+3=0,或x﹣1=0,解得x1=﹣3,x2=1;…猜测方程(n)x2+(n﹣1)x﹣n=0的根为x1=﹣n,x2=1;(2)上述几个方程都有一个公共根是1.点评:本题考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的解法.14.【解析】令y=1,即可确定出方程的二次项的系数,一次项的系数与常数项的和.解:令y=1,得到m﹣n﹣p=0,则方程my2﹣ny﹣p=0(m≠0)中的二次项的系数,一次项的系数与常数项的和为0.点评:此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程
学习目标
1. 知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式0
2=++c bx ax (a ≠0)
2. 在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
3. 会用试验的方法估计一元二次方程的解。
重点难点
1.一元二次方程的意义及一般形式,会正确识别一般式中的“项”及“系数”。
2. 理解用试验的方法估计一元二次方程的解的合理性。
学习过程
一、情境引入:
(1)正方形桌面的面积是2m 2
,求它的边长?
(2)矩形花圃一面靠墙,另外三面所围的栅栏的总长度是19米。
如果花圃的面积是24m2,求花圃的长和宽?
(3)我校图书馆的藏书在两年内从5万册增加到7.2万册,平均每年增长的百分率是多少?
(4)长5米的梯子斜靠在墙上,梯子的底端与墙的距离是3米。
如果梯子底端向右滑动的距离与梯子顶端向下滑动的距离相等,求梯子滑动的距离。
X 米。
根据勾股定理,滑动前梯子的顶端
4米,则滑动后梯子的顶端离地面(4-X )米,梯子的底端
3+X )米。
二、探究学习:
1.
像这样的等号两边都是整式, 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程叫做一元二次方程(quadratic equation in one unknown)
2.看谁眼力好:下列方程中那些是二元一次方程。
3.一般地,任何一个关于x 的一元二次方程都可以化为 的形式,我们把 (a,b,c 为常数,a ≠0)称为一元二次方程的一般形式。
4.现学现用:指出下列方程的二次项、一次项和常数项及它们的系数:
5.典型例题 [例1] 将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:
(1) (2) 6.巩固练习
把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项
三、归纳总结: 1、只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次
方程。
2、一元二次方程的一般形式为02=++c bx ax (a ≠0),一元二次方程的项及系
数
都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
3、在实际问题转化为数学模型( 一元二次方程 ) 的过程中,体会学习一元二次方程的必要性和重要性
2
2=x 241922=+-x x 4.422=+x x 02=-x x )0(0).7(0
).6()2)(1(3).5(023).4(1).3(1).2(1
).1(222222的常数为不等于m m x c bx ax x x x y x x x x x x x ==+++-=-=+-===+20ax bx c ++=20ax bx c ++=22=x 24
1922=+-x x 4
.422=+x x 02=-x x )2(5)1(3+=-x x x 0
2=x 2
).1(2=-x x 214)2(x x =+132).3(2+-=x x 2
)3().4(-=+x x。