《不等式与一次不等式组》全章复习与巩固(基础)巩固练习

合集下载

《第11章一元一次不等式》巩固能力提升训练2(附答案)2021年暑假复习七年级数学苏科版下册

《第11章一元一次不等式》巩固能力提升训练2(附答案)2021年暑假复习七年级数学苏科版下册

2021年苏科版七年级数学下册《第11章一元一次不等式》暑假复习巩固能力提升训练2(附答案)1.不等式组的解集在以下数轴表示中正确的是()A.B.C.D.2.已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1B.2C.3D.43.如果不等式组有解,则m的范围()A.m<﹣1B.m>﹣1C.m≤﹣1D.m≥﹣14.若不等式(m+2)x>m+2的解集为x<1,则m满足的条件是()A.m>0B.m>﹣2C.m<﹣2D.m<25.已知x=4是关于x的方程kx+b=0(k≠0,b>0)的解,则关于x的不等式k(x﹣3)+2b>0的解集是()A.x>11B.x<11C.x>7D.x<76.若方程组的解为x,y,且2<k<4,则x﹣y的取值范围是()A.0<x﹣y<3B.0<x﹣y<1C.﹣3<x﹣y<﹣1D.﹣1<x﹣y<1 7.已知关于x的不等式组无实数解,则a的取值范围是()A.a≥﹣B.a≥﹣2C.a>﹣D.a>﹣28.若关于x的不等式组的整数解共有4个,则m的取值范围是()A.6<m<7B.6≤m<7C.6≤m≤7D.6<m≤79.已知关于x的不等式组的解集是3≤x≤4,则a+b的值为()A.5B.8C.11D.910.若不等式2x+5<1的解集中x的每一个值,都能使关于x的不等式4x+1<x﹣m成立,则m的取值范围是()A.m>5B.m≤5C.m>﹣5D.m<﹣511.已知关于x,y的二元一次方程组,且x,y满足x+y>3.则m的取值范围是.12.已知关于x,y的二元一次方程组满足x﹣y>0,则a的取值范围是.13.关于x的不等式组无解,那么m的取值范围为.14.已知关于x的不等式组的解集是x<3.则实数a的取值范围是.15.若关于x的不等式x+m<1只有3个正整数解,则m的取值范围是.16.若关于x的不等式(m﹣2021)x>m﹣2021的解集是x<1,则m的取值范围是.17.已知关于x的不等式(3a﹣2b)x<a﹣4b的解集是,则关于x的不等式bx﹣a >0的解集为.18.关于x,y的二元一次方程组的解是正整数,则正整数k=.19.已知非负数x,y满足3x+y=6,若M=x+2y,则M的取值范围.20.某商场的一件商品标价为420元,进价为280元,商场准备打折销售,要使利润率不低于5%,最低打折.21.解不等式组:.22.已知关于x、y的方程组的解满足,求k的取值范围.23.若关于x,y的二元一次方程组的解满足且x+y≥0,求m的取值范围.24.已知方程组的解满足x为非负数,y为正数.(1)求m的取值范围.(2)若不等式(m+1)x<m+1的解集为x>1,求满足条件的整数m的值.25.某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A 货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.26.2020年6月1日上午,国务院总理李克强在山东烟台考察时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.波波准备购进A、B两种类型的便携式风扇到华润万家门口出售.已知2台A型风扇和5台B 型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)波波准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,波波准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,波波共有几种进货方案?哪种进货方案的费用最低?最低费用为多少元?参考答案1.解:,解不等式①,得:x<3,解不等式②,得:x≥1,如图,在数轴上表示不等式①、②的解集,可知所求不等式组的解集是:1≤x<3.故选:B.2.解:∵a>b,∴当a>0时,a2>ab,当a<0时,a2<ab,故①结论错误;∵a>b,∴当|a|>|b|时,a2>b2,∴当|a|<|b|时,a2<b2,故②结论错误;∵a>b,b<0,∴a+b>2b,故③结论错误;∵a>b,b>0,∴a>b>0,∴,故④结论正确;∴正确的个数是1个.故选:A.3.解:如图,∵不等式组有解,∴m>﹣1,故选:B.4.解:∵不等式(m+2)x>m+2的解集是x<1,∴m+2<0,∴m<﹣2,故选:C.5.解:∵x=4是关于x的方程kx+b=0(k≠0,b>0)的解,∴4k+b=0,即b=﹣4k>0,∴k<0,∵k(x﹣3)+2b>0,∴kx﹣3k﹣8k>0,∴kx>11k,∴x<11,故选:B.6.解:两个方程相减,得:2x﹣2y=k﹣2,∴x﹣y=,∵2<k<4,∴0<k﹣2<2,则0<<1,即0<x﹣y<1,故选:B.7.解:解不等式﹣2x﹣3≥1得:x≤﹣2,解不等式﹣1≥得:x≥2a+2,∵关于x的不等式组无实数解,∴不等式的解集为2a+2>﹣2,解得:a>﹣2,故选:D.8.解:由(1)得,x<m,由(2)得,x≥3,故原不等式组的解集为:3≤x<m,∵不等式组的正整数解有4个,∴其整数解应为:3、4、5、6,∴m的取值范围是6<m≤7.故选:D.9.解:解不等式x﹣a≥1,得:x≥a+1,解不等式x+5≤b,得:x≤b﹣5,∵不等式组的解集为3≤x≤4,∴a+1=3,b﹣5=4,∴a=2,b=9,则a+b=2+9=11,故选:C.10.解:解不等式2x+5<1得:x<﹣2,解关于x的不等式4x+1<x﹣m得x<﹣,∵不等式2x+5<1的解集中x的每一个值,都能使关于x的不等式4x+1<x﹣m成立,∴﹣≥﹣2,解得:m≤5,故选:B.11.解:解方程组得:,∵x+y>3,∴m+1+m>3,解得:m>1,故答案为:m>1.12.解:,①﹣②,得x﹣y=3a﹣3,∵x﹣y>0,∴3a﹣3>0,解得a>1,故答案为:a>1.13.解:解不等式x﹣m<0,得:x<m,解不等式3x﹣1>2(x+1),得:x>3,∵不等式组无解,∴m≤3,故答案为m≤3.14.解:∵关于x的不等式组的解集是x<3,∴a≥3,故答案为:a≥3.15.解:解不等式x+m<1得:x<1﹣m,根据题意得:3<1﹣m≤4,即﹣3≤m<﹣2,故答案是:﹣3≤m<﹣2.16.解:∵关于x的不等式(m﹣2021)x>m﹣2021的解集为x<1,∴m﹣2021<0,则m<2021,故答案为m<2021.17.解:不等式(3a﹣2b)x<a﹣4b,解得:x>,3a﹣2b<0,即3a<2b,∴=,即9a=16b,,∵3a﹣2b<0,9a=16b,∴b<0,a<0,∴bx﹣a>0的解集为x<,故答案为:.18.解:方程组,①×2﹣②得:(4﹣k)y=8,解得:y=,把y=代入①得:x=,由方程组的解为正整数,得到4﹣k=1,2,4,8,解得:k=3,2,0,﹣4,代入x=检验得:k=2,﹣4,0,则正整数k的值为2.故答案为:2.19.解:由题意得,y=6﹣3x,∵x,y为非负数,∴,∴0≤x≤2,∵M=x+2y=x+2(6﹣3x)=﹣5x+12,∴2≤x+2y≤12,故答案为:2≤M≤12.20.解:设打x折销售,依题意得:420×﹣280≥280×5%,解得:x≥7.故答案为:7.21.解:,解不等式①,得x>﹣3,解不等式②,得x≤2,∴原不等式组的解为:﹣3<x≤2.22.解:解方程组得:,∵关于x、y的方程组的解满足,∴,解得:﹣<k<2,即k的取值范围是:﹣<k<2.23.解:解方程组,得:,∵x+y≥0,∴m+1﹣3m+3≥0,解得m≤2.24.解:(1)解方程组得,根据题意,得:,解得﹣3≤m<;(2)∵不等式(m+1)x<m+1的解集为x>1,∴m+1<0,解得m<﹣1,又﹣3≤m<,∴﹣3≤m<﹣1,则整数m的值为﹣3、﹣2.25.解:(1)设1辆A货车一次可以运货x吨,1辆B货车一次可以运货y吨,根据题意得:,解得:,答:1辆A货车一次可以运货20吨,1辆B货车一次可以运货15吨;(2)方法一:设A货车运输m吨,则B货车运输(190﹣m)吨,设总费用为w元,则:w=500×+400×=25m+=25m﹣m+=﹣m+,∵﹣<0,∴w随m的增大而减小.∵A、B两种货车均满载,∴,都是整数,当m=20时,不是整数;当m=40时,=10;当m=60时,不是整数;当m=80时,不是整数;当m=100时,=6;当m=120时,不是整数;当m=140时,不是整数;当m=160时,=2;当m=180时,不是整数;故符合题意的运输方案有三种:①A货车2辆,B货车10辆;②A货车5辆,B货车6辆;③A货车8辆,B货车2辆;∵w随m的增大而减小,∴费用越少,m越大,故方案③费用最少.方法二:设安排m辆A货车,则安排辆B货车,w=500m+400×=﹣m+,∵=9.5,∴0<m<10,∵m,都为整数,∴m=2,5,8,故符合题意的运输方案有三种:①A货车2辆,B货车10辆;②A货车5辆,B货车6辆;③A货车8辆,B货车2辆;∵w随m的增大而减小,∴费用越少,m越大,故方案③费用最少.26.解:(1)设A型风扇进货的单价是x元,B型风扇进货的单价是y元,依题意,得:,解得:.答:A型风扇进货的单价是10元,B型风扇进货的单价是16元;(2)设购进A型风扇m台,则购进B型风扇(100﹣m)台,依题意,得:,解得:71≤m≤75,又∵m为正整数,∴m可以取72、73、74、75,∴波波共有4种进货方案,方案1:购进A型风扇72台,B型风扇28台;方案2:购进A型风扇73台,B型风扇27台;方案3:购进A型风扇74台,B型风扇26台;方案4:购进A型风扇75台,B型风扇25台.∵B型风扇进货的单价大于A型风扇进货的单价,∴方案4:购进A型风扇75台,B型风扇25台的费用最低,最低费用为75×10+25×16=1150元.答:波波共有4种进货方案,方案4:购进A型风扇75台,B型风扇25台的费用最低,最低费用为1150元.。

不等式与不等式组复习教案

不等式与不等式组复习教案

《第九章不等式与不等式组 (复习)》教学预案(李鹏飞甘肃省嘉峪关市实验中学 735100)课题第九章不等式与不等式组(复习)授课时间2016年5月31日(星期二)下午第一节(3:00——3:40)授课学校嘉峪关市第六中学授课地点实验楼录播教室4309室授课班级七年级(9)班教材版本人教版七年级下册授课类型讲授式课时安排 2课时第一课时 (40分钟)教学方法启发、类比、转化、发现教学用具多媒体课件、导学案1、2.一、课标解读:(1)结合具体问题,了解不等式的意义,探索不等式的基本性质.(2)能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集.(3)能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题.二、教学理念在教学的建构中,我将努力执行新课程理念,以教师为主导,以学生为主体,充分调动学生的积极性,发挥学生的创造性和主观能动性,让学生“自主、合作、探究、创新”地学习,我的课程将以“面向全体学生,培养学生数学素养”的宗旨实施,体现新的学生观和学习观.教学过程中我将把课堂还给学生,深入的发掘教材,重新整合教材,创设教学情境,适时激疑,让学生想问、敢问、善问,激发学生的学习兴趣和求知欲望,变要我学为我要学;教师作为平等中的首席,形成师生、生生共同学习、共同探讨,共同帮助、共同发展的课堂氛围;通过有效地“教”与“学”,既增长学生的数学知识,又提高学生的数学素养.我将结合学情,预设目标,并体现学生的差异性,期望更多的课堂生成,及时评价,引导学生的互评,更关注对学生的发展性评价,构建动态的课堂,师生、生生在合作中相互学习,引发智慧和思维的碰撞,在碰撞中实践,在实践中反思,在反思中达成,在达成中分享,在分享中成长,最终实现“有效、高效、魅力”的课堂.三、教材分析本章位于人教版《数学》七年级下册P113——133,主要内容包括:不等式及其解集,不等式的性质,一元一次不等式(组)及其相关概念,一元一次不等式(组)的解法及其解集的几何表示,利用一元一次不等式分析与解决实际问题.其中,以不等式为工具分析问题、解决问题是重点;一元一次不等式(组)及其相关概念、不等式的性质是基础知识;一元一次不等式(组)的解法及解集的几何表示是基本技能.本章注重体现列不等式中蕴含的建模思想和解不等式中蕴含的化归思想.四、学情分析七年级的学生生理和心理上都处于迅速成长期,精力旺盛,接受新知识和独立学习能力有所增强,但数学学习能力还尚待培养,因此在教学中需注重趣味性与学科严谨性、科学性相融合,因此在本课学习中,主要通过教师引导、自主探究、小组合作、互动交流的模式,来让学生观察、类比、分析、归纳、总结第九章所学知识和数学思想.五、教学目标(一)知识与能力(1)了解不等式及其解集;(2)理解不等式的性质;(3)掌握一元一次不等式(组)及其相关概念,一元一次不等式(组)的解法及其解集的几何表示;(4)利用一元一次不等式分析与解决实际问题.(二)数学思考在本章注重体现列不等式中蕴含的建模思想和解不等式中蕴含的化归思想.(三)问题解决本章以不等式为工具分析问题、解决问题是重点;一元一次不等式(组)及其相关概念、不等式的性质是基础知识;一元一次不等式(组)的解法及解集的几何表示是基本技能.(四)情感态度与价值观让学生体验数学来源于生活,服务于生活,通过解决实际问题,让学生们体会协作式学习的好处,培养学生乐于了解数学,应用数学的态度,在小组交流中增加自信.六、教学重点及设置依据教学重点:不等式及其解集,不等式的性质,一元一次不等式(组)及其相关概念,一元一次不等式(组)的解法及其解集的几何表示.设置依据:结合具体问题,了解不等式的意义,探索不等式的性质. 能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集.七、教学难点及设置依据教学难点:一元一次不等式(组)的解法及其解集的几何表示,利用一元一次不等式分析与解决实际问题.设置依据:能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集. 能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题.八、教学过程教学环节教师活动学生行为预设设计意图活动一复习不等式及其解集1.引导学生观察知识树,知道本章所学知识有哪些.2.复习不等式及其解集的相关概念.学生在理解概念的基础上完成对重点知识的巩固记忆.(环节预设3分钟)设计本章内容的知识树,旨在激起学生复习本章内容的热情,调动学生学习的积极性,并达到对全章知识复习回顾的目的.活动二复习一元一次不等式1.下列各式哪些是不等式?2.下列各式哪些是一元一次不等式?3.解这个一元一次不等式.在复习了不等式及其解集后,完成巩固练习第1、2、3题,由第2、3题复习一元一次不等式.(环节预设5分钟)设计问题巩固提高,激起学生的自信心和探究欲望,使学生积极主动地投入到数学学习活动中去.活动三复习不等式的性质及巩固训练1.不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.2.不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变.3.不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变.1.复习不等式及其解集、一元一次不等式.2.在完成巩固练习第3题后总结解一元一次不等式的步骤,对应复习所用到的不等式的性质.3.根据不等式的性质完成巩固训练.(环节预设5分钟)引导学生对比等式的性质,复习不等式的性质.这样,从学生已有的知识经验出发,建构新知识,符合这一阶段学生的认知特点.学生发表观点之后,教师及时实施多元评价,总结类比思想,通过练习,让学生从练习中复习知识.活动四由实际问题的解决过程复习一元一次不等式组并能够用数轴确定其解集七年级(9)班学生到阅览室读书,班长问老师要分成几个小组,老师风趣地说:假如我把63本书分给各个小组,若每组7本,还有剩余;若每组9本,却又不够.你知道该分几个小组吗?1.阅读实际问题,思考后,进行四人一组的小组讨论交流.2.小组为单位组织本组同学汇报讲解该实际问题,其他小组的同学负责点评,预设6分钟.3.根据得到的确定一元一次不等式组解集的办法完成巩采用合作探究这种方式,让学生真正体会到数学学习的趣味性和实用性,尝试“发现数学”的基本方法,培养学生细致应用的良好习惯.固训练.(环节预设15分钟)活动五用一元一次不等式解决实际问题某电信公司采取两种方式收取电话费:第一种是每月缴纳月租费15元,每通话1分钟收话费0.20元;第二种是每通话1分钟收话费0.30元;请问:用哪种方式比较合算?学生通过解决实际问题,体会用一元一次不等式解决问题的思路,总结对于包含不等关系的实际问题的解决过程.(环节预设8分钟)采用合作探究这种方式,师生互动,让学生真正体会到数学学习的趣味性和实用性,尝试“发现数学”的基本方法,培养学生细致应用的良好习惯.活动六体验收获1.数学知识小结:知识树2.数学方法小结:数形结合、化归思想、类比思想、分类讨论思想3.情感态度小结(环节预设3分钟)教师在本环节先引导学生从知识层面对概念和性质进行梳理,深化知识的同时,引导学生对本节课用到的数学方法做出小结.八、教学反思(一)备课反思1.兼顾四维目标.在确定重难点与教学环节时,我把知识与能力、数学思考、问题解决、情感态度与价值观四维目标合理安排,有效落实,做到目标明确、和谐统一.对于基础知识和基本技能做到让学生了解、理解、掌握和应用.对于数学思考做到让学生感悟数学思想,积累数学活动经验.对于问题解决做到让学生经历问题,体验解决问题的过程,探索解决问题的思路.对于情感态度做到让学生主动参与学习活动,增加学习数学的兴趣和自信心,与他人合作的过程中,有着克服困难的勇气,能主动与同伴和老师交流.2.兼顾《数学新课程标准》、学情、教材.我以《数学新课程标准》为指导思想和理论依据,力争做到用教材教,在教教材的过程中,结合学情,灵活处理教材,能用不等式(组)解决实际问题.(二)教后反思(待完成课堂教学后见说课)。

必修一第二章-一元二次函数、方程和不等式全章讲解训练-(含答案)

必修一第二章-一元二次函数、方程和不等式全章讲解训练-(含答案)

~第二章 一元二次函数、方程和不等式全章复习讲解 (含答案)【要点梳理】(不等式性质、解一元二次不等式、基本不等式) 一、不等式1.定义 不等式:用不等号(>,<,≥,≤,≠)表示不等关系的式子.2..不等式的性质不等式的性质可分为基本性质和运算性质两部分 基本性质有:性质1 对称性:a b b a >⇔<;】性质2 传递性:,a b b c a c >>⇒>;性质3 加法法则(同向不等式可加性):()a b a c b c c R >⇔+>+∈; 性质4 乘法法则:若a b >,则000c ac bc c ac bc c ac bc ,,.>⇒>⎧⎪=⇒=⎨⎪<⇒<⎩补充:除法法则:若a b >且0c =,则00a bc c ca b c c c⎧>⇒>⎪⎪⎨⎪<⇒<⎪⎩., 性质5 可加法则:,a b c d a c b d >>⇒+>+; 性质6 可乘法则:0,00a b c d a c b d >>>>⇒⋅>⋅>; 性质7 可乘方性:()*00n n a b n a b N >>∈⇒>>;可开方性:()01a b n n N 且+>>∈>⇒!要点诠释:不等式的性质是不等式同解变形的依据. 二、比较两代数式大小的方法 作差法:1. 任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小. ①0a b a b ->⇔>; ②0a b a b -<⇔<; ③0a b a b -=⇔=. 作商法:任意两个值为正的代数式a 、b ,可以作商a b ÷后比较ab与1的关系,进一步比较a 与b 的大小. ①1a a b b >⇔>; ②1a a b b <⇔<; ③1aa bb =⇔=. &要点诠释:若代数式a 、b 都为负数,也可以用作商法. 中间量法:若两个代数式a 、b 不容易直接判断大小,可引入第三个量c 分别与a 、b 作比较,若满足a b >且b c >,则a c >. 第三个量就是中间量. 这种方法就是中间量法,其实质是不等式的传递性.一般选择0或1为中间量.三、一元二次不等式与相应函数、方程之间的联系设()2f x ax bx c =++(0)a >,判别式24b ac ∆=-,按照0∆>,0∆=,0∆<该函数图象(抛物线)与x 轴的位置关系也分为三种情况,相应方程的解与不等式的解集形式也不尽相同. 如下表所示:24b ac ∆=-0∆>&0∆=0∆<函数()y f x = 的图象方程()=0f x?的解有两相异实根 1212,()x x x x <有两相等实根 122bx x a ==-无实根不等式()0f x >的解集 [{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R不等式()0f x <的解集{}12x xx x <<∅ ∅}要点诠释:(1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线y =2ax bx c ++与x 轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集. 四、解一元二次不等式1. 解一元二次不等式()2ax +bx+c a ≠>00的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数;(2)写出相应的方程20ax bx c ++=(0)a >,计算判别式∆:%①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法); ②0∆=时,求根122bx x a==-; ③0∆<时,方程无解(3)根据不等式,写出解集. 五、基本不等式1.对公式222a b ab +≥及2a b+≥. (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数; (2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”.~2.由公式222a b ab +≥和2a b+≥①2b aa b +≥(,a b 同号); ②2b aa b+≤-(,a b 异号);③20,0)112a b a b a b+≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>> 要点诠释: 222a b ab +≥可以变形为:222a b ab +≤,2a b +≥可以变形为:2()2a b ab +≤.2a b+≤求最大(小)值 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等. ① 一正:函数的解析式中,各项均为正数;>② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三取等:函数的解析式中,含变数的各项均相等,取得最值. 要点诠释:1.基本不等式的功能在于“和积互化”.若所证不等式可整理成一边是和,另一边是积的形式,则考虑使用平均不等式;若对于所给的“和式”中的各项的“积”为定值,则“和”有最小值,对于给出的“积式”中的各项的“和”为定值,则“积”有最大值.2.利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③各项能取得相等的值./【典型例题】类型一 不等式性质/例1.对于实数a b c ,,判断以下说法的对错.(1)若a b >,则ac bc <; (2)若22ac bc >,则a b >; (3)若0a b <<, 则22a ab b >>; (4)若0a b <<, 则a b >; (5)若a b >,1a >1b, 则00a b ,><. 举一反三:【变式1】如果a <b <0,那么下列不等式成立的是( ) A .B .a+c <b+cC .a ﹣c >b ﹣cD .a •c <b •c 例2、比较下列两代数式的大小:。

初中数学中考复习备考方案

初中数学中考复习备考方案

初中数学中考复习备考方案初中数学中考复习备考方案1数学中考复习,将围绕数学考纲要求,大致分三轮进行:第一轮复习:系统复习。

时间:3月至4月中旬。

复习内容:按代数、几何、统计与概率三个版块进行。

巩固基础知识,理顺知识点、考点,强化选择填空题的准确率。

系统复习期间,交叉进行系统测试,培养学生知识的系统性,构建初中数学的知识体系。

第二轮复习:专题复习。

时间4月中旬至5月底。

复习内容:根据黄石中考考点,按有理数计算、化简求值、解方程组、概率计算、圆的证明与计算、解直角三角形、函数应用题、直线型综合、二次函数综合九个专题进行,巩固提高学生解答题得分率。

专题复习期间,交叉进行系统知识测试,检测学生综合运用知识的能力,提高准确率。

第三轮复习;中考模拟训练。

时间:6月前三周。

复习内容:模拟测试为主,对学生掌握的知识查缺补漏。

训练学生考试的适应能力。

主要复习资料:1、系统复习教辅资料2、往年全国各地中考试卷3、自编专题练习、测试试卷初中数学中考复习备考方案2一、复习措施1.认真钻研教材、课标要求、吃透考试大纲,确定复习重点。

确定复习重点可从以下几方面考虑:⑴根据教材的教学要求提出四层次的基本要求:了解、理解、掌握和熟练掌握。

这是确定复习重点的依据和标准。

⑴熟识每一个知识点在初中数学教材中的地位、作用;⑴熟悉近年来试题型类型,以及考试改革的情况。

2.正确分析学生的知识状况、和近期的思想状况。

(1)是对平时教学中掌握的情况进行定性分析;(2)每天对学生的作业及时批改,复习过程侧重评讲(3)是对每周所复习的知识进行测试,及时发现问题和解决问题。

(4),将学生很好的分类,牢牢的抓在手中。

(5)备课组成员每人出好两套模拟试题,优化及共享资源。

3.根据知识重点、学生的知识状况及总复习时间制定比较具体详细可行的复习计划。

二、切实抓好“双基”的训练。

初中数学的基础知识、基本技能,是学生进行数学运算、数学推理的基本材料,是形成数学能力的基石。

人教版七年级下册数学第9章 不等式与不等式组全章课件

人教版七年级下册数学第9章 不等式与不等式组全章课件
10天的工作量 < 500件
(2)“提前完成任务”是什么意思?
10天的工作量 ≥ 500件
(三)深入探究,阶段小结
解:每个小组每天生产x件产品,
依题意得: 3×10x<500, ① 3×10(x+1)>500. ②
①式解得:x
<
16
2 3
②式解得:x
>15
2 3
∴不等式组的解集为
15
2 3
<x
< 16
问题3:
从刚才的练习中你发现了什么?请你把你的发现和合作小组的同学 交流.
⑴ 5>3, 5+2 > 3+2, 5-2 > 3-2; ⑵ -1<3, -1+2 < 3+2,-1-3< 3-3; ⑶ 6<2, 6×5 < 2×5,
6×(-5) >2×(-5); ⑷ -2<3, (-2)×6 < 3×6,
依题意得:40x≤2400 且 40x≥2000
(二)概念认识
c>10-3 且 c<10+3
c >10-3 c <10+3
一元一次 不等式组
40x≤2400 且 40x≥2000
40x≤2400
【问题3】
40x≥2000
请大家判断一下,下列式子是一元一次不等式
组吗?一元一次不等式组有什么特点?
x - 3 >0
23 从图中可以找到两个不等式解集的公共部分, 得不等式组的解集是: x >3
(五)练习巩固
【问题 7】完成课本 140 页练习 1.
(六)课堂小结
【问题 8】本节课你学到了哪些知识?
第九章 不等式与不等式组

浙教版初一上册数学实数全章复习与巩固(基础)重点题型巩固练习

浙教版初一上册数学实数全章复习与巩固(基础)重点题型巩固练习

浙教版七年级上册初中数学知识点梳理及重点题型巩固练习【巩固练习】一.选择题1. 下列说法正确的是( )A .数轴上任一点表示唯一的有理数B .数轴上任一点表示唯一的无理数C .两个无理数之和一定是无理数D .数轴上任意两点之间都有无数个点2.(2015•日照)的算术平方根是( )A .2B .±2C .D .±3.已知a 、b 是实数,下列命题结论正确的是( )A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2bD .若3a >3b ,则2a >2b 4. 3387=-a ,则a 的值是( ) A. 87 B. 87- C. 87± D. 512343- 5. 若式子3112x x -+-有意义,则x 的取值范围是 ( ). A.21≥x B. 1≤x C.121≤≤x D. 以上答案都不对. 6. 下列说法中错误的是( ) A.3a 中的a 可以是正数、负数或零. B.a 中的a 不可能是负数.C. 数a 的平方根有两个.D.数a 的立方根有一个.7. 数轴上A ,B 两点表示实数a ,b ,则下列选择正确的是( )A.0>+b aB. 0ab >C.0a b ->D.||||0a b ->8. 估算219+的值在 ( )A. 5和6之间B.6和7之间C.7和8之间D.8和9之间二.填空题9. a ,则其小数部分用a 表示为 .10.当x 时,32-x 有意义. 11. =--32)125.0( .12. 若12-x 是225的算术平方根,则x 的立方根是 . 13. 3343的平方根是 .14.(2015春•罗山县期末)﹣64的立方根与的平方根之和是 .15. 1- ,-22 , 33 16. 数轴上离原点距离是5的点表示的数是 .三.解答题17. 一个正数x 的平方根是32-a 与a -5,则a 是多少?18.(2015春•桃园县校级期末)已知x ﹣2的平方根是±2,2x+y+7的立方根是3,求x 2+y2的平方根. 19. 已知:表示a 、b 两个实数的点在数轴上的位置如图所示,请你化简()2b a b a ++-20. 阅读题:阅读下面的文字,解答问题. 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知:10+3=y x +,其中x 是整数,且10<<y ,求y x -的相反数.【答案与解析】一.选择题1. 【答案】D ;【解析】数轴上任一点都表示唯一的实数.2. 【答案】C3. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b .4. 【答案】B ;【解析】==. 5. 【答案】A ;6. 【答案】C ;【解析】数a 不确定正负,负数没有平方根.7. 【答案】C ;8. 【答案】B ;【解析】45<<,627<<.二.填空题9. a ;10.【答案】为任意实数 ;【解析】任何实数都有立方根.11.【答案】25.0-;【解析】0.25==-.12.【答案】3;【解析】x -12=15, x =3=.13.【答案】7± ;【解析】 3343=7,7的平方根是7±. 14.【答案】﹣2或﹣6.【解析】∵﹣64的立方根是﹣4,=4,∵4的平方根是±2,∵﹣4+2=﹣2,﹣4+(﹣2)=﹣6,∴﹣64的立方根与的平方根之和是﹣2或﹣6.15.【答案】>;<;>;16.【答案】【解析】数轴上离原点距离是5的点有两个,分别在原点的左右两边.三.解答题17.【解析】解:∵一个正数x 的平方根是32-a 与a -5,∴32-a 与a -5互为相反数,即32-a +a -5=0,解得2a =-.18.【解析】解:∵x ﹣2的平方根是±2,2x+y+7的立方根是3,∴x ﹣2=22,2x+y+7=27,解得x=6,y=8,∴x 2+y 2=62+82=100,∴x 2+y 2的平方根是±10.19.【解析】解:∵b <a <0 ∴()2b a b a ++-()||2a b a b a b a b b=-++=--+=-20.【解析】解:∵11<10+3<12∴x =11,y =10+3-111∴()11112x y y x --=-=-=.。

初一数学全章复习 绝对值(基础)巩固练习

初一数学全章复习 绝对值(基础)巩固练习

绝对值(基础)【巩固练习】一、选择题1.(四川宜宾)|-5|的值是( ).A .51 B .5 C .-5 D .51- 2.下列判断中,正确的是( ).A. 如果两个数的绝对值相等,那么这两个数相等;B. 如果两个数相等,那么这两个数的绝对值相等;C.任何数的绝对值都是正数;D.如果一个数的绝对值是它本身,那么这个数是正数. 3.下列各式错误的是( ).A .115533+= B .|8.1|8.1-= C .2233-=- D .1122--=- 4.2010年12月某日我国部分城市的平均气温情况如下表(记温度零上为正,单位℃)城市 温州 上海 北京 哈尔滨 广州 平均气温6-9-1515则其中当天平均气温最低的城市是( ).A .广州B .哈尔滨C .北京D .上海 5.下列各式中正确的是( ). A .103<-B .1134->- C .-3.7<-5.2 D .0>-2 6.若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是( ).A .a >bB .|a |>|b |C .-a <-bD .-a <|b | 7.若|a | + a =0,则a 是( ).A . 正数B . 负数C .正数或0D .负数或0 二、填空题8.(湖南常德)2______.-=9. 若m ,n 互为相反数,则| m |________| n |;| m |=| n |,则m ,n 的关系是________. 10.已知| x |=2,| y |=5,且x >y ,则x =________,y =________. 11.满足3.5≤| x | <6的x 的整数值是___________. 12. 式子|2x -1|+2取最小值时,x 等于 . 13.数a 在数轴上的位置如图所示. 则|a -2|=__________.14. 若a a =,则a 0;若a a =-,则a 0;若1aa=-,则a 0;若a a ≥,则a ;若11a a -=-,则a 的取值范围是 .15.在数轴上,与-1表示的点距离为2的点对应的数是 . 三、解答题16.比较3a-2与2a+1的大小.1718.某工厂生产某种圆形零件,从中抽出5件进行检验,比规定直径长的毫米数记作正数,比规定直径短的毫米数记作负数,检查结果记录如下:根据你所学的知识说明什么样的零件的质量好,什么样的零件的质量差,这5件中质量最好的是哪一件?【答案与解析】一、选择题 1.【答案】B2.【答案】B【解析】A 错误,因为两个数的绝对值相等,这两个数可能互为相反数;B 正确;C 错误,因为0的绝对值是0,而0不是正数;D 错误,因为一个数的绝对值是它本身的数除了正数还有0.3.【答案】C【解析】因为一个数的绝对值是非负数,不可能是负数.所以C 是错误的. 4. 【答案】B【解析】因为-15<-9<0<6<15,所以当天平均气温最低的城市是哈尔滨. 5. 【答案】D【解析】0大于负数. 6.【答案】B【解析】离原点越远的数的绝对值越大. 7. 【答案】D【解析】若a 为正数,则不满足|a | + a =0;若a 为负数,则满足|a | + a =0;若a 为0,也满足|a | + a =0. 所以a ≤0,即a 为负数或0.二、填空题 8. 【答案】29. 【答案】=;m=±n【解析】若m ,n 互为相反数,则它们到原点的距离相等,即绝对值相等;但反过来, m ,n 绝对值相等,则它们相等或互为相反数. 10. 【答案】 ±2,-5【解析】| x |=2,则x=±2; | y |=5, y=±5.但由于x >y ,所以x=±2,y=-511. 【答案】±4, ±5【解析】画出数轴,从数轴上可以看出:在原点右侧,有4,5满足到原点的距离大于等于3.5,且小于6;在原点左侧有-4,-5满足到原点的距离大于等于3.5,且小于6.12. 【答案】1 2【解析】绝对值最小的数是0,所以当2x-1=0,即x=12时,|2x-1|取到最小值0,同时|2x-1|+2也取到最小值.13. 【答案】a-2【解析】由图可知:a≥2,所以|a-2|=a-2.14. 【答案】≥;≤;<;任意有理数;a≤115. 【答案】-3,1三、解答题16. 【解析】解:(3a-2)-(2a+1)=3a-2-2a-1=a-3当a>3时,3a-2>2a+1;当a=3时,3a-2=2a+1;当a<3时,3a-2<2a+1.17.【解析】解:根据:负数小于正数,两个负数相比较,绝对值大的反而小.所以从小到大的顺序为:-7.3%,-5.3%,-3.4%,-0.9%,2.8%,7.0%.18.【解析】解:零件的直径与规定直径的偏差可以用绝对值表示,绝对值小表示偏差小,绝对值大表示偏差大.哪个零件的直径偏差越小,哪个零件的质量越好,哪个零件的直径偏差越大,哪个零件的质量越差,所以这5件中质量最好的是第4件.。

《二次函数》全章复习与巩固—巩固练习(基础)

《二次函数》全章复习与巩固—巩固练习(基础)

《二次函数》全章复习与巩固—巩固练习(基础)【巩固练习】 一、选择题1.将二次函数2y x =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ).A .2(1)2y x =-+ B .2(1)2y x =++ C .2(1)2y x =-- D .2(1)2y x =+- 2.二次函数y=ax 2与一次函数y=ax+a 在同一坐标系中的大致图象为( )3.(2016•永州)抛物线y=x 2+2x +m ﹣1与x 轴有两个不同的交点,则m 的取值范围是( ) A .m <2 B .m >2 C .0<m ≤2 D .m <﹣24. 抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )A .22y x x =-- B .211122y x x =-++ C .211122y x x =--+ D .22y x x =-++5.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①240b ac ->;②abc>0;③8a+c >0;④9a+3b+c <0.其中,正确结论的个数是( ). A .1 B .2 C .3 D .4第4题 第5题6.已知点(1x ,1y ),(2x ,2y )(两点不重合)均在抛物线21y x =-上,则下列说法正确的是( ). A .若12y y =,则12x x = B .若12x x =-,则12y y =- C .若120x x <<,则12y y > D .若120x x <<,则12y y >7.二次函数y=ax 2+bx+c 与一次函数y=ax+c ,它们在同一直角坐标系中的图象大致是( )8.(2015•黔东南州)如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c >0,③a >b ,④4ac ﹣b 2<0;其中正确的结论有( )A .1个B . 2个C . 3个D .4个二、填空题9.已知抛物线2(0)y ax bx c a =++>的对称轴为直线1x =,且经过点1(1,)y -,2(2,)y ,试比较1y 和2y 的大小:1y ________2y (填“>”,“<”或“=”).10.如图,已知抛物线y=﹣x 2+bx+c 的对称轴为直线x=1,且与x 轴的一个交点为(3,0),那么它对应的函数解析式是 .11.抛物线22(2)6y x =--的顶点为C ,已知y =-kx+3的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为________.12.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为___ _____.13.如图所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是________.14.烟花厂为扬州“4·18”烟花三月经贸旅游节特别设计制作了一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为________.15.已知抛物线2y ax bx c =++经过点A(-1,4),B(5,4),C(3,-6),则该抛物线上纵坐标为-6的另一个点的坐标是________.16.若二次函数26y x x c =-+的图象过A(-1,y 1)、B(2,y 2)、C(32+,y 3)三点,则y 1、y 2、y 3大小关系是 .三、解答题17.(2016•河南)某班“数学兴趣小组”对函数y=x 2﹣2|x |的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下: x … ﹣3 ﹣ ﹣2 ﹣1 0 1 2 3 … y…3m﹣1﹣13…其中,m= .(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质. (4)进一步探究函数图象发现:①函数图象与x 轴有 个交点,所以对应的方程x 2﹣2|x |=0有 个实数根;②方程x 2﹣2|x |=2有 个实数根;③关于x 的方程x 2﹣2|x |=a 有4个实数根时,a 的取值范围是 .18. 如图所示,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上、下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上、下底之间有两条纵向甬道,各甬道的宽度相等,设甬道的宽为x 米.(1)用含x 的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?19.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x 个,如果全部在甲商家购买,则所需金额为y 1元;如果全部在乙商家购买,则所需金额为y 2元. (1)分别求出y 1、y 2与x 之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?20.(2015•温州模拟)已知:如图,抛物线y=﹣x 2+bx+c 与x 轴交于点A (﹣1,0),B (3,0),与y 轴交于点C .过点C 作CD ∥x 轴,交抛物线的对称轴于点D . (1)求该抛物线的解析式;(2)若将该抛物线向下平移m 个单位,使其顶点落在D 点,求m 的值.【答案与解析】 一、选择题 1.【答案】A ;【解析】2y x =向右平移1个单位后,顶点为(1,0),再向上平移2个单位后,顶点为(1,2),开口方向及大小不变,所以1a =,即2(1)2y x =-=.2.【答案】C ;【解析】①当a >0时,二次函数y=ax 2的开口向上,一次函数y=ax+a 的图象经过第一、二、三象限,排除A 、B ;②当a <0时,二次函数y=ax 2的开口向下,一次函数y=ax+a 的图象经过第二、三、四象限,排除D . 故选C .3.【答案】A.【解析】∵抛物线y=x 2+2x +m ﹣1与x 轴有两个交点,∴△=b 2﹣4ac >0, 即4﹣4m +4>0, 解得m <2, 故选A .4.【答案】D ;【解析】由图象知,抛物线与x 轴两交点是(-1,0),(2,0),又开口方向向下,所以0a <,抛物线与y 轴交点纵坐标大于1.显然A 、B 、C 不合题意,故选D . 5.【答案】D ;【解析】抛物线与x 轴交于两点,则0b <. 由图象可知a >0,c <0, 则b <0,故abc >0.当x =-2时,y =4a-2b+c >0. ∵ 12bx a=-=,∴ b =-2a , ∴ 4a-(-2a)×2+c >0,即8a+c >0.当x =3时,y =9a+3b+c <0,故4个结论都正确. 6.【答案】D ;【解析】画出21y x =-的图象,对称轴为0x =,若12y y =,则12x x =-;若12x x =-,则12y y =;若120x x <<,则21y y >;若120x x <<,则12y y >.7.【答案】A ; 8.【答案】C ;【解析】∵二次函数y=ax 2+bx+c 图象经过原点,∴c=0,∴abc=0 ,∴①正确;∵x=1时,y <0,∴a+b+c<0,∴②不正确; ∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣,b <0,∴b=3a,又∵a<0,b <0,∴a>b ,∴③正确;∵二次函数y=ax 2+bx+c 图象与x 轴有两个交点,∴△>0,∴b 2﹣4ac >0,4ac ﹣b 2<0,∴④正确; 综上,可得正确结论有3个:①③④.故选:C .二、填空题 9.【答案】>;【解析】根据题意画出抛物线大致图象,找出x =-1,x =2时的函数值,比较其大小,易如12y y >. 10.【答案】y=﹣x 2+2x+3;【解析】∵抛物线y=﹣x 2+bx+c 的对称轴为直线x=1,∴=1,解得b=2,∵与x 轴的一个交点为(3,0), ∴0=﹣9+6+c , 解得c=3,故函数解析式为y=﹣x 2+2x+3.11.【答案】1; 【解析】92k =,932y x =-+,与坐标轴交点为(0,3),2,03⎛⎫⎪⎝⎭. 12.【答案】 x 1=3或x 2=-1 ;【解析】由二次函数22y x x m =-++部分图象知,与x 轴的一个交点为(3,0).代入方程得m =3,解方程得x 1=3或x 2=-1.13.【答案】-1;【解析】因为抛物线过原点,所以210a -=,即1a =±,又抛物线开口向下,所以a =-1. 14.【答案】4s ; 【解析】204(s)522t =-=⎛⎫⨯- ⎪⎝⎭.15.【答案】(1,-6);【解析】常规解法是先求出关系式,然后再求点的坐标,但此方法繁琐耗时易出错,仔细分析就会注意到:A 、B 两点纵坐标相同,它们关于抛物线对称轴对称,由A(-1,4),B(5,4)得,对称轴1522x -+==,而抛物线上纵坐标为-6的一点是(3,-6),所以它关于x =2的对称点是(1,-6).故抛物线上纵坐标为-6的另一点的坐标是(1,-6).16.【答案】y 1>y 3>y 2. 【解析】因为抛物线的对称轴为6323x -==⨯.而A 、B 在对称轴左侧,且y 随x 的增大而减小,∵ -1<2,∴ y 1>y 2,又C 在对称轴右侧,且A 、B 、C 三点到对称轴的距离分别 为2,1,2,由对称性可知:y 1>y 3>y 2.三、解答题17.【答案与解析】解:(1)把x=﹣2代入y=x 2﹣2|x |得y=0, 即m=0,故答案为:0; (2)如图所示;(3)由函数图象知:①函数y=x 2﹣2|x |的图象关于y 轴对称;②当x >1时,y 随x 的增大而增大;(4)①由函数图象知:函数图象与x 轴有3个交点,所以对应的方程x 2﹣2|x |=0有3个实数根;②如图,∵y=x 2﹣2|x |的图象与直线y=2有两个交点,∴x 2﹣2|x |=2有2个实数根;③由函数图象知:∵关于x 的方程x 2﹣2|x |=a 有4个实数根, ∴a 的取值范围是﹣1<a <0, 故答案为:3,3,2,﹣1<a <0.18.【答案与解析】 (1)横向甬道的面积为1201801502x +=(m 2). (2)依题意:2112018028015028082x x x +⨯+-=⨯⨯,整理得21557500x x -+=,解得x 1=5,x 2=150(不合题意,舍去).∴ 甬道的宽为5米.(3)设建花坛的总费用为y 万元,则21201800.0280(1601502) 5.72y x x x x +⎡⎤=⨯⨯-+-+⎢⎥⎣⎦. ∴ y =0.04x 2-0.5x+240. 当0.56.25220.04b x a =-==⨯时,y 的值最小. ∵ 根据设计的要求,甬道的宽不能超过6 m .∴ 当x =6m 时,总费用最少,为0.04×62-0.5×6+240=238.44(万元).19.【答案与解析】(1)由题意可知,当x ≥100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以5000350010025010x -≤+=,即100≤x ≤250时,购买一个需5000-10(x-100)元.故y 1=6000x-10x 2;当x >250时,购买一个需3500元. 故y 1=3500x .所以215000(0100),600010(100250),3500(250),x x y x xx x x ≤≤⎧⎪=-<≤⎨⎪>⎩y 2=5000×80%x =4000x .(2)当0<x ≤100时,y 1=5000x ≤500000<1400000;当100<x ≤250时,y 1=6000x-10x 2=-10(x-300)2+900000<1400000; 所以,由3500x =1400000,得x =400. 由4000x =1400000,得x =350.故选择甲商家,最多能购买400个路灯.20.【答案与解析】(1)设y =kx ,把(2,4)代入,得k =2,所以y =2x ,自变量x 的取值范围是:0≤x ≤30.(2)当0≤x <5时,设y =a(x-5)2+25, 把(0,0)代入,得25a+25=0,a =-1, 所以22(5)2510y x x x =--+=-+. 当5≤x ≤15时,y =25.即210(05),25(515).x x x y x ⎧-+≤<=⎨≤≤⎩(3)设王亮用于回顾反思的时间为x(0≤x <5)分钟,学习收益总量为Z ,则他用于解题的时间为(30-x)分钟.当0≤x <5时,222102(30)860(4)76Z x x x x x x =-++-=-++=--+. 所以当x =4时,76Z =最大.当5≤x ≤15时,Z =25+2(30-x)=-2x+85. 因为Z 随x 的增大而减小, 所以当x =5时,75Z =最大.综合所述,当x =4时,76Z =最大,此时30-x =26.即王亮用于解题的时间为26分钟,用于回顾反思的时间为4分钟时.学习收益总量最大.。

数学知识点苏科版初中数学八年级下册全册教案及各章练习题(1)-总结

数学知识点苏科版初中数学八年级下册全册教案及各章练习题(1)-总结

初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学阜宁县陈集中学八年级期末复习(1)第七章第七章 一元一次不等式一元一次不等式复习目标与要求:复习目标与要求:(1)了解不等式的意义,掌握不等式的基本性质。

(2)会解一元一次不等式(组),能正确用轴表示解集。

(3)能够根据具体问题中的数量关系,用一元一次不等式(组),解决简单的问题。

知识梳理:知识梳理:(1)不等式及基本性质;)不等式及基本性质;(2)一元一次不等式(组)及解法与应用;(3)一元一次不等式与一元一次方程与一次函数。

基础知识练习:基础知识练习:1、用适当的符号表示下列关系:(1)X 的2/3与5的差小于1; (2)X 与6的和不大于9 (3)8与Y 的2倍的和是负数倍的和是负数 2. 已知a <b,b,用“<”或“>”号填空:用“<”或“>”号填空:用“<”或“>”号填空:①a-3 b-3 ②6a 6b ③-a -b ④a-b 0 3. 当0<<a x 时,2x 与ax 的大小关系是的大小关系是 4. 如果121<<x ,则()()112--x x _______05. 63->x 的解集是的解集是___________,___________,x 41-≤-8的解集是的解集是_________________________________。

6. 函数xx y 21-=中自变量x 的取值范围是(的取值范围是() A 、x ≤21且x ≠0 B 、x 21->且x ≠0 C 、x ≠0 D 、x 21<且x ≠07. 三个连续自然数的和小于1515,这样的自然数组共有(,这样的自然数组共有(,这样的自然数组共有() A 、6组 B 、5组 C 、4组 D 、3组 8. 当x 取下列数值时,能使不等式01<+x ,02>+x 都成立的是(都成立的是( ) A 、-2.5 B 、-1.5 C 、0 D 、1.51.5 典型例题分析:典型例题分析:例1. 解下列不等式(组),并将结果在数轴上表示出来:(1) 634123+£-+x x (2). ïïîïíì-<--+£--).3(3)3(232,521123x x x x x例2. 已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围。

人教版七年级数学下册《不等式与不等式组复习课》教学设计

人教版七年级数学下册《不等式与不等式组复习课》教学设计

《不等式与不等式组复习课》教学设计一、设计思想:“不等式”是初中数学核心内容之一。

就不等式的解法来说,它是一种重要的数学技能;而就不等式的广泛作用来说,不管是与实际相关的问题,还是纯粹的数学问题,不管是代数方面的问题,还是几何图形方面的问题,乃至更为一般化的问题,只要是求未知数的值或范围的问题,经常要借助于不等式,可见学好不等式具有非常重要的意义。

这节课是全章复习课。

由于学生刚刚学完本章内容,因此在本节复习中主要以题带知识点的形式进行复习。

教师主要在习题的设计上选好典型例题,复习的知识尽量全面。

教学效果上使不同的学生有不同的收获。

二、教学内容分析:1、《数学课程标准》对本章教学内容的要求:①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。

②会解简单的一元一次不等式,并能在数轴上表示出解集。

会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。

③能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。

2、本节内容在教材的地位和作用。

本部分内容在教材中承接4-6学段的不等关系,又为后续方程、函数三角函数、几何等内容的学习起着铺垫作用,中中考中也是综合考查,因此学好本章内容对于解决这些综合问题起着举足轻重的作用。

三、教学目标:1、知识技能:①掌握不等式的概念和性质,能根据不等式的性质解决有关问题;②掌握不等式(组)的解法,会求不等式(组)的解集;③能根据不等式组的解集确定字母系数的范围;2、过程方法:通过列不等式或不等式组解决具有不等关系的实际问题,让学生体会不等式是解决实际问题的有效的数学模型。

3、情感态度:①通过复习教学,继续强化用数学的意识,从而使学生乐于接触能够在数学活动中发挥积极作用。

②通过探索,增进学生之间的配合,使学生敢于面对数学活动中的困难,并有克服困难和运用知识解决问题的成功体验,树立学好数学的自信心。

教学重点:不等式(组)的解法的规范性及实际应用。

北京四中八年级下册数学一元一次不等式与不等式组全章复习与巩固(提高)巩固练习

北京四中八年级下册数学一元一次不等式与不等式组全章复习与巩固(提高)巩固练习

《一元一次不等式与不等式组》全章复习与巩固(提高)巩固练习【巩固练习】一、选择题1.不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( ). A 、2-<x B 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥1 2.某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( ).A .80元B .100元C .120元D .160元3.已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为( ).A .x <-1B .x > -1C . x >1D .x <14.若不等式组12x x k <≤⎧⎨>⎩有解,则k 的取值范围是( ). A.2k < B. 2k ≥ C.1k < D. 12k ≤<5.如果不等式ax+4<0的解集在数轴上表示如图,那么a 的值是( ) .A .a >0B .a <0C .a=-2D .a=26. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与两个球体质量相等的正方体的个数为( ) .A .5B .4C .3D .27.如果一次函数当自变量的取值范围是时,函数值的取值范围是,那么此函数的解析式是( ) .A .B .C .或D .或8.已知,a b 为非零有理数,下面四个不等式组中,解集有可能为22x -<<的不等式组是( ).A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩二、填空题9.某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费0.2元,以后每分钟收费0.1元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为0.5元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费0.4元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为 .10.已知方程组⎩⎨⎧=+=-7325ay x y ax 的解满足⎩⎨⎧<>00y x ,则a 的取值范围 .11. 若不等式组⎩⎨⎧->+<121m x m x 无解,则m 的取值范围是. 12. 如图,直线y kx b =+经过A (2,1),B (-1,-2)两点,则不等式122x kx b >+>-的解集为__________.13.已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围 .14.如果关于x 的不等式组9080x a x b -≥⎧⎨-<⎩的正整数解仅为1,2,3,则a 的取值范围是 ,b 的取值范围是 .15. 为确保信息安全,信息需加密传输,发送方将明加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a ,b 对应的密文为a-2b ,2a+b .例如,明文1,2对应的密文是-3,4,当接收方收到密文是1,7时,解密得到的明文是 .16.若不等式组:114111.5(1)()0.5(21)22x x a x a x x +⎧+>⎪⎪⎨⎪-+>-+-⎪⎩①②只有一个整数解,则a 的取值范围 . 三、解答题17.已知x 满足⎪⎩⎪⎨⎧3)12(24213120)93(33)62(18)3(35-<--->---+-x x x x x x ,化简|x -3|+|2x -1| . 18. 若关于x 的不等式组⎩⎨⎧≥-<-nm x m x 2342的解集是32<≤-x ,求2)(n m +的值. 19.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?20. 某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药2h 后血液中的含药量最高,达每升6mg ,接着逐步衰减,10h 后血液中的含药量为每升3mg ,每升血液中的含药量y mg 随时间x h 的变化情况如图所示.当成人按规定剂量服药后:(1)分别求出x ≤2和x ≥2时,y 与x 之间的函数关系式;(2)如果每升血液中的含药量为4mg 或4mg 以上时,治疗疾病是有效的,那么这个有效时间是多长?【答案与解析】一.选择题1. 【答案】C ;【解析】解第一个不等式得2x >-,解第二个不等式得1x ≤,所以不等式组的解集为21x -<≤.2. 【答案】C ;【解析】解:设降价x 元时商店老板才能出售.则可得: 360-x ≥3601.8×(1+20%), 解得:x ≤120.3. 【答案】A ;【解析】一次函数y ax b =+的图象过第一、二、四象限,所以a <0,将(2, 0)代入y ax b =+,得20a b +=,所以()()1210a x b ax a a a x --=-+=+>,所以10,1x x +<<-.4. 【答案】A ;【解析】画数轴进行分析.5. 【答案】C ;【解析】由已知a <0且x >-a 4,则-24=a,即2a =-. 6. 【答案】A ;【解析】设一个球体、圆柱体与正方体的质量分别为x 、y 、z , 根据已知条件,有2522x y z y =⎧⎨=⎩①② ①×2-②×5,得2x =5y ,即与2个球体质量相等的正方体的个数为5.7.【答案】C ;【解析】分k >0和k <0两种情况讨论.8. 【答案】D ;【解析】由选项及解集可得a b 、一正一负,不防设a 正b 负代入选项验证.二.填空题9. 【答案】0.7元;【解析】可以先打两次3分钟,再打一次4分钟.10.【答案】710a 157<-<; 【解析】方程组⎩⎨⎧=+=-7325ay x y ax 得:⎪⎪⎩⎪⎪⎨⎧+-=++=223210732715a a y a a x 所以⎪⎪⎩⎪⎪⎨⎧<+->++03210703271522a a a a , ∴⎩⎨⎧<->+01070715a a 解得:-710157<<a . 11. 【答案】2≥m ;【解析】要使原不等式无解,则需满足211m m -≥+,得m ≥2.12. 【答案】-1<x <2;【解析】由于直线y kx b =+经过A (2,1),B (-1,-2)两点,那么把A 、B 两点的坐标代入y kx b =+,用待定系数法求出k 、b 的值,然后解不等式组122x kx b >+>-,即可求出解集.13.【答案】 k ≥-3;【解析】3k-5x=-9,x=935k +,930,5k +≥ 解得k ≥-3. 14. 【答案】09a <≤,2432b <≤;15.【答案】3,1;【解析】由于本密码的解密钥匙是: 明文a ,b 对应的密文为a-2b ,2a+b .故当密文是1,7时,得2127a b a b -=⎧⎨+=⎩, 解得31a b =⎧⎨=⎩.也就是说,密文1,7分别对应明文3,1.16.【答案】1<a ≤2.【解析】先把a 看成一个固定数,解关于x 的不等式组,再由不等式组的解集研究a 的取值范围.三.解答题17.【解析】 解:原不等式组可化为:⎪⎩⎪⎨⎧0)12(32)12(41)12(310)3(99)3(36)3(35<---+->---+-x x x x x x , 即⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛0)12(3241310)3)(993635(<--+>--+x x ,∵35+36-99<0,0324131<-+ , ∴⎩⎨⎧01203>-<-x x ,于是,|x -3|+|2x -1|=(3-x)+(2x -1)=x +2.18.【解析】解: 原不等式组可化为:⎩⎨⎧+≥+<n m x m x 2342,∴ ⎪⎪⎩⎪⎪⎨⎧+≥+<3224n m x m x ,根据条件可得: 2432+<≤+m x n m 且⎪⎪⎩⎪⎪⎨⎧-=+=+232324n m m , 解得⎩⎨⎧-==102n m , 当10,2-==n m 时, 2)(n m +=64)102(2=-.19.【解析】解:(1)设新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元,根据题意,得0.632 1.3x y x y +=⎧⎨+=⎩,20. 【解析】解:(1)由图知,x ≤2时是正比例函数,x ≥2时是一次函数.设x ≤2时,y kx =,把(2,6)代入y kx =,解得k =3,∴ 当0≤x ≤2时,3y x =.设x ≥2时,y k x b '=+,把(2,6),(10,3)代入y k x b '=+中,得26103k b k b '+=⎧⎨'+=⎩,解得38274k b ⎧'=-⎪⎪⎨⎪=⎪⎩,即32784y x =-+. 当y =0时,有327084x =-+,18x =. ∴ 当2≤x ≤18时,32784y x =-+. (2)由于y ≥4时在治疗疾病是有效的, ∴ 34327484x x ≥⎧⎪⎨-+≥⎪⎩,解得42233x ≤≤. 即服药后43h 得到223h 为治病的有效时间, 这段时间为224186()333h -==.。

《一元二次方程》全章复习与巩固—巩固练习(提高)

《一元二次方程》全章复习与巩固—巩固练习(提高)

《一元二次方程》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1. 关于x 的一元二次方程(a -1)x 2+x +|a|-1=0的一个根是0,则实数a 的值为( )A.-1B.0C.1D.-1或12.已知a 是方程x 2+x ﹣1=0的一个根,则22211a a a---的值为( ) A.152-+ B.152-± C.﹣1 D.1 3.(2015•德州)若一元二次方程x 2+2x+a=0的有实数解,则a 的取值范围是( )A .a <1B . a≤4C . a≤1D . a≥14.已知关于x 的方程2(2)230m x mx m -+++=有实根,则m 的取值范围是( )A .2m ≠B .6m ≤且2m ≠C .6m <D .6m ≤5.如果是α、β是方程2234x x +=的两个根,则22αβ+的值为( ) A .1 B .17 C .6.25 D .0.256.(2016•台州)有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A .x (x ﹣1)=45B .x (x +1)=45C .x (x ﹣1)=45D .x (x +1)=457. 方程x 2+ax+1=0和x 2-x-a=0有一个公共根,则a 的值是( )A .0B .1C .2D .38. 若关于x 的一元二次方程的两个实数根分别是,且满足. 则k 的值为( )A.-1或B.-1C.D.不存在二、填空题9.关于x 的方程2()0a x m b ++=的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程2(2)0a x m b +++=的解是 .10.已知关于x 的方程x 2+2(a+1)x+(3a 2+4ab+4b 2+2)=0有实根,则a 、b 的值分别为 .11.已知α、β是一元二次方程2430x x --=的两实数根,则(α-3)(β-3)=________.12.当m=_________时,关于x 的方程是一元二次方程;当m=_________时,此方程是一元一次方程.13.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是____________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________.14.(2015•绥化)若关于x 的一元二次方程ax 2+2x ﹣1=0无解,则a 的取值范围是 .15.已知,那么代数式的值为________.16.当x=_________时,既是最简二次根式,被开方数又相同.三、解答题17. (2016•南充)已知关于x 的一元二次方程x 2﹣6x +(2m +1)=0有实数根.(1)求m 的取值范围;(2)如果方程的两个实数根为x 1,x 2,且2x 1x 2+x 1+x 2≥20,求m 的取值范围.18.设(a ,b)是一次函数y =(k-2)x+m 与反比例函数n y x =的图象的交点,且a 、b 是关于x 的一元二次方程22(3)(3)0kx k x k +-+-=的两个不相等的实数根,其中k 为非负整数,m 、n 为常数.(1)求k 的值;(2)求一次函数与反比例函数的解析式.19. 长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择: ①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?20.已知某项工程由甲、乙两队合做12天可以完成,共需工程费用13 800元,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天,且甲队每天的工程费用比乙队多150元.(1)甲、乙两队单独完成这项工程分别需要多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应该选择哪个工程队?请说明理由.【答案与解析】一、选择题1.【答案】A ;【解析】先把x =0代入方程求出a 的值,然后根据二次项系数不能为0,把a =1舍去.2.【答案】D ; 【解析】先化简22211a a a---,由a 是方程x 2+x ﹣1=0的一个根,得a 2+a ﹣1=0,则a 2+a=1, 再整体代入即可.解:原式=2(1)(1)(1)a a a a a -++-=1(1)a a +, ∵a 是方程x 2+x ﹣1=0的一个根,∴a 2+a ﹣1=0,即a 2+a=1,∴原式=1(1)a a +=1. 故选D .3.【答案】C ;【解析】∵ 关于x 的一元二次方程有实根,∴ △=b 2﹣4ac=4﹣4a≥0,解之得a≤1.故选C .4.【答案】D ;【解析】△≥0得6m ≤,方程有实根可能是一元二次方程有实根,也可能是一元一次方程有实根.5.【答案】C ;【解析】22+=+-=6.25αβαβαβ2()2.6.【答案】A .【解析】∵有x 支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x (x ﹣1),∴共比赛了45场,∴x (x ﹣1)=45,故选A .7.【答案】C ;【解析】提示:先求公共根m=-1,再把这个公共根m=-1代入原来任意一个方程可求出a=2.8.【答案】C ;【解析】由题意,得: 22121211=1k k k k k x x x x k ⎧⎪⎧⎪=-=-⎨⎨+=⎩⎪=-⎪⎩4≤≥0435 当时,不符合≤,舍去,故354或4. 二、填空题9.【答案】x 1=﹣4,x 2=﹣1.【解析】解:∵关于x 的方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,(a ,m ,b 均为常数,a ≠0),∴则方程a (x+m +2)2+b =0的解是x 1=﹣2﹣2=﹣4,x 2=1﹣2=﹣1.故答案为:x 1=﹣4,x 2=﹣1.10.【答案】a =1,12b =-. 【解析】 判别式△=[2(a+1)]2-4(3a 2+4ab+4b 2+2)=4(a 2+2a+1)-(12a 2+16ab+16b 2+8)=-8a 2-16ab-16b 2+8a-4=-4(2a 2+4ab+4b 2-2a+1)=-4[(a 2+4ab+4b 2)+(a 2-2a+1)].=-4[(a+2b)2+(a-1)2].因为原方程有实根,所以-4[(a+2b)2+(a-1)2]≥0,(a+2b)2+(a-1)2≤0,又∵ (a+2b)2≥0,(a-1)2≥0,∴ a-1=0且a+2b =0,∴ a =1,12b =-. 11.【答案】-6;【解析】∵ α、β是一元二次方程2430x x --=的两实数根,∴ α+β=4,αβ=-3.∴ (3)(3)3()933496αβαβαβ--=-++=--⨯+=-.12.【答案】-3;. 13.【答案】;2或6.【解析】即2(-)232a a =-.a=2或6.14.【答案】a <﹣1;15.【答案】-2;【解析】原方程化为:. 16.【答案】-5;【解析】由x 2+3x=x+15解出x=-5或x=3,当x=3时,不是最简二次根式,x=3舍去.故x=-5.三、解答题17.【答案与解析】解:(1)根据题意得△=(﹣6)2﹣4(2m +1)≥0,解得m ≤4;(2)根据题意得x 1+x 2=6,x 1x 2=2m +1,而2x 1x 2+x 1+x 2≥20,所以2(2m +1)+6≥20,解得m ≥3,而m ≤4,所以m 的范围为3≤m ≤4.18. 【答案与解析】(1)因为关于x 的方程22(3)(3)0kx k x k +-+-=有两个不相等的实数根,所以220,44(3)4(3)0,k b ac k k k ≠⎧⎨=-=--->⎩△ 解得k <3且k ≠0, 又因为一次函数y =(k-2)x+m 存在,且k 为非负整数,所以k =1.(2)因为k =1,所以原方程可变形为2420x x --=,于是由根与系数的关系知a+b =4,ab =-2, 又当k =1时,一次函数y x m =-+过点(a ,b),所以a+b =m ,于是m =4,同理可得n =-2, 故所求的一次函数与反比例函数的解析式分别为4y x =-+与2y x =-. 19. 【答案与解析】(1)设平均每次下调的百分率是x .依题意得5000(1-x)2=4050.解得x 1=10%,x 2=1910(不合题意,舍去). 答:平均每次下调的百分率为10%.(2)方案①优惠:4050×100×(1-0.98)=8100(元);方案②优惠:1.5×100×12×2=3600(元)∵ 8100>3600.∴ 选方案①更优惠.20. 【答案与解析】(1) 设甲队单独完成需x 天,则乙队单独完成需要(2x -10)天.根据题意,有11121012x x +=-, 解得x 1=3,x 2=20. 经检验均是原方程的根,x 1=3不符题意舍去.故x=20.∴乙队单独完成需要 2x -10=30(天).答:甲、乙两队单独完成这项工程分别需要20天、30天.(2) 设甲队每天的费用为y 元,则由题意有12y+12(y -150)=138 000,解得y=650 .∴ 选甲队时需工程费用650×20=13 000,选乙队时需工程费用500×30=15 000.∵ 13 000 <15 000,∴ 从节约资金的角度考虑,应该选择甲工程队.。

《物态变化》全章复习与巩固(基础) 巩固练习

《物态变化》全章复习与巩固(基础) 巩固练习

【巩固练习】一、选择1.(2012 娄底)如图所示的各种自然现象的形成过程,属于凝华的是()2.如图所示,表示晶体凝固过程的图象是 ( )3.已知萘的熔点是80.5℃,则温度为80.5℃的萘所处的状态是( )A.固态 B.液态 C.固液混合态 D.以上三种情况都有可能4.下列现象中属于升华的是( )A.冬天,戴眼镜的人从外面进入房间内,镜片上出现小水珠B.脸盆里的水,放一段时间变少了C.冰棍儿周围冒“白气”D.冬天,晾在室外的冰冻衣服慢慢变干5.(2012 恩施州)如图所示是某物质的熔化图象。

下列关于此图象信息的解读错误的是()A.这是一种晶体物质 B.CD段时物质处于气态C.物质的初温是40℃ D.加热5分钟时物质的温度是48℃6. 生活中的很多现象可以用学过的物理知识加以解释。

下列解释错误的是()A.天气很冷时,窗玻璃上会出现冰花,这是一种凝固现象B.“下雪不冷化雪冷”,这是因为雪在熔化时吸热C.游泳后,刚从水中出来,感觉比较冷,这是因为人身上水分蒸发带走热量D.取出在冰箱中被冷冻的冰糕,放一会儿,发现包装外层出现小水珠,这是一种液化现象7.(多选)关于蒸发和沸腾,下面说法中错误的是( )A.蒸发可以在任何温度下进行,沸腾只能在一定温度下进行B.沸腾需要吸热,蒸发不需要吸热C.蒸发是缓慢的汽化现象,沸腾是剧烈的汽化现象D.蒸发是发生在液体表面的汽化现象,沸腾是在液体内部发生的汽化现象8.如图是在俄罗斯首都莫斯科举行的冰雕大奖赛中展示的一件冰雕作品,当地气温持续在0℃以下,但冰雕作品会一天天变小,这是由于冰雕作品发生了什么物态变化()A.汽化 B.液化 C.升华 D.凝华9.以下温度最接近25℃的是()A.冰水混合物的温度 B.人的正常体温C.人感到舒适的房间温度 D.1标准大气压下沸水的温度10.用质地密实的薄纸做成一个纸锅,在纸锅中盛有适量的水,放在火上加热,过一会儿水沸腾了,而纸锅却不会燃烧,这主要是因为()A.纸的散热性能很好 B.纸的着火点低于火焰的温度C.纸的着火点低于水的沸点 D.水的沸点不变且低于纸的着火点二、填空11.夏天天气很热,很多人家都装有空调。

北师大版八年级下册数学《不等式的解集》一元一次不等式和一元一次不等式组说课研讨教学复习课件

北师大版八年级下册数学《不等式的解集》一元一次不等式和一元一次不等式组说课研讨教学复习课件
解:设至多可买X支笔,则有:
3×4 + 2X ≤ 30
表示不等式的解集 你能用什么办法把不等式 x>5的解集和 不等式x-5≤-1的解集表示在数轴上?
x>5
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
x≤4
将不等式的解集表示在数轴上时,要注意:
1)指示线的方向,“>”向右,“<”向左. 2)有“=”用实心点,没有“=”用空心圈.
A.1个
B.2个
C.3个
D.4个
探究新知
知识点 2 在数轴上表示不等式的解集
思考:如何在数轴上表示出不等式x>2的解集呢? 先在数轴上标出表示2的点A; 则点A右边所有的点表示的数都大于2,而点A左边 所有的点表示的数都小于2;
因此可以像图那样表示不等式的解集x>2.
A -1 0 1 2 3 4 5 6
课堂检测
能力提升题
2、根据不等式的基本性质确定不等式2-x<1的解集,并把解集表
示在数轴上. 解:根据不等式的基本性质1,不等式的两边同时减去2得-x<-1; 根据不等式的基本性质3,不等式的两边同时除以-1得x>1. 这个不等式的解集在数轴上表示为:
课堂检测
拓广探索题
1、不等式2x-3≥-1的解集在数轴上表示为( A )
-3 -2 -1 0 1 2 3 4 5 6 7 8
根据不等式的基本性质求不等式的解集,
并把解集表示在数轴上.
(1)x-2≥ -4
(2)2x ≤ 8
解:两边同时加2得:
解:两边同时除以2得:
x ≥ -2
x ≤4
-3 -2 -1 0 1 2
(3)-2x-2 > -10

《不等式与一次不等式组》全章复习与巩固(基础)巩固练习

《不等式与一次不等式组》全章复习与巩固(基础)巩固练习
【解析】解得原不等式的解集为 0≤x<3,其中正整数有 1、2,共 2 个. 6. 【答案】B;
【解析】是一元一次不等式的是①和⑤. 7.【答案】B;
【解析】解不等式得
,则正整数解为 1,2.
8.【答案】C;
【解析】
,解得 n=0、1、2,共3组 .
二.填空题
9. 【答案】 ;
【解析】-3x+5 4,解得 x 1 . 3
A. a>0
B. a<0
C. a>-1
D. a<-1
).
5.
不等式组
−2x 3 − x
0 0
的正整数解的个数是(
).
A.1 个 B.2 个 C.3 个
D.4 个
6. 以下各式中,一元一次不等式个数为( ).
① a − 3 2 ;② − x − 1 3 ;③ x − y 0 ;④ x 2 + 3x 1;⑤ x − 1 x + 1
14. 【答案】

【解析】解方程得
,则

15. 【答案】m<2; 【解析】由不等式的基本性质 3 得,m-2<0.
16. 【答案】
(或:
等)
【解析】答案不唯一 三.解答题 17.【解析】
解:设小军答对 x 道题,依题意得:3x-(20 -x) 50 , 解得: x 17 1 . 2
∵x 为正整数,∴x 的最小正整数为 18. 答:小军至少要答对 18 道题.
10. 【答案】1、2;
【解析】由图可得 x 3 ,所以正整数有 1、2.
11. 【答案】-1,0;
【解析】不等式组的解集为 −1 x 1,整数解为-1,0. 12. 【答案】 a 4 ;

《不等式与一次不等式组》全章复习与巩固(基础)知识讲解

《不等式与一次不等式组》全章复习与巩固(基础)知识讲解

《不等式与一次不等式组》全章复习与巩固(基础)知识讲解撰稿:景艳责编:炜【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0 (a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式1.用适当的符号语言表达下列关系.(1)a与5的和是正数.(2)b与-5的差不是正数.(3)x的2倍大于x.(4)2x与1的和小于零.(5)a的2倍与4的差不少于5.【答案与解析】解:(1)a+5>0;(2)b-(-5)≤0;(3)2x>x;(4)2x+1<0;(5)2a-4≥5. 【总结升华】正确运用不等符号翻译表述一些数学描述是学好不等式的关键,要关注一些常见的描述语言,如此处:不是、不少于、不大于……举一反三:【变式】用适当的符号语言表达下列关系:(1)y的12与3的差是负数.(2)x的12与3的差大于2.(3)b的12与c的和不大于9.【答案】(1)1302y-<;(2)1322x->;(3)192b c+≤.2.用适当的符号填空:(1)如果a<b,那么a-3__b-3;7a__7b;-2a__-2b.(2)如果a<b,那么a-b__0;a+5b__6b;11__22a b b -.【思路点拨】不等式的基本性质1,2,3.【答案】(1)<;<;>.(2)<;<;<.【解析】(1)在不等式a<b两边同减去3,得a-3<b-3;在不等式a <b 两边同乘以7,得7a <7b ; 在不等式a <b 两边同乘以﹣2,得-2a >-2b . (2)在不等式a <b 两边同减去b ,合并得a -b <0;在a <b 两边同加上5b ,合并得a +5b <6b ; 在a <b 两边同减去12b ,合并得1122a b -<. 【总结升华】刚开始在面对不等式的基本变形时,要不断强化在变形上所运用的具体性质,同时也要逐步积累一些运用性质变形后的化简结果,这样学习到的不等式的基本性质才能落在实处. 举一反三:【变式1】用适当的符号填空:(1)7a +6__7a -6;(2)若ac >bc ,且c <0,则a b . 【答案】(1)>;(2)>.【高清课堂:一元一次不等式章节复习 410551 例1】 【变式2】判断:(1)如果a b >,那么22ac bc >; (2)如果22ac bc >,那么a b >. 【答案】(1)×;(2)√. 类型二、一元一次不等式3. 解不等式3(1)5182x x x +-+>-【思路点拨】不等式中含有分母,应先根据不等式的基本性质2去掉分母,再作其他变形.去分母时,不要忘记给分子加括号. 【答案与解析】解:去分母,得8x +3 (x +1)>8-4(x -5), 去括号,得8x +3x +3>8-4x +20, 移项,得8x +3x +4x >8+20-3,合并同类项,得15x >25, 系数化为1.得53x >.∴不等式的解集为53x>.【总结升华】解一元一次不等式与解一元一次方程的步骤异同见下表:ax=b ax>b ax<b 解:当a≠0时,bxa=;当a=0,b≠0时,无解;当a=0,b=0时,x为任意有理数.解:当a>0时,bxa>;当a<0时,bxa<;当a=0,b≥0时,无解;当a=0,b<0时,x为任意有理数.解:当a>0时,bxa<;当a<0时,bxa>;当a=0,b≤0时,无解;当a=0,b>0时,x为任意有理数.举一反三:【变式】()解不等式5113xx-->,并把解集在数轴上表示出来.【答案】解:去分母得5x-1-3x>3,移项、合并同类项,得2x>4,系数化为1,得x>2,解集在数轴上的表示如图所示.4.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商店准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?【思路点拨】利润=售价-进价,售价=进价+利润=进价×(1+利润率).【答案与解析】解:设商店降价x元出售该商品,则225x-≥150(110%)⨯+,解得x≤60.答:商店最多降价60元出售商品.类型三、一元一次不等式组5.解不等式组:⎪⎩⎪⎨⎧->+≥--②①13215)3(3xxxx,并求出正整数解.【思路点拨】分别解出各不等式,取所有的公共部分. 【答案与解析】解:由不等式①得x ≤2,由不等式②得4x <,∴由①②得⎩⎨⎧<≤42x x ,即2≤x∴原不等式组的解集是2≤x ,正整数解为1,2.【总结升华】求不等式(组)的特殊解的一般步骤是先求出不等式(组)的解集,再从中找出符合要求的特殊解. 举一反三:【变式】求不等式组3(2)42513x x x x --≥-⎧⎪-⎨<-⎪⎩的整数解.【答案】解:解不等式-3(x -2)≥4-x ,得x ≤1, 解不等式2513x x -<-,得x >-2, 所以该不等式组的解集为:-2<x ≤1, 所以该不等式组的整数解是-1,0,1. 类型四、综合应用6.若关于x ,y 的方程组3223x y ky x +=⎧⎨-=⎩的解满足11x y <⎧⎨>⎩,求k 的整数值.【思路点拨】从概念出发,解出方程组(用k 表示x 、y ),然后解不等式组. 【答案与解析】解:解方程组3223x y k x y +=⎧⎨-+=⎩43,729.7k x k y -⎧=⎪⎪⎨+⎪=⎪⎩得∵11x y <⎧⎨>⎩,431,729 1.7k k -⎧<⎪⎪⎨+⎪>⎪⎩即解得:512k -<<, ∴整数k 的值为0,1,2.【总结升华】方程组的未知数是x 、y ,k 在方程组里看成常数.通过求解方程组可以用k 表示x 、y .方程组的解满足不等式,那么可以将x 、y 用含k 的式子替换,得到关于k 的不等式组,可以求出k 的取值围,进而可以求出k 的整数值. 【高清课堂:一元一次不等式章节复习 410551 例3(1)】 举一反三:【变式】m 为何值时,关于x 的方程:6151632x m m x ---=-的解大于1? 【答案】解:由6151632x m m x ---=-,得315m x -=, ∴3115m ->,解得2m >.∴当2m >时,关于x 的方程:6151632x m m x ---=-的解大于1. 7.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满.....).请你计算本次社会实践活动所需车辆的租金.【思路点拨】(1)设单独租用35座客车需x 辆.根据单独租用35座客车若干辆,则刚好坐满和单独租用55座客车,则可以少租一辆,且余45个空座位,分别表示出总人数,从而列方程求解;(2)设租35座客车y 辆,则租55座客车(4-y )辆.根据不等关系:①两种车坐的总人数不小于175人;②租车资金不超过1500元.列不等式组分析求解. 【答案与解析】解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人.(2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, 解这个不等式组,得111244y ≤≤.∵y 取正整数,∴y = 2. ∴4-y = 4-2 = 2(辆). ∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元.【总结升华】本题考查了一元一次方程的应用和一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《不等式与一次不等式组》全章复习与巩固(基础)巩固练习
责编:赵炜
【巩固练习】 一、选择题
1. 已知a>b>0,则下列不等式不一定成立的是( ).
A. ab>b 2
B. a+c>b+c
C.
1a
< 1
b D. ac>bc
2. 如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围,在数轴上可表示为( ).
3.(2015•怀化)下列不等式变形正确的是( )
A .由a >b 得ac >bc
B .由a >b 得﹣2a >﹣2b
C .由a >b 得﹣a <﹣b
D .由a >b 得a ﹣2<b ﹣2
4. 如果关于x 的不等式 (a+1)x>a+1的解集为x<1,那么a 的取值范围是( ) .
A. a>0
B. a<0
C. a>-1
D. a<-1
5. 不等式组20
30x x -≤⎧⎨
->⎩
的正整数解的个数是( ).
A .1个
B .2个
C .3个
D .4个 6. 以下各式中,一元一次不等式个数为( ).
①23<-a ;②31>--x x ;③0<-y x ;④132≤+x x ;⑤2
1
31+>
-x x A. 1
B. 2
C. 3
D. 0
B
A C D
7.不等式9-x >x +
的正整数解的个数是( ).
A .1
B .2
C .3
D .无数个
8.三个连续自然数的和小于11,这样的自然数组共有( )组. A .1 B .2 C .3 D .4 二、填空题
9. 当x_____时,代数式-3x +5的值不大于4.
10.一个不等式的解集如图所示,则这个不等式的正整数解是_____.
11.不等式组⎩
⎨⎧<+≥+320
1x x 的整数解是_______.
12.已知2
(2)230x x y a -+--=,y 是正数,则a 的取值范围 .
13.(2015•莱芜)不等式组的解集为.
14.关于x的方程2x+3k=1的解是负数,则k的取值范围是_______.
15.若不等式(m-2)x>2的解集是x<,
则m的取值范围是_______.
16.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天至少要读x页,所列不等式为___________.
三、解答题
17.我市某初中举行“八荣八耻”知识抢答赛,总共50道抢答题. 抢答规定:抢答对1题得3分,抢答错1题扣1分,不抢答得0分. 小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,问小军至少要答对几道题?
18. 在数学学习中,及时对知识进行归纳、类比和整理是提高学习效率的有效策略,善于学习的小明在学习解一元一次不等式中,发现它与解一元一次方程有许多相似之处.小明列出了一张对照表:
从表中可以清楚地看出,解一元一次不等式与解一元一次方程有一定的联系,利用这种联系解决下列问题:
(1)若不等式kx>b的解集是x<1,求方程kx=b的解;
(2)若方程kx=b的解是x=-1,求不等式kx>b的解集.
19.解下列不等式(组),并把不等式的解集表示在数轴上.
(1)4(1)33(21)x x -+≤+ (2)125
336
x --<
≤ 20.(2015•东莞)某电器商场销售A 、B 两种型号计算器,两种计算器的进货价格分别为每
台30元,40元,商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.
(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)
(2)商场准备用不多于2500元的资金购进A 、B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?
【答案与解析】 一.选择题
1. 【答案】D ;
【解析】不等式的基本性质. 2. 【答案】A ; 3. 【答案】C ; 4. 【答案】D ;
【解析】不等号的方向改变,说明a+1<0,即a <﹣1. 5. 【答案】B ;
【解析】解得原不等式的解集为0≤x <3,其中正整数有1、2,共2个. 6. 【答案】B ;
【解析】是一元一次不等式的是①和⑤. 7.【答案】B ;
【解析】解不等式得,则正整数解为1,
2.
8.【答案】C ;
【解析】,解得n=0、1、2,共3组.二.填空题
9. 【答案】;
【解析】-3x+5
10. 【答案】1、2;
【解析】由图可得3x <,所以正整数有1、2.
11. 【答案】-1,0;
【解析】不等式组的解集为11x -≤<,整数解为-1,0. 12. 【答案】4a <;
【解析】由2
230x x y a =⎧⎨--=⎩
,解得32220y x a a =-=⨯->,化简得4a <.
13. 【答案】﹣1≤x<2.
14. 【答案】;
【解析】解方程得,则

15. 【答案】m<2;
【解析】由不等式的基本性质3得,m-2<0.
16. 【答案】(或:
等)
【解析】答案不唯一 三.解答题 17.【解析】
解:设小军答对x 道题,依题意得:3x -(20 -x )50≥,
解得:2
117
≥x . ∵x 为正整数,∴x 的最小正整数为18. 答:小军至少要答对18道题. 18.【解析】 解:(1)1=x
.
(2)当0k >时,1x >-; 当.10-<<x k 时,
19. 【解析】
解:(1)44363x x -+≤+ 410x ≤
∴25
x ≥
将解集表示在数轴上,如下图:
(2)18245x -<-≤ 2043x -<-≤
∴354
x >≥-
将解集表示在数轴上,如下图:
20.【解析】 解:(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,由题意得:

解得:;
答:A 种型号计算器的销售价格是42元,B 种型号计算器的销售价格是56元;
(2)设购进A 型计算器a 台,则购进B 台计算器:(70﹣a )台, 则30a+40(70﹣a )≤2500, 解得:a≥30,
答:最少需要购进A 型号的计算器30台.。

相关文档
最新文档