第八章 相量法 8-1 正弦电压和电流

合集下载

第八章 相量法

第八章 相量法

ψ
0
ωt
Im , ω , ψ ——正弦量的三要素 正弦量的三要素 正弦量的
i(t)=Imcos(ω t+ψ) 二,正弦量的三要素 1, 幅值 (振幅, 最大值 m , 振幅, 振幅 最大值)I
i
ωT=2π π
ψ
0
ωt
2, 角频率ω : 反映正弦量变化的快慢. ω =d(ω t+ψ )/dt , 反映正弦量变化的快慢. 单位时间内变化的角度 单位: rad/s,弧度 秒 单位: ,弧度/秒 周期T 完成一个循环变化所需时间, 周期 : 完成一个循环变化所需时间,单位 s. . 频率f 每秒钟完成循环的次数,单位: 赫兹) 频率 : 每秒钟完成循环的次数,单位:Hz(赫兹 . 赫兹
T i 2 ( t ) Rdt R W交 = ∫0
周期电压如图所示.求其有效值U. 例 周期电压如图所示.求其有效值 . u(t)/V 2 1 0 1 2 3 4 5 6 t/s
根据有效值的定义, 解 根据有效值的定义,有
1 U= T =

T 0
u 2 ( t )dt
2 3 1 1 2 2 1 dt + ∫ 2 dt + ∫ 0 2 dt = 1.29 V ∫0 1 2 3
π
UL
I
相量图

U I= ωL
I
3,相量形式: ,相量形式: jω L
+
UL
U L = jωLI = jX L I
XL=ω L,称为感抗,单位为 (欧姆 欧姆) ,称为感抗,单位为 欧姆
-ቤተ መጻሕፍቲ ባይዱ
相量模型 4,感抗的物理意义 ,
U (1) 表示限制电流的能力; I = 表示限制电流的能力; ωL (2) 感抗和频率成正比 ω =0 直流(XL=0) , ω→∞开路; 感抗和频率成正比, 直流( →∞开路 开路; XL

电路原理(邱关源)习题答案第八章 相量法

电路原理(邱关源)习题答案第八章  相量法

第八章 相量法求解电路的正弦稳态响应,在数学上是求非齐次微分方程的特解。

引用相量法使求解微分方程特解的运算变为复数的代数运运算,从儿大大简化了正弦稳态响应的数学运算。

所谓相量法,就是电压、电流用相量表示,RLC 元件用阻抗或导纳表示,画出电路的相量模型,利用KCL,KVL 和欧姆定律的相量形式列写出未知电压、电流相量的代数方程加以求解,因此,应用相量法应熟练掌握:(1)正弦信号的相量表示;(2)KCL,KVL 的相量表示;(3)RLC 元件伏安关系式的相量形式;(4)复数的运算。

这就是用相量分析电路的理论根据。

8-1 将下列复数化为极坐标形式:(1)551j F --=;(2)342j F +-=;(3)40203j F +=;(4)104j F =;(5)35-=F ;(6)20.978.26j F +=。

解:(1)a j F =--=551θ∠25)5()5(22=-+-=a13555arctan -=--=θ(因1F 在第三象限)故1F 的极坐标形式为 135251-∠=F(2) 13.1435)43arctan(3)4(34222∠=-∠+-=+-=j F (2F 在第二象限)(3) 43.6372.44)2040arctan(40204020223∠=∠+=+=j F(4) 9010104∠==j F(5) 180335∠=-=F(6) 19.7361.9)78.220.9arctan(20.978.220.978.2226∠=∠+=+=j F注:一个复数可以用代数型表示,也可以用极坐标型或指数型表示,即θθj ae a ja a F =∠=+=21,它们相互转换的关系为:2221a a a += 12arctan a a =θ和 θcos 1a a = θsin 2a a =需要指出的,在转换过程中要注意F 在复平面上所在的象限,它关系到θ的取值及实部1a 和虚部2a 的正负。

8-2 将下列复数化为代数形式:(1) 73101-∠=F ;(2) 6.112152∠=F ;(3) 1522.13∠=F ;(4) 90104-∠=F ;(5) 18051-∠=F ;(6) 135101-∠=F 。

电路原理 第八章_相量法

电路原理 第八章_相量法

复数 复数

孙惠英 shy@
上页
下页
返回
第8章
4、正弦量的相量表示法(续)

已知正弦量 220√ 2 cos ( ω t-35° ) 有效值相量 最大值相量 220/ -35° — 220√ 2 /-35°
已知 相量 10/45° and 正弦量的角频率ω 相应的正弦量 — 10 √ 2 cos( ωt + 45° )
0 ωt1
ωt2
ωt
φ
图8-5 用旋转矢量表示的正弦量
孙惠英 shy@
上页
下页
返回
第8章
4、正弦量的相量表示法 F = ⎪F⎪e j(ω t + ϕ )
ejθ = cosθ + jsinθ
设:有一复数
欧拉公式
F = ⎪F⎪ej(ωt + ϕ ) = ⎪F⎪cos(ωt + ϕ) + j⎪F⎪sin(ωt +ϕ) Re [F] = ⎪F⎪cos(ωt + ϕ ) Im [F] = ⎪F⎪sin(ωt + ϕ )
返回
第8章
三、旋转因子
/ϕ 旋转因子: e jϕ = 1 — A = ⎪A⎪ejα Aejϕ = ⎪A⎪ejαejϕ = ⎪A⎪ej(α+ϕ ) ejπ/2 = j1 e-jπ/2 = − j1
+j
Aejϕ
ϕ α
0
A
+1
e-jπ = − 1
孙惠英 shy@
上页
下页
返回
第8章
ϕ 12 = ϕ 1- ϕ 2 —— u1 超前于 u2 的相角 ϕ 21 = ϕ 2- ϕ 1 —— u2 超前于 u1 的相角

(完整版)第八章相量图和相量法求解电路

(完整版)第八章相量图和相量法求解电路

(完整版)第⼋章相量图和相量法求解电路第⼋章相量图和相量法求解电路⼀、教学基本要求1、掌握阻抗的串、并联及相量图的画法。

2、了解正弦电流电路的瞬时功率、有功功率、⽆功功率、功率因数、复功率的概念及表达形式。

3、熟练掌握正弦电流电路的稳态分析法。

4、了解正弦电流电路的串、并联谐振的概念,参数选定及应⽤情况。

5、掌握最⼤功率传输的概念,及在不同情况下的最⼤传输条件。

⼆、教学重点与难点1. 教学重点: (1).正弦量和相量之间的关系;(2). 正弦量的相量差和有效值的概念(3). R、L、C各元件的电压、电流关系的相量形式(4). 电路定律的相量形式及元件的电压电流关系的相量形式。

2.教学难点:1. 正弦量与相量之间的联系和区别;2. 元件电压相量和电流相量的关系。

三、本章与其它章节的联系:本章是学习第 9-12 章的基础,必须熟练掌握相量法的解析运算。

§8.1 复数相量法是建⽴在⽤复数来表⽰正弦量的基础上的,因此,必须掌握复数的四种表⽰形式及运算规则。

1. 复数的四种表⽰形式代数形式A = a +j b复数的实部和虚部分别表⽰为: Re[A]=a Im[A]=b 。

图 8.1 为复数在复平⾯的表⽰。

图 8.1根据图 8.1 得复数的三⾓形式:两种表⽰法的关系:或根据欧拉公式可将复数的三⾓形式转换为指数表⽰形式:指数形式有时改写为极坐标形式:注意:要熟练掌握复数的四种表⽰形式及相互转换关系,这对复数的运算⾮常重要。

2. 复数的运算(1) 加减运算——采⽤代数形式⽐较⽅便。

若则即复数的加、减运算满⾜实部和实部相加减,虚部和虚部相加减。

复数的加、减运算也可以在复平⾯上按平⾏四边形法⽤向量的相加和相减求得,如图8.2所⽰。

图 8.2(2) 乘除运算——采⽤指数形式或极坐标形式⽐较⽅便。

若则即复数的乘法运算满⾜模相乘,辐⾓相加。

除法运算满⾜模相除,辐⾓相减,如图8.3⽰。

图 8.3 图 8.4(3) 旋转因⼦:由复数的乘除运算得任意复数A 乘或除复数,相当于A 逆时针或顺时针旋转⼀个⾓度θ,⽽模不变,如图 8.4 所⽰。

相量法

相量法

▪幅值、初相、角频率可确定一个正弦量,称为 正弦量的三要素。
二、同频率正弦量的比较 例:
u1(t)=U1mcos(t+1)
u2(t)=U2mcos(t+2)
(1) 相位差:相角或相位之差,也称相位角差。 用表示, = (t+1) - (t+2) = 1 - 2 相位差在任何瞬间都是一个常数,即等于它们的 初相之差,而与时间无关。 相位差与计时起点的选择无关。
如图5-2(a)、(b)、(c)、(d)分别表 示两个正弦量同相、超前、正交、反相。
三、正弦电流、电压的有效值 1、有效值
周期量的有效值定义为:一个周期量和一个直 流量,分别作用于同一电阻,如果经过一个周 期的时间产生相等的热量,则这个周期量的有 效值等于这个直流量的大小。电流、电压有效 值用大写字母I、U表示。
部分别相加或相减。
复数的加减运算可以用平行四边形法则在复平 面上用作图法来进行。
(3)乘法运算 :用极坐标形式或指数形式来进行。 A• B ab(a b ) abe j(a b )
即:复数相乘,其模相乘,其辐角相加。 (4)除法运算 :用极坐标形式或指数形式来进行。
A/ B a / b(a b ) a / be j(a b ) 即:复数相除,其模相除,其辐角相减。 (5)旋转因子:复数ej称为旋转因子。
同理:
U
1 2
Um
0.707 U m
U m 2U
▪通常所说的正弦电压、电流的值均指有效值。
§8-3 相量法的基础
相量法就是用复数来表示正弦量,使描述正弦电 路的微分(积分)方程转化为代数形式的方程,而这 些方程在形式上与电阻电路的方程相类似,从而 使正弦激励下的电路的分析和计算大大简化。

邱关源《电路》第五版 第八章 相量法

邱关源《电路》第五版  第八章 相量法
第八章
电力系统简介
HVDC Rectifier(整流器)
相量法
Inverter(逆变器)
Power Line(输电线) Power Plant Generator 电厂(发电机) Transformer 变电站(变压器)
第八章 复数(自学) 正弦量 相量法的基础 电路定律的相量形式
相量法
§8-1 复数(自学)
Charles Proteus Steinmetz
(1865~1923)
§8-3 相量法的基础
一、正弦量的相量
i 2I cos(t i )
设有一个复指数函数
2 Ie j( t i )
2 Ie j( t i ) 2 I cos( t i ) j 2 I sin( t i ) Re[ 2 Ie j( t i ) ] 2 I cos( t i ) i
1 I T

T
0
1 i dt T
2

T
0
2 I m cos2 ( t i )dt
Im 0.707 I m 2
I m 2I
i I m cos( t i ) 2I cos(t i )
§8-2 正弦量
四、同频正弦量的相位差 同频正弦量相角之差称为相位差。用 表示。
i
u
反 相
t
u
正 交 0
i t 0
1 2
i
t
电 压 超 前 电 流
§8-3 相量法的基础
The notion of solving ac circuits using phasors
was first introduced by Charles Proteus Steinmetz

电路(第五版).-邱关源原著-电路教案--第8章相量法

电路(第五版).-邱关源原著-电路教案--第8章相量法

电路(第五版).-邱关源原著-电路教案--第8章相量法第8章 相量法● 本章重点1、正弦量的两种表示形式;2、相量的概念;3、KVL 、KCL 及元件VCR 的相量形式。

● 本章难点1、 正确理解正弦量的两种表示形式的对应关系;2、 三种元件伏安关系的相量形式的正确理解。

● 教学方法本章是相量法的基础,对复数和正弦量两部分内容主要以自学为主,本章主要讲授相量法的概念、电路定律的相量形式以及元件V AR 的相量形式。

讲述中对重点内容不仅要讲把基本概念讲解透彻,而且要讲明正弦量的相量与正弦时间函数之间的对应关系;元件V AR 的相量形式与时域形式之间的对应关系,使学生加深对内容的理解并牢固掌握。

本章对元件的功率和能量这部分内容作了简单讲解,以便为下一章的学习打下基础。

本章共用4课时。

● 授课内容8.1复数1. 复数的三种表示bj a A += 直角坐标=θ∠r 极坐标 =θj re 指数形式θθθsin cos 22r b r a ab arctgb a r ==⇒=+=⇒直极极直θθsin cos jr r A += 三角表示形式欧拉公式:θθθsin cos j e j +=2. 复数的运算已知:11111θ∠=+=r jb a A ,22222θ∠=+=r jb a A求:212121,,A AA A A A ⋅±i()()212121b b j a a A A ±+±=±212121212121θθθθ+∠=+∠=⋅r r A A r r A A 8.2正弦量一、正弦量:随时间t 按照正弦规律变化的物理量,都称为正弦量,它们在某时刻的值称为该时刻的瞬时值,则正弦电压和电流分别用小写字母i 、u 表示。

周期量:时变电压和电流的波形周期性的重复出现。

周期T :每一个瞬时值重复出现的最小时间间隔,单位:秒(S ); 频率f : 是每秒中周期量变化的周期数,单位:赫兹(Hz )。

第08章 相量法

第08章 相量法
α= π
2 , e
j


Im
ɺ + jI
π
2 =+j
ɺ I
π
2
= cos
j−
π
2
+ j sin
0
Re
ɺ − jI
α =−
π
2
π
2
, e
= cos(− ) + j sin(− ) = − j 2 2
π
π
ɺ −I
2>、反向因子-1 、反向因子
α = ±π , e j ±π = cos(±π ) + j sin(±π ) = −1
def
T
0
有效值也称均方根值 有效值也称均方根值(root-meen-square,简 也称均方根值 , 记为 rms。) 。
8. 1 正弦量的基本概念
电流有效值的物理意义: 电流有效值的物理意义: 周期性电流 i 流过电阻 R,在一周期 内吸收的 ,在一周期T 电能,等于一直流电流I 流过R 在时间T 电能,等于一直流电流 流过 , 在时间 内吸收的电 的有效值。 能,则称电流 I 为周期性电流 i 的有效值。 i(t) 如图: 如图: T 2
m
8. 2
一、复数A表示形式 复数 表示形式


Im b A
在平面上, 在平面上,由O指向A的有向 指向 线段(向量), ),表示复数 线段(向量),表示复数A。 1、直角坐标表示 、 代数形式: 代数形式:
O Im b
a A |A|
Re
A=a+jb
Re[A]=a Im[A]=b
1 j = =−j j j⋅ j
8. 1 正弦量的基本概念

电路分析相量法

电路分析相量法

量的相量乘以 jω ,即表示di/dt 的相量为
j I I( i 90o )
该相量的模为ωI ,辐角则超前原相量π/2 。
对 i 的高阶导数 dni/dtn ,其相量为 ( j )。n I
3)正弦量的积分
设 i 2I cos( t i ),则
idt Re[ 2Ie j t ] dt Re[ (
F1F2 | F1 | 1 | F2 | 2 | F1 || F2 | (1 2 )
可见复数的乘法运算使用指数形式或极坐标形式较为简便。
3)除法运算
a)代数形式
F1 F2
a1 a2
jb1 jb2
(a1 (a2
jb1 )(a2 jb2 )(a2
jb2 ) jb2 )
(a1a2
b1b2 ) j(a2b1 a22 b22
设 F1 a1 jb1 , F2 a2 jb2 ,则
F1 F2 (a1 jb1 ) (a2 jb2 ) (a1 a2 ) j(b1 b2 )
平行四边形法则:
+j F1 +F2 F1
F2 o
+1
+j F1
F2 o
F1-F2 +1
2)乘法运算 a)代数形式
F1F2 (a1 jb1 )(a2 jb2 ) (a1a2 b1b2 ) j(a1b2 a2b1 )
di d Re[ 2Ie j t ] Re[ d ( 2Ie j t )] Re[ 2( j I)e j t ]
dt dt
dt
Re[ 2 Ie ] j( ti 90o ) 2 I cos( t i 90o )
上式表明:
复指数函数实部的导数等于复指数函数导数的实部;

电路原理课件 第8章 相量法

电路原理课件 第8章  相量法

三. 相位差 :
两个同频率正弦量相位角之差。
i(t) 0
Im um
设 u(t)=Umcos(w t+ u)
2
i(t)=Imcos(w t+ i)
0
wt
则 相位差j : j = (w t+ u)- (w t+ i)
u- i
同频率正弦量的相位差等于它们的初相之差。 不同频率的两个正弦量之间的相位差不再是一个常数,而是 随时间变动。
j u与i正交; j u与i反相;
2
§8 - 3相量法的基础
1. 正弦量的相量表示
复函数 F F ej(wt)
没有物理意义
F cos(wt ) j F sin(wt Ψ )
若对F取实部:
Re[F] F cos(ωt Ψ ) 是一个正弦量,有物理意义。
对于任意一个正弦时间函数都可以找到唯一的与其对应的 复指数函数:
F e j
4、极坐标形式:
F F ej
=|F|
二 复数运算
(1)加减运算——代数形式
+j F2
若 F1=a1+jb1
F2=a2+jb2 O
则 F1±F2= (a1±a2) +j (b1±b2)
F= F1 +F1
F1 +1
+j
O - F2
F2 F1
F= F1 - F2 +1
(2) 乘除运算——指数形式或极坐标形式
⑶∫i2dt。
解: ⑴设 i i1 i2 2I cos(wt i ), 其相量为 I=I/Ψi
I I1 I2 10/600A+22/-1500A=(5+j8.66)A+(-19.05-j11)A

第8章( 8.1-8.3) 相量及相量分析法

第8章( 8.1-8.3) 相量及相量分析法


i(t)
+ u(t) -
R
已知: u( t ) U m sin(wt y u ) 解: L
求:稳态解 i(t)
1. 经典法: 一阶常系数 di(t ) Ri (t ) L U m sin(wt y u ) 线性微分方程 dt 自由分量(齐次方程通解): A e-(R/L) t
全解:
第8章 相量及相量分析法 8.1-8.3 重点:
复数及其运算 相位差
相量和相量图 正弦量的相量表示
电路元件VCR 的相量形式
电路定律的相量形式
8 .1 .1 正弦量的基本概念 正弦交流电路
如果在电路中电动势的大小与方向均随时间按 正弦规律变化,由此产生的电流、电压大小和方向 也是正弦的,这样的电路称为正弦交流电路。

u (t ) 2U cos(wt y ) U Uy
例1. 已知
解: I 10030o A
o

i 141.4 cos(314t 30 ) A u 311.1cos(3 14t 60o )V
试用相量表示 i, u 。
U 220 60o V

14
例2. 已知 I 5015o A, f 50Hz . 试写出电流的瞬时值表达式。
y
Re
a
Re
A a jb
A A e jy | A | y
11
2. 复数运算
(1)加减运算——直角坐标
(2) 乘除运算——极坐标 3. 旋转因子
A1±A2=(a1±a2)+j(b1±b2)
A1 A2 A1 A2 y 1 y 2
复数 e jy = cos y + jsin y = 1∠y A e jy A逆时针旋转一个角度y ,模不变

电路课件 电路08 相量法32页PPT

电路课件 电路08 相量法32页PPT

工程中以频率区分,如音频、高频、甚高频电路。
φi是在t=0时刻相位,称初相位(角),简称初相:
(ωt+φi)|t=0 =φi 单位用弧度或度,主值范围内取值,|φi|≤180°
初相与计时零点有关。任一正弦量初相允许任意指定, 但一个电路许多相关正弦量,只能相对共同计时零点 确定各自相位。
正弦量三要素是正弦量间进行比较和区分的依据。
图8-4正弦电流i,在参考方向下,数学表达式定义:
i=Imcos(ωt+φi)
(8-1)
3个常数Im、ω和φi称正弦量三要素。
Im称正弦量振幅,是正弦量在整个振荡过程中达到最
大值,即cos(ωt+φi)=1时,有 imax=Im
也是正弦量极大值。
cos(ωt+φi)=-1时,
有最小值(也是极小值):
复数相加和相减运算可按平行四边形法在复平面 上用向量相加和相减求得,图8-2。
19.04.2020
第八章 相量法
8-1 复 数
4
两个复数相乘
复数相乘用指数形式方便: F1F2 =|F1|ejθ1|F2|ejθ2 =|F1||F2|ej(θ1+θ2)
所以: |F1F2|=|F1||F2|
arg(F1F2)=arg(F1)+arg(F2) 两个复数相乘的代数形式:
F 13 j4 5 5.1 3 0 .5 1.1 8 0 8 .5 1.9 7 1 F 2 1 1 0 31 5 1 0 35
19.04.2020
第八章 相量法
8-1 复 数
9
8-2 正弦量
电路中按正弦规律变化的电压或电流,统称正弦量。
正弦量数学描述,可用sine函数,也可用cose函数。 本书用cose函数。

第八章相量法

第八章相量法
...... 幅角
A 可在复平面中画出
佛山科学技§术学8院-1 复数
现代制造装备工程技术开发中心
(3)直角坐标和极坐标间转换
A = a + jb = a2 + b2 tan-1 a b
A = A φ = A cosφ + j A sinφ
例: A = 1 + j = 245 A = 230 = 2cos30 + j 2sin30
B b1 + jb2
b12
+
b2 2
b2 1
+
b2 2
佛山科学技§术学8院-1 复数
现代制造装备工程技术开发中心
三,复数的旋转因子
(1) 含义: A • e jΨ = A (φa + Ψ) 复数模不变,将此复数向量逆时针旋转
一个角度
A • e jΨ
A
φa
佛山科学技§术学8院-1 复数
现代制造装备工程技术开发中心
佛山科学§技术8学-院2 正弦量
现代制造装备工程技术开发中心
二、正弦 、 (以正弦 为例)
1、正弦 :一种特殊的、周期的、交变的电流
2、正弦 表示方法:
(1)数学式: i = Imcos(ωt + φi )
说明: ——正弦电流的最大值,振幅 ——角频率(反映正弦量变化快慢) ——周期 ——频率
乘法:模相乘, 角相加。
A = A φa
说明:
AB = A B φa + φb
B=
B
Байду номын сангаасφb
A
=
A φa - φb
B B
AB = (a1 + ja2)(b1 + jb2) = (a1b1 - a2b除2)法+ :j(模a1b相2 +除a,2b1)

第8章 相量法

第8章 相量法


T
0
i (t ) Rdt I RT
2 2
1 T 2 I 0 i (t )dt T
(1)式中代入
(1)式
i(t ) I m cos( t i ) 得
Im I 2
i(t ) I m cos( t i )
2.角频率(周期T、频率f):表示变化快慢 Angular frequency(period, frequency) 定义:相角(t+i)随时间变化的速度(rad/s)
The Phasor
相量法即用复数为工具来表示正弦量。 正弦量 相量(复数)
变换的思想
相量是一个包含正弦量“幅值”和“相 位”信息的复数。
一、复习复数:
1.复数的表示形式 (1)代数形式 b 0
+j
F
r
θ
a +1
F a jb
(2)三角形式 (3)指数形式 (4)极坐标形式
F r
a b
u(t ) 2U cos( t u )
X Y 53.1
xy 3 X Y
4
2.复数的代数运算 相加(减):使用代数形式
(a jb) (a1 a2 ) j (b1 b2 )
相乘(除):使用指数形式
F F1F2 r1r2e
j (1 2 )
F1 r1 j (12 ) F e F2 r2
二.正弦信号的相量表示
根据欧拉公式:
e
jx
cos x j sin x
j (t )
对于同频 正弦量而 言相同
u 2U cos ( t ) Re[ 2Ue
时域 一 一 对 应
] Re[ 2Ue j e jt ]

第08章相量法

第08章相量法
? 则:U=10V U 10e j15V? -j15º 已知: I 10050 A
? 则: i=100cos(t+50º)A
100 2
(3-24)
§8.3 相量法的基础
无物理意义
一、正弦量为何可以用相量表示?
某复函数: A(t ) 2Iej(t)
为正弦量 有物理意义
(3-16)
+j
b
r

A
+1
a
欧拉公式
cos+jsin =ej
A=a+jb …………………………代数式
=r(cos+j sin) …………三角函数式
=rej …… …………………………指数式
=r∠ …………………………极坐标形式
(3-17)
设a、b为正实数
A=a+jb =r∠
0<< 90º
2.KVL相量式
——任一瞬间任一回路上: u(t)=0
若该回路上的电压均为同频率正 弦量,则用相量表示时仍满足KVL,即:
KVL相量形式 U 0
I
如右图,设uR,uL,uC均为同频率正弦量:
U R U L U C U 0
+R
U U R U L U C
相量——表示正弦电压、电流的复数
(3-15)
一、复数的基本形式
设复平面上某复数A :
+j
b
r

A
+1
a
r a2 b2
arctan b
a a=rcos
b= rsin
其中:r—复数的模; —辐角; a—实部; b —虚部
A=a+jb =rcos+jrsin =r(cos+j sin)

电路理论课后习题解答08

电路理论课后习题解答08

电路理论课后习题解答08第八章相量法8-1如果已知I1??5秒?314t?60?? a、 i2?10罪?314t?60?? a、 i3?4cos?314t?60?? a、(1)写出上述电流的相量并绘制相量图;(2) I1和I2之间以及I1和I3之间的相位差;(3)绘制I1的波形图;(4)若将i1表达式中的负号去掉将意味着什么?(5)求i1的周期t和频率f。

解决方案:(1)I1??5秒?314t?60 5秒?314t?60?? 180度?A.5秒?314t?120度?i2?10si?n3t1?4.因此,I1、I2和I3的相量表达式为.??6?041ts?3?1?0coo30i1?52??120a,i2?o.102??30a,i3?o.42?60aO其相量图如图(a)所示5+ji1?t?060?120??0??30+1-2.5-5t(a)题解8-1图(b)(2)? 12?? 1.2.90度?13?? 1.3.有关180o(3)波形图,请参见图(b)(4)意味着i1的初相位超前了180o,即i1的参考方向反向。

(5)t?220ms,f?1t?50hz8-2如果已知具有相同频率的两个正弦电压的相量为U1?50? 30,u2??100?? 150伏o..其频率f?100hz。

求:(1)写出u1,u2的时域形式;(2)u1与u2的相位差。

解决方案:(1)OU1?T502cos?2.英尺?30度??502cos?628t?30点?五、u2?t1002cos?2?ft?150.o.o??1002cos?628t?150?180oo??1002cos?628t?30o?v(2) u1?50? 30岁,u2?100? 30ov,所以相位差是??0,即它们是同相的。

8-3已知三个电压源的电压分别为:ua?2202cos??t?10??v,乌布?2202cos??T110? 五、加州大学?2202cos??T130?? v、求:(1)三个电压之和;(2)uab,ubc;(3)画出它们的相量图。

相量法

相量法
第八章 相量法
重点
1、复数的几种表示形式的转换及计算 2、正弦量的三要素 3、 KCL、KVL 、VCR的相量表示
难点
理解相量法的实质
§8-1 复 数
一、复数的几种表示形式
1.代数形式: F a jb
Re[F] a --复数F的实部
Im[F] b --复数F的虚部
2.向量形式:
u(t)
U
m
cos(t



u
i(t)
I m cos(t



i
--本书采用cosine函数。
二、正弦量的三要素
1.幅值Um/Im:
Um、Im --振幅,正弦量的极大值 当cos(ω t+)=1时,imax=Im;当cos(ω t+)=-1时,imin=-Im。 Imax-Imin=2Im --正弦量的峰-峰值
解: | F2 | ( 20)2 ( 40)2 44.7
F2在第三象限,
arctan( 40) 180 63.4 180 243.4
20
F2 44.7243.4
二、复数的四则运算
1.加、减法运算:
①代数法:
F1 F2 ( a1 jb1 ) ( a2 jb2 ) ( a1 a2 ) j( b1 b2 )



u1
i2
2
Icos(t



i2
12 (t u1)(t i2) u1 i2
①12>0 ②12<0 ③12=0 ④|12|=π /2
--u1超前i2; --u1滞后i2; --u1和i2同相; --u1和i2正交;

高等教育出版社第六版《电路》第8章_相量法讲解

高等教育出版社第六版《电路》第8章_相量法讲解

定义:随时间按正弦规律变化的电压和电流,称为正弦量。 i
&#, i(t) Im cos(t i )
注意:方向是随时间在周期性的变化,所以更要标定参考方向。 5
1、变化的快慢: ①频率f:每秒变化的次数。单位:Hz ②周期T:变化一次所需的时间。单位:s ③角频率ω:每秒变化的弧度数。单位:rad/s
一般地 i 2I cos(t i )A
可用相量表示为: I I e ji I iA
9
二、相量和正弦量的比较:
①联系: 实数范围的正弦时间函数和复数范围的复指数常数一一对应。
欧拉公式:e j cos jsin,
i 2I cos(t i ) Re[ Re[ 2 I eji ejt ] Re[
F
其中 F : 模、§幅8值-1 复数: 幅角
b
四者之间有: a F cos b F sin
F a2 b2
arctan b
a
a
请注意:上式与教材P202倒数第二行的差别。
为正确判定θ所在的象限,我们将a、b的正负号分别
保留在分母分子中,而不用小括号。
例:
F
4
j4,
arctan
4 4
45
(第四象限)。

②正弦量的一个重要性质:
正弦量乘以常数,正弦量的微分、积分,同频 正弦量的代数和等,结果均为同频正弦量。
8
§8 - 3 相量法的基础(****)
§8 - 3 相量法的基础
一、相量定义:
表示正弦量的复常数称为相量。 例如:
正弦量 i 220 2 cos(314t 30 )A
可用相量I 220 ej30 A表示。
例 u(t) Um sin(t u )

电路分析第08章.相量法

电路分析第08章.相量法

w1 w2
不能比较相位差
(4) i1(t ) 5 cos(100 t 300 ) i2 (t ) 3 cos(100 t + 300 )
i2 (t ) 3 cos(100t 1500 )
j 300 (1500 ) 1200
两个正弦量进行相位比较时应满足同频率、同函数、同符 号,且在主值范围比较。
则:
A1 A2
A1 e jq1
A2 e jq2

A1
A e j(q1 +q2 ) 2
A1 A2 q1 + q 2 乘法:模相乘,幅角相加。
A1 A2

| A1 | θ 1 | A2 | θ 2

| A1 | e jθ1 | A2 | e jθ 2

| A1 | e j( θ 1θ 2 ) | A2 |
反映正弦量变化幅度的大小。
(2) 角频率(angular frequency)ω
相位变化的速度, 反映正弦量变化快慢。
w

d dt

2
f

2
T
单位: rad/s ,弧度 / 秒
i
T
(3) 初相位(initial phse angle)qi
反映正弦量的计时起点时 的相角,常用角度表示。
qi
Im O
| A1 | | A2 |
θ1 θ2
除法:模相除,幅角相减。
返回 上页 下页
(3) 旋转因子:
复数 ejq =cosq +jsinq =1∠q
Im
A• ejq
q A
0
Re
A• ejq 相当于A逆时针旋转一个角度q ,而模不变。故
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档