2016年秋季学期新版新人教版七年级数学上册第二章 整式的加减单元复习试卷9
【精选习题】新人教版数学七年级上册第二章整式的加减单元测试及答案.doc
人教版七年级上册第二章整式的加减单元测试一、选择题(每题3分,共21分)1. 下列说法正确的是( )A.213x π的系数为13B.212xy 的系数为12x C. ()23x -的系数为3D. ()23x π-的系数为3π-2. 下列各组式子中,是同类项的是( )A. 2233x y xy -与B. 222x x 与C. 32xy yx -与D. 55xy yz 与3. 下面计算正确的是( )A. 2233x x -=B. 235325a a a +=C. 33x x +=D. 10.2504ab ba -+=4. 如果12a b -=,那么()3b a --的值是( ) A. 35-B. 23C.32D.165. 将()()()24x y x y x y +++-+合并同类项得( )A. x y +B. x y -+C. x y --D. x y -6. 若8a =,3b =,且a b <,则a b -的值为( )A. 11-B. 5-C. 5-或5D. 11-或5-7. 观察图中正方形四个顶点所标的数字规律,可知数2013应标在( )A. 第503个正方形的左上角B. 第503个正方形的右下角C. 第504个正方形的左上角D. 第504个正方形的右下角二、填空题(每题3分,共21分)8. 已知单项式23m a b 与4123n a b --人教版初中数学七年级上册第2章《整式加减》 单元测试卷及答案 一、选择题(每题3分,共30分) 1.下列各式中,是单项式的是( )A .x 2-1 B .a 2b C.πa +b D.x -y 32.多项式-5-2x 23-y 中,二次项的系数是( )A .2B .-2C .-23 D.23 3.下列各组单项式中,是同类项的是( )A.a 2b3与a 2b B .3x 2y 与3xy 2 C .a 与1 D .2bc 与2abc 4.下面运算正确的是( )A .3a +6b =9abB .3a 2b -3ba 2=0 C .8a 4-6a 3=2a D.12y 2-13y 2=165.某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(a -10%)(a +15%)万元B .a (1-10%)(1+15%)万元C .(a -10%+15%)万元D .a (1-10%+15%)万元 6.下列各式去括号正确的是( )A .x 2-(x -y +2z )=x 2-x +y +2zB .x -(-2x +3y -1)=x +2x -3y +1C .3x -[5x -(x -1)]=3x -5x -x +1D .(x -1)-(x 2-2)=x -1-x 2-2 7.已知a -b =1,则式子-3a +3b -11的值是( )A .-14B .1C .-8D .58.x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( )A .-1B .1C .-2D .29.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的结果为xy -2yz +3xz ,则正确结果是( )A .2xy -5yz +xzB .3xy -8yz -xzC .yz +5xzD .3xy -8yz +xz 10.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )(第10题)A .4m cmB .4n cmC .2(m +n )cmD .4(m -n )cm二、填空题(每题3分,共24分)11.-π3a 3b 2的系数是________,次数是________.12.一个三位数,百位数字是3,十位数字和个位数字组成的两位数是b ,用式子表示这个三位数是____________.13.请你任意写出一个三次单项式:____________,一个二次三项式:__________________.14.若2x 3y 2n 与-5x m y 4是同类项,则m -n =________.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于________.16.如图,阴影部分的面积是__________.(第16题) (第17题) (第18题)17.有理数a ,b 在数轴上对应点的位置如图所示,则|a +b |-2|a -b |的结果为__________.18.如图是用围棋棋子摆成的一列具有一定规律的“山”字,则第n 个“山”字中的棋子个数是________.三、解答题(19题16分,20,24题每题12分,21题6分,其余每题10分,共66分) 19.计算:(1)x 2y -3xy 2+2yx 2-y 2x ;(2)14a 2b -0.4ab 2-12a 2b +25ab 2;(3)2(x 2-2x +5)-3(2x 2-5);(4)5(a 2b -3ab 2)-2(a 2b -7ab 2).20.先化简,再求值:(1)(4a +3a 2-3+3a 3)-(-a +4a 3),其中a =-2;(2)(2x 2y -2xy 2)-[](-3x 2y 2+3x 2y )+(3x 2y 2-3xy 2),其中x =-1,y =2.21.若多项式3x 3-2x 2+3x -1与多项式x 2-2mx 3+2x +3的和为二次三项式,求m 的值.22.按如图所示的程序计算.(第22题)(1)填写表内空格:(2)你发现的规律是__________________________;(3)用简要过程说明你发现的规律的正确性.23.先阅读下面的文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太烦琐,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算、提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×________=________.(1)补全例题的解题过程;(2)计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).24.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段以达到节水的目的.该市自来水收费价格见如图所示的价目表.(1)若某户居民2月份用水4 m3,则应交水费________元;(2)若某户居民3月份用水a m3(其中6<a<10),则应交水费多少元(用含a的整式表示并化简)?(3)若某户居民4,5月份共用水15 m3(5月份用水量超过了4月份),设4月份用水x m3,求该户居民4,5月份共交水费多少元(用含x的整式表示并化简).(第24题)答案一、1.B 2.C 3.A 4.B 5.B 6.B7.A8.A9.B10.B点拨:设小长方形卡片的长为x cm,宽为y cm,则x+2y=m,故两块阴影部分的周长和为2(n-x)+2(n-2y)+2m=4n-2(x+2y)+2m=4n.二、11.-π3;512. 300+b13.x2y;x2-x+1(答案不唯一)14.115.416.112xy17.-3a+b18.5n+2三、19.解:(1)原式=3x2y-4xy2;(2)原式=-14a2b;(3)原式=2x2-4x+10-6x2+15=-4x2-4x+25;(4)原式=5a2b-15ab2-2a2b+14ab2=3a2b-ab2.20.解:(1)原式=4a+3a2-3+3a3+a-4a3=-a3+3a2+5a-3.当a=-2时,原式=-(-2)3+3×(-2)2+5×(-2)-3=-(-8)+3×4+5×(-2)-3=8+12-10-3=7.(2)原式=2x2y-2xy2+3x2y2-3x2y-3x2y2+3xy2=-x2y+xy2.当x=-1,y=2时,人教版七年级数学上册单元试题:第2章整式的加减(含答案)一、填空题(共8小题,每小题4分,满分32分)1、﹣πx2y的系数是.2.多项式x3y-3x3y2+5xy3是__________次__________项式,它的常数项是______.3.按下列要求,将多项式x3-5x2-4x+9的后两项用( )括起来.要求括号前面带有“—”号,则x3—5x2—4x+9=___________________且最高次项的系数也相同,则5m﹣2n=.4、已知x2+3x+5的值是7,那么多项式3x2+9x-2的值是__________.5、任写一个与﹣是同类项的单项式:.6、用语言说出式子a+b2的意义:______________________________________.7、已知a是正数,则3|a|﹣7a=.8、把(x—y)看作一个整体,合并同类项:5(x—y)+2(x—y)—4(x—y)=_____________..二、选择题(共6小题,每小题4分,满分24分)9、整式﹣3.5x3y2,﹣1,﹣,﹣32xy2z,﹣x2﹣y,﹣a2b﹣1中单项式的个数有()A 、2个B 、3个C 、4个D 、5个 10下列说法正确的是( ).A .单项式的系数是-5,次数是2B .单项式a 的系数为1,次数是0C .是二次单项式 D .单项式的系数为,次数是211、如果2x 3n y m+4与-3x 9y 2n 是同类项,那么m 、n 的值分别为( )A .m=-2,n=3B .m=2,n=3C .m=-3,n=2D .m=3,n=212、在排成每行七天的日历表中取下一个方块.若所有日期数之和为189,则n 的值为( )A .21B .11C .15D .913、下列各组中的两个单项式能合并的是( )A 、4和4xB 、3x 2y 3和﹣y 2x 3C 、2ab 2和100ab 2cD 、 和14、(重庆)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( ).A .50B .64C .68D .72三、解答题(共5小题,满分44分) 15、化简:①(a+b+c )+(b ﹣c ﹣a )+(c+a ﹣b ); ②+4-3st -4;③3a 2﹣[8a ﹣(4a ﹣7)﹣2a 2]; ④(4)a 2-[-4ab +(ab -a 2)]-2ab .16、如图所示,在下面由火柴棒拼出的一系列的图形中,第n 个图形由n •个正方形组成.25xy -12xy -67ab -67-33⨯12st(1)第2个图形中,火柴棒的根数是________; (2)第3个图形中,火柴棒的根数是________; (3)第4个图形中,火柴棒的根数是_______; (4)第n 个图形中,火柴棒的根数是________.17、先化简,再求值:﹣( ﹣ ) (﹣),其中 ﹣, ﹣.18、已知A =5x 2y -3xy 2+4xy ,B =7xy 2-2xy +x 2y ,试解答下列问题:(1)求A -2B 的值;(2)若A +B +2C =0,求C -A 的值.19、一艘轮船顺水航行3小时,逆水航行2小时,(1)已知轮船在静水中前进的速度是m 千米/时,水流的速度是a 千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?参考答案一、填空题(共8小题,每小题4分,满分32分) 1、﹣π .2、五 三 03、x 3—5x 2—(4x —9).4、 4 .5、 a 2b .6、 a 与b 的平方的和 .7、 ﹣4a .8、 3(x —y ).二、选择题 (共6小题,每小题4分,满分24分) 9.B 10.D 11.B 12.A 13.D 14.D三、解答题(共5小题,满分44分) 15、化简:①(a+b+c )+(b ﹣c ﹣a )+(c+a ﹣b );n=4n=3n=2n=1②-3st +4-4=; ③3a 2﹣[8a ﹣(4a ﹣7)﹣2a 2]; ④a 2-(-4ab +ab -a 2)-2ab =a 2-(-3ab -a 2)-2ab =a 2+3ab +a 2-2ab =2a 2+ab 16. (1)7;(2)10;(3)13;(4)3n+1 17. 1 18.解:(1)A -2B =5x 2y -3xy 2+4xy -2(7xy 2-2xy +x 2y ) =5x 2y -3xy 2+4xy -14xy 2+(-2x 2y )+4xy =3x 2y +8xy -17xy 2;(2)5x 2y -3xy 2+4xy +7xy 2-2xy +x 2y +2C =0, 6x 2y +4xy 2+2xy +2C =0, 3x 2y +2xy 2+xy +C =0, ∴C =-2xy 2-3x 2y -xy .∴C -A =-2xy 2-3x 2y -xy -(5x 2y -3xy 2+4xy ) =xy 2-8x 2y -5xy . 19. 解:(1)轮船共航行路程为:(m+a )×3+(m ﹣a )×2=(5m+a )千米, (2)把m=80,a=3代入(1)得到的式子得:5×80+3=403千米. 答:轮船共航行403千米.人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)
七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)一、单选题1.单项式32πx yz -的系数和次数分别是( )A .-2,6B . -2π,5C .-2,7D .-2π ,62.多项式233321x y x y --是( )A .二次三项式B .三次二项式C .四次三项式D .五次三项式3.下列语句错误的是( )A .数字0也是单项式B .单项式a -的系数与次数都是1C .12xy 是二次单项式 D .25m n 与22nm -是同类项4.下列化简结果正确的是( )A .-4a-a=-3aB .6x 2-2x 2=4C .6x 2y-6yx 2=0D .3x 2+2x 2=5x 45.下列说法正确的是( )A .25xy 的系数是5-B .单项式a 的系数为1、次数是0C .2325a b 的次数是6D .1xy x +-是二次三项式6.若关于x ,y 的多项式()223x axy bx y +---不含二次项,则a b -的值为( )A .0B .-2C .2D .-17.关于多项式3x 2﹣y ﹣3xy 3+x 5﹣1,下列说法错误的是( )A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣18.下列各组中的两项,属于同类项的是( )A .32x -与2x -B .12ab -与18baC .2x y 与2xy -D .4m 与4mn9.若一个多项式减去223a b -等于222a b +,则这个多项式是( )A .222a b -+B .222a b -C .222a b -D .222a b --二、填空题10.3227x y -的系数是 .11.若2m a b 与323n a b --是同类项,则m n +的值为 . 12.多项式233223xy x x y -+-的次数为 .13.一个多项式与2210x x --+的和是32x -,则这个多项式为 .三、解答题14.已知关于x 的多项式32322325mx x x x x nx -+-+-不含三次项和一次项,求n m 的值. 15.先化简,再求值:223252372x x x x ⎡⎤⎛⎫----⎪⎢⎥⎝⎭⎣⎦,其中2x =-. 四、综合题16.在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,并且a 是多项式﹣2x 2﹣4x+1的一次项系数,b 是数轴上最小的正整数,单项式-12x 2y 4的次数为c. (1)a = ,b = ,c = . (2)请你画出数轴,并把点A ,B ,C 表示在数轴上; (3)请你通过计算说明线段AB 与AC 之间的数量关系.17.已知整式 ()()3123a x x a ---+ .(1)若它是关于 x 的一次式,求 a 的值并写出常数项; (2)若它是关于 x 的三次二项式,求 a 的值并写出最高次项.18.计算:一个整式A 与多项式x2-x-1的和是多项式-2x2-3x+4.(1)请你求出整式A ; (2)当x=2时求整式A 的值19.已知多项式-3x m+1y 3+x 3y-3x 4-1是五次四项式,单项式3x 3n y 2的次数与这个多项式的次数相同.(1)求m ,n 的值.(2)把这个多项式按x 降幂排列.参考答案与解析1.【答案】B【解析】【解答】解:单项式32πx yz -的数字因数是2π-,所有字母的指数的和为3115++=所以该单项式的系数和次数分别是:2π-和5. 故答案为:B .【分析】根据单项式的系数和次数的定义逐项判断即可。
人教版数学七年级上册第二章整式的加减《单元综合测试卷》含答案
人教版数学七年级上学期第二章整式的加减测试一.选择题(共10小题)1.下列说法中,正确的是( ) A. 24m n 不是整式 B. ﹣32abc 的系数是﹣3,次数是3 C. 3是单项式D. 多项式2x 2y ﹣xy 是五次二项式 2.下列每组单项式中是同类项的是( )A. 2xy 与﹣13yx B. 3x 2y 与﹣2xy 2 C. 12x -与﹣2xy D. xy 与yz 3.下列各式合并同类项结果正确的是( )A. 3x 2﹣x 2=3B. 3x 2+5x 3=8x 3C. 3a 2﹣a 2=aD. 3a 2﹣a 2=2a 2 4.下列说法正确的是 ( )A. x 系数是0B. y 不是单项式C. 0.5是单项式D. -5a 的系数是5 5.单项式2a 3b 的次数是( )A 2B. 3C. 4D. 5 6.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A. 6B. 5C. 4D. 3 7.对于式子:22x y +,2a b ,12,3x 2+5x -2,abc,0,2x y x +,m ,下列说法正确的是( ) A. 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式 8.若代数式2x a y 3z c 与4212b x y z -是同类项,则( ) A. a=4,b=2,c=3B. a=4,b=4,c=3C. a=4,b=3,c=2D. a=4,b=3,c=4 9.多项式()1472m x m x --+是关于x 四次三项式,则m 的值是( ) A. 4 B. -2 C. -4 D. 4或-410.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A. ﹣2x 2+y 2B. 2x 2﹣y 2C. x 2﹣2y 2D. ﹣x 2+2y 2二.填空题(共6小题) 11.225ab π-系数是________,次数是_______次; 12.把a ﹣b 当作一个因式,则3(a ﹣b)+4(a ﹣b)2﹣2(a ﹣b)﹣3(a ﹣b)2﹣(a ﹣b)2=_____.13.如果单项式a 13x y +与3b 2x y 是同类项,那么b a =____.14.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 15.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.16.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.三.解答题(共7小题)17.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1. 18.若2x m y 2﹣(n ﹣3)x+1是关于x 、y 的三次二项式,求m 、n 的值.19.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n)2017的值.20.已知单项式﹣25m 2x ﹣1n 9和25m 5n 3y 是同类项,求代数式12x ﹣5y 的值. 21.某村小麦种植面积是a 公顷,水稻种植面积比小麦种植面积的2倍还多25公顷,玉米的种植面积比小麦种植面积少5公顷,列式计算水稻种植面积比玉米种植面积多多少公顷?22.当x=-12,y=-3时,求代数式 3(x 2﹣2xy)﹣[3x 2﹣2y+2(xy+y)]的值. 23.定义:若a b 2+=,则称a 与b 是关于1平衡数.(1)3与______是关于1的平衡数,5x -与______是关于1的平衡数.(用含x 的代数式表示)(2)若()22a 2x 3x x 4=-++,()2b 2x 3x 4x x 2⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1 的平衡数,并说明理由.答案与解析一.选择题(共10小题)1.下列说法中,正确的是( )A.24m n不是整式 B. ﹣32abc的系数是﹣3,次数是3C. 3是单项式D. 多项式2x2y﹣xy是五次二项式【答案】C【解析】【分析】由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式;系数就是一个单项式中的常数项;次数是指所有字母的指数之和;多项式的项数是指这个多项式中单项式的个数;多项式中各单项式的最高次数作为这个多项式的次数.【详解】根据定义可知:24m n是整式;﹣32abc的系数是﹣32,次数是3;多项式2x2y﹣xy是三次二项式;故选择C.2.下列每组单项式中是同类项是( )A. 2xy与﹣13yx B. 3x2y与﹣2xy2C.12x与﹣2xy D. xy与yz【答案】A【解析】【分析】根据同类项的概念(所含字母相同,并且相同字母的指数也相同)进行判断.【详解】A选项:2xy与﹣13yx含字母相同,并且相同字母指数也相同,所以是同类项,故是正确的;B选项:3x2y与-2xy2所含字母相同,但相同字母的指数不同,所以不是同类项,故是错误的;C选项:-12x与﹣2xy所含字母不同,所以不是同类项,故是错误的;D选项:xy与yz所含字母不同,所以不是同类项,故是错误的;故选A.【点睛】考查同类项,掌握同类项的定义:所含字母相同,并且相同字母的指数也相同是解题的关键.3.下列各式合并同类项结果正确的是( )A. 3x2﹣x2=3B. 3x2+5x3=8x3C. 3a2﹣a2=aD. 3a2﹣a2=2a2【答案】D【解析】【分析】所含字母相同且相同字母的指数也相同的项为同类项,只有同类项才能合并,合并时各同类项系数相加减,字母及其指数不变.【详解】解:A,原式=2x2,故错误;B,原式已是最简式,无法再进行合并,故错误;C,原式=2a2,故错误;D,原式=2a2,故正确;故选D.【点睛】本题考查了合并同类项的概念.4.下列说法正确的是 ( )A. x的系数是0B. y不是单项式C. 0.5是单项式D. -5a的系数是5【答案】C【解析】A选项,∵的系数是1,∴A选项说法错误;B选项,∵单独的一个数或字母都是单项式,∴B选项说法错误;C选项,∵单独的一个数或字母都是单项式,∴C选项说法正确;D选项,∵5a 的系数是,∴D选项说法错误;故选C.5.单项式2a3b的次数是( )A. 2B. 3C. 4D. 5【答案】C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C .点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型. 6.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A. 6B. 5C. 4D. 3 【答案】D【解析】【分析】根据单项式的概念判断即可.【详解】代数式a+b ,37x 2,5a ,﹣m ,0,3a b a b +-,32x y -中单项式有:37x 2,5a ,﹣m ,0,共计3个. 故选D.【点睛】考查的是单项式的概念,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式. 7.对于式子:22x y +,2a b ,12,3x 2+5x -2,abc,0,2x y x +,m ,下列说法正确的是( ) A. 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式 【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案. 详解:22x y +,2a b ,12,3x 2+5x ﹣2,abc,0,2x y x +,m 中:有4个单项式:12,abc,0,m ; 2个多项式:22x y +,3x 2+5x-2. 故选C .点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.8.若代数式2x a y 3z c 与4212b x y z -是同类项,则( ) A. a=4,b=2,c=3B. a=4,b=4,c=3C. a=4,b=3,c=2D. a=4,b=3,c=4 【答案】C【解析】根据同类项的概念,含有相同的字母,相同字母的指数相同,故可由代数式2x a y 3z c 与4212b x y z -是同类项,求得a=4,b=3,c=2,故选C .9.多项式()1472m x m x --+是关于x 的四次三项式,则m 的值是( ) A. 4 B. -2 C. -4 D. 4或-4【答案】C【解析】 ∵多项式()1472m x m x --+是关于x 的四次三项式, ∴|m|=4,且m-4≠0,∴m=-4,故选C.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.10.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A. ﹣2x 2+y 2B. 2x 2﹣y 2C. x 2﹣2y 2D. ﹣x 2+2y 2【答案】B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x 2﹣2y 2+(x 2+y 2),=(1+1)x 2+(﹣2+1)y 2,=2x 2﹣y 2,故选B .【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键. 二.填空题(共6小题) 11.225ab π-的系数是________,次数是_______次; 【答案】 (1). 25π-(2). 3 【解析】 单项式225ab π-的系数是-25π,次数是3. 点睛:单项式的定义:不含加减号的代数式(数与字母的积的代数式),一个单独的数或字母也叫单项式.单项式中的数字因数叫做这个单项式的系数.所有字母的指数和叫做这个单项式的次数.12.把a ﹣b 当作一个因式,则3(a ﹣b)+4(a ﹣b)2﹣2(a ﹣b)﹣3(a ﹣b)2﹣(a ﹣b)2=_____.【答案】a ﹣b【解析】【分析】把a-b 看作是一个整体.合并同类项时系数相加减,字母与字母的指数不变.【详解】3(a-b)+4(a-b)2-2(a-b)-3(a-b)2-(a-b)2=(3-2)(a-b)+(4-3-1)(a-b)2=a-b .【点睛】利用整体思想,且灵活运用合并同类项法则是解题关键.13.如果单项式a 13x y +与3b 2x y 是同类项,那么b a =____.【答案】8【解析】【分析】根据同类项的定义可知,相同字母的次数相同,据此列出方程即可求出a 、b 的值.【详解】∵单项式a 13x y +与3b 2x y 是同类项,∴a 13{b 3+==, 解得a 2{b 3==. ∴b 3a 2=8=.故答案为8.14.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 【答案】13. 【解析】 ∵单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式, ∴m ﹣2=n,2m ﹣3n=3,解得:m=3,n=1,∴m ﹣n =3﹣1=13; 故答案为13. 15.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.【答案】 (1). 四 (2). 五【解析】【分析】根据多项式的次数和项数的定义直接进行解答即可.【详解】多项式2x 3﹣x 2y 2﹣3xy+x ﹣1是四次五项式.故答案为四,五.16.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.【答案】3x 2﹣6x ﹣1【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】根据题意得:(3x 2-2x-1)+(-4x)=3x 2-2x-1-4x=3x 2-6x-1,故答案是:3x 2-6x-1【点睛】考查了整式的加减,熟练掌握运算法则是解本题的关键.三.解答题(共7小题)17.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1. 【答案】x 2+2y 2,94. 【解析】【分析】先去小括号,再去中括号,合并同类项,最后代入求出即可. 【详解】()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦ =2x 2﹣[﹣x 2+2xy +2y 2]﹣2x 2+2xy +4y 2=2x 2+x 2﹣2xy ﹣2y 2﹣2x 2+2xy +4y 2=x 2+2y 2,当x=12,y=﹣1时,原式=14+2=94.【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.若2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,求m、n的值.【答案】m=1,n=3【解析】【分析】根据题意,由三次二项式的定义得出m+2=3,n-3=0,然后解得m,n,即可求得答案.【详解】∵2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,∴m+2=3,n﹣3=0,解得m=1,n=3.【点睛】考查学生对多项式的理解和掌握,要求学生对多项式的概念有正确深入的理解.19.已知多项式﹣3x2+mx+nx2﹣x+3的值与x无关,求(2m﹣n)2017的值.【答案】-1【解析】【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n,代入计算(2m-n)2017的值即可.【详解】合并同类项得(n﹣3)x2+(m﹣1)x+3,根据题意得n﹣3=0,m﹣1=0,解得m=1,n=3,所以(2m﹣n)2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.20.已知单项式﹣25m2x﹣1n9和25m5n3y是同类项,求代数式12x﹣5y的值.【答案】-13.5. 【解析】分析】首先根据同类项的定义求出x和y的值,然后代入代数式得出答案.【详解】解:∵单项式﹣25m2x﹣1n9和25m5n3y是同类项,∴2x﹣1=5,3y=9, ∴x=3,y=3,∴12x﹣5y=12×3﹣5×3=﹣13.5.【点睛】本题主要考查的是同类项的定义以及代数式的求值问题,属于基础题型.理解同类项的定义是解题的关键.21.某村小麦种植面积是a公顷,水稻种植面积比小麦种植面积的2倍还多25公顷,玉米的种植面积比小麦种植面积少5公顷,列式计算水稻种植面积比玉米种植面积多多少公顷?【答案】a+30公顷.【解析】试题分析:根据题意可得水稻种植面积为(2a+25)公顷,玉米种植面积为(a﹣5)公顷,求出水稻种植面积与玉米种植面积的差即可得出结果.试题解析:水稻种植面积为(2a+25)公顷,玉米种植面积为(a﹣5)公顷,则水稻种植面积比玉米种植面积大(2a+25)﹣(a﹣5)=2a+25﹣a+5=a+30(公顷).考点:整式的加减.22.当x=-12,y=-3时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.【答案】﹣12【解析】试题分析:本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把x的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:原式=3x2﹣6xy﹣3x2+2y﹣2xy﹣2y=﹣8xy,当x=,y=﹣3时,原式=﹣12.考点:整式的加减—化简求值.23.定义:若a b2+=,则称a与b是关于1的平衡数.(1)3与______是关于1的平衡数,5x-与______是关于1的平衡数.(用含x的代数式表示)(2)若()22a 2x 3x x 4=-++,()2b 2x 3x 4x x 2⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1 的平衡数,并说明理由.【答案】(1)﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数【解析】【分析】(1)由平衡数的定义即可求得答案;(2)计算a+b 是否等于1即可.【详解】(1)设3的关于1的平衡数为a ,则3+a=2,解得a=﹣1, ∴3与﹣1是关于1的平衡数,设5﹣x 的关于1的平衡数为b ,则5﹣x+b=2,解得b=2﹣(5﹣x )=x ﹣3, ∴5﹣x 与x ﹣3是关于1的平衡数,故答案﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数,理由如下:∵a=2x 2﹣3(x 2+x )+4,b=2x ﹣[3x ﹣(4x+x 2)﹣2],∴a+b=2x 2﹣3(x 2+x )+4+2x ﹣[3x ﹣(4x+x 2)﹣2]=2x 2﹣3x 2﹣3x+4+2x ﹣3x+4x+x 2+2=6≠2, ∴a 与b 不是关于1的平衡数.。
人教版数学七年级上册第二章整式的加减《单元综合测试》附答案
人教版数学七年级上学期 第二章整式的加减测试一、选择题1.已知1x y 2-=,那么()3x y --+的结果为( ) A. 52- B. 52 C. 92D. 92-2.已知2x 3xy 9-=,2xy y 4-=,则代数式221y x 3-值为( )A. -7B. 1C. 7D. 1-3.如果3m 23a b -是7次单项式,则m 的值是( ) A. 6B. 5C. 4D. 24.如果24a 1+与一个单项式的和恰好是一个整式的平方,那么这样的单项式共有( ) A. 1个B. 2个C. 3个D. 5个5.在代数式2x 12xy,0,,8y ,,x 2y 3xy-+中,整式共有( ) A. 5B. 4C. 6D. 36.对于下列式 ()()()()()21x zx 111xy 2a ab 345a b x x 13++-+-,以下判断正确的是( ) A. ()()13是单项式 B. ()1的系数为0 C. ()()15是整式D. ()()24是多项式7. 下列说法中正确的是( ) A. a 和0都是单项式B. 多项式222371a b a b -++的次数是3C. 单项式223a b -系数为2-D. 22x y+整式8.如果25x y 和m n x y -是同类项,那么m n +的值为( ) A. 3B. 2C. 1D. -19.代数式()221x y π+是( ) A 单项式B. 多项式C. 既不是单项式也不是多项式D. 不能判断10.下列各式中,计算结果等于62x是( )A. 24x x +B. ()()6262x yxy -+-+C. 828x 2x -D. ()()663x 1x 3---二、填空题11.()()22224a b 3aba b 2ab ---+去括号得________,合并同类项得________.12.22x 3x 5-+-=-________;()225x 23y 3--=________. 13.去括号:()326x 3x x 1⎡⎤---=⎣⎦________.14.已知多项式222x 4xy y --与4kxy 5-+的差中不含xy 项,则k 的值是________. 15.若a b 2010-=,c d 2011+=,则()()b c a d +--的值为________.16.一个长方形的宽为 cm x ,长比宽的2倍多1cm ,这个长方形的周长为________cm . 17.如果2x x 35-+=,那么24x 4x 10-+-=________.18.下列式子:2x 2+,14a +,0,23ab 7,ab c ,,整式有________个19.当a 2=-、b 3=时,多项式222a b 3a 3a b 2a --+的值为________.20.单项式22x y z7-的系数是________,是________ 次单项式.三、解答题21.化简:(1)2x 5y 3x y -++ (2)()()222223a b ab 3ab2a b ---+22.先化简,再求值.22222212422xy y 4xy y x y y 233⎛⎫⎛⎫--+-- ⎪ ⎪⎝⎭⎝⎭,其中3x 2=,1y 3=-.23.()1先化简再求值:当1x 2=-,y 1=时,求代数式()()222253x y xy xy 3x y --+的值.() 2若m 53x y +与3x y 是同类项,则m =________.24.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b ab +-++-.25.已知2A 3x 6x 2=--,2B 2x 3x 1=--,求2A 3B -的值,其中x 1=-. 26.当x 5=,y 4.5=时,求()222121kx 2x y x y 2x y 1333⎛⎫⎛⎫--+-+--+ ⎪ ⎪⎝⎭⎝⎭的值.一名同学做题时,错把x 5=看成x 5=-,但结果也正确,且计算过程无误,求k 的值.27.李华老师给学生出了一道题:当a 0.35=,b 0.28=-时,求33233237a 6a b 3a b 3a 6a b 3a b 10a 3-+++--+的值,题目出完后,小明说:“老师给的条件a 0.35=,b 0.28=-是多余的.”王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?28.小明和小丽一起做同样一道题:计算()2221a 2a 2b 22b a 3b a 2⎛⎫+-++-+-⎪⎝⎭的值,其中2a 3=-,b 1=.粗心的小明把2a 3=-错抄成2a 3=,所得结果却与小丽的正确结果相同,聪明的你知道这是为什么吗?答案与解析一、选择题1.已知1x y 2-=,那么()3x y --+的结果为( )A. 52-B. 52C.92D. 92-【答案】A 【解析】 【分析】把-(3-x +y )去括号,再把x -y =12代入即可. 【详解】解:原式=-3+x -y ,∵x -y =12,∴原式=-3+12=-52,故选A.【点睛】本题主要考查了整式的化简求值,解本题的要点在于将原式去括号,从而求出答案. 2.已知2x 3xy 9-=,2xy y 4-=,则代数式221y x 3-值为( ) A. -7 B. 1C. 7D. 1-【答案】A 【解析】 【分析】已知等式变形后,相加即可求出原式的值.【详解】解:x 2-3xy =9①,xy -y 2=4②,①+②×3得:x 2-3xy +3xy +3y 2=21,整理得:y 2-13x 2=-7,故选A.【点睛】本题主要考查了整式的加减以及化简求值,解本题的要点在于用已知等式变形化成所求等式,从而选出答案.3.如果3m 23a b -是7次单项式,则m 的值是( ) A 6 B. 5C. 4D. 2【答案】B 【解析】 【分析】根据单项式次数的定义来求解,所有字母的指数和叫做单项式的次数.【详解】解:根据单项式次数的定义,所有字母的指数和为7,即m +2=7,则m =5.故选B.【点睛】本题主要考查了单项式次数的定义,灵活掌握单项式次数的定义,根据题意列方程,是解题的关键. 4.如果24a 1+与一个单项式的和恰好是一个整式的平方,那么这样的单项式共有( ) A. 1个 B. 2个C. 3个D. 5个【答案】D 【解析】 【分析】根据完全平方公式(a 士b )2= a 2士2ab +b 2进行分析,注意添加的代数式要是单项式.【详解】4a 2+1+2a =(2a +1)2,4a 2+1-2a =(2a -1)2,4a 2+1+4a 4=(2a 2+1)2,4a 2+1+(-1)=4a 2,4a 2+1-4a 2=1共5个,所以答案选D.【点睛】本题考查了整式,关键是掌握完全平方公式(a 士b )2= a 2士2ab +b 2,或变为单项式的平方. 5.在代数式2x 12xy,0,,8y ,,x 2y 3xy-+中,整式共有( ) A. 5B. 4C. 6D. 3【答案】A 【解析】 【分析】根据整式、单项式、多项式的概念作出判断,从而得到答案.【详解】整式有:2xy ,0,-x 3,8y 2,x +2y 共有5个,故答案选A. 【点睛】本题考查了整式的有关概念,解决本题关键是搞清整式、单项式、多项式的概念,紧扣概念作出判断.6.对于下列式 ()()()()()21x zx 111xy 2a ab 345a b x x 13++-+-,以下判断正确的是( ) A. ()()13是单项式 B. ()1的系数为0 C. ()()15是整式 D. ()()24是多项式【答案】C 【解析】 【分析】根据单项式、整式以及多项式的定义进行判断.【详解】A 、(3) 是分式,故本选项错误;B 、(1) 的系数是1,故本选项错误;C 、(1) 、(5)的分母中没有字母,它们都属于整式,故本选项正确;D 、(4)是分式,故本选项错误,故答案选C.【点睛】本题主要考查了整式的有关概念,解本题的要点在于要能准确的分清什么是整式. 7. 下列说法中正确的是( ) A. a 和0都是单项式B. 多项式222371a b a b -++的次数是3C. 单项式223a b -的系数为2- D. 22x y+是整式 【答案】A 【解析】试题分析:A .a 和0都是单项式,所以A 选项..正确; B .多项式222371a b a b -++的次数是4,所以B 选项..错误; C .单项式223a b -的系数为23-,所以C 选项..错误; D .22x y+不是整式,所以D 选项..错误. 故选A .考点:1.多项式;2.整式;3.单项式.8.如果25x y 和m n x y -是同类项,那么m n +的值为( ) A. 3 B. 2C. 1D. -1【答案】A 【解析】 【分析】根据同类项是字母项且相同字母的指数也相同,和有理数的加法法则,从而可得到答案. 【详解】由5x 2y 和-x m y n 是同类项,得m =2,n =1,所以m +n =2+1=3,故答案选A. 【点睛】本题主要考查了同类项的定义,解本题的要点在于求出m 、n 的值,从而得到答案. 9.代数式()221x y π+是( ) A. 单项式B. 多项式C. 既不是单项式也不是多项式D. 不能判断【答案】B 【解析】 【分析】由多项式的定义可得出答案.【详解】多项式是由几个单项式的和构成的,∴221x +y π()是多项式,所以答案选B.【点睛】本题主要考查了多项式的定义,解本题的要点在于根据多项式的定义判断该式是否为多项式. 10.下列各式中,计算结果等于62x 的是( ) A. 24x x + B. ()()6262x yx y -+-+C. 828x 2x -D. ()()663x 1x 3---【答案】D 【解析】 【分析】结合选项分别按照去括号法则、合并同类项法则计算,然后找出结果等于2x 6的选项即可.【详解】解:A 、a 2+a 4不是同类项,不能相加,故本选项错误;B 、(x 6-y 2)+(-x 6+y 2)= 0,结果不等于2x 6,故本选项错误;C 、8x 8-2x 2不是同类项,不能相减,故本选项错误;D 、3(x 6-1)-(x 6-3) = 2x 6 ,故本选项正确,故选D.【点睛】本题考查了去括号和合并同类项的知识,掌握各知识点的运算法则是解答本题的关键.二、填空题11.()()22224a b 3aba b 2ab ---+去括号得________,合并同类项得________.【答案】 (1). 2224a b 3ab a b 2a -+-b 2 (2). 225a b 5ab - 【解析】 【分析】根据去括号的方法进行计算即可,合并同类项时,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 【详解】2222222222(43)(2)43255a b ab a b ab a b ab a b ab a b ab ---+=-+-=-2222(43)(2)a b ab a b ab ∴---+,去括号得 2222432a b ab a b ab -+-, 合并同类项得 2255a b ab -.故答案是:2222432a b ab a b ab -+-;2255a b ab -.【点睛】本题考查的知识点是整式的加减,解题关键是注意合并同类项. 12.22x 3x 5-+-=-________;()225x 23y 3--=________.【答案】 (1). .()22x 3x 5-+ (2). 225x 6y 6-+【解析】 【分析】添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 【详解】解:22235235x x x x -+-=--+(); 22225233566x y x y --=-+().故答案为2235x x -+(),22566x y -+. 【点睛】本题考查的知识点是去括号与添括号法则的运用,解题的关键是注意添括号与去括号可互相检验. 13.去括号:()326x 3x x 1⎡⎤---=⎣⎦________.【答案】326x 3x x 1-+- 【解析】 【分析】根据去括号的法则及先大后小或从外到内去掉括号.【详解】解:根据题意可得:3232631631x x x x x x =-+-=-+-原式(). 故答案为: 326x 3x x 1-+-【点睛】本题考查的知识点是去括号的方法,解题关键是注意从外到内去括号. 14.已知多项式222x 4xy y --与4kxy 5-+的差中不含xy 项,则k 的值是________. 【答案】1 【解析】 【分析】先根据题意列出整式相加减的式子,再合并同类项,令xy 的系数为0即可得出k 的值.【详解】解:222445x xy y kxy ----+()() 222445x xy y kxy =--+- 222445x k xy y =----()∵多项式2224x xy y --与45kxy -+的差中不含xy 项, ∴440k -=,解得1k =. 故答案为1.【点睛】本题考查的知识点是整式的加减,解题关键是注意合并同类项. 15.若a b 2010-=,c d 2011+=,则()()b c a d +--的值为________. 【答案】1 【解析】 【分析】先把()()b c a d +--去括号,根据加法的交换律和结合律重新结合,然和把2010a b -=,2011c d +=代入计算即可.【详解】∵2010a b -=,2011c d +=, ∴()()b c a d +-- =b +c -a +d =-(a -b )+(c +d ) =-2010+2011 =1. 故答案为1.【点睛】本题考查了去括号法则与添括号法则, 熟练掌握去括号及添括号的法则是关键.去括号法则:当括号前是“+”号时,去掉括号和前面的“+”号,括号内各项的符号都不变号;当括号前是“-”号时,去掉括号和前面的“-”号,括号内各项的符号都要变号. 添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.结合各选项进行判断即可. 16.一个长方形的宽为 cm x ,长比宽的2倍多1cm ,这个长方形的周长为________cm . 【答案】(62)x +【解析】 【分析】根据题意可以分别表示出长方形的长和宽,进而解答即可.【详解】解:一个长方形的长比宽的2倍多1cm ,若宽为xcm ,则长为:(2x+1)cm ,周长为:2(21)2(31)(62)(cm)x x x x ++=+=+,故答案为(62)x +.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式. 17.如果2x x 35-+=,那么24x 4x 10-+-=________. 【答案】2- 【解析】 【分析】由题意可得出2x x -的值,再将24410x x -+-变形为:2410x x --(),然后代入2x x -的值可得出答案. 【详解】解:由题意得:2532x x -=-=2244104()102x x x x -+-=--=-故答案为:2-.【点睛】本题考查的知识点是整式的加减—化简求值,解题关键是求2x x -的值然后整体代入.18.下列式子:2x 2+,14a +,0,23ab 7,ab c ,,整式有________个【答案】3 【解析】 【分析】根据整式的定义分析判断各个式子,从而得到正确选项.【详解】解:式子2x 2+,0,23ab 7,符合整式的定义,都是整式;1ab4,a c +这两个式子的分母中都含有字母,不是整式.含有根号,不是整式故答案为:3.【点睛】本题考查的知识点是整式的定义,解题关键是注意整式的几种形式. 19.当a 2=-、b 3=时,多项式222a b 3a 3a b 2a--+值为________.【答案】10-【解析】【分析】先化简合并同类项,再代入,a b 的值即可.【详解】222a b 3a 3a b 2a --+²a b a =--将a 2=-、b 3=代入()()2232=--⨯--原式 432=-⨯+122=-+10=-故答案为:-10.【点睛】本题考查的知识点是整式的加减—化简求值,解题关键是注意合并同类项.20.单项式22x y z 7-的系数是________,是________ 次单项式. 【答案】 (1). 17-(2). 5 【解析】【分析】系数是式子中不含字母项,次数为字母的次数之和. 【详解】解:该式子的系数为17-,次数之和=2+2+1=5,所以填写5. 故答案为: 17-;5. 【点睛】本题考查了单项式中系数和次数,熟悉掌握概念是解决本题的关键.三、解答题21.化简:(1)2x 5y 3x y -++ (2)()()222223a b ab3ab 2a b ---+ 【答案】(1)5x 4y -;(2)2ab ;【解析】【分析】将相同字母的式子合并即可化简可得出答案.【详解】()1原式()()23x 51y =++-+5x 4y =-;()2原式22226a b 2ab 3ab 6a b =-+-2ab =.【点睛】本题考查了多项式的化简,熟悉掌握概念是解决本题的关键.22.先化简,再求值.22222212422xy y 4xy y x y y 233⎛⎫⎛⎫--+-- ⎪ ⎪⎝⎭⎝⎭,其中3x 2=,1y 3=-. 【答案】223y x y -+;1312-; 【解析】【分析】先将式子化简,再将所给的值带入即可得出答案. 【详解】解:原式22222222244xy y 4xy y x y y 3y x y 33=---+-=-+. 当3x 2=,1y 3=-时,原式221313()()323⎛⎫=-⨯-+⨯- ⎪⎝⎭ 1334=-- 1312=-. 【点睛】本题考查了多项式的化简,仔细观察是解决本题的关键.23.()1先化简再求值:当1x 2=-,y 1=时,求代数式()()222253x y xy xy 3x y --+的值. () 2若m 53x y +与3x y 是同类项,则m =________.【答案】(1)2212x y 6xy -;6;(2)2-;【解析】【分析】①先化简,再将所给的值带入即可得出答案,②同类项中对应字母的次数相等,列出式子即可.【详解】()1原式22222215x y 5xy xy 3x y 12x y 6xy =---=-; 当1x 2=-,y 1=时,原式111216133642⎛⎫=⨯⨯-⨯-⨯=+= ⎪⎝⎭. ()2∵m 53x y +与3x y 是同类项,∴m 53+=, 解得:m 2=-.【点睛】本题考查了多项式的化简,同类项的定义,熟悉掌握定义和仔细观察是解决本题的关键. 24.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.【答案】0;【解析】【分析】由数轴可得a >0>b >c ,并从数轴上可得出a,b,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.25.已知2A 3x 6x 2=--,2B 2x 3x 1=--,求2A 3B -的值,其中x 1=-.【答案】2;【解析】【分析】将A,B 的式子带入,化简后将x=-1带入即可得出答案.【详解】解:当x 1=-时,()()222A 3B 23x 6x 232x 3x 1-=-----226x 12x 46x 9x 3=---++3x 1=--31=-2=,【点睛】本题考查了多项式的化简,熟悉掌握并仔细审题是解决本题的关键.26.当x 5=,y 4.5=时,求()222121kx 2x y x y 2x y 1333⎛⎫⎛⎫--+-+--+ ⎪ ⎪⎝⎭⎝⎭的值.一名同学做题时,错把x 5=看成x 5=-,但结果也正确,且计算过程无误,求k 的值. 【答案】2k 43=; 【解析】【分析】先将式子化简,再将x=-5带入即可得出答案. 【详解】解:原式22222212kx 2x y x y 2x 2y 2k 4x 3y 23333⎛⎫=-+-+-+-=-+- ⎪⎝⎭, 由错把x 5=看成x 5=-,但结果也正确,且计算过程无误,得到2k 43=. 【点睛】本题考查了多项式的化简,认真审题是解决本题的关键.27.李华老师给学生出了一道题:当a 0.35=,b 0.28=-时,求33233237a 6a b 3a b 3a 6a b 3a b 10a 3-+++--+的值,题目出完后,小明说:“老师给的条件a 0.35=,b 0.28=-是多余的.”王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【答案】小明说的有道理;理由见解析;【解析】【分析】先将33233237a 6a b 3a b 3a 6a b 3a b 10a 3-+++--+用合并同类项进行合并,计算出结果,判断是否含有a,b ,即可分析解答本题.【详解】解:小明说有道理,理由是:33233237a 6a b 3a b 3a 6a b 3a b 10a 3-+++--+()()()33333227a 3a 10a 6a b 6a b 3a b 3a b 3=+-+-+-+3=,即无论a 、b 为何值,代数式的值恒为3,所以小明的说法是正确的.【点睛】本题考查了合并同类项,熟练掌握合并同类项的法则是解决本题的关键. 28.小明和小丽一起做同样一道题:计算()2221a 2a 2b 22b a 3b a 2⎛⎫+-++-+- ⎪⎝⎭的值,其中2a 3=-,b 1=.粗心的小明把2a 3=-错抄成2a 3=,所得结果却与小丽的正确结果相同,聪明的你知道这是为什么吗?【答案】答案见解析.【解析】【分析】原式去括号后再合并得到最简结果,即可做出判断.【详解】解:原式2222a 2a 2b 22b 2a 6b a 2b 4b 2=+-++-+-=++,∵化简的结果没有含字母a 的项,∴整式的值与a 的取值无关,虽然小明把“2a 3=-”错抄成“2a 3=”,但结果仍是正确的. 【点睛】本题考查了合并同类项,熟练掌握合并同类项的法则是解决本题的关键.。
人教版七年级数学上册《第二章整式的加减》单元试题(含答案)
第二章《整式的加减》单元练习题一、选择题1.化简-16(x-0.5)的结果是()A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+82.以下判断正确的是()A.单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D.是单项式3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是()A. -4B. -2C. 2D. 44.单项式-32xy2z3的系数和次数分别是()A. -1,8B. -3,8C. -9,6D. -9,35.如果-33amb2是7次单项式,则m的值是()A. 6B. 5C. 4D. 26.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为()A. 29B. -6C. 14D. 247.已知a<b,那么a-b和它的相反数的差的绝对值是()A.b-aB. 2b-2aC. -2aD. 2b8.下面不是同类项的是()A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2二、填空题9.若单项式2x2ym与−xny3的和仍为单项式,则m+n的值是___________.10.若单项式-a2xbm与anby-1可合并为a2b4,则xy-mn=___________.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.14.如果数轴上表示a,b两数的点的位置如图所示,那么|a-b|+|a+b|的计算结果是___________.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.16.化简:-2a2-[3a2-(a-2)]=___________.三、解答题17.完成下表18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.第二章《整式的加减》单元练习题答案解析1.【答案】D【解析】-16(x-0.5)=-16x+8.2.【答案】B【解析】A、单项式xy的系数是1,故错误;B、-1是单项式,故正确;C、23x2是2次单项式,故错误;D、是分式,故错误.3.【答案】C【解析】因为x2y=2,所以原式=5x2y+5xy-7x-4x2y-5xy+7x=x2y=2.4.【答案】C【解析】单项式-32xy2z3的系数和次数分别是-9,65.【答案】B【解析】根据单项式次数的定义,所有字母的指数和为7,即m+2=7,则m=5.6.【答案】B【解析】原式=a-1,当a=-5时,原式=-5-1=-6.7.【答案】B【解析】依题意因为a<b,所以2a<2b,即2a-2b<0,所以|(a-b)-(b-a)|=|a-b-b+a|=|2a-2b|=2b-2a.8.【答案】B【解析】A、是两个常数项,故是同类项;B、所含字母不同,故不是同类项;C、符合同类项的定义,故是同类项;D、符合同类项的定义,故是同类项.9.【答案】5【解析】由题意知单项式2x2ym与−xny3是同类项,则n=2,m=3,所以m+n=5,10.【答案】-3【解析】因为单项式-a2xbm与anby-1可合并为a2b4,则此三个单项式为同类项,则m=4,n=2,2x=2,y-1=4,所以x=1,y=5,则xy-mn=1×5-4×2=-3.11.【答案】-5a2b【解析】多项式2ab2-5a2b-7+a3b3按字母b的降幂排列为a3b3+2ab2-5a2b-7.12.【答案】4【解析】因为a2m−5b2与-3ab3-n的和为单项式,所以2m-5=1,2=3-n,解得m=3,n=1.故m+n=4.13.【答案】-2(x-1)2-3(x-1)3【解析】原式=3(x-1)2-2(x-1)3-5(x-1)2-(x-1)3 =-2(x-1)2-3(x-1)3.14.【答案】-2a【解析】因为由图可知,a<0,b>0,|a|>b,所以a-b<0,a+b<0,所以原式=-(a-b)-(a+b)=-a+b-a-b=-2a.15.【答案】1【解析】因为由图可知,a<0,所以a-1<0,所以原式=1-a+a=1.16.【答案】-5a2+a-2【解析】-2a2-[3a2-(a-2)]=-2a2-(3a2-a+2)=-2a2-3a2+a-2=-5a2+a-2.17.【答案】解:x的系数是1,次数是1;-2mn的系数是-2,次数是2;的系数是,次数是4.【解析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.18.【答案】解:因为-mx2y|n-3|是关于x、y的10次单项式,且系数是8,所以m=-8,且2+|n-3|=10,解得n=11或-5,则m+n=3或m+n=-13.【解析】利用单项式的定义得出m的值,进而利用单项式次数的定义得出n的值,进而得出答案.19.【答案】解:(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(a−3)+2a2]+4=a2-a+1.【解析】去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.20.【答案】解:由题意可知小红的年龄为(2m-4)岁,小华的年龄为[(2m−4)+1]岁,则这三名同学的年龄的和为m+(2m−4)+[(2m−4)+1]=m+2m-4+(m-2+1)=4m-5.答:这三名同学的年龄的和是(4m-5)岁.【解析】根据题意分别列出小明、小红和小华的年龄,再相加,去括号,合并同类项,即可求出这三名同学的年龄的和.21.【答案】解:因为(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,所以|a|=3,b=-2,a-3≠0,解得a=-3,b=-2,则a2-3ab+b2=9-18+4=-5.【解析】根据单项式及单项式次数的定义,可得出a、b的值,代入代数式即可得出答案.。
【数学试题】最新人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题.doc
人教版七年级数学第二章整式的加减单元练习(含答案)一、单选题1.单项式 的系数和次数分别是( ) A.2,2B.2,3C.3,2D.2,42.下列说法正确的是( ) A .ab +c 是二次三项式 B .多项式2x 2+3y 2的次数是4 C .0是单项式 D .34ba是整式 3.下列各式中,代数式有( )个 (1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x+;(5) s = πr 2;(6) -6kA .2B .3C .4D .54.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )25.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy6.23-x yz 的系数和次数分别是( ) A .系数是0,次数是5 B .系数是1,次数是6 C .系数是-1,次数是5D .系数是-1,次数是67.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +8.有理数a ,b 在数轴上对应点的位置如图所示,则a a b b a -+--化简后的结果是( )A .aB .bC .2a +bD .2b −a9.……依次观察左边三个图形,并判断照此规律从左到右第2019个图形是 ( )A .B .C .D .10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米11.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 112.如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑥个图形面积为( )A.20B.30C.42D.56二、填空题13.计算()()3242x y x y --+-的结果是__________. 14.多项式2239x xy π++中,次数最高的项的系数是_______. 15.请将 4 y 2-25xy 3- 5 y 按字母 y 的降幂排列____________ 16.已知212a a -+=,那么21a a -+的值是______________.三、解答题17.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy -人教版数学七年级(上)第二章单元质量检测试卷、答案一、选择题(共10小题;共30分)1. 多项式的项数和次数分别为A. ,B. ,C. ,D. ,2. 下列计算正确的是A. B.C. D.3. 的结果是A. B. C. D.4. 若单项式的次数是,则的值是A. B. C. D.5. 今年学校运动会参加的人数是人,比去年增加,那么去年运动会参加的人数为人.A. B. C. D.6. 下列说法正确的是A. 与不是同类项B. 不是整式C. 单项式的系数是D. 是二次三项式7. 设某数为,那么代数式表示A. 某数的倍的平方减去除以B. 某数的倍减的一半C. 某数与的差的倍除以D. 某数平方的倍与的差的一半8. 用字母表示 与 的和除 与 的差为 A.B.C.D.9. 观察下列数表: 第一行 第二行 第三行 第四行根据数表所反映的规律,第 行第 列交叉点上的数应为 A.B.C.D.10. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定人教版初中数学七年级上册第2章《整式加减》单元测试卷(含答案)一、选择题(每小题3分,共24分)1.单项式32yx -的系数是( )A.0B.-1C.31 D.31- 2.小明说2a 2b 与5-2ab 是同类项;小颖说2a 2b 与ab 2c 是同类项;小华说2a 2b 与-ba 2是同类项,他们三人说法正确的是( )A 小明 B.小颖 C.小华 D.三人都正确 3.多项式-x 2-3x-2的各项分别是( )A.-x 2,3x ,2B.-x 2,-3x ,-2C.x 2,3x ,2D.x 2,-3x ,-24.若单项式5x a-2y 3与-32x 4y b的和仍是单项式,则a ,b 的值分别为( )A.4,3B.4,-3C.6,3D.6,-35.下面四道去括号的题目是从小马虎的作业本上摘录下来的,其中正确的是( ) A.2(x-y )=2x-y B.-(m-n )=-m+n C.2(a+61)=2a+121D.-(3x 2+2y )=-3x 2+2y 6.化简(x-3y )-(-3x-2y )的结果是( ) A.4x-5y B.4x-y C.-2x-5y D.-2x-y 7.化简x-[y-2x-(x-y )]等于( ) A.-2x B.2x C.4x-2y D.2x-2y8.如果m-n=51,那么-3(n-m )的结果是( ) A.53 B.35 C.53 D.151二、填空题(每小题3分,共24分)9.代数式2x 2y-3x+xy-1-x 3y 2是_______次________项式,次数最高的项是_______. 10.单项式-3m 与3m 的和是________,差是________.11.今年来,国家加大房价调控力度.受此影响,某地房价第二、第三季度不断下跌,第二季度下降a 元/m 2,第三季度又下降了第二季度所降房价的2倍,则该地两季度房价共下降________元/m 2.12.把(a-b )当作一个整体,多项式5(a-b )+7(a-b )-3(a-b )合并同类项的结果是________.13.若x-y=3,则5-x+y=________. 14.如果单项式-21x 2y 3与0.35x m y n 是同类项,则(m-n )2019=_______. 15.一个多项式与3x 2-2+x 的和是x 2-2x ,则这个多项式是_______.16.长方形的一边长为a-3b ,一邻边比这边长2a+b ,则这个长方形的周长为________. 三、解答题(共52分) 17.(8分)已知多项式-73x m+1y 3+x 3y 2+xy 2-5x 5-9是六次五项式,单项式32a 2nb 3-mc 的次数与多项式的次数相同,求n 的值.18.(12分)先化简,再求值:(1)2+(-6x+1)-2(3-4x ),其中x=-21; (2)(2a 3-3a 2b-2ab 2)-(a 3-2ab 2+b 3-a )+(3a 2b-a 3-b 3-b ),其中a=2019,b=-2.19.(10分)贝贝和晶晶两人共同化简:2(m 2n+mn )-3(m 2n-mn )-4m 2n ,他们的化简过程分别如下:贝贝:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n-3mn-4m 2n=-5m 2n-mn. 晶晶:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+mn-3m 2n-mn-4m 2n=-5m 2n. 如果你和他们是同一个学习小组,你会支持谁?为什么?若你认为他们的计算都不正确,请把你认为正确的化简写下来.20.(10分)有一道题:“先化简,再求值:15a 2-(6a 2+5a )-(4a 2+a-3)+(-5a 2+6a+2019)-3,其中a=2020.”乐乐做题时,把“a=2020”错写成“a=-2020”.但他的计算结果却是正确的,你知道这是为什么吗?21.(12分)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x 份(x 为正整数)创新提高(满分50分,时间30分钟) 一、选择题(每小题4分,共12分)1.若m 2+mn=2,nm+n 2=-1,则m 2+2mn+n 2的值为( ) A.0 B.-1 C.1 D.无法确定2.若A=2x 2+xy+3y 2,B=x 2-xy+2y 2,则当x=2,y=1时,A-B 的值为( ) A.0 B.1 C.6 D.93.若(ax 2-2xy+y 2)-(-ax 2+bxy+2y 2)=6x 2-9xy+cy 2成立,则a 、b 、c 的值分别是( ) A.a=3,b=-7,c=-1 B.a=-3,b=7,c=-1 C.a=3,b=7,c=-1 D.a=-3,b=-7,c=1 二、填空题(每小题5分,共15分)4.若多项式3x 3-2x 2+3x-1与多项式x 2-2mx 3+2x+3的和是关于x 的二次三项式,则m=________.5.请你写出一个以32为系数,包含z y x 、、的五次单项式_________. 6.若多项式2x 2+3x+1的值为0,则多项式4x 2+6x+2021的值为_________. 三、解答题(共23分)7.(11分)由于看错了运算符号,“小马虎”把一个整式减去多项式2ab-3bc+4,误认为加上这个多项式,结果得出答案是2bc-1-2ab ,问原题的正确答案是多少?8.(12分)已知m 是绝对值最小的有理数,且-2a m+2b y 与3a x b 2是同类项,试求2x 3-3xy+6y 2-3mx 3+mxy-9my 2的值.参考答案 基础训练一、1.D 2.C 3.B 4.C 5.B 6.B 7.C 8.C 二、9.五,五,-x 3y 2 10.0,-6m 11.3a 12.9(a-b ) 13.2 14.-1 15.-2x 2-3x+2 16.8a-10b 三、17.解:由多项式是六次五项式可知m+1+3=6,所以m=2.又单项式与单项式的次数相同,所以2n+3-m+1=6,即2n+3-2+1=6,所以n=2. 18.解:(1)原式=2-6x+1-6+8x=2x-3.当x=-21时,原式=2×(-21)-3=-4. (2)原式=2a 3-3a 2b-2ab 2-a 3+2ab 2+b 3+a+3a 2b-a 3-b 3-b=a-b. 当a=2019,b=-2时,原式=2019-(-2)=2021. 19.贝贝、晶晶的计算都不正确.正确答案如下:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n+3mn-4m 2n=-5m 2n+5mn. 20.解:原式=15a 2-6a 2-5a-4a 2-a+3)-5a 2+6a+2019-3=2019.由于计算后的结果中不含字母a ,可知此代数式的值与字母a 的取值无关.所以乐乐将a=2020错写成a=-2020,计算的结果不变. 21. 解:(1)甲每份材料收1元印刷费,另收150元的制版费; 故答案为160,170,150+x ;乙每份材料收2.5元印刷费,故答案为25,50,2.5x;(2)对甲来说,印刷大于800份时人教版七年级上册数学单元练习题:第二章整式的加减一、选择题1.单项式的系数是()A. B. π C. 2 D.2.下列各组式子中,是同类项的是()A. 3x2y与-3xy2B. 3xy与-2yxC. 2x与2x2D. 5xy与5yz3.在式子a2+2,,ab2,,﹣8x,0中,整式有()A. 6个B. 5个C. 4个D. 3个4.下列各式计算结果正确的是()A. a+a=a2B. (a﹣1)2=a2﹣1C. a•a=a2D. (3a)3=9a25.多项式﹣x2+2x+3中的二次项系数是()A. ﹣1B. 1C. 2D. 36.下列说法错误的是()A. 2x2﹣3xy﹣1是二次三项式B. ﹣x+1不是单项式C. 的系数是D. ﹣22xab2的次数是67.计算2a3+3a3结果正确的是()A. 5a6B. 5a3C. 6a6D. 6a38.一个多项式加上3x2y-3xy2得x3-3x2y,则这个多项式是()A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6x2y-3x2y9.6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A. a=2bB. a=3bC. a=4bD. a=b10.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A. ﹣1B. ﹣5C. 5D. 111.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A. 393B. 397C. 401D. 405二、填空题12.单项式﹣x3y的系数是________.13.多项式是a -2a -1 是________次________项式.14.下面是按一定规律排列的一列数:,- ,,- …那么第8个数是________.15.观察下列数:,,,,…按规律写出第6个数是________,第10个数是________,第n个数是________.16.观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是________17.下列图形:它们是按一定规律排列的,依照此规律,第n个图形共有________个★.三、解答题18.化简:(1)2x-5y-3x+y(2)19.先化简,再求值.,其中.20.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1224,47×43=2021,…(1)认真观察,分析上述各式中两因数的个位数、十位数分别有什么联系,找出因数与积之间的规律,并用字母表示出来.(2)验证你得到的规律.21.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:________;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:________;(3)你认为(2)中所写的等式一定成立吗?说明理由.参考答案一、选择题1.D2. B3.B4.C5. A6. D7. B8. C9.A 10.C 11. B二、填空题12. 13.三;三14. 15.;;16.x n+n217.(1+3n)三、解答题18.(1)解:2x-5y-3x+y=(2-3)x+(-5+1)y=-x-4y(2)解:=2a+4b-3a+9b=(2-3)a+(4+9)b=-a+13b19.解:原式=3x²-2xy- [x²-8x+8xy],=3x²-2xy- x²+4x-4xy,= x²-6xy+4x,当时,原式= ×(-2)2-6×(-2)×1+4×(-2),=10+12-8,=14.20.(1)解:上述等式的规律是:两因数的十位数相等,个位数相加等于10,而积后两位是两因数个位数相乘、前两位是十位数乘以(十位数+1);如果用m表示十位数,n表示个位数的话,则第一个因数为10m+n,第二个因数为10m+(10﹣n),积为100m(m+1)+n(10﹣n);等式表示出来为:(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)(2)解:∵左边=(10m+n)(10m﹣n+10),=(10m+n)[10(m+1)﹣n],=100m(m+1)﹣10mn+10n(m+1)﹣n2,=100m(m+1)﹣10mn+10mn+10n﹣n2,=100m(m+1)+n(10﹣n)=右边,∴(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)成立21.(1)④4×6﹣52=﹣1(2)(2n﹣1)(2n+1)﹣(2n)2=﹣1(3)解:左边=(2n﹣1)(2n+1)﹣(2n)2=4n2﹣1﹣4n2=﹣1所以(2)中所写的等式一定成立人教版数学七年级上册第2章整式的加减单元检测卷(含答案解析)一.填空题(共6小题,满分24分,每小题4分)1.(4分)将多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为.2.(4分)“x2的3倍与y的倒数的和”,用代数式表示为.3.(4分)如图是一个数值转换机的示意图.当输入x=3时,则输出的结果为.4.(4分)如果x2﹣3xy=6,3xy+y2=10,则x2+y2=.5.(4分)当a=3.6,b=6.4时,求多项式a2+ab﹣b2+a﹣a2﹣ab+b+b2=.6.(4分)当3x+3﹣x=2时,代数式32x+3﹣2x的值是.二.选择题(共10小题,满分30分,每小题3分)7.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个8.(3分)下列说法错误的是()A.x是单项式B.3x4是四次单项式C.的系数是D.x3﹣xy2+2y3是三次多项式9.(3分)三个连续整数的积是0,则这三个整数的和是()A.﹣3B.0C.3D.﹣3或0或3 10.(3分)下列各式合并同类项后,结果正确的是()A.3a+2b=5ab B.3x3y2﹣2x2y=xyC.3x2+2x3=5x5D.4x2y﹣7yx2=﹣3x2y11.(3分)下列说法中,错误的是()A.x2是二次单项式B.x3﹣2xy2+y3是三次三项式C.0是单项式D.﹣的系数是﹣112.(3分)若﹣3x2m y3与2x4y n的和是一个单项式,则|m﹣n|的值是()A.0B.1C.7D.﹣113.(3分)若A=3m2﹣5m+2,B=3m2﹣5m﹣2,则A与B的大小关系是()A.A=B B.A>B C.A<B D.无法确定14.(3分)将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y15.(3分)原产n吨,增产30%之后的产量应为()A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨16.(3分)一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其它人可享受6折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的优惠”,由此可以判断()A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能三.解答题(共9小题,满分66分)17.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)18.(6分)先化简,再求值:(1)2x2﹣5x+x2+4x,其中x=﹣3.(2),其中x=6,y=﹣1.19.(6分)已知3x|2a﹣1|y与﹣2xy|b|是同类项,并且a与b互为负倒数,求ab﹣3(﹣b)﹣+6的值.20.(6分)李可同学欲将一个多项式加上2xy﹣3yz+4时,由于错把“加上”当作“减去”使得计算结果为﹣6xy+8yz﹣9,请你求出正确的答案.21.(6分)设a、b、c为非零有理数,|a|+a=0,|ab|=ab,|c|﹣c=0.化简:|b|﹣|a+b|﹣|c ﹣b|+|a﹣c|.22.(6分)已知a=﹣1,b=﹣2,求代数式{a2b﹣[3a2b﹣(4ab2+a2b)]}+3a2b的值.23.(7分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.24.(8分)已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?25.(9分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?人教版数学七年级(上册)第2章整式的加减单元检测卷参考答案一.填空题(共6小题,满分24分,每小题4分)1.(4分)将多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为﹣2x3+x2y﹣5xy+7.【分析】根据多项式的项的概念和降幂排列的概念解答即可.【解答】解:多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为﹣2x3+x2y﹣5xy+7,故答案为:﹣2x3+x2y﹣5xy+7.2.(4分)“x2的3倍与y的倒数的和”,用代数式表示为3x2+.【分析】首先表示出x2的3倍、y的倒数,然后求其和即可.【解答】解:依题意得3x2+.故答案是:3x2+.3.(4分)如图是一个数值转换机的示意图.当输入x=3时,则输出的结果为26.【分析】把x的值代入运算程序进行计算即可得解.【解答】解:x=3时,32×3﹣2=27﹣1=26.故答案为:26.4.(4分)如果x2﹣3xy=6,3xy+y2=10,则x2+y2=16.【分析】已知等式相加即可求出原式的值.【解答】解:∵x2﹣3xy=6,3xy+y2=10,∴x2+y2=x2﹣3xy+3xy+y2=10+6=16,故答案为:165.(4分)当a=3.6,b=6.4时,求多项式a2+ab﹣b2+a﹣a2﹣ab+b+b2=10.【分析】所求式子合并同类项得到最简结果,将a与b的值代入计算即可求出值.【解答】解:a2+ab﹣b2+a﹣a2﹣ab+b+b2=a+b,当a=3.6,b=6.4时,原式=3.6+6.4=10.故答案为:106.(4分)当3x+3﹣x=2时,代数式32x+3﹣2x的值是2.【分析】把3x+3﹣x=2两边平方即可求解.【解答】解:把3x+3﹣x=2两边平方得:32x+3﹣2x+2•3x+3﹣x=4,即32x+3﹣2x=2.故答案是2.二.选择题(共10小题,满分30分,每小题3分)7.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个【分析】根据整式的定义,结合题意即可得出答案.【解答】解:在﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有﹣mn,m,8,x2+2x+6,,,一共6个.故选:C.8.(3分)下列说法错误的是()A.x是单项式B.3x4是四次单项式C.的系数是D.x3﹣xy2+2y3是三次多项式【分析】根据多项式的有关概念,以及单项式的系数的定义即可作出判断.【解答】解:A、x是单项式,正确;B、3x4是四次单项式,正确;C、的系数是,错误;D、x3﹣xy2+2y3是三次多项式,正确;故选:C.9.(3分)三个连续整数的积是0,则这三个整数的和是()A.﹣3B.0C.3D.﹣3或0或3【分析】设最小的整数为n﹣1,根据连续的整数只是相差1,知另外的两个整数分别是n,n+1.由等量关系这三个连续整数的积是0,列出方程.然后根据三个因式的积是0,则每一个因式都可能是0,分情况讨论.【解答】解:设最小的整数为n﹣1,根据题意得(n﹣1)•n•(n+1)=0,解得n﹣1=0或n=0或n+1=0,当n﹣1=0时,n=1,这三个数分别是0,1,2,这三个数的和是3;当n=0时,这三个数分别是﹣1,0,1,这三个数的和是0;当n+1=0时,n=﹣1,这三个数是﹣2,﹣1,0,这三个数的和是﹣3.故选:D.10.(3分)下列各式合并同类项后,结果正确的是()A.3a+2b=5ab B.3x3y2﹣2x2y=xyC.3x2+2x3=5x5D.4x2y﹣7yx2=﹣3x2y【分析】直接利用合并同类项法则计算得出答案.【解答】解:A、3a+2b,无法合并,故此选项错误;B、3x3y2﹣2x2y,无法合并,故此选项错误;C、3x2+2x3,无法合并,故此选项错误;D、4x2y﹣7yx2=﹣3x2y,正确.故选:D.11.(3分)下列说法中,错误的是()A.x2是二次单项式B.x3﹣2xy2+y3是三次三项式C.0是单项式D.﹣的系数是﹣1【分析】根据单项式、多项式的定义即可判断;【解答】解:A、x2是二次单项式;正确,本选项不符合题意.B、x3﹣2xy2+y3是三次三项式;正确,本选项不符合题意.C、0是单项式;正确,本选项不符合题意.D、﹣的系数是﹣1;错误,系数应该是﹣,本选项符合题意.故选:D.12.(3分)若﹣3x2m y3与2x4y n的和是一个单项式,则|m﹣n|的值是()A.0B.1C.7D.﹣1【分析】根据单项式的和是单项式,可得同类项,根据同类项,可得m、n的值,根据差的绝对值是大数减小数,可得答案.【解答】解:由题意,得2m=4,n=3.解得m=2,n=3.|m﹣n|=|2﹣3|=1,故选:B.13.(3分)若A=3m2﹣5m+2,B=3m2﹣5m﹣2,则A与B的大小关系是()A.A=B B.A>B C.A<B D.无法确定【分析】利用作差法即可判断两个多项式的大小关系.【解答】解:A﹣B=(3m2﹣5m+2)﹣(3m2﹣5m﹣2)=3m2﹣5m+2﹣3m2+5m+2=4>0,∴A﹣B>0,∴A>B,故选:B.14.(3分)将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y【分析】先根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.【解答】解:原式=(2+3﹣4)(x+y)=x+y,故选:A.15.(3分)原产n吨,增产30%之后的产量应为()A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨【分析】原产量n吨,增产30%之后的产量为n×(1+30%),再进行化简即可.【解答】解:由题意得,增产30%之后的产量为n×(1+30%)=n130%吨.故选:B.16.(3分)一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其它人可享受6折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的优惠”,由此可以判断()A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能【分析】可以设每人的原票价为a元,然后按照旅行社的要求代入数据进行计算即可.【解答】解:设每人的原票价为a元,如果选择甲,则所需要费用为a+0.6a×2=2.2a(元),如果选择乙,则所需费用为:×3×a=2.4a(元),∵2.2a<2.4a,∴甲比乙优惠,故选:A.三.解答题(共9小题,满分66分)17.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)【分析】合并同类项就是系数和系数相加作为系数,字母和字母的指数不变.【解答】解:(1)15x+4x﹣10x=(15+4﹣10)x=9x(2)﹣p2﹣p2﹣p2=﹣3p2(3)3x2y﹣3xy2+2yx2﹣y2x=5x2y﹣4xy2(4)=a2b=a2b.18.(6分)先化简,再求值:(1)2x2﹣5x+x2+4x,其中x=﹣3.(2),其中x=6,y=﹣1.【分析】按要求先化简再求值.注意去括号法则:++得+,﹣﹣得+,﹣+得﹣,+﹣得﹣;合并同类项法则:把同类项的系数相加减,字母和字母指数的部分不变.【解答】解:(1)原式=3x2﹣x,当x=﹣3时,原式=30;(2)原式==﹣,当x=6,y=﹣1时,原式=﹣2.19.(6分)已知3x|2a﹣1|y与﹣2xy|b|是同类项,并且a与b互为负倒数,求ab﹣3(﹣b)﹣+6的值.【分析】此题要抓住同类项的定义“所含字母相同,相同字母的指数相同”去列方程:|2a ﹣1|=1,|b|=1,解方程即可求得a,b的值;同时注意a与b互为负倒数这一条件;再将代数式ab﹣3(﹣b)﹣+6化简,将a,b的值代入即可.【解答】解:由题意可知|2a﹣1|=1,|b|=1,解得a=1或0,b=1或﹣1.又因为a与b互为负倒数,所以a=1,b=﹣1.原式=ab﹣a+3b﹣a+6=ab﹣2a+3b+6,当a=1,b=﹣1时,原式=1×(﹣1)﹣2×1+3×(﹣1)+6=0.20.(6分)李可同学欲将一个多项式加上2xy﹣3yz+4时,由于错把“加上”当作“减去”使得计算结果为﹣6xy+8yz﹣9,请你求出正确的答案.【分析】用这个多项式加上﹣6xy+8yz﹣9,求出这个多项式的式子,然后用这个多项式再减去﹣6xy+8yz﹣9,求出结果即可.【解答】解:﹣6xy+8yz﹣9+2(2xy﹣3yz+4)=﹣6xy+8yz﹣9+4xy﹣6yz+8=﹣2xy+2yz﹣1.21.(6分)设a、b、c为非零有理数,|a|+a=0,|ab|=ab,|c|﹣c=0.化简:|b|﹣|a+b|﹣|c ﹣b|+|a﹣c|.【分析】根据|a|+a=0,|ab|=ab,|c|﹣c=0知a<0,b<0,c>0,继而知a+b<0,c﹣b >0,a﹣c<0,根据绝对值性质去绝对值符号后合并即可得.【解答】解:∵|a|+a=0,|c|﹣c=0,即|a|=﹣a,|c|=c,∴a<0,c>0,∵|ab|=ab,∴ab>0,∴b<0,则原式=﹣b+a+b﹣c+b﹣a+c=b.22.(6分)已知a=﹣1,b=﹣2,求代数式{a2b﹣[3a2b﹣(4ab2+a2b)]}+3a2b的值.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2b﹣3a2b+4ab2+a2b+3a2b=a2b+4ab2,当a=﹣1,b=﹣2时,原式=﹣3﹣16=﹣19.23.(7分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.【分析】根据题意可知,阴影部分面积是长方形面积减去四个正方形的面积.【解答】解:(1)由图可知:ab﹣4x2.(2)阴影部分的面积为:200×150﹣4×102=29 600(m2).24.(8分)已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?【分析】(1)直接把A=x2﹣2xy,B=y2+3xy代入进行计算即可;(2)根据题意得出C的表达式,再去括号,合并同类项即可;(3)把A、B、C的表达式代入,合并同类项后,把x=﹣2,y=﹣3代入进行计算即可.【解答】解:(1)∵A=x2﹣2xy,B=y2+3xy,∴2A﹣3B=2(x2﹣2xy)﹣3(y2+3xy)=2x2﹣4xy﹣3y2﹣9xy=2x2﹣13xy﹣3y2;(2)∵A﹣B+C=0,∴C=B﹣A=(y2+3xy)﹣(x2﹣2xy)=y2+3xy﹣x2+2xy=y2+5xy﹣x2;(3)∵A=x2﹣2xy,B=y2+3xy,C=y2+5xy﹣x2,∴2A﹣B+C=2(x2﹣2xy)﹣(y2+3xy)+(y2+5xy﹣x2)=2x2﹣4xy﹣y2﹣3xy+y2+5xy﹣x2=x2﹣2xy,当x=﹣2,y=﹣3,原式=4﹣2×6=﹣8.25.(9分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?【分析】(1)根据后一排比前一排多2个座位,第n 排比第一排多2(n ﹣1)个座位;(2)①把n =25,m =20代入进行计算即可得解;②利用求和公式列式计算即可得解.【解答】(1)m +2(n ﹣1).(2)①当m =20,n =25时,m +2(n ﹣1)=20+2×(25﹣1)=68(个);②m +m +2+m +2×2+…+m +2×(25﹣1)=25m +600.当m =20时,25m +600=25×20+600=1 100(人).解:(1)第一排有m 个座位,后边的每一排比前一排多两个座位,第n 排有m +2(n ﹣1)=2n +m ﹣2(个);(2)当m =20时,25排:2×25+20﹣2=68(个);(3)25排最多可以容纳:(20+68)×25÷2=88×25÷2=1100(位)答:如果这个剧院共25排,那么最多可以容纳1100位观众.人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
人教版数学七年级上册:第2章 整式的加减 单元测试卷(含答案)
第二章《整式的加减》单元测试(满分:150分时间:120分钟) 一、选择题(每小题4分,共40分)1.下列各式中不是单项式的是( )A.a3B.-15C.0 D.3a2.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费( )A.(3a+4b)元 B.(4a+3b)元C.4(a+b)元 D.3(a+b)元3.-[a-(b-c)]去括号正确的是( )A.-a-b+c B.-a+b-cC.-a-b-c D.-a+b+c4.多项式xy2+xy+1是( )A.二次二项式 B.二次三项式C.三次二项式 D.三次三项式5.下列运算中,正确的是( )A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b-3ba2=0 D.5a2-4a2=16.若-x3y a与x b y是同类项,则a+b的值为( )A.2 B.3 C.4 D.57.若A=3x2-4y2,B=-y2-2x2+1,则A-B等于( )A.x2-5y2+1 B.x2-3y2+1C.5x2-3y2-1 D.5x2-3y2+18.已知x-3y=-3,则5-x+3y的值为( )A.0 B.2 C.5 D.89.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.此空格的地方被钢笔水弄污了,那么空格中的一项是( )A.-xy B.xy C.-7xy D.7xy10.如图,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个长方形,(不重复无缝隙),则长方形的长为( )A .2 cmB .2a cmC .4a cmD .(2a -2)cm二、填空题(每小题3分,共30分) 11.计算:2x +x =____________.12.单项式-2xy25的系数是____________,次数是____________.13.任写一个与-12a 2b 是同类项的单项式:____________.14.将多项式1-ab 2+a 3b -13a 2按字母a 降幂排列是________________.15.一个长方形的长为2a +3b ,宽为a +b ,则此长方形的周长为____________. 16.若式子mx 2+y 2-5x 2+5的值与字母x 的取值无关,则m 的值为____________. 17.某种商品原价是m 元,第一次降价打八折,第二次降价每件又减15元,第二次降价后每件的售价是____________元.18.一个多项式与2x 2-xy +3y 2的和是-2xy +x 2-y 2,则这个多项式是________________. 19.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________________.20.观察图形,则第n 个图形中三角形的个数为____________(用含n 的式子表示).三、(本大题12分) 21.(1)计算:①(3a 2+1)-(4a 3-3a 2); ②6a 2-[(5ab +a 2)+2ab];(2)先化简,再求值:2(x +x 2y)-23(6x 2y +3x)-y ,其中x =1,y =3.四、(本大题12分)22.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12还多1岁,求这三名同学的年龄的和.五、(本大题14分)23.小明在计算一种多项式减去2a 2+a -5的差时,因忘了对两个多项式用括号括起来,因此减式后面的两项没有变号,结果得到的差是a 2+3a -1.据此你能求出这个多项A 式吗?这两个多项式的差应该是多少?六、(本大题14分)24.如图所示,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0).(1)用a ,b 表示阴影部分的面积;(2)计算当a =3,b =5时,阴影部分的面积.七、(本大题12分)25.阅读材料:我们知道,4x+2x-x=(4+2-1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a +b)+2(a+b)-(a+b)=(4+2-1)(a+b)=5(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)看成一个整体,合并3(a-b)2-7(a-b)2+2(a-b)2的结果是____________;A.-6(a-b)2 B.6(a-b)2C.-2(a-b)2 D.2(a-b)2(2)已知x2+2y=5,求3x2+6y-21的值;拓广探索:(3)已知a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)的值.八、(本大题16分)26.某校团委组织了有奖征文活动,并设立了一、二、三等奖,根据设奖情况买了50件奖品,其二等奖奖品的件数比一等奖奖品的件数的2倍少10,各种奖品的单价如下表所示:如果计划一等奖奖品买x件,买50件奖品的费用是y元.(1)先填表,再用含x的式子表示y,并化简;(2)若一等奖奖品买10件,则共花费多少?参考答案:11.3x 12. 52-3 13. a 2b(答案不唯一) 14.1ab -a 31-b a 223+ 15.6a+8b 16.517. (0.8m-15) 18. -x 2-xy-4y 219.-b+c+a 20.4n21.①原式=3a 2+1-4a 3+3a 2=-4a+6a 2+1.②原式=6a 2-5ab-2ab=5a 2-7ab (2)原式=2x+2x 2y-4x 2y-2x-y=-2x 2y-y当x=1,y=3时,原式=-2×12×3-3=922. 因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为(2m-4)岁, 又因为小华的年龄比小红的年龄的21还多1岁, 所以小华的年龄为[21(2m-4)+1]岁, 则这三名同学的年龄的和为:m+(2m-4)+[21(2m-4)+1]=m+2m-4+(m-2+1)=4m-5(岁), 答:这三名同学的年龄的和是(4m-5)岁23.根据题意,得A=a 2+3a-1+2a 2-a+5=3a 2+2a+4.这两个多项式的差应该是(3a 2+2a+4)-(2a 2+a-5)=3a 2+2a+4-2a 2-a+5=a 2+a+9.24.(1)阴影部分的面积为21b 2+21a(a+b). (2)当a=3,b=5时,21b 2+21a(a+b)=21×25+21×3×(3+5)=249,即阴影部分的面积为249.25.(1)C(2)因为x2+2y=5,所以原式=3(x2+2y)-21=15-21=-6(3)因为a-2b=3,2b-c=-5,c-d=10,所以原式=a-c+2b-d-2b+c=a-d=a-2b+2b-c+c-d=(a-2b)+(2b-c)+(c-d)=3-5+10=826.(1)2x-10 60-3x依题意,得y=12x+10(2x-10)+5(60-3x)=12x+20x-100+300-15x=17x+200(2)当x=10时,17x+200=17×10+200=370.答:若一等奖奖品买10件,共花费370元。
2016年人教版七年级数学上册第二章整式的加减单元测试题及答案
C. D.
5.已知出租汽车行驶3千米内(包括3千米)的车费是7元,以后每行驶1千米,再加收1元,如果某人坐出租汽车行驶了 千米( 是整数,且 ),则车费是()
A.(7+ )元B.(4+ )元C.(7- )元D.(3+ )元
6.如果2 的和是单项式,则()
A. B.
C. D.
7.下列说法错误的是()
25.(10分)设
,且 的值.
26.(12分)阅读下列材料:在计算 时,我们发现,从第一个数开始,后面的每个数与它前面的一个数的差都是一个相等的常数,具有这样规律的一列数,除了直接相加外,我们还可以由厦门的公式来计算它们的和 ,即 (其中 表示数的个数, 表示第一个数, 表示最后一个数),那么 .
用上面的知识解答下面的问题.
A. B.
C.2 D.
考点:合并同类项
分析:系数相加减,字母和字母的指数不变
答案Байду номын сангаасD.
3.下列各组中的两个单项式,是同类项的是( )
A. B.3 C.0和5D.
考点:同类项
分析:同类项是字母相同,并且相同字母的指数也相同.
答案:C.
4.单项式-1减去多项式 ()
A. B.
C. D.
考点:去括号
分析:注意各项要全变号
A.4 枚B.(4 )枚C.(4 )枚D. 枚
二、填空题(每小题3分,共30分)
11.下列代数式: ,其中单项式有
个.
12.式子 与 是同类项,其中单项式有个.
13.一个多项式加上 应为.
14.一个长方形的一边长为4 ,另一边长为2 ,则这个长方形的周长为.
15.某货物以 元买入,如果在买入价的基础上增加 作为售价,货物卖不出去,只好在售价的基础上再降价 出售,则降价后的售价用式子表示出来是.
【精选6套】新人教版数学七年级上册第二章整式的加减单元测试及答案.doc
人教版初中数学七年级上册第2章《整式加减》单元测试卷(含答案)一、选择题(每小题3分,共24分)1.单项式32yx -的系数是( )A.0B.-1C.31 D.31- 2.小明说2a 2b 与5-2ab 是同类项;小颖说2a 2b 与ab 2c 是同类项;小华说2a 2b 与-ba 2是同类项,他们三人说法正确的是( )A 小明 B.小颖 C.小华 D.三人都正确 3.多项式-x 2-3x-2的各项分别是( )A.-x 2,3x ,2B.-x 2,-3x ,-2C.x 2,3x ,2D.x 2,-3x ,-24.若单项式5x a-2y 3与-32x 4y b的和仍是单项式,则a ,b 的值分别为( ) A.4,3 B.4,-3 C.6,3 D.6,-35.下面四道去括号的题目是从小马虎的作业本上摘录下来的,其中正确的是( ) A.2(x-y )=2x-y B.-(m-n )=-m+n C.2(a+61)=2a+121D.-(3x 2+2y )=-3x 2+2y 6.化简(x-3y )-(-3x-2y )的结果是( ) A.4x-5y B.4x-y C.-2x-5y D.-2x-y 7.化简x-[y-2x-(x-y )]等于( ) A.-2x B.2x C.4x-2y D.2x-2y8.如果m-n=51,那么-3(n-m )的结果是( ) A.53- B.35 C.53 D.151二、填空题(每小题3分,共24分)9.代数式2x 2y-3x+xy-1-x 3y 2是_______次________项式,次数最高的项是_______. 10.单项式-3m 与3m 的和是________,差是________.11.今年来,国家加大房价调控力度.受此影响,某地房价第二、第三季度不断下跌,第二季度下降a 元/m 2,第三季度又下降了第二季度所降房价的2倍,则该地两季度房价共下降________元/m 2.12.把(a-b )当作一个整体,多项式5(a-b )+7(a-b )-3(a-b )合并同类项的结果是________.13.若x-y=3,则5-x+y=________.14.如果单项式-21x 2y 3与0.35x m y n 是同类项,则(m-n )2019=_______. 15.一个多项式与3x 2-2+x 的和是x 2-2x ,则这个多项式是_______.16.长方形的一边长为a-3b ,一邻边比这边长2a+b ,则这个长方形的周长为________. 三、解答题(共52分) 17.(8分)已知多项式-73x m+1y 3+x 3y 2+xy 2-5x 5-9是六次五项式,单项式32a 2nb 3-mc 的次数与多项式的次数相同,求n 的值.18.(12分)先化简,再求值:(1)2+(-6x+1)-2(3-4x ),其中x=-21; (2)(2a 3-3a 2b-2ab 2)-(a 3-2ab 2+b 3-a )+(3a 2b-a 3-b 3-b ),其中a=2019,b=-2.19.(10分)贝贝和晶晶两人共同化简:2(m 2n+mn )-3(m 2n-mn )-4m 2n ,他们的化简过程分别如下:贝贝:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n-3mn-4m 2n=-5m 2n-mn. 晶晶:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+mn-3m 2n-mn-4m 2n=-5m 2n. 如果你和他们是同一个学习小组,你会支持谁?为什么?若你认为他们的计算都不正确,请把你认为正确的化简写下来.20.(10分)有一道题:“先化简,再求值:15a 2-(6a 2+5a )-(4a 2+a-3)+(-5a 2+6a+2019)-3,其中a=2020.”乐乐做题时,把“a=2020”错写成“a=-2020”.但他的计算结果却是正确的,你知道这是为什么吗?21.(12分)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x 份(x 为正整数)创新提高(满分50分,时间30分钟) 一、选择题(每小题4分,共12分)1.若m 2+mn=2,nm+n 2=-1,则m 2+2mn+n 2的值为( ) A.0 B.-1 C.1 D.无法确定2.若A=2x 2+xy+3y 2,B=x 2-xy+2y 2,则当x=2,y=1时,A-B 的值为( ) A.0 B.1 C.6 D.93.若(ax 2-2xy+y 2)-(-ax 2+bxy+2y 2)=6x 2-9xy+cy 2成立,则a 、b 、c 的值分别是( ) A.a=3,b=-7,c=-1 B.a=-3,b=7,c=-1 C.a=3,b=7,c=-1 D.a=-3,b=-7,c=1 二、填空题(每小题5分,共15分)4.若多项式3x 3-2x 2+3x-1与多项式x 2-2mx 3+2x+3的和是关于x 的二次三项式,则m=________.5.请你写出一个以32为系数,包含z y x 、、的五次单项式_________. 6.若多项式2x 2+3x+1的值为0,则多项式4x 2+6x+2021的值为_________. 三、解答题(共23分)7.(11分)由于看错了运算符号,“小马虎”把一个整式减去多项式2ab-3bc+4,误认为加上这个多项式,结果得出答案是2bc-1-2ab ,问原题的正确答案是多少?8.(12分)已知m 是绝对值最小的有理数,且-2a m+2b y 与3a x b 2是同类项,试求2x 3-3xy+6y 2-3mx 3+mxy-9my 2的值.参考答案 基础训练一、1.D 2.C 3.B 4.C 5.B 6.B 7.C 8.C 二、9.五,五,-x 3y 2 10.0,-6m 11.3a 12.9(a-b ) 13.2 14.-1 15.-2x 2-3x+2 16.8a-10b 三、17.解:由多项式是六次五项式可知m+1+3=6,所以m=2.又单项式与单项式的次数相同,所以2n+3-m+1=6,即2n+3-2+1=6,所以n=2. 18.解:(1)原式=2-6x+1-6+8x=2x-3. 当x=-21时,原式=2×(-21)-3=-4. (2)原式=2a 3-3a 2b-2ab 2-a 3+2ab 2+b 3+a+3a 2b-a 3-b 3-b=a-b. 当a=2019,b=-2时,原式=2019-(-2)=2021. 19.贝贝、晶晶的计算都不正确.正确答案如下:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n+3mn-4m 2n=-5m 2n+5mn. 20.解:原式=15a 2-6a 2-5a-4a 2-a+3)-5a 2+6a+2019-3=2019.由于计算后的结果中不含字母a ,可知此代数式的值与字母a 的取值无关.所以乐乐将a=2020错写成a=-2020,计算的结果不变. 21. 解:(1)甲每份材料收1元印刷费,另收150元的制版费; 故答案为160,170,150+x ; 乙每份材料收2.5元印刷费, 故答案为25,50,2.5x ;(2)对甲来说,印刷大于800份时人教版七年级上册数学第二章整式加减单元检测卷一、选择题:(每小题3分共30分)1.单项式 的系数和次数分别是( ) A.B.C.D.2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3B .6C .﹣3D .05.下列运算结果正确的是( ) A .33(2)6x x =B .33x x x ÷=C .325x x x ? D .23x x x +=6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.87.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .69.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式10.为庆祝六一儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图:按照上面的规律,摆 个“金鱼”需用火柴棒的根数为( ) A. 根B. 根C. 根D. 根二、填空题:(每小题3分共18分)11.3个连续奇数中,n 为最大的奇数,则这3个数的和为_________.12.单项式235πx y-的系数是____________13.已知a-b=-10,c+d=3,则(a+d )-(b-c )=______.14.已知一个多项式与3x 2+9x +2的和等于3x 2+4x -3,则此多项式是______. 15.已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+b a =102×b a符合前面式子的规律,则a+b=_____.16.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆n 根火柴棒时,共需要摆__________根火柴棒.三、解答题:(共72分)17.先化简,再求值:22225(3)2(7)a b ab a b ab ---,其中1a =-,1b =.18.已知, , ,求 ,并确定当 时, 的值.19.探索规律:用棋子按如图所示的方式摆正方形.① ② ③……(1)按图示规律填写下表:(2)按照这种方式摆下去,摆第20个正方形需要多少个棋子? (3)按照这种方式摆下去,摆第n 个正方形需要多少个棋子?20.已知m 是最大的负整数,且212m y a b ++-与33x a b 是同类项,求代数式222223639x xy y mx mxy my -+-+-的值.21.化简或计算:( ) ; ( ) . ( ) ; ( ).22.(1)化简 :()()222252423-+-+-a b ab c c a b ab;(2)先化简,再求值:2212322232a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭;其中 a = -2 ,b = 3223.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)24.、两仓库分别有水泥吨和吨,、两工地分别需要水泥吨和吨.已知从、仓库到、工地的运价如下表:(1)若从仓库运到工地的水泥为吨,则用含的代数式表示从仓库运到工地的水泥为_____吨,从仓库将水泥运到工地的运输费用为______元;(2)求把全部水泥从、两仓库运到、两工地的总运输费(用含的代数式表示并化简);(3)如果从仓库运到工地的水泥为吨时,那么总运输费为多少元?第二章整式的加减一、选择题:(每小题3分共30分)1.单项式的系数和次数分别是()A. B. C. D.【答案】C解:单项式的系数是,次数=2+1+3=6.故选:C.2.下列语句中错误的是()A.单项式﹣a的系数与次数都是1 B.12xy是二次单项式C.﹣23ab的系数是﹣23D.数字0也是单项式【答案】A解A 、单项式﹣a 的系数是﹣1,次数是1,故此选项错误,符合题意;B 、12xy 是二次单项式,正确,不合题意; C 、﹣23ab 系数是﹣23,正确,不合题意;D 、数字0也是单项式,正确,不合题意; 故选:A .3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元【答案】C解:由题意得3月份的产值为 万元,4月份的产值为 万元. 故选:C . 4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3 B .6C .﹣3D .0【答案】D解由题意可得,2x ﹣1=5,3y =9,解得x =3,y =3,所以x ﹣y =3﹣3=0,故选:D . 5.下列运算结果正确的是( ) A .33(2)6x x = B .33x x x ÷= C .325x x x ? D .23x x x +=【答案】C解:A 、33(2)8x x =,故该选项计算错误;B 、331x x ÷=,故该选项计算错误;C 、325x x x ?,故该选项计算正确;D 、x 和x 2不是同类项,不能合并,故该选项计算错误; 故选:C .6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8【答案】C解∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b), ∴b−a=b+空白面积−(a+空白面积)=大正六边形−小正六边形=16−9=7. 故选:C.7.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c【答案】C解根据数轴得: 0c b a <<<,且a b c <<,0a b ∴->,0c a -<,b+c 0<,则原式=a-b+a-c+b+c+c-a=a+c , 所以C 选项是正确的.8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0 B .1- C .2或2-D .6【答案】B解原式22262351x ax y bx x y =+-+-+++,()()222a+347x b x y =-+++,代数式的值与x 的取值无关 ,()()22=0a+3=0b ∴-,, b=1a=-3∴, ,当b=1,a=-3时 ,a+2b=-3+2=-1, 所以B 选项是正确的.9.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式 D.P Q 是关于x 的十五次多项式【答案】C解A. 两式相加只能为5次多项式,故本选项错误; B 、P−Q人教版七年级数学上册第二章整式加减单元测试(含答案)一、单选题1.单项式-23x y的系数、次数分别是( )A.-1,3B.1,3C.13,3 D.-13,3 2.下列式子中代数式的个数为( ) ①-2ab ,②π,③s =12(a +b )h ,④x +3≥y ,⑤a (b +c )=ab =ac ,⑥1+2 A .2B .3C .4D .53.下列说法中,正确的是( ) A .5mn 不是整式 B .abc 的系数是0C .3是单项式D .多项式22x y xy-的次数是54.如果m ,n 都是正整数,那么多项式 的次数是( ) A.B.mC.D.m ,n 中的较大数5.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元D. 万元6.已知两个完全相同的大长方形,长为 ,宽为 ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么 与 之间的关系是( )A. B.C.D.7.若单项式212a b a b x y +-与333x y -是同类项,则b a 的值是( ) A .2B .1C .3D .48.[]()a b c --+去括号后应为( ) A .-a-b+cB .-a+b-cC .-a-b-cD .-a+b+c9.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( ) A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 210.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .2211. 等于( ) A.B.C.D.12.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8二、填空题13.已知212a a -+=人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( ) A .-2x 2y 与xy 2B .x 2y 与x 2z C .3mn 与4nmD .-0.5ab 与abc2.已知苹果的单价为a 元/千克,香蕉的单价为b 元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab =6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________.12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 的取值无关,求y 的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2y9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12.原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2). 当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A=5x2-5x+3,B=x2-x-1,所以2A-B=2(5x2-5x+3)-(x2-x-1)=10x2-10x+6-x2+x+1=9x2-9x+7.18.解:(1)8x+6y+5(20―x―y)=(3x+y+100)吨.答:这20辆汽人教版数学七年级上册通关宝典(9)-《整式的加减》单元检测一、选择题(共10小题;共30分)1. 下列说法正确的是A. 的系数是B. 单项式的系数为,次数为C. 的次数为D. 的系数为2. 下列说法中,正确的有①的系数是;②的次数是;③多项式的次数是;④和都是整式.A. 个B. 个C. 个D. 个3. 多项式的次数及最高次项的系数分别是A. ,B. ,C. ,D. ,4. 在如图所示的年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是星期一星期二星期三星期四星期五星期六星期日A. B. C. D.5. 化简的结果等于A. B. C. D.6. 若,则的值为A. B. C. D.7. 若与是同类项,则的值为A. B. C. D.8. 已知,当时,的值是,当时,的值是A. B. C. D. 无法确定9. 古希腊著名的毕达哥拉斯学派把,,,这样的数称为“三角形数”,而把,,,这样的数称为“正方形数”.从图形可以发现,任何一个大于的“正方形数”,都可以看作两个相邻“三角形数”之和.下列等式中符合这一规律的是A. B. C. D.10. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定的值为A. B. C. D.二、填空题(共6小题;共18分)11. 如果,则.12. 单项式的系数是,次数是.13. 如果是五次多项式,那么.14. 填空:;.15. 若与的和是单项式,则式子的值是.16. 下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是.三、解答题(共6小题;共52分)17. 去括号,并合并同类项:(1);(2).18. 将式子,分别反过来,你得到两个怎样的等式?(1)比较你得到的等式,你能总结添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式的值,把它的后两项放在:①前面带有“”号的括号里;②前面带有“”号的括号里.19. 如果关于的多项式不含项和人教版数学七年级上册第二章整式的加减单元测试及答案一、单选题1.下列各式中不是整式的是()A. 3xB.C.D. x-3y2.下列各组单项式中,为同类项的是( )A. a3与a2B. a2与2a2C. 2xy与2xD. -3与a3.a+b=﹣3,c+d=2,则(c﹣b)﹣(a﹣d)的值为()A. 5B. -5C. 1D. -14.已知一个多项式与2x2﹣3x﹣1的和等于x2﹣2x﹣3,则这个多项式是()A. ﹣x2+2x+2B. ﹣x2+x+2C. x2﹣x+2D. ﹣x2+x﹣25.下列说法正确的是()A. 0不是单项式B. x没有系数C. ﹣xy5是单项式D. 是多项式6.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c 就是完全对称式.下列三个代数式:①(a-b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A. ①②B. ①③C. ②③D. ①②③7.代数式的4x﹣4﹣(4x﹣5)+2y﹣1+3(y﹣2)值()A. 与x,y都无关B. 只与x有关C. 只与y有关D. 与x,y 都有关8.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为()A. (2n+1)2B. (2n-1)2C. (n+2)2D. n29.长方形的一边长等于3x+2y ,另一边长比它长x-y ,这个长方形的周长是()A. 4x+yB. 12x+2yC. 8x+2yD. 14x+6y10.如图,按大拇指,食指,中指,无名指,小指,再无名指,中指……的顺序数数,当数到2018时,对应的手指是()A. 食指B. 中指C. 无名指D. 小指二、填空题11.单项式- x2y的系数是________.12.﹣的系数是a,次数是b,则a+b=________.13.如果(a-5)mn b+2是关于m、n的一个五次单项式,那么a=________,b=________.14.有这样一个数字游戏:将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.15.若|x﹣1|+(y+2)2=0,则(x+y)2017=________.16.计算(9a2b+6ab2)÷3ab=________.17.在计算机程序中,二叉树是一种表示数据结构的方法.如图,﹣层二叉树的结点总数为1;二层二叉树的结点的总数为3;三层二叉树的结点总数为7;四层二叉树的结点总数为15…,照此规律,七层二叉树的结点总数为________.三、计算题18.计算:(1)(2)19.多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式,求a2+ +a的值.四、解答题20.先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)21.七年级某同学做一道题:“已知两个多项式A,B,,计算”,他误将写成了,结果得到答案,请你帮助他求出正确的答案.22.先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣,b=1.五、综合题23.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)并按此规律计算:(a)2+4+6+…+100的值;(b)52+54+56+…+200的值.参考答案一、单选题1. B2. B3. A4. D5. C6. A7.C8.A9.D10. A二、填空题11. -12.13.≠5;214.2;615.-116.3a+2b17. 127三、计算题18.解:(1)==(2)===19.解:∵多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式∴(a2-4)=0 ∴a=±2又∵a+2≠0∴a≠-2∴a=2∴a2+ +a=22+ +2=4+ +2=四、解答题20.解:3(2x2﹣y2)﹣2(3y2﹣2x2)=6x2﹣3y2﹣6y2+4x2=(6x2+4x2)+(﹣3y2﹣6y2)=10x2﹣9y2.21.解:∵2A+B=x2+5x﹣6,A=x2+2x﹣1,∴B=(x2+5x﹣6)﹣2(x2+2x﹣1)=x2+5x﹣6﹣2x2﹣4x+2=﹣x2+x﹣4,∴A+2B=x2+2x﹣1+2(﹣x2+x﹣4)=x2+2x﹣1﹣2x2+2x﹣8=﹣x2+4x﹣922.解:原式=a2﹣2ab+2a2﹣2b2﹣a2+2ab﹣b2=2a2﹣3b2,当a=﹣,b=1时,原式=﹣2.5五、综合题23.(1)解:S=n(n+1)(2)解:(a)2+4+6+…+100 =50×51=2550;(b)52+54+56+…+200=(2+4+6+8+...+200)﹣(2+4+6++ (50)=100×101﹣25×26=10100﹣650=9450.。
人教版七年级数学上册第二章《整式的加减》检测卷及参考答案 (9)
人教版七年级数学上册第二章《整式的加减》检测卷(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列式子,不是整式的是( )A .x y -12B .37xC .x -11D .0 2.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .-2xy 2B .3x 2C .2xy 3D .2x 33.如果一个多项式的次数是5,那么这个多项式的任何一项的次数满足( )A .都小于5B .都大于5C .都不小于5D .都不大于54.下列各组单项式,不是同类项的是( )A .3x 2y 与-2yx 2B .2ab 2与-ba 2C .xy 3与5xy D .23a 与32a 5.若单项式2x n y m -n 与单项式3x 3y 2n 的和是5x n y 2n ,则m 与n 的值分别是( )A .3,9B .9,9C .9,3D .3,36.-[x -(y-z )]去括号后应得( )A .-x +y -zB .-x-y +zC .-x-y -zD .-x +y +z7.A ,B 都是五次多项式,则A-B 一定是( )A .四次多项式B .五次多项式C .十次多项式D .不高于五次的多项式8.已知a ,b 两数在数轴上对应的点的位置如图2-1,则化简式子|a+b |-|a -2|+|b+2|的结果是( )图2-18A .2a +2bB .2b +3C .2a -3D .-19.已知m-n =100,x+y =-1,则式子(n+x )-(m-y )的值是( )A .99B .101C .-99D .-10110.某商家在甲批发市场以每包m 元的价格购进了40包茶叶,又在乙批发市场以每包n 元(m >n )的价格购进了同样的茶叶60包,如果商家以每包m n +2元的价格卖出这种茶叶,那么卖完后,该商家( )A .盈利了B .亏损了C .不盈不亏D .盈亏不能确定二、填空题(每小题4分,共32分)11.在多项式3x 2+πxy 2+9中,次数最高的项的系数是 .12.观察下列单项式:3a 2,5a 5,7a 10,9a 17,11a 26,…,它们是按一定规律排列的,那么这列式子的第n 个单项式是 .13.若多项式x 2-3kxy -3y 2+6xy -8不含xy 项,则k = .14.写出一个只含有字母x ,y 的二次三项式 .15.如果单项式-xy b +1与a x y -2312是同类项,那么(a-b )2 017= .16.在等式的括号内填上恰当的项,x 2-y 2+8y -4=x 2-( ).17.已知P =2xy -5x +3,Q=x -3xy -2且3P +2Q=5恒成立,则x = .18.如图2-2是王明家的楼梯示意图,其水平距离(即AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a-b)米,则王明家楼梯的竖直高度(即BC的长度)为米.图2-2三、解答题(共58分)19.(8分)计算:(1)-x+2(x-2)-(3x+5);(2)3a2b-2[ab2-2(a2b-2ab2)].xy■z■时,不小心把字母y,z的指数用20.(8分)王佳在抄写单项式-23墨水污染了,他只知道这个单项式的次数是5,你能帮助王佳确定这个单项式吗?21.(10分)已知-5x3y|a|-(a-4)x-6是关于x,y的七次三项式,求a2-2a+1的值.22.(10分)化简求值:(1)把a-2b看作一个“字母”,化简多项式-3a(a-2b)5+6b(a-2b)5-5(-a+2b)3,并求当a-2b=-1时的值.(2)已知|x-2|+(y-1)2=0,求x2+(2xy-3y2)-2(x2+xy-2y2)的值.23.(10分)已知成婷的年龄是m岁,乔豆的年龄比成婷的年龄的2倍少4岁,张华的年龄比乔豆的年龄的1还多1岁,求这三位同学2的年龄的和.24.(12分)某超市在春节期间实行打折促销活动,规定如下表:一次性购物促销方法少于200元不打折低于500元但不低于200元打九折500元或超过500元其中500元部分打九折,超过500元部分打八折(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200元时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为a 元(200<a<300),用含a的式子表示两次购物王老师实际付款多少元?人教版七年级数学上册第二章《整式的加减》检测卷答案一、1.C 解析:A.是多项式,故A不符合题意;B.是单项式,故B不符合题意;C.不是整式,故C符合题意;D.是单项式,故D不符合题意.故选C.2.D 解析:A.-2xy2的系数是-2,不符合题意;B.3x2的系数是3,次数是2,不符合题意;C.2xy3的系数是2,次数是4,不符合题意;D.2x3的系数是2,次数是3,符合题意.故选D.3.D 解析:因为多项式里次数最高项的次数,就是这个多项式的次数,该多项式的次数是5,所以这个多项式次数最高项的次数是5,所以这个多项式的任何一项的次数满足都不大于5.故选D.4.B 解析:字母相同且相同字母的指数也相同,故A,C,D不符合题意;相同字母的指数不同,不是同类项,故B符合题意.故选B.5.C 解析:由题意,得n=3,m-n=2n,所以m=9,n=3.故选C.6.A 解析:-[x-(y-z)]=-(x-y+z)=-x+y-z.故选A.7.D 解析:若五次项是同类项,且系数相等,则A-B的次数低于五次;否则A-B的次数一定是五次.故选D.8.A 解析:由图可得-2<b<-1<1<a<2,且|a|>|b|,则|a+b|-|a-2|+|b+2|=a+b+(a-2)+b+2=a+b+a-2+b+2=2a+2b.故选A. 9.D 解析:因为m-n=100,x+y=-1,所以原式=n+x-m+y=-(m-n)+(x+y)=-100-1=-101.故选D.10.A 解析:根据题意,得该商家在甲批发市场购进的茶叶的利润为40()m n m +-2=20(m +n )-40m =20n -20m (元);在乙批发市场购进的茶叶的利润为60m +n 2-n =30(m +n )-60n =30m -30n (元).所以该商家的总利润为20n -20m +30m -30n =10m -10n =10(m -n )(元).因为m >n ,所以m -n >0,即10(m -n )>0,所以该商家盈利了.故选A. 二、11.π 解析:在多项式3x 2+πxy 2+9中,次数最高的项是πxy 2,其系数是π.12.(2n +1)a n 2+1 解析:3a 2=(2×1+1)a 12+1,5a 5=(2×2+1)a 22+1,7a 10=(2×3+1)a 32+1,…,所以第n 个单项式是(2n +1)a n 2+1.13. 2 解析:原式=x 2+(-3k +6)xy -3y 2-8.因为该多项式不含xy 项,所以-3k +6=0,所以k =2.14.x 2+2xy +1(答案不唯一)15. 1 解析:由同类项的概念可知a -2=1,b +1=3,所以a =3,b =2,所以(a -b )2 017=(3-2)2 017=1.16.y 2-8y +4 解析:括号内的项为x 2-(x 2-y 2+8y -4)=y 2-8y +4.17. 0 解析:因为P=2xy -5x +3,Q=x -3xy -2,所以3P+2Q=6xy -15x +9+2x -6xy -4=-13x +5.因为3P+2Q=5恒成立,所以-13x +5=5,解得x =0.即x =0时,3P+2Q=5恒成立.18.(a -2b ) 解析:根据题意可得,(3a -b )-(2a +b )=3a -b -2a -b =a -2b .故王明家楼梯的竖直高度(即BC 的长度)为(a -2b )米.三、19.解:(1)原式=-x +2x -4-3x -5=-2x -9.(2)原式=3a 2b -2ab 2+4a 2b -8ab 2=7a 2b -10ab 2.20.解:由题意知,x的指数是1,则y,z的指数的和是4. 当y的指数是1时,z的指数是3;当y的指数是2时,z的指数是2;当y的指数是3时,z的指数是1.所以这个单项式是-23xyz3或-23xy2z2或-23xy3z.21.解:因为-5x3y|a|-(a-4)x-6是关于x,y的七次三项式,所以3+|a|=7,a-4≠0,所以a=-4.故a2-2a+1=(-4)2-2×(-4)+1=25.22.解:(1)-3a(a-2b)5+6b(a-2b)5-5(-a+2b)3=(a-2b)5(-3a+6b)+5(a-2b)3=-3(a-2b)6+5(a-2b)3.当a-2b=-1时,原式=-3×(-1)6+5×(-1)3=-3×1+5×(-1)=-8.(2)原式=x2+2xy-3y2-2x2-2xy+4y2=-x2+y2.因为|x-2|+(y-1)2=0,所以x-2=0,y-1=0,即x=2,y=1,则原式=-4+1=-3.23.解:由题意可知,乔豆的年龄为(2m-4)岁,张华的年龄为12(2m-4)+1岁,则这三位同学的年龄的和为m+(2m-4)+12(2m-4)+1=m+2m-4+(m-2+1)=4m-5(岁).答:这三位同学的年龄的和是(4m-5)岁.24.分析:(1)500元部分按9折付款,剩下的100元按8折付款.(2)当200≤x<500时,他实际付款0.9x元;当x≥500时,他实际付款500×0.9+0.8×(x-500)=0.8x+50(元).(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款-第一次购物款-500)×8折,把相关数值代入即可求解.解:(1)530.500×0.9+(600-500)×0.8=530(元).(2)0.9x0.8x+50.(3)因为200<a<300,所以第一次实际付款为0.9a元,第二次付款超过500元,超过500元部分为(820-a-500)元,所以两次购物王老师实际付款为0.9a+0.8(820-a-500)+450=0.1a+706(元).。
人教版七年级上册数学第二章整式的加减单元测试题附答案
人教版七年级上册数学第二章整式的加减单元测试题附答案精品数学单元测试人教版数学七年级上学期第二章整式的加减达标测试卷一、选择题(共10小题,每小题3分,共30分)1.式子 $3x^2+2xy-5y^2$ 中整式有()A。
3个 B。
4个 C。
5个 D。
6个2.已知 $a=2$,$b=-3$,当 $x=1$ 时,$3a+2b$ 的结果为()A。
8 B。
-8 C。
-6 D。
64.下列运算正确的是()A。
$4m-m=3$ B。
$2a^2-3a^2=-a^2$ C。
$a^2b-ab^2=0$ D。
$x-(y-x)=-y$5.单项式的系数和次数依次是()A。
$-2,2$ B。
$-3,4$ C。
$-1,2$ D。
$-5,5$6.下列说法正确的是()A。
整式一定是单项式 B。
多项式一定是整式C。
多项式一定是单项式 D。
单项式一定是多项式7.若 $2x^2+3x+1$ 和 $3x^2+2x+1$ 是同类项,则$2x^2+3x+1$ 的系数是 $x^2$ 的系数与 $x$ 的系数之和。
其值为()A。
5 B。
6 C。
7 D。
88.下列说法中错误的是()A。
单项式的系数是一个数 B。
单项式与单项式的次数相加得到多项式的次数C。
与单项式的次数为0的单项式是常数项 D。
二次三项式不是一个术语9.下列单项式中,与 $-5xy$ 是同类项的是()A。
$-5xy$ B。
$3x^2y$ C。
$-5xy^2$ D。
$-5$10.将多项式按降幂排列,正确的是()A。
$x^3-2x+2x^2+5$ B。
$5-2x+2x^2-x^3$ C。
$-x^3+2x^2+2x+5$ D。
$-x^3+2x^2-2x+5$二、填空题(共10小题,每小题3分,共30分)11.计算:$(2a^2-3ab+4b^2)-(a^2+2ab-3b^2)$答案:$a^2-5ab+7b^2$12.已知 $x=2$,$y=-3$,计算 $2x^2-xy+3y^2$ 的值答案:$29$13.矩形的周长为 $18$,其中一边长为 $3$,求另一边长答案:$4.5$14.已知 $a+b=3$,$a-b=1$,求 $a$ 和 $b$ 的值答案:$a=2$,$b=1$15.若 $2x^2-xy+3y^2$ 与 $-4x^2+xy$ 是同类项,则 $x$ 的值为 $-2$,一边长为 $5$,则矩形的另一边长为 $6$。
【6套】新人教版数学七年级上册第二章整式的加减单元测试及答案.doc
人教版七年级数学上册单元试题:第2章整式的加减(含答案)一、填空题(共8小题,每小题4分,满分32分) 1、﹣πx 2y 的系数是 .2.多项式x 3y -3x 3y 2+5xy 3是__________次__________项式,它的常数项是______. 3.按下列要求,将多项式x 3-5x 2-4x+9的后两项用( )括起来. 要求括号前面带有“—”号,则x 3—5x 2—4x+9=___________________ 且最高次项的系数也相同,则5m ﹣2n= .4、已知x 2+3x +5的值是7,那么多项式3x 2+9x -2的值是__________.5、任写一个与﹣是同类项的单项式:.6、用语言说出式子a+b 2的意义:______________________________________.7、已知a 是正数,则3|a|﹣7a= .8、把(x —y )看作一个整体,合并同类项:5(x —y )+2(x —y )—4(x —y )=_____________. .二、选择题(共6小题,每小题4分,满分24分) 9、整式﹣3.5x 3y 2,﹣1,﹣ ,﹣32xy 2z ,﹣ x 2﹣y ,﹣a 2b ﹣1中单项式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个 10下列说法正确的是( ).A .单项式的系数是-5,次数是2B .单项式a 的系数为1,次数是0C .是二次单项式 D .单项式的系数为,次数是211、如果2x 3n y m+4与-3x 9y 2n 是同类项,那么m 、n 的值分别为( )A .m=-2,n=3B .m=2,n=3C .m=-3,n=2D .m=3,n=212、在排成每行七天的日历表中取下一个方块.若所有日期数之和为189,则n 的值为( )A .21B .11C .15D .913、下列各组中的两个单项式能合并的是( )A 、4和4xB 、3x 2y 3和﹣y 2x 3C 、2ab 2和100ab 2cD 、 和14、(重庆)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( ).25xy -12xy -67ab -67-33⨯A .50B .64C .68D .72三、解答题(共5小题,满分44分) 15、化简:①(a+b+c )+(b ﹣c ﹣a )+(c+a ﹣b ); ②+4-3st -4;③3a 2﹣[8a ﹣(4a ﹣7)﹣2a 2]; ④(4)a 2-[-4ab +(ab -a 2)]-2ab .16、如图所示,在下面由火柴棒拼出的一系列的图形中,第n 个图形由n •个正方形组成.(1)第2个图形中,火柴棒的根数是________; (2)第3个图形中,火柴棒的根数是________; (3)第4个图形中,火柴棒的根数是_______; (4)第n 个图形中,火柴棒的根数是________.17、先化简,再求值:﹣( ﹣ ) (﹣),其中 ﹣, ﹣.18、已知A =5x 2y -3xy 2+4xy ,B =7xy 2-2xy +x 2y ,试解答下列问题:(1)求A -2B 的值;(2)若A +B +2C =0,求C -A 的值.19、一艘轮船顺水航行3小时,逆水航行2小时,(1)已知轮船在静水中前进的速度是m 千米/时,水流的速度是a 千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?参考答案12st n=4n=3n=2n=1一、填空题(共8小题,每小题4分,满分32分) 1、﹣π .2、五 三 03、x 3—5x 2—(4x —9).4、 4 .5、 a 2b .6、 a 与b 的平方的和 .7、 ﹣4a .8、 3(x —y ).二、选择题 (共6小题,每小题4分,满分24分) 9.B 10.D 11.B 12.A 13.D 14.D三、解答题(共5小题,满分44分) 15、化简:①(a+b+c )+(b ﹣c ﹣a )+(c+a ﹣b ); ②-3st +4-4=; ③3a 2﹣[8a ﹣(4a ﹣7)﹣2a 2]; ④a 2-(-4ab +ab -a 2)-2ab =a 2-(-3ab -a 2)-2ab =a 2+3ab +a 2-2ab =2a 2+ab 16. (1)7;(2)10;(3)13;(4)3n+1 17. 1 18.解:(1)A -2B =5x 2y -3xy 2+4xy -2(7xy 2-2xy +x 2y ) =5x 2y -3xy 2+4xy -14xy 2+(-2x 2y )+4xy =3x 2y +8xy -17xy 2;(2)5x 2y -3xy 2+4xy +7xy 2-2xy +x 2y +2C =0, 6x 2y +4xy 2+2xy +2C =0, 3x 2y +2xy 2+xy +C =0, ∴C =-2xy 2-3x 2y -xy .∴C -A =-2xy 2-3x 2y -xy -(5x 2y -3xy 2+4xy ) =xy 2-8x 2y -5xy . 19. 解:(1)轮船共航行路程为:(m+a )×3+(m ﹣a )×2=(5m+a )千米, (2)把m=80,a=3代入(1)得到的式子得:5×80+3=403千米. 答:轮船共航行403千米.人教版数学七年级上册第二章整式的加减单元测试及答案一、单选题1.下列各式中不是整式的是( )A. 3xB.C.D. x-3y2.下列各组单项式中,为同类项的是( )A. a 3与a 2B. a 2与2a 2C. 2xy 与2xD. -3与a3.a+b=﹣3,c+d=2,则(c ﹣b )﹣(a ﹣d )的值为( )A. 5B. -5C. 1D. -112st 52st4.已知一个多项式与2x2﹣3x﹣1的和等于x2﹣2x﹣3,则这个多项式是()A. ﹣x2+2x+2B. ﹣x2+x+2C. x2﹣x+2D. ﹣x2+x﹣25.下列说法正确的是()A. 0不是单项式B. x没有系数C. ﹣xy5是单项式D. 是多项式6.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c 就是完全对称式.下列三个代数式:①(a-b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A. ①②B. ①③C. ②③D. ①②③7.代数式的4x﹣4﹣(4x﹣5)+2y﹣1+3(y﹣2)值()A. 与x,y都无关B. 只与x有关C. 只与y有关D. 与x,y 都有关8.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为()A. (2n+1)2B. (2n-1)2C. (n+2)2D. n29.长方形的一边长等于3x+2y ,另一边长比它长x-y ,这个长方形的周长是()A. 4x+yB. 12x+2yC. 8x+2yD. 14x+6y10.如图,按大拇指,食指,中指,无名指,小指,再无名指,中指……的顺序数数,当数到2018时,对应的手指是()A. 食指B. 中指C. 无名指D. 小指二、填空题11.单项式- x2y的系数是________.12.﹣的系数是a,次数是b,则a+b=________.13.如果(a-5)mn b+2是关于m、n的一个五次单项式,那么a=________,b=________.14.有这样一个数字游戏:将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.15.若|x﹣1|+(y+2)2=0,则(x+y)2017=________.16.计算(9a2b+6ab2)÷3ab=________.17.在计算机程序中,二叉树是一种表示数据结构的方法.如图,﹣层二叉树的结点总数为1;二层二叉树的结点的总数为3;三层二叉树的结点总数为7;四层二叉树的结点总数为15…,照此规律,七层二叉树的结点总数为________.三、计算题18.计算:(1)(2)19.多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式,求a2+ +a的值.四、解答题20.先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)21.七年级某同学做一道题:“已知两个多项式A,B,,计算”,他误将写成了,结果得到答案,请你帮助他求出正确的答案.22.先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣,b=1.五、综合题23.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)并按此规律计算:(a)2+4+6+…+100的值;(b)52+54+56+…+200的值.参考答案一、单选题1. B2. B3. A4. D5. C6. A7.C8.A9.D10. A二、填空题11. -12.13.≠5;214.2;615.-116.3a+2b17. 127三、计算题18.解:(1)==(2)===19.解:∵多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式∴(a2-4)=0 ∴a=±2又∵a+2≠0∴a≠-2∴a=2∴a2+ +a=22+ +2=4+ +2=四、解答题20.解:3(2x 2﹣y 2)﹣2(3y 2﹣2x 2) =6x 2﹣3y 2﹣6y 2+4x 2=(6x 2+4x 2)+(﹣3y 2﹣6y 2) =10x 2﹣9y 2 .21.解:∵2A+B=x 2+5x ﹣6,A=x 2+2x ﹣1,∴B=(x 2+5x ﹣6)﹣2(x 2+2x ﹣1)=x 2+5x ﹣6﹣2x 2﹣4x+2=﹣x 2+x ﹣4,∴A+2B=x 2+2x ﹣1+2(﹣x 2+x ﹣4)=x 2+2x ﹣1﹣2x 2+2x ﹣8=﹣x 2+4x ﹣922.解:原式=a 2﹣2ab+2a 2﹣2b 2﹣a 2+2ab ﹣b 2=2a 2﹣3b 2 , 当a=﹣ ,b=1时,原式=﹣2.5 五、综合题23.(1)解:S=n (n+1) (2)解:(a )2+4+6+…+100 =50×51 =2550;(b )52+54+56+…+200=(2+4+6+8+…+200)﹣(2+4+6++…+50) =100×101﹣25×26 =10100﹣650 =9450.人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
【数学】新人教版数学七年级(上)第二章单元质量检测试卷、答案.doc
人教版七年级上册第二章整式的加减单元测试一、选择题(每题3分,共21分)1. 下列说法正确的是( )A.213x π的系数为13B.212xy 的系数为12x C. ()23x -的系数为3D. ()23x π-的系数为3π-2. 下列各组式子中,是同类项的是( )A. 2233x y xy -与B. 222x x 与C. 32xy yx -与D. 55xy yz 与3. 下面计算正确的是( )A. 2233x x -=B. 235325a a a +=C. 33x x +=D. 10.2504ab ba -+=4. 如果12a b -=,那么()3b a --的值是( ) A. 35-B. 23C.32D.165. 将()()()24x y x y x y +++-+合并同类项得( )A. x y +B. x y -+C. x y --D. x y -6. 若8a =,3b =,且a b <,则a b -的值为( )A. 11-B. 5-C. 5-或5D. 11-或5-7. 观察图中正方形四个顶点所标的数字规律,可知数2013应标在( )A. 第503个正方形的左上角B. 第503个正方形的右下角C. 第504个正方形的左上角D. 第504个正方形的右下角二、填空题(每题3分,共21分)8. 已知单项式23m a b 与4123n a b --人教版初中数学七年级上册第2章《整式加减》单元测试题一、选择题:1.式子222a b +表示的意义是( )A. a 与2b 平方的和B. a 与2b 和的平方C. a 的平方与2个b 平方的和D. 2b 与a 的平方和 2. 下列运算正确的是( )A .xy y x 532=+B .2325a a a += C.()a a b b --= D .422x x x =+3. 如果213n m xy -与35m x y -的和是单项式,则m 和n 的值分别是( )A .3和-2B .-3和2C .3和2D .-3和-2 4.下列判断中正确的是 ( )A.23a bc 与2bca 不是同类项B. 单项式32x y -的系数是-1C. 52n m 不是整式 D.2235x y xy -+是二次三项式5.若M 和N 都是四次多项式,则M N +一定是( )A.四次多项式B.八次多项式C.次数不高于四次的整式D.次数一定是低于四次的整式 6.化简()2x x y x y x ⎡⎤-----⎣⎦等于( )A. 0B.2xC.x y -D.3x7. 若代数式2231x x -+的值是8,则代数式2463x x --的值是( )A.10B.11C.12D.138. 某人靠墙围成一块梯形园地,三面用篱笆围成.设一腰为a ,另一腰为b ,与墙面相对的一边比两腰的和还大b ,则此篱笆的总长是( ) A.2a b + B.23a b + C.22a b + D.3a b + 9.已知一个多项式与279x x +的和等于2741x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +10. 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 二、填空题:11. 今年的香蕉价格比去年贵了许多,已知现在香蕉的价格是去年的2倍还多0.5元,如果今年香蕉的价格为a 元,那么去年香蕉的价格可表示为 .12. 一个多项式减去212x -得到223x x +-,那么这个多项式是 .13. 对于有理数a 、b ,定义b a b a 32-=*,则)()(x y y x -*-的结果是 . 14. 若35,a b a c -=+=,则(2)()a b c a b c ++---= .15. 观察下列单项式:0,23x -,38x -,415x -,524x -,……,按此规律写出第n 个单项式是_____. 16. 若()23214x x b x bx -+---化简后不含x 的一次项,则b = . 17. 如图所示是用棋子摆成的“巨”字,那么第4个“巨”字续摆下去,第n 个“巨”字所需要的棋子_________________.18. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n -是质数,那么12(21)n n --是一个完全数,请你根据这个结论写出6之后的下一个完全数是 .三、解答题:19. 已知5=+y x ,3-=xy ,求代数式)4()232(xy y x xy y x +----的值.20. 某县城的房价近两年有了大幅的上涨,前年上升了50%,去年又上升了40%.人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( ) A .-2x 2y 与xy 2B .x 2y 与x 2z C .3mn 与4nmD .-0.5ab 与abc2.已知苹果的单价为a 元/千克,香蕉的单价为b 元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab =6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________.12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A =2x 2+3xy -2x -1,B =-x 2+xy -1.(1)求3A+6B;(2)若3A+6B的值与x的取值无关,求y的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2y9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12.原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2). 当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A=5x2-5x+3,B=x2-x-1,所以2A-B=2(5x2-5x+3)-(x2-x-1)=10x2-10x+6-x2+x+1=9x2-9x+7.18.解:(1)8x+6y+5(20―x―y)=(3x+y+100)吨.答:这20辆汽人教版数学七年级上册第二章整式的加减单元测试及答案一、单选题1.下列各式中不是整式的是()A. 3xB.C.D. x-3y2.下列各组单项式中,为同类项的是( )A. a3与a2B. a2与2a2C. 2xy与2xD. -3与a3.a+b=﹣3,c+d=2,则(c﹣b)﹣(a﹣d)的值为()A. 5B. -5C. 1D. -14.已知一个多项式与2x2﹣3x﹣1的和等于x2﹣2x﹣3,则这个多项式是()A. ﹣x2+2x+2B. ﹣x2+x+2C. x2﹣x+2D. ﹣x2+x﹣25.下列说法正确的是()A. 0不是单项式B. x没有系数C. ﹣xy5是单项式D. 是多项式6.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c 就是完全对称式.下列三个代数式:①(a-b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A. ①②B. ①③C. ②③D. ①②③7.代数式的4x﹣4﹣(4x﹣5)+2y﹣1+3(y﹣2)值()A. 与x,y都无关B. 只与x有关C. 只与y有关D. 与x,y 都有关8.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为()A. (2n+1)2B. (2n-1)2C. (n+2)2D. n29.长方形的一边长等于3x+2y ,另一边长比它长x-y ,这个长方形的周长是()A. 4x+yB. 12x+2yC. 8x+2yD. 14x+6y10.如图,按大拇指,食指,中指,无名指,小指,再无名指,中指……的顺序数数,当数到2018时,对应的手指是()A. 食指B. 中指C. 无名指D. 小指二、填空题11.单项式- x2y的系数是________.12.﹣的系数是a,次数是b,则a+b=________.13.如果(a-5)mn b+2是关于m、n的一个五次单项式,那么a=________,b=________.14.有这样一个数字游戏:将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.15.若|x﹣1|+(y+2)2=0,则(x+y)2017=________.16.计算(9a2b+6ab2)÷3ab=________.17.在计算机程序中,二叉树是一种表示数据结构的方法.如图,﹣层二叉树的结点总数为1;二层二叉树的结点的总数为3;三层二叉树的结点总数为7;四层二叉树的结点总数为15…,照此规律,七层二叉树的结点总数为________.三、计算题18.计算:(1)(2)19.多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式,求a2+ +a的值.四、解答题20.先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)21.七年级某同学做一道题:“已知两个多项式A,B,,计算”,他误将写成了,结果得到答案,请你帮助他求出正确的答案.22.先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣,b=1.五、综合题23.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)并按此规律计算:(a)2+4+6+…+100的值;(b)52+54+56+…+200的值.参考答案一、单选题1. B2. B3. A4. D5. C6. A7.C8.A9.D10. A二、填空题11. -12.13.≠5;214.2;615.-116.3a+2b17. 127三、计算题18.解:(1)==(2)===19.解:∵多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式∴(a2-4)=0 ∴a=±2又∵a+2≠0∴a≠-2∴a=2∴a2+ +a=22+ +2=4+ +2=四、解答题20.解:3(2x 2﹣y 2)﹣2(3y 2﹣2x 2) =6x 2﹣3y 2﹣6y 2+4x 2=(6x 2+4x 2)+(﹣3y 2﹣6y 2) =10x 2﹣9y 2 .21.解:∵2A+B=x 2+5x ﹣6,A=x 2+2x ﹣1,∴B=(x 2+5x ﹣6)﹣2(x 2+2x ﹣1)=x 2+5x ﹣6﹣2x 2﹣4x+2=﹣x 2+x ﹣4,∴A+2B=x 2+2x ﹣1+2(﹣x 2+x ﹣4)=x 2+2x ﹣1﹣2x 2+2x ﹣8=﹣x 2+4x ﹣922.解:原式=a 2﹣2ab+2a 2﹣2b 2﹣a 2+2ab ﹣b 2=2a 2﹣3b 2 , 当a=﹣ ,b=1时,原式=﹣2.5 五、综合题23.(1)解:S=n (n+1) (2)解:(a )2+4+6+…+100 =50×51 =2550;(b )52+54+56+…+200=(2+4+6+8+…+200)﹣(2+4+6++…+50) =100×101﹣25×26 =10100﹣650 =9450.人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每题3分,共30分) 1、用代数式表示比b 的18小7的数( ) A.18b +7 B.18b -7 C.18(b -7) D.78b - 2、下列代数式中,不是单项式的是( )A.5B.2x C.2x D.23a3、①; ②; ③; ④分别是同类项的是( )(A )①② ; (B )①③; (C )②③ ; (D )②④ 4、-( a-1)-(-a-2)+3的值是( ) (A )4; (B )6;(C )0; (D )与的值有关。
人教版初中数学七年级上册第二章《整式的加减》单元测试题(含答案)
第二章《整式的加减》单元测试题一、选择题(每小题只有一个正确答案)1.已知一个多项式减去-2m结果等于m2+3m+2,这个多项式是()A.m2+5m+2B.m2-m-2C.m2-5m-2D.m2+m+22.下列各组单项式中,不是同类项的是()A. 3x2y与-2yx2B. 2ab2与-ba2C.xy3与5xy D. 23a与32a3.已知3xa-2是关于x的二次单项式,那么a的值为()A. 4B. 5C. 6D. 74.若-2am+4b4与5a2bn+1可以合并成一项,则mn的值是()A.-6B. 8C.-8D. 95.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A.a2-3a+4B.a2-3a+2C.a2-7a+2D.a2-7a+46.多项式a3-2a2b2+5b2的次数是()A. 2 B. 3 C. 4 D. 97.下列结论正确的是()A. 3x2-x+1的一次项系数是1B.xyz的系数是0C.a2b3c是五次单项式D.x5+3x2y4-2x3y是六次三项式8.有一组单项式:a2,-a32,a43,-a54…,请观察它们的构成规律,用你发现的规律写出第10个单项式为()A.a1010B.-a1010C.a1110D.-a11109.计算-3(x-2y)+4(x-2y)的结果是()A.x-2y B.x+2y C.-x-2y D.-x+2y10.有理数a,b,c在数轴上的位置如图所示,则|a+b|-2|c-b|+3|b+a|等于()A.-2b B. 0 C.-4a-b-3c D.-4a-2b-2c二、填空题11.去括号:3x-(a-b+c)=___________.12.a、b在数轴上的位置如图所示,化简|a+b|-2|a-b|=___________.13.有规律地排列着这样一些单项式:-xy,x2y,-x3y,x4y,-x5y,…,则第n个单项式(n≥1正整数)可表示为___________.14.10a-5减去(-5a+7)的差是___________.三、解答题15.化简:①4a2+3b2+2ab-3a2-4b2;①(2a-4b)-(3a+4b);①2(4a2b-10b3)+(-3a2b-20b3);①(-x2+3xy-4y3)-3(2xy-3y2).16.先化简,再求值:5(a2b+2ab2)-2(3a2b+5ab2-1),其中a=-2,b=2.17.已知多项式y4-x4+3x3y-1xy2-5x2y3.2(1)按字母x的降幂排列;(2)按字母y的升幂排列.18.观察下面有规律的三行单项式:x,2x2,4x3,8x4,16x5,32x6,…①-2x,4x2,-8x3,16x4,-32x5,64x6,…①2x2,-3x3,5x4,-9x5,17x6,-33x7,…①(1)根据你发现的规律,第一行第8个单项式为___________;(2)第二行第n个单项式为___________;(3)第三行第8个单项式为___________;第n个单项式为___________.答案解析1.【答案】D【解析】设这个多项式为M ,则M =(m 2+3m +2)+(-2m )=m 2+3m +2-2m =m 2+m +2 2.【答案】B【解析】A 、字母相同且相同字母的指数也相同,故A 正确; B 、相同字母的指数不同不是同类项,故B 错误; C 、字母相同且相同字母的指数也相同,故C 正确; D 、字母相同且相同字母的指数也相同,故D 正确. 3.【答案】A【解析】因为3xa -2是关于x 的二次单项式, 所以a -2=2, 解得a =4 4.【答案】C【解析】根据题意可得m +4=2,n +1=4, 解得m =-2,n =3, 所以mn =-8. 5.【答案】D【解析】(6a 2-5a +3)-(5a 2+2a -1) =6a 2-5a +3-5a 2-2a +1 =a 2-7a +4. 6.【答案】C【解析】a 3-2a 2b 2+5b 2的次数是4. 7.【答案】D【解析】A 、3x 2-x +1的一次项系数是-1,故错误; B 、xyz 的系数是1,故错误; C 、a 2b 3c 是六次单项式,故错误; D 、正确. 8.【答案】D【解析】注意观察各单项式系数和次数的变化, 系数依次是1(可以看成是11),-12,13,-14…据此推测,第十项的系数为-110;次数依次是2,3,4,5…据此推出,第十项的次数为11.所以第十个单项式为-a11.10 9.【答案】A【解析】-3(x-2y)+4(x-2y)=-3x+6y+4x-8y=x-2y.10.【答案】D【解析】因为由图可知,a<b<0<c,|a|>|b|>c,所以a+b<0,c-b>0,b+a<0,所以原式=-(a+b)-2(c-b)-3(b+a)=-a-b-2c+2b-3b-3a=-4a-2b-2c.11.【答案】3x-a+b-c【解析】3x-(a-b+c)=3x-a+b-c.12.【答案】-3a+b【解析】由数轴可得b+a<0,a-b>0,则|a+b|-2|a-b|=-a-b-2(a-b)=-3a+b13.【答案】(-x)n y【解析】第n个单项可表示为(-x)n y14.【答案】15a-12【解析】(10a-5)-(-5a+7)=10a-5+5a-7=15a-12.15.【答案】解:①原式=(4-3)a2+(3-4)b2+2ab=a2+2ab-b2;①原式=2a-4b-3a-4b=-a-8b;①原式=8a2b-20b3-3a2b-20b3=5a2b-40b3;①原式=-x2+3xy-4y3-6xy+9y2=x2-4y3-3xy+9y2.【解析】①直接合并同类项即可;①①①先去括号,再合并同类项即可.16.【答案】解:原式=5a2b+10ab2-6a2b-10ab2+2=-a2b+2,当a=-2,b=2时,原式=-8+2=-6.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.17.【答案】解:(1)按字母x的降幂排列:−x4+3x3y−5x2y3−1xy2+y4;2(2)按字母y的升幂排列:−x4+3x3y−5x2y3−1xy2+y4.2【解析】(1)根据x的指数的从大到小顺序排列即可;(2)根据y的指数的从小到大顺序排列即可.18.【答案】(1)128x8(2)(-2)nxn(3)-129x9(-1)n+1(1+2n-1)xn+1【解析】通过观察很容易得到三组数据数字因数、字母次数之间的关系,根据规律写出相应的式子即可.解:因为第一行的每个单项式,数字因数后面都是前面的2倍,字母次数与这个单项式是第几个有关,根据这个规律可得第一行第8个单项式为 128x8;因为第二行的每个单项式,数字因数后面都是前面的(-2)倍,字母次数与这个单项式是第几个有关,根据这个规律可得第n个单项式为(-2)nxn;通过观察第三行的这组单项式,这组单项式符合(-1)n+1(1+2n-1)xn+1,第8个单项式是-129x9;第n个单项式为(-1)n+1(1+2n-1)xn+1.。
人教版七年级上册数学第二章整式的加减《单元综合测试题》含答案
第二章整式的加减测试卷一、选择题(共10小题,每小题3分,共30分)1.式子,,,,,,中整式有()A. 3个B. 4个C. 5个D. 6个2.已知,那么的结果为()A. B. C. D. -3.当时,的值等于()A. 8B. -8C. -6D. 64.下列运算正确的是()A. 4m-m=3B. 2a2-3a2=-a2C. a2b-ab2=0D. x-(y-x)=-y5.单项式的系数和次数依次是()A. -2,2B. -,4C. -,2D. -,56.下列说法正确的是()A. 整式一定是单项式B. 多项式是次二项式C. 多项式的值与、、的值无关D. 多项式的系数是7.若和是同类项,则的值为()A. B. 6 C. D. 28.下列说法中错误的是()A. 单项式的次数为B. 单项式的系数是C. 与是同类项D. 是二次三项式9.下列单项式中,与是同类项的是()A. -5xyB. 3x2yC. -5xy2D. -510.将多项式按降幂排列,正确的是()A. x3-2x+2x2+5B. 5-2x+2x2-x3C. -x3+2x2+2x+5D. -x3+2x2-2x+5二、填空题(共10 小题,每小题 3 分,共30 分)11.计算:________.12.已知与是同类项,则________.13.矩形的周长为,一边长为,则矩形的另一边长为________.14.________.15.若,,则________.16.公共汽车上原有名乘客,中途下车一半,后来又上来名乘客,这时公共汽车上共有乘客________名.17.若单项式与的和为,则________.18.若关于、的单项式与是同类项,则的值为________.19.在下列各式中:,,,,中,单项式有________,多项式有________,整式有________.20.已知两个单项式与的和为,则的值是________.三、解答题(共6 小题,每小题10 分,共60 分)21.先去括号,再合并同类项:(1);(2);(3);(4).22.先化简,再求值.,其中,其中,.23.已知,为常数,且三个单项式,,相加得到的和仍然是单项式.求和的值;先化简,再求值:,其中与互为相反数,且.24.计算某个整式减去多项式时,一个同学误认为是加上此多项式,结果得到的答案是.请你求出原题的正确答案.25.若用、、、分别表示有理数、、,为原点如图所示.已知,.化简;.26.阅读下面材料:计算:如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.根据阅读材料提供的方法,计算:答案与解析一、选择题(共10小题,每小题3分,共30分)1.式子,,,,,,中整式有()A. 3个B. 4个C. 5个D. 6个【答案】C【解析】根据整式的定义:单项式、多项式的统称,故整式有x2+5,−1,−3x+2,π,5x,共5个.故选:C.2.已知,那么的结果为()A. B. C. D. -【答案】A【解析】【分析】将去括号,再将代入运算即可得出结论.【详解】解:,∵,∴,故答案为:A.【点睛】本题考查了整式的化简求值,是基础题型.解题关键是将待求式进行变形为含有已知整式的形式,利用整体代入法进行解答.3.当时,的值等于()A. 8B. -8C. -6D. 6【答案】B【解析】【分析】根据去括号、合并同类项可化简整式,根据代数式求值,可得答案.【详解】原式,当时,原式,所以B选项是正确的.【点睛】本题主要考查整式的加减,化简整式是解题的关键.4.下列运算正确的是()A. 4m-m=3B. 2a2-3a2=-a2C. a2b-ab2=0D. x-(y-x)=-y【答案】B【解析】【分析】根据整式加减法的运算法则”如果遇到括号.按去括号法则先去括号:括号前是”+”号,把括号和它前面的”+”号去掉.括号里各项都不变符号,括号前是”-”号,把括号和它前面的”-”号去掉.括号里各项都改变符号.合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.”进行逐项判断即可.【详解】解:A、,故A选项错误;B、,故B选项正确;C、不是同类项,无法进行减法运算,故C选项错误;D、,故D选项错误;故答案为:B.【点睛】本题考查整式加减运算.合并同类项关键把握字母相同,并且各字母的指数也分别对应相同.需要注意,所有的常数项也都是同类项.去括号时,括号前是负号,去括号后括号里各项都变号.5.单项式的系数和次数依次是()A. -2,2B. -,4C. -,2D. -,5【答案】D【解析】【分析】由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式.字母前的常数为单项式的系数,字母的指数和为单项式的次数.由此即可得出结论.【详解】解:单项式的系数为,次数为2+1+2=5,故答案为:D.【点睛】本题考查单项式的系数与次数.单项式系数判断中,负号、字母π、分数都是易错点,正确理解定义是关键;次数为字母的指数和.6.下列说法正确的是()A. 整式一定是单项式B. 多项式是次二项式C. 多项式的值与、、的值无关D. 多项式的系数是【答案】C【解析】【分析】单项式和多项式统称为整式.由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式,字母前的常数为单项式的系数,字母的指数和为单项式的次数.多项式的定义:若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.根据定义逐项判断即可.【详解】解:A、单项式和多项式统称为整式,故A选项错误;B、多项式是次二项式,故B选项错误;C、多项式,与、、的值无关,故C选项正确;D、多项式的次数是,没有系数,故D选项错误;故答案为:C.【点睛】本题主要考查整式的相关概念.熟记单项式、多项式、整式的概念是解题的关键.7.若和是同类项,则的值为()A. B. 6 C. D. 2【答案】B【解析】【分析】根据同类项的概念”同类项是所含字母相同,并且相同字母的指数也相同的项”即可得出结论.【详解】解:由题意得:,解得:,故答案为:B.【点睛】本题考查同类项的知识.关键是根据相同字母的指数也相同,列出等量关系求解.8.下列说法中错误的是()A. 单项式的次数为B. 单项式的系数是C. 与是同类项D. 是二次三项式【答案】B【解析】【分析】根据同类项”同类项是所含字母相同,并且相同字母的指数也相同的项.”单项式”由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式,字母前的常数为单项式的系数,字母的指数和为单项式的次数.”多项式”若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.”的概念逐项判断即可.【详解】解:A、单项式的次数为,故A选项正确;B、单项式的系数是,故B选项错误;C、与是同类项,故C选项正确;D、是二次三项式,故D选项正确;故答案为:B.【点睛】本题考查同类项、单项式、及多项式的概念.熟记并理解概念是解题的关键.9.下列单项式中,与是同类项的是()A. -5xyB. 3x2yC. -5xy2D. -5【答案】B【解析】【分析】根据同类项”同类项是所含字母相同,并且相同字母的指数也相同的项.”判断即可得出结论.【详解】解:单项式中x的指数是2,y的指数是1.A、x的指数是1,y的指数是1,故A选项错误;B、x的指数是2,y的指数是1,故B选项正确;C、x的指数是1,y的指数是2,故C选项错误;D、-5不含x,y的项,故D选项正确;故答案为:B.【点睛】本题考查同类项的概念.关键是判断选项中单项式与题干单项式是否字母相同,并且相同字母的指数也相同.10.将多项式按降幂排列,正确的是()A. x3-2x+2x2+5B. 5-2x+2x2-x3C. -x3+2x2+2x+5D. -x3+2x2-2x+5【答案】D【解析】【分析】找出多项式的各项,根据各项字母指数的大小,按降幂排列即可.【详解】解:将多项式按降幂排列为:,故答案为:D.【点睛】本题考查多项式幂的排列.各项的指数是逐渐变大(或变小)排列的多项式,叫做升幂排列与降幂排列.二、填空题(共10 小题,每小题 3 分,共30 分)11.计算:________.【答案】【解析】【分析】根据整式加减运算中的去括号法则去括号,然后合并同类项即可得出结论.【详解】解:,故答案为:.【点睛】本题考查整式加减运算中去括号的方法.去括号时,运用乘法分配律,先把括号前的数字与括号里各项相乘,括号前是”+”号,把括号和它前面的”+”号去掉.括号里各项都不变符号,括号前是”-”号,把括号和它前面的”-”号去掉.括号里各项都改变符号.12.已知与是同类项,则________.【答案】【解析】【分析】根据同类项”同类项是所含字母相同,并且相同字母的指数也相同的项.”判断即可得出结论.【详解】解:∵与是同类项,∴,解得:,则,故答案为:1【点睛】本题考查同类项的概念.熟记并理解概念”同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.”是解题的关键.13.矩形的周长为,一边长为,则矩形的另一边长为________.【答案】【解析】【分析】根据矩形的性质列出边长的表达式,再去括号,合并同类项即可.【详解】解:∵矩形的周长为,一边长为,∴矩形的另一边长=,故答案为:.【点睛】本题考查的是整式的加减.熟知整式的加减实质上是合并同类项是解答此题的关键.14.________.【答案】【解析】【分析】根据添括号法则,如果所添括号前面是”-”号,那么只要把括号里的各项都改变符号即可得出答案.【详解】解:根据添括号法则可得:,故答案为:.【点睛】本题考查添括号法则.添括号法则:(1)如果括号前面是加号或乘号,加上括号后,括号里面的符号不变.(2)如果括号前面是减号或除号,加上括号后,括号里面的符号全部改为与其相反的符号.(3)添括号可以用去括号进行检验.添括号时,如果括号前面是加号或乘号,括到括号里的各项都不变符号;如果括号前面是减号或除号,括到括号里的各项都改变符号.15.若,,则________.【答案】【解析】【分析】用减去,可得的值,再将去括号,合并同类项得,将整体代入即可得出结论.【详解】解:∵,,∴,∴故答案为:12.【点睛】本题考查整式加减运算的化简求值.解题关键在于理解并掌握整式加减运算法则,熟悉去括号,合并同类项的技巧.16.公共汽车上原有名乘客,中途下车一半,后来又上来名乘客,这时公共汽车上共有乘客________名.【答案】【解析】【分析】原来有名乘客,减去中途下车的一半,再加上后来又上来名乘客,即可得出结论.【详解】解:根据题意得,,故答案为:.【点睛】本题考查整式是实际应用.题目比较简单,按题目要求列出整式即可.17.若单项式与的和为,则________.【答案】,【解析】【分析】根据题意将与相加合并同类项得0,即可得出结论.【详解】解:∵,∴,,故答案为:,.【点睛】本题考查合并同类项.熟练掌握同类项的定义”同类项是所含字母相同,并且相同字母的指数也相同的项.”是解题关键.18.若关于、的单项式与是同类项,则的值为________.【答案】【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同即可求得的值,即可得出结论.【详解】解:∵关于、的单项式与是同类项,∴,∴,故答案为:5.【点睛】本题考查同类项的定义.熟练掌握同类项的定义”同类项是所含字母相同,并且相同字母的指数也相同的项.”是解题关键.19.在下列各式中:,,,,中,单项式有________,多项式有________,整式有________.【答案】(1). ,(2). ,(3). ,,,【解析】【分析】单项式和多项式统称为整式.由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式,字母前的常数为单项式的系数,字母的指数和为单项式的次数.多项式的定义:若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.根据定义逐项判断即可.【详解】解:单项式有:,;多项式有:,;整式有:,,,;故答案为:(1),;(2),;(3),,,.【点睛】本题考查了对多项式、单项式、整式的定义的应用.易错点,多项式和单项式都是整式.20.已知两个单项式与的和为,则的值是________.【答案】【解析】【分析】根据题意单项式与是同类项,根据同类项的定义”同类项是所含字母相同,并且相同字母的指数也相同的项.”列式即可得出结论.【详解】解:∵单项式与的和为,∴,∴,故答案为:5.【点睛】本题考查的是合并同类项.根据同类项的定义求得的值是解题的关键.三、解答题(共6 小题,每小题10 分,共60 分)21.先去括号,再合并同类项:(1);(2);(3);(4).【答案】(1);(2);(3);(4).【解析】【分析】(1)根据整式加减运算中的去括号法则去括号,然后合并同类项即可得出结论;(2)根据整式加减运算中的去括号法则去括号,然后合并同类项即可得出结论;(3)根据整式加减运算中的去括号法则去括号,然后合并同类项即可得出结论;(4)根据整式加减运算中的去括号法则去括号,然后合并同类项即可得出结论.【详解】解:(1);(2);(3);(4).故答案为:(1);(2);(3);(4).【点睛】本题考查整式加减运算的化简.解题关键在于理解并掌握整式加减运算法则,熟悉去括号,合并同类项的技巧.22.先化简,再求值.,其中,其中,.【答案】,;,.【解析】【分析】(1)原式去括号合并同类项得到最简结果,把y的值代入计算即可得出结论;(2)原式去括号合并同类项得到最简结果,把a与b的值代入计算即可得出结论.【详解】解:原式,当时,原式;原式,当,时,原式.故答案为:,;,.【点睛】本题考查整式加减运算的化简求值.解题关键在于理解并掌握整式加减运算法则,熟悉去括号,合并同类项的技巧.23.已知,为常数,且三个单项式,,相加得到的和仍然是单项式.求和的值;先化简,再求值:,其中与互为相反数,且.【答案】,或,;.【解析】【分析】(1)根据题意得到三个单项式有两项为同类项,利用同类项的定义”同类项是所含字母相同,并且相同字母的指数也相同的项.”求出,的值即可;(2)原式去括号合并同类项得到最简结果,由与互为相反数,且,确定出,的值,代入计算即可得出结论.【详解】(1)∵三个单项式,,相加得到的和仍然是单项式,∴三个单项式为同类项,∴或,则,或,;(2)原式,由题意得到,,则原式.故答案为:,或,;.【点睛】本题主要考查整式的加减运算.(1)三个单项式相加得到的和仍是单项式,单项式的字母指数不同,则其中两项为同类项,并且和为0.(2)解题关键在于熟悉去括号,合并同类项的技巧.24.计算某个整式减去多项式时,一个同学误认为是加上此多项式,结果得到的答案是.请你求出原题的正确答案.【答案】.【解析】【分析】设该整式为A,根据题意求出A的表达式,再进行正确的计算即可.【详解】设该整式为A,∵A+(b﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac,∴A=(﹣2ab+bc+8ac)﹣(ab﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac﹣ab+2bc﹣3a﹣bc﹣8ac=﹣3ab+2bc﹣3a,∴A﹣(ab﹣2bc+3a+bc+8ac)=(﹣3ab+2bc﹣3a)﹣(ab﹣2bc+3a+bc+8ac)=﹣3ab+2bc﹣3a﹣ab+2bc﹣3a﹣bc﹣8ac=﹣4ab+3bc﹣6a﹣8ac.25.若用、、、分别表示有理数、、,为原点如图所示.已知,.化简;.【答案】;.【解析】【分析】(1)利用数轴结合绝对值的性质,进而化简即可得出结论;(2)利用数轴结合绝对值的性质,进而化简即可得出结论.【详解】∵,,∴,,,∴;∵,,∴,,∴.故答案为:;.【点睛】本题考查绝对值的化简.根据绝对值的性质”一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.”结合数轴即可化简.26.阅读下面材料:计算:如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.根据阅读材料提供的方法,计算:【答案】.【解析】【分析】根据阅读材料可知,第一项加最后一项=第二项加倒数第二项=第三项加倒数第三项,以此类推,所有项的和等于第一项加最后一项乘以项数再除以2,由此规律,列式计算即可.【详解】.故答案为:.【点睛】本题考查整式加减的探究规律.解题关键在于根据材料发现整式各项之间数字的规律,根据规律合并同类项.。
【精选6套】新人教版数学七年级上册第二章整式的加减单元测试及答案.doc
人教版七年级数学上册第二章整式加减单元测试(含答案)一、单选题1.单项式-23x y的系数、次数分别是( )A.-1,3B.1,3C.13,3 D.-13,3 2.下列式子中代数式的个数为( ) ①-2ab ,②π,③s =12(a +b )h ,④x +3≥y ,⑤a (b +c )=ab =ac ,⑥1+2 A .2B .3C .4D .53.下列说法中,正确的是( ) A .5mn 不是整式 B .abc 的系数是0C .3是单项式D .多项式22x y xy-的次数是54.如果m ,n 都是正整数,那么多项式 的次数是( ) A.B.mC.D.m ,n 中的较大数5.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元D. 万元6.已知两个完全相同的大长方形,长为 ,宽为 ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么 与 之间的关系是( )A. B.C.D.7.若单项式212a b a b x y +-与333x y -是同类项,则b a 的值是( ) A .2B .1C .3D .48.[]()a b c --+去括号后应为( ) A .-a-b+cB .-a+b-cC .-a-b-cD .-a+b+c9.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( ) A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 210.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .2211. 等于( ) A.B.C.D.12.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8二、填空题13.已知212a a -+=人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式 2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x -是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a ―b )]=___.16.的结果是___.17.小颖在计算a +N 时,误将“+”看成“―”,结果得3a ,则a +N =___. 18.数学家发明了一个魔术盒,当任意实数对...(a ,b )进入其中时,•会得到一个新的实数:a 2+b +1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m ,再将实数对...(m ,1)放入其中后,得到的实数是___. 三、解答题(共66分) 19.化简:(1)-0.8a 2b -6ab -3.2a 2b +5ab +a 2b . (2)5(a -b )2-3(a -b )2-7(a -b )-(a -b )2+7(a -b ). 20.先化简,再求值:(1)5a 2-4a 2+a -9a -3a 2-4+4a ,其中a =-12. (2)5ab -92a 2b +12a 2b -(114ab +a 2b +5),其中a =1,b =-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y-6x 3y +7x 3-2012=-2012.二、11.-5y 3-4xy 2+3x 2y +x 3;12.2a -6;13.这辆火车行驶了1.5小时的路程;14.10a +b ;15.2a -b ;16.m 2-m +1;17.-a ;18.66.三、19.(1)-3a 2b -ab .(2)(a -b )2.20.(1)5a 2-4a 2+a -9a -3a 2-4+4a =-2a 2-4a -4,当a =-12时,原式=-52.(2)5ab -92a 2b +12a 2b -(114ab +a 2b +5)=5ab -92a 2b +12a 2b -114ab -a 2b -5=94ab -5a 2b -5,当a =1,b =-2时,原式=12.(3)2a 2-(3ab +b 2+a 2-ab )-2b 2=2a 2-3ab -b 2-a 2+ab -2b 2=a 2-b 2-2ab ,当a 2-b 2=2,ab =-3时,原式=8.21.依题意,得A =20-Q ,A =20-0.04n ,当n =150时,A =20-0.04×150=14(升). 22.因为7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3+2019=2019,所以a =2020,b =-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b ,个位数字为a (b >a ),则原两位数为10b +a ;第二步:交换后的两位数为10人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题一、选择题(每小题3分,共18分) 1. 在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个 D .8个 2.计算3a 3+a 3,结果正确的是( ) A .3a 6B .3a 3C .4a 6D .4a 33.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A . 6 B . -6 C . 12 D . -124.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( ) A .-2 B .25. 若x =1时,ax 3+bx +7式子的值为2033,则当x =﹣1时,式子ax 3+bx +7的值为( ) A .2018 B .2019 C .﹣2019 D .﹣20186. 据市统计局发布:2018年我市有效发明专利数比2017年增长12.5%.假定2019年的年增长率保持不变,2017年和2019年我市有效发明专利分别为a 万件和b 万件,则( ) A .b =(1+12.5%×2)a B .b =(1+12.5%)2a C .b =(1+12.5%)×2 a D .b =12.5%×2 a二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________.10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2019的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1. 16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值. 19.已知A =2x 2+xy +3y -1,B =x 2-xy . (1)若(x +2)2+|y -3|=0,求A -2B 的值;(2)若A -2B 的值与y 的取值无关,求x 的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a 元,学生每人b 元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a 、b 的式子表示)?并计算当a =300,b =200时的旅游费用. 五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,当a=1,b=2时,求A ﹣2B+3C 的值(先化简再求值).22.阅读材料:“如果代数式5a +3b 的值为-4,那么代数式2(a +b )+4(2a +b )的值是多少?”我们可以这样来解:原式=2a +2b +8a +4b =10a +6b .把式子5a +3b =-4两边同乘以2,得10a +6b =-8.仿照上面的解题方法,完成下面的问题: (1)已知a 2+a =0,求a 2+a +2019的值;(2)已知a -b =-3,求3(a -b )-a +b +5的值;(3)已知a 2+2ab =-2,ab -b 2=-4,求2a 2+5ab -b 2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)(2)写出第(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.B2.D3.D4.A5.C6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b -c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a+b=a+b+c,解得c=-4,a+b+c=b+c+6,解得a=6,∴数据从左到右依次为-4、6、b、-4、6、b、-4、6、-2.由题意易得第9个数与第6个数相同,即b=-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.三、解答题13.解:解:(1)原式=4a;(3分)(2)原式=3a﹣2﹣3a+15=13;(6分)14.解:2(x-3y)-(2y-x)=2x-6y-2y+x=3x-8y.(6分)15.解:原式=-9y+6x2+3y-2x2=4x2-6y.(3分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A,∴A=2(a2b+ab2)+(a2b-2ab2)-ab2=3a2b-ab2,(5分)∴捂住的多项式为3a2b-ab2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2019=0+2019=2019.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(人教版初中数学七年级上册第二章《整式的加减》单元测试一、选一选,看完四个选项再做决定! 1.下列各式:1+-x ,3+π,29>,y x y x +-,ab S 21=,其中代数式的个数是( ) A. 5B. 4C. 3D. 22. 以下代数式书写规范的是( )A. 2)(÷+b aB.y 56C. x 311D. y x +厘米3. 在下列各组的两个式子中,是同类项的是( )A. abc ab 32与B.222121mn n m 与 C. 0与21- D. 3与c4. 下列合并同类项中,正确的是( )A. xy y x 633=+B. 332532a a a =+C. 033=-nm mnD. 257=-x x5. 下列各式,正确的是( )A. 6)6(--=--x xB. )(b a b a +-=+-C. )6(530x x -=-D. 243)8(3-=-x x6. 图1的面积用代数式表示是( )A. bc ab +B. )((c a d d b c -+-C. )(d b c ad -+D. cd ab -7. 已知222653z y x A ++=,222822z y x B --=,222352y x z C --=,则C B A ++的值为( )A. 0B. 2xC. 2yD. 2z8. 当x =2时,下列代数式中与代数式12+x 的值相等的是( )A. 21x -B. 13+xC. 23x x -D. 12+x9. 已知做某件工作,每个人的工效相同,m 个人做n 天可完成,如果增加a 人,则完成工作所需天数为( ) A.am mn+B. a n -C. a nn +D. a n +10.按下面图2所示的程序计算,若开始输入的数为x =3,则最后输出的结果是( )A. 6B. 21C. 156D. 231 二、填一填,要相信自己的能力!11.今年小明m 岁,去年小明__________岁,8年后小明__________岁.12.一个长方形的宽为a cm ,长比宽的2倍少1cm ,这个长方形的长是______cm . 13.代数式x y y x -+-2312是________________________三项的和,它们的系数分别是__________________.14. 合并同类项:a a 83-=__________,a a a ---=___________.15.设x 表示一个数,用代数式表示“比这个数的平方小3的数”是_________. 16.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为________________.17.53是一两位数,个位数字是3,十位数字是5,可将53写成5×10+3. 如果一个两位数abcd图1图2的个位数字是b ,十位数字是a ,用含a 、b 的代数式表示这个两位数是______________. 18. 化简:)]2([b a ---=___________. 19. 观察下列各式:121312⨯+=⨯ 222422⨯+=⨯ 323532⨯+=⨯ ……请你将猜想到的规律用自然数n (n ≥1)表示出来__________________. 20.用黑白两种颜色的正六边形地面砖按如图3所示的规律,拼成若干个图案:第1个 第2个 第3个(1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块. 三、做一做,要注意认真审题! 21.计算:(每小题4分,共12分)(1) 233323)3()2(2a a a a a +-+-++(2) 2222224)()3(8)4(5b a b a ab ab b a ab +-+--+-+(3) )58()37(z y z y ---(4) )6(4)2(322-++--xy x xy x22.(8分)一个多项式减去6142-+x x ,小明错误的当成了加法计算,从而得到结果是322+-x x ,请问正确的结果是多少?23.(9分)某市出租车收费标准是:起步价10元,3千米后每千米2元,某乘客乘坐了x人教版七年级数学上册第二章整式的加减单元测试(含答案)一、单选题1.下列各式中,代数式有( )个(1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x+;(5) s = πr 2;(6) -6kA .2B .3C .4D .52.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )23.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy4.23-x yz 的系数和次数分别是( ) A .系数是0,次数是5 B .系数是1,次数是6 C .系数是-1,次数是5D .系数是-1,次数是65.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +6.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米7.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 18.若2y m +5x n +2与﹣3x 4y 5是同类项,则m +n =( ) A .1B .2C .﹣1D .﹣39.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,图1中面积为1的正方形有9个,图2中面积为1的正方形有14个,⋯,按此规律,图12中面积为1的正方形的个数为( )A.64B.60C.54D.5010.下列选项正确的是( ) A .xy +x +1是二次三项式B .﹣25xy 的系数是﹣5C .单项式x 的系数是1,次数是0D .﹣22xyz 2的次数是6 11.一列数123,,,,n a a a a ,其中112a =,111n n a a -=-(n≥2的整数),则2019a =( )A .12B .2C .-1D .-212.设23A a =+,27B a a =-+,则A 与B 的大小关系是( ) A .A B > B .A B <C .A B ≥D .A B ≤二、填空题13.小强有x 张10分邮票,y 张50分邮票,则小强这两种邮票的总面值为______. 14.多项式3m 2-5m 3+2-m 是________次_______项式.15.多项式2239x xy π++中,次数最高的项的系数是_______. 16.找规律填数:﹣1,2,﹣4,8,________ 三、解答题 17.观察下列算式 1=1=12 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 …按规律填空:(1)1+3+5+7+9=______. (2)1+3+5+…+2005=_______. (3)1+3+5+7+9+…+_____=n².(4)根据以上规律计算 101+103+105+…+499. 18.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy -(E )0(F )3y x -+ (G )223a ab b =+ (H )2xy a(I )223x y + (1)单项式集合__________; (2)多项式集合____________; (3)整式集合_____人教版数学七年级上册第2章《整式的加减》单元检测试题及答案一、选择题(每小题3分,共18分) 1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A . 6 B . -6 C . 12 D . -123.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2 4.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x-2 5.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a 6.在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个D .8个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________.10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和三、(13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n+2-5x2-n+6是关于x的三次多项式,求代数式n3-2n+3的值.19.已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的取值无关,求x的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b 的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.D2.D3.A4.C5.D6.B二、填空题7.﹣2 3 8.111a +80 9.-8 10.111.2c -a -b 解析:由图可知a <c <0<b ,∴a -c <0,b -c >0,∴原式=c -a -(b -c )=c -a -b +c =2c -a -b .故答案为2c -a -b .12.-4 解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a +b =a +b +c ,解得c =-4,a +b +c =b +c +6,解得a =6,∴数据从左到右依次为-4、6、b 、-4、6、b 、-4、6、-2.由题意易得第9个数与第6个数相同,即b =-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4. 三、解答题 13.解:解:(1)原式=4a ;(3分)(2)原式=3a ﹣2﹣3a+15=13;(6分) 14.解:2(x -3y )-(2y -x )=2x -6y -2y +x =3x -8y .(6分) 15.解:原式=-9y +6x 2+3y -2x 2=4x 2-6y .(3分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52.22.解:(1)∵a2+a=0,∴a2+a+2017=0+2017=2017.(3分)(2)∵a-b=-3,∴3(a-b)-a+b+5=3×(-3)-(-3)+5=-1.(6分)(3)∵a2+2ab=-2,ab-b2=-4,∴2a2+5ab-b2=2a2+4ab+ab-b2=2×(-2)+(-4)=-8.(9分)。
新人教版七年级数学上册第二章《整式的加减》单元测试试卷及答案
新人教版七年级上册第二章《整式的加减》单元测试试卷及答案一、选择题1、下列各题去括号所得结果正确的是()A.x2﹣(x﹣y+2z)=x2﹣x+y+2z B.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1C.3x﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1 D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣22、单项式-3x2y系数和次数分别是()A.-3和2 B.3和-3 C.-3和3 D.3和2 3、下列说法正确的是()A.单项式的系数是 B.单项式的系数为,次数是C.次数是6 D.是二次三项式4、单项式的系数是()A.-3 B.- C.- D.5、多项式-23m2-n2是()A.二次二项 B.三次二项式 C.四次二项式 D.五次二项式6、下列运算正确的是()A.a+b=ab B.a2·a3=a6 C.a2+2ab-b2=(a+b)2 D.3a-2a=a7、下列计算正确的是( )A. B. C. D.8、下列运算正确的是()A.4a2-2a2=2 B.a2•a4=a3 C.(a-b)2=a2-b2 D.(a+b)2=a2+2ab+b29、下列运算正确的是()A.a4+a5=a9 B.a3•a3•a3=3a3 C.a4•a5=a9 D.(﹣a3)4=a710、有2012个数排成一行,其中每相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则这2012个数的和等于()A.-1 B.0 C.2 D.2012二、填空题11、已知,,则____________.12、如果关于x,y的多项式ax2+x﹣1和﹣3x2﹣2x+1的差中不含x2项,则a=_____.13、下列说法正确的是()A.3不是单项式B.没有系数C.是一次一项式D.是单项式14、若与是同类项,则m-n=______.15、已知与是同类项,则=_______.16、式子,-4,-xy,-2,,中单项式有________,多项式有__________________.17、下列式子中:①mn+a;②ax2+bx+c;③-6ab;④;⑤;⑥5+7x.整式有________.(填序号)18、观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是________.19、已知A=x2+2y2-z2,B=-4x2+3y2-2z2,且A+B+C=0,则C=________.20、观察下列各式:12+1=1×2,22+2=2×332+3=3×4……请你将猜想到的规律用自然数n(n≥1)表示出来_______.三、计算题21、(6分)计算: 5(x2y-2x y2+z)- 4(2z+3 x2y -x y2)22、求减去的差.23、化简求值:(1)4x2﹣(2x2+x﹣1)+(2﹣x2﹣3x),其中x=﹣;(2)5(3x2y﹣xy2)﹣(xy2+3x2y),其中x=,y=﹣1.24、先化简,再求值:,其中,满足.四、解答题25、若(x+2)2+|y-1|=0,求4xy-(2x2+5xy-y2)+2(x2+3xy)的值.26、已知多项式-x2y m+1+xy2-3x3+6是六次四项式,单项式3x2n y2的次数与这个多项式的次数相同,求m2+n2的值.27、一辆出租车从A地出发,在一条东西走向的街道上行驶,若记向东为正,每次行驶的路程记录如下(x>9,单位:km).(1)求经过四次行驶后,这辆出租车所在的位置;(2)若x=12,这辆出租车一共行驶了多少路程?参考答案1、B2、C3、D4、C5、A6、D7、A8、D9、C10、C11、12、﹣313、D14、915、116、-4,-xy17、①②③④⑥18、19、3x2-5y2+3z220、n2+n=n(n+1)21、-7 x2y-6x y2-3z22、23、(1)原式=x2﹣4x+3,当x=﹣时,原式=5;(2)原式=12x2y﹣6xy2,当x=,y=﹣1时,原式=﹣6.24、原式=25、-926、1327、(1)经过四次行驶后,这辆出租车在A地西边(x-7)km处(2)这辆出租车一共行驶了37km【解析】1、A选项错误,x2-(x-y+2z)=x2-x+y-2z;B选项正确;C选项错误,3x﹣[5x﹣(x﹣1)]=3x﹣5x+x-1;D选项错误,(x-1)-(x2-2)=x-1-x2+2.故选B.点睛:去括号时,括号前面是减号,括号里面的符号要变号.2、试题解析:∵单项式-3x2y的数字因数是-3,所有字母指数的和=1+2=3,∴此单项式的系数是-3,次数是3.故选C.3、试题解析:A. 单项式的系数是:故A错误.B. 单项式的系数为,次数是.故B错误.C. 的次数是:故C错误.D.正确.故选D.点睛:单项式中的数字因数就是单项式的系数.单项式中所有字母的指数的和就是单项式的次数.4、分析:单项式的系数是指单项式中的数字因数;所有字母的指数之和为单项式的次数.详解:根据定义可得单项式的系数为:,故选C.点睛:本题主要考查的是单项式的系数,属于基础题型.理解定义是解决这个问题的关键.5、分析:多项式中各单项式的最高次数作为多项式的次数,单项式的个数为多项式的项数.详解:是二次二项式,故选A.点睛:本题主要考查的是多项式的次数和项数,属于基础题型.理解多项式的定义是解题的关键.6、分析:A、不是同类项,不能合并.B、根据同底数幂的乘法法则计算;C、根据完全平方公式进行计算;D、根据合并同类项法则计算.详解:A、不是同类项,不能合并. 此选项错误.B、此选项错误;C、此选项错误;D、此选项正确.故选D.点睛:考查合并同类项,同底数幂的乘法,完全平方公式,熟记它们的运算法则是解题的关键.7、分析:根据积的乘方,合并同类项,幂的乘方,同底数幂相除法则计算即可.详解:根据积的乘方等于个个因式分别乘方,可知,故正确;根据合并同类项法则,可知,故不正确;根据幂的乘方,底数不变,指数相乘,可得,故不正确;根据同底数幂相除,底数不变,指数相减,可得,故不正确.故选:A.点睛:此题主要考查了幂的运算性质,正确熟练利用幂的运算性质是关键.幂的乘方,底数不变,指数相乘;积的乘方,等于把各个因式分别乘方;同底数幂相除,底数不变,指数相减.8、解:A.4a2﹣2a2=2a2,错误;B.a2a4=a6,错误;C.(a﹣b)2=a2﹣2ab+b2,错误;D.(a+b)2=a2+2ab+b2,正确.故选D.9、解:A.a4+a5,无法计算,故此选项错误;B.a3a3a3=a9,故此选项错误;C.a4a5=a9,故此选项正确;D.(﹣a3)4=a12,故此选项错误;故选C.10、由题意分析可知这列数为:,观察分析排列规律可知,这列数是由“”这样的结构循环形成的,而每一个循环中6个数的和为0;∵,即整个数列中:“”循环了335次,第336次循环只有前两个数:1,1,∴这列数的和为:.故选C.11、【分析】将原式提取公因式,再将各自的值代入计算即可求出值.即.【详解】∵2x-y=,xy=2,∴故正确答案为.【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.12、试题解析:结果中不含项,解得:故答案为:13、试题解析:A. 3是单项式.故错误.B.的系数为1.故错误.C.是常数.故错误.D.正确.故选D.点睛:数与字母的乘积组成的式子就是单项式.单独的一个数或者一个字母都是单项式.14、因为同类项相同字母所含指数相同,所以m-2=4,n+7=4,解得m=6,n=-3, 所以m-n=6-(-3)=9,故答案为:9.15、∵与是同类项,∴,解得:,∴.故答案为:1.点睛:两个单项式是同类项需同时满足两个条件:(1)两个单项式中所含字母相同;(2)两个单项式中同一字母的指数相等.16、由单项式,多项式的定义得,单项式有-4,-xy;多项式有故答案为:-4,-xy;17、①mn+a是多项式也是整式;②ax2+bx+c是多项式也是整式;;③-6ab是单项式也是整式;④是多项式也是整式;;⑤是多项式也是整式;;⑥5+7x 是多项式也是整式;.故答案为:①②③④⑥18、试题解析:根据题意得,这一组数的第个数为:故答案为:点睛:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第个数即可.19、∵A+B+C=0,∴C=0-(A+B).∵A+B=x2+2y2-z2-4x2+3y2-2z2=-3x2+5y2-3z2,∴C=0-(-3x2+5y2-3z2)=3x2-5y2+3z2.故答案为:3x2-5y2+3z220、观察数据规律,可知n2+n=n(n+1).21、解:原式=-7 x2y-6x y2-3z22、解:==23、试题分析:(1)去括号后合并同类项化简,然后再代入求值即可;(2)去括号后合并同类项化简,然后再代入求值即可.试题解析:(1)原式=4x2﹣2x2﹣x+1+2﹣x2﹣3x=x2﹣4x+3,当x=﹣时,原式=(﹣)2﹣4×(﹣)+3,=﹣(﹣2)+3,=5;(2)原式=15x2y﹣5xy2﹣xy2﹣3x2y=12x2y﹣6xy2,当x=,y=﹣1时,原式=12×(﹣)2×(﹣1)﹣6××(﹣1)2=﹣3﹣3=﹣6.24、试题分析:先将整式去括号,合并同类项化简,然后根据非负数的非负性求出x,y的值,最后把x,y的值代入化简后的式子进行计算.试题解析:原式= ,=,=,由题意知:,,∴,,当,时,原式==.、25、试题分析:先由(x+2)2+|y-1|=0,解得x、y的值;然后把原式化简,再代入x、y的值计算即可.试题解析:∵(x+2)2+|y-1|=0,∴x+2=0且 y-1=0,解得x=-2,y=1,∵原式=4xy-2x2-5xy+y2+2x2+6xy=y2+5xy,∴当x=-2,y=1时,原式=1-10=-9.26、试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n的值,把m,n的值代入到m2+n2中,计算即可得到求解.试题解析:根据题意得2+m+1=6,2n+2=6解得:m=3, n=2,所以m2+n2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.27、试题分析:(1)求出4次行驶路程的代数和,并判断出7-x的正负,从而确定出这辆出租车所在的位置;(2)求行驶的路程是求每次行驶的路程绝对值的和.(1)x+(-x-3)+(x-8)+2(9-x)…………………………………1分=7-x.…………………………………………………………………………2分∵x>9,∴7-x<0.∴经过四次行驶后,这辆出租车在A地西边(x-7)km处.……………3分(2)∵x=12,∴-x-3=-15,x-8=4,2(9-x)=-6.…………5分∴︱x︱+︱-x-3︱+︱x-8︱+︱2(9-x)︱.=︱12︱+︱-15︱+︱4︱+︱-6︱=12+15+4+6=37.…………………………………………………………………………6分∴这辆出租车一共行驶了37km.点睛:本题考查了有理数加法的实际应用.解答本题区分好两个问题的区别,求经过四次行驶后,这辆出租车所在的位置是求每次行驶的代数和;求这辆出租车一共行驶了多少路程是求每次行驶路程的绝对值的和.。
初中数学 人教版七年级上册秋季学期第二章 整式的加减 综合测试卷(含答案)
七年级上册第二章整式的加减综合测试卷(含答案)一、选择题(每小题只有一个正确答案.每小题4分,共40分)1.三次多项式是 ( )A .3232x x -+B .321ax x ++C .223x x +-D .32223x x y +-2.下列运算正确的是( )A .325a b ab +=B .22321a a -=C .22330a b -=D .22232a a a -=3.华为手机单价是m 元/部,中兴手机单价是n 元/部,某手机卖场购进华为手机50部和中兴手机30部,共需( )A .(5030)m n +元B .80()m n +元C .()m n +元D .80mn 元 4.多项式223a b a +-的一次项系数与常数项的和等于( )A .5B .1C .1-D .6-5.一个长方形的长、宽分别是a b +、a b -,则这个长方形的周长是( )A .2aB .2bC .4aD .4b6.当1m n -=-时,223m n -+的值是( )A .5B .1C .2D .2-7.如图所示,长方形的长为a ,宽为b ,则图中阴影的面积是( )A .7abB .712abC .76abD .56ab 8.“x 与y 的平方差”用式子表示是( )A .2()x y -B .22x y -C .2x y -D .2x y -9.两个一次多项式的和不可能是( )A .二次多项式B .一次多项式C .常数D .一次多项式或常数10.对于任意整数n ,下列式子中表示奇数的有( )①1n + ②21n + ③31n + ④21n - ⑤23n +A .0个B .1个C .2个D .3个二、填空题(每小题4分,共24分)第7题1.单项式235x y的系数是.2.当1x=-,12y=时,多项式241x xy++的值是.3.请你写出一个与单项式23x y-是同类项的单项式:.4.已知22(3)52m xy y y-+--是关于y的二次三项式,则m=.5.多项式与221m m+-的和等于2m+.6.设9(3)a-=,则算式101112(3)(3)(3)-+-+-的结果用含a的式子表示等于_.三、合并同类项(每小题6分,共10 分):1.3432a b a b+--;2.2222(5)2()3ab a a b a ab ab a b-+---++.四、(10分)先化简,再求值:22(83)2(32)5mn m mn m mn----,其中1m=-,2n=.五、(12分)天秤左、右两边分别放有质量为2ab b--kg的物体,(23)--kg和2(21)ab b问天秤是否平衡?为什么?六、(12分)三个小组去植树,第一小组植了x棵,第二小组植的树比第一小组的2倍少80棵,第三小组比第二小组的一半多30棵.1.三个小组一共植树多少棵?2.当100x =时,哪个小组植树最多?七、(12分)当x a =时,32x x +的值是m ;当x a =-时,32x x +的值是n .问m 和n 是一对相反数吗?为什么?答案一、1.A ;2.D ;3.A ;4.C ;5.C ;6.B ;7.B ;8.B ;9.A ;10. D.二、1.35;2.0;3.略;4.3;5.23m m--+;6.21a-.三、1.2b;2.223a a b-.四、335m mn-=.六、1.490x-;2.第二小组.七、332[()2()]0 m n a a a a+=++-+-=,是。
新人教版七年级数学上册 第二章整式的加减 单元测试题(含答案)
第二章 整式的加减单元测试一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。
5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。
6、计算:=-+-7533x x , )9()35(b a b a -+-= 。
7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。
8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
10、若≠+-m y x yx m n 则的六次单项式是关于,,)2(232 ,n = 。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。
二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( ) A 、-c b a ++ B 、-c b a -+ C 、-c b a +- D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x .30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a .五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:22,,(1)(5)50;3m x y x m -+=满足:2312722a b b a y 与+-)(是同类项. 求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学:第二章《整式加减》检测试卷(人教版七年级上)
班级___________姓名_____________分数_____________
一、填空题(每小题4分,共32分)
1、“x 的平方与2的差”用代数式表示为___________。
2、单项式25
12R π-的系数是___________ ,次数是______________。
3、多项式2532+-x x 是________次_________项式,常数项是___________。
4、若m y x 35和219y x n +-是同类项,则m=_________,n=___________。
5、如果3-y +2)42(-x =0,那么y x -2=____________。
6、如果代数式y x 2+的值是3,则代数式542++y x 的值是___________。
7、与多项式22357b ab a --的和是22743b ab a +-的多项式是______________。
8、飞机的无风飞行航速为a 千米/时,风速为20千米/时.则飞机顺风飞行4小时的行程是__________千米;飞机逆风飞行3小时的行程是__________千米。
二、选择题(每小题4分,共24分)
9、在下列代数式:x
y x abc ab 3,,0,32,4,3---中,单项式有( ) A .3个 B .4个 C .5个 D .6个
10、下列各项式中,是二次三项式的是 ( )
A 、2
2b a + B 、7++y x C 、25y x -- D 、2223x x y x -+- 11、下面计算正确的是( )
A.32x -2x =3 B.32a +23a =55a
C.3+x =3x D.-0.25ab +
4
1ba =0 12、化简()m n m n +--的结果为( )
A .2m
B .2m -
C .2n
D .2n -
13、三个连续奇数的第一个是n,则三个连续奇数的和是 ( )
A 、n 3
B 、33+n
C 、63+n
D 、43+n
14.两个四次多项式的和的次数是( )
A.八次 B.四次 C.不低于四次 D.不高于四次
三、解答题
15、化简下列各式。
(每小题7分,共14分)
(1)2228[42(25)]m
m m m m ---- (2) )5(3)8(2222xy y x y x xy ++--+-;
16、先化简,再求值.(每小题10分,共20分)
(1)2223(421)2(31)a
a a a a +----+,其中12a =-;
(2)2,23),3123()3141(222-==+-+-
-y x y x y x x 其中;
17、(10分)有这样一道题:
“2,2a b ==-时,求多项式3323322113424a b a b b a b a b b ⎛⎫-+--- ⎪⎝⎭
223b -+ 33214a b a b ⎛⎫++ ⎪⎝⎭
的值”,马小虎做题时把2a =错抄成2a =-,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.。