七年级到九年级数学必记重要知识点
初一到初三数学必记重要知识点汇总
初一到初三数学必记重要知识点汇总1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果 ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
初一到初三数学所有知识点
初一到初三数学所有知识点初一数学:1.数的概念:自然数、整数、有理数、实数2.数的运算:加减法、乘除法,混合运算,分数的加减乘除3.算术基本定理:素数与合数,质因数分解,最大公因数与最小公倍数4.约分与通分:分数的约分与通分,化简真分数与带分数5.小数的概念与运算:小数的加减乘除,小数、分数、百分数的相互转化6.数轴与坐标系:数轴的表示法,坐标系的概念,平面直角坐标系的表示法7.基本图形的认识:点、线、面的认识,正方形、长方形、圆、三角形的概念8.数学语言的运用:数学语言与符号的运用,数学问题的表述和解决初二数学:1.整式的知识:整式的定义,同类项的概念,整式的加减乘除,公式的应用2.分式的知识:分式的定义,基本性质,分式的约分、通分、加减、乘除法3.二次根式的知识:二次根式的化简、加减、乘除法,含有二次根式的方程4.平面图形的认识:多边形的概念、性质及全等条件,相似图形的概念及应用5.圆的知识:圆的概念、性质及判定方法,圆上的重要点、弧和角6.三角形和四边形的知识:三角形的角度和边长关系、中线、中位线、高,四边形的性质、面积公式7.比例和增减比:比例的定义、性质及应用,增减比的概念及应用8.百分数和利率:百分数的概念、性质及应用,利率的概念、计算方法及应用初三数学:1.函数与方程:函数的概念、性质及图像,方程及方程组的解法和应用2.数列与指数函数:等差数列、等比数列的概念、性质及求和公式,指数函数的概念、性质及图像3.立体图形的认识:正方体、长方体、正棱柱、正棱锥的概念及性质,体积及表面积的计算公式4.三角函数和解三角形:三角函数的概念、性质及图像,解三角形(利用正弦、余弦、正切函数及海伦公式)5.平面向量的概念及运算:向量的概念和运算、向量的加减、数量积及其应用6.概率与统计:随机事件的概念、基本概率公式,频率、概率密度、方差和标准差的概念及计算7.解析几何:点、直线、平面的坐标表示,直线的斜率及方程,平面上的圆的方程8.数学思维的拓展:数学论证、数学建模、数学思维方法与技巧的培养。
初一到初三数学必记重要知识点汇总
初一到初三数学必记重要知识点汇总
一、初一:
1、数与式:绝对值、有理数、分数和小数、根号、百分数和分数的转换、简单的分
式和带分数的因式、无理数的表示与应用;
2、一元一次方程:一元一次方程的解法:利用公式法和简图法解一元一次方程及应用;
3、比:比的定义、可比性和不可比性、等比数列、比的简化、简化等比数的应用;
4、分数的加减法:分数的意义、分数加减法的等幂性、分数大小的比较;
5、角:角的单位、角的规范弧和极弧、正、任意角、三角形内角和外角和外心角、
三角函数。
二、初二:
1、线性一次函数:定义及特征、函数关系、一元一次函数图象和抛物线图象、函数
的性质;
3、几何:直线的性质及其几何性质、圆的定义及其圆的性质、图形面积与周长;
4、三角函数:正弦、余弦函数、三角函数的综合应用;
5、不等式:一元不等式的性质、一元不等式的解法、一元不等式的解集及应用。
三、初三:
1、三角形:三角形的性质与三角函数、相似三角形的性质与结论、余弦定理的应用、海伦公式的应用;
2、统计:分类数据的描述性统计量,频率分布表、算术平均数、几何平均数、各种
概率和几何平均数的比较等;
3、概率与组合:定义和特征、概率的计算、条件概率、独立事件、互斥事件、组合
中的顺序;
4、函数:函数的性质、函数的值域、函数图象、曲线在函数图象中的位置;
5、几何图形:圆柱体、立体结构、图形中的折线、体积、表面积、体积体积系数等。
初一到初三的数学知识点总结(通用5篇)
初一到初三的数学知识点总结在年少学习的日子里,很多人都经常追着老师们要知识点吧,知识点就是学习的重点。
掌握知识点有助于大家更好的学习。
以下是小编整理的初一到初三的数学知识点总结(通用5篇),欢迎大家借鉴与参考,希望对大家有所帮助。
初一到初三的数学知识点总结11.有理数:(1)凡能写成形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;p 不是有理数;(2)有理数的分类:① ②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0?a+b=0?a、b互为相反数。
4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数< 0。
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b 互为负倒数。
7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。
8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)。
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。
初一到初三数学知识点总结
初一到初三数学知识点总结
一、数与代数
有理数:包括整数和分数,学习有理数的四则运算、大小比较、相反数、绝对值、倒数等概念。
实数:扩展有理数的范围,引入无理数,学习实数的四则运算、大小比较、平方根、立方根等概念。
代数式:学习用字母表示数,进行代数式的化简、合并同类项、求值等运算。
二、图形与几何
平面图形:学习点、线、面、角、三角形、四边形等基本概念,掌握其性质与判定。
立体图形:学习长方体、正方体、球体等立体图形的基本概念,掌握其表面积和体积的计算方法。
相似与全等:学习相似三角形、全等三角形的判定与性质,掌握其在实际问题中的应用。
三、函数与方程
函数:学习函数的定义、性质、图像与解析式,了解函数的增减性、奇偶性、周期性等概念。
方程:学习一元一次方程、二元一次方程、一元二次方程等方程的解法,掌握其在实际问题中的应用。
四、统计与概率
统计:学习数据的收集、整理、描述与分析,掌握平均数、中位数、众数等统计量的计算方法。
概率:学习概率的基本概念,掌握简单事件的概率计算方法,了解概率在实际问题中的应用。
以上是初一到初三数学的主要知识点总结,具体内容可能会因教材版本和学校教学计划而有所差异。
在学习过程中,建议结合教材和
教师教学进度,逐步掌握各个知识点,并多做练习题以巩固所学内容。
七年级到九年级数学必记重要知识点
七年级到九年级数学必记重要知识点1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果 ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
初一到初三所有数学知识点归纳
初一到初三所有数学知识点归纳初一到初三数学知识点:1、有理数的加法运算:同号相加一边倒;异号相加"大"减"小",符号跟着大的跑;绝对值相等"零"正好。
[注]"大"减"小"是指绝对值的大小。
2、合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
初一到初三数学知识点1、有理数的加法运算:同号相加一边倒;异号相加"大"减"小",符号跟着大的跑;绝对值相等"零"正好。
[注]"大"减"小"是指绝对值的大小。
2、合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
3、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
4、一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
5、恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
6、完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
7、因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
8、"代入"口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)9、单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
初中数学7-9年级重点知识点汇总
初中重点知识点0 1 数与代数A、数与式:1.有理数■有理数:①整数→正整数/0/负整数②分数→正分数/负分数■数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
■绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
■有理数的运算:●加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
●减法:减去一个数,等于加上这个数的相反数。
●乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
●除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
●乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
●混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2.实数■无理数:无限不循环小数叫无理数■平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
■立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
数学七年级至九年级知识点
数学七年级至九年级知识点
一、整数与有理数
1. 整数及加减运算
2. 乘法与除法运算
3. 整数的应用问题
4. 正数、负数与零
5. 有理数的概念与性质
6. 有理数的比较与大小
7. 有理数的加减运算
8. 有理数的乘法与除法
9. 有理数的应用问题
二、代数与方程式
1. 代数式与代数计算
2. 平方与平方根
3. 简单方程式的解法
4. 一次方程与一次方程组
5. 二元一次方程组
6. 代数式与图形
7. 不等式与不等式组
三、几何
1. 平面与平面图形
2. 角的概念与性质
3. 直线与直线间的关系
4. 三角形与三角形的特性
5. 四边形与四边形的特性
6. 圆与圆的性质
7. 空间与空间图形
8. 平面与空间图形的投影
9. 直线与平面的位置关系
四、测量与数据
1. 长度、面积与体积的测量
2. 单位换算与应用
3. 数据的收集与整理
4. 数据的表示与分析
5. 概率的基本概念与计算
以上是数学七年级至九年级的知识点概述,涵盖了整数与有理数、代数与方程式、几何以及测量与数据等方面的内容。
通过学习这些知识点,学生们可以逐步掌握数学的基本概念、运算技巧以及解题方法,为进一步深入学习和应用数学打下坚实基础。
希望同学们在学习数学的过程中能够勤于思考、勇于探索,善于运用所学知识解决实际问题,培养对数学的兴趣与自信,不断提高自己的数学素养。
七年级~九年级的知识点
七年级~九年级的知识点第一节:数学知识点数学是一门重要的学科,在中学阶段,七年级至九年级是数学知识的重要积累和学习阶段。
以下是七年级至九年级数学的核心知识点。
1. 代数1.1 代数表达式和简单方程式1.2 一元一次方程与实际应用1.3 二元一次方程组与实际应用1.4 函数的概念与实际应用1.5 图像与函数关系2. 几何2.1 平面几何基本概念2.2 形状与图形的性质2.3 相似与全等的图形2.4 三角形的性质与计算2.5 圆的性质与计算3. 数据与统计3.1 数据的收集与整理3.2 数据的分析与统计第二节:物理知识点物理是一门研究物质、能量以及它们之间相互作用的学科。
以下是七年级至九年级的物理知识点。
1. 运动学1.1 速度与加速度的概念1.2 位移、速度和加速度之间的关系1.3 匀速直线运动和变速直线运动1.4 其他运动形式与图像分析2. 力学2.1 力的概念与力的作用效果2.2 牛顿运动定律2.3 动量与冲量2.4 能量与功2.5 静力学与平衡3. 光学3.1 光的传播和光的反射3.2 光的折射和光的色散第三节:化学知识点化学是一门关于物质组成、性质、变化的科学。
以下是七年级至九年级的化学知识点。
1. 物质与变化1.1 基本物质的分类与性质1.2 纯净物和混合物1.3 物质的变化与化学方程式2. 原子与元素2.1 原子结构与元素周期表2.2 元素的命名与化合价3. 化学反应3.1 反应物与生成物的关系3.2 化学反应的平衡与速率第四节:生物知识点生物学是一门研究生命现象和生命体之间相互关系的科学。
以下是七年级至九年级的生物知识点。
1. 生物的基本单位1.1 细胞与组织器官1.2 基因与遗传2. 生物的组成与特征2.1 动植物的形态结构2.2 繁殖与发育3. 生物间的相互关系3.1 生态系统与食物链3.2 生态环境与保护第五节:语言知识点语言学是对语言的研究与探索。
以下是七年级至九年级的语言知识点。
数学七到九年级全知识点
数学七到九年级全知识点【数学七到九年级全知识点】一、数与式1. 自然数、整数、有理数、实数、复数的概念及其运算性质。
2. 分数与小数的相互转化,百分数。
3. 幂与指数的概念与运算,整数幂的公式与性质。
二、代数式与方程式1. 代数式的概念与性质,字母与数字的混合运算。
2. 方程式的概念与解法,一元一次方程、一元二次方程的解法。
3. 不等式的概念与解法,一元一次不等式、一元二次不等式的解法。
三、函数1. 函数的概念与性质,函数的表示法与运算。
2. 一次函数、二次函数、指数函数、对数函数的图像、性质与应用。
3. 常用函数的定义域、值域、奇偶性及其图像特征。
四、图形与几何1. 点、线、面、角的概念与性质。
2. 二维几何图形的基本性质,平行线与垂直线的判定与性质。
3. 三角形、四边形、圆形的性质,计算周长与面积的方法。
4. 三维几何图形的基本性质,体积与表面积的计算方法。
五、统计与概率1. 统计的基本概念,调查与抽样的方法。
2. 数据的整理与分析,频数表、条形图、折线图、饼图的绘制与解读。
3. 概率的基本概念与计算方法,事件与样本空间的关系。
六、数列与数学推理1. 等差数列与等差数列的求和公式。
2. 等比数列与等比数列的求和公式。
3. 数学归纳法与简单的数学推理题目。
七、解决实际问题1. 将数学知识应用于实际问题的解决过程。
2. 实际问题中的应用题解答与解释。
总结:本文涵盖了数学七到九年级的全知识点,内容主要涉及数与式、代数式与方程式、函数、图形与几何、统计与概率、数列与数学推理以及解决实际问题等方面。
通过对每个知识点进行简洁明了的介绍,旨在帮助读者全面掌握相关数学概念、运算方法和解题技巧。
期望本文能对学生的数学学习起到积极的指导作用。
七年级至九年级知识点
七年级至九年级知识点一、数学数学是一门需要逻辑思维能力的学科,对于学生的思维能力有很好的锻炼作用。
在七年级至九年级的学习过程中,数学也是学生必须学习的一门基础学科。
以下是七年级至九年级数学知识点:1.数的运算:加减乘除法的口算及列式计算、整数的概念及运算,分数的概念、比较大小、约分、分数加减法等。
2.代数初步:利用字母表示数,代数式的概念,常见代数式的列式和解式,带字母的四则运算,一元一次方程的书写和解法等。
3.几何初步:平面图形的概念及基本性质,三角形、矩形、正方形、菱形、平行四边形等的周长、面积公式,直线平行和垂直关系的判定与应用等。
4.数据与图表:统计调查,数据的收集与整理,频数、频率、百分数的概念,数据图的绘制,数据分析与应用等。
二、语文语文是学习的基础,是其他所有学科的基础。
在七年级至九年级阶段,语文考试更加注重语言和表达能力方面,对于学生的阅读理解与表达能力有着极高的要求。
以下是七年级至九年级语文知识点:1.词语用法:词语的义项辨析,词语的联想和拓展,近义词和反义词,成语、俗语和谚语等。
2.修辞手法:比喻、拟人、夸张、排比等修辞手法的了解及应用,句式变化,段落结构等。
3.阅读与写作:古诗文的赏析,篇章结构的分析,文章的写作技巧,作文的表达能力,实用文的写作等。
三、英语英语是国际通用语言,对于学生今后的发展有着极高的帮助和作用,对于一些进口商品的说明和对外交流都有着必要性。
在七年级至九年级阶段,英语课程更关注听、说、读、写的基础训练。
以下是七年级至九年级英语知识点:1.单词和短语:基础的英语单词,短语与语法的应用,熟练掌握英语的基本词汇,并学会运用这些单词和短语表达自己的思想。
2.语法知识:句子的语序,基本句型的构成,时态变化及其用法,语态等语法知识的掌握。
3.阅读技巧:对于英语课本的阅读,了解文章结构,掌握基本的阅读理解,提高阅读和理解英语文章的能力等。
以上就是七年级至九年级知识点的内容,这些知识点不仅是学生学习中的基础知识,也将在学生将来的社会发展中扮演着无可替代的角色。
数学知识点七年级到九年级
数学知识点七年级到九年级一、整数的概念与运算1. 整数的定义及表示方法整数是由正整数、零和负整数组成,用正负号来表示。
2. 整数的加法和减法运算整数的加法运算按数轴上的运算规律进行,正数和正数相加得到正数,负数和负数相加得到负数,正数和负数相加则根据绝对值大小确定正负。
3. 整数的乘法和除法运算整数的乘法运算规律:同号得正,异号得负。
整数的除法运算规律:同号得正,异号得负。
0除以任何非零整数都等于0。
二、代数式与方程式1. 代数式的定义与常见形式代数式是由数、字母和运算符号组成的式子,常见形式有单项式、多项式和恒等式。
2. 代数式的加减和乘除运算代数式的加减运算要考虑变量的同类项进行合并,乘法运算要按照分配律进行展开,除法运算可通过分子有理化简化。
3. 方程式的定义及解法方程式是含有一个或多个未知数的等式,通过移项和合并同类项的方法可以解方程。
解方程的过程中需检查解是否合法。
三、几何图形的认识与性质1. 线段、角的定义及性质线段是两点间的部分,角是由两条射线共同起始于同一点的部分。
直角、钝角和锐角的性质及判断方法。
2. 三角形的定义与分类三角形是由三条线段组成的图形,按边长和角度可以分为等边三角形、等腰三角形、直角三角形、等腰直角三角形以及一般三角形。
3. 平行线与平行四边形平行线的定义及性质,判断两条线是否平行的几种方法。
平行四边形的定义、性质和判定方法。
四、分数与比例1. 分数的定义及表示方法分数由分子和分母组成,表示为分子/分母的形式。
分数的相等性、约分和通分方法。
2. 分数的加减乘除运算分数的加减运算要找到通分的分母,乘法运算将分子和分母分别相乘,除法运算将除数倒置后与被除数相乘。
3. 比例与比例的应用比例的定义及性质,比例的四种关系:等比例、反比例、逆比和复合比。
比例在实际问题中的应用,如比例尺、生活中的比例问题等。
五、数据统计与概率1. 统计图表的读取与制作柱状图、折线图、饼图的读取,根据给定数据制作统计图表。
数学7-9年级知识点
数学7-9年级知识点七年级知识点。
一、有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 例如: - 3是整数,属于有理数;0.5是有限小数,也是有理数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 数轴上的点与有理数一一对应。
例如,在数轴上表示2的点在原点右侧2个单位长度处。
3. 相反数。
- 只有符号不同的两个数叫做互为相反数。
0的相反数是0。
- 如3和 - 3互为相反数,它们到原点的距离相等。
4. 绝对值。
- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
- 例如, - 5 = 5,3 = 3。
二、整式的加减。
1. 整式。
- 单项式和多项式统称为整式。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
例如,3x, - 2,a。
- 多项式:几个单项式的和叫做多项式。
例如,x + 2y是多项式。
2. 同类项。
- 所含字母相同,并且相同字母的指数也相同的项叫做同类项。
- 例如,3x²y与 - 5x²y是同类项。
3. 整式的加减。
- 实质就是合并同类项。
合并同类项时,把同类项的系数相加,字母和字母的指数不变。
- 例如,2x+3x=(2 + 3)x = 5x。
三、一元一次方程。
1. 方程的概念。
- 含有未知数的等式叫做方程。
- 例如,2x+3 = 7是方程。
2. 一元一次方程。
- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。
- 一般形式是ax + b=0(a≠0),如3x - 5 = 0。
3. 方程的解。
- 使方程左右两边相等的未知数的值叫做方程的解。
- 例如,x = 2是方程2x - 4 = 0的解。
4. 解方程。
- 移项:把方程中的某一项改变符号后,从方程的一边移到另一边。
- 例如,在方程2x+3 = 5x - 1中,把5x移到左边变为- 5x,3移到右边变为-3,得到2x - 5x=-1 - 3。
初一到初三数学重点知识点
初一到初三数学重点知识点初一到初三的数学学习是中学数学教育的基础阶段,涵盖了许多重要的数学概念和技能。
以下是这一阶段的数学重点知识点概述:1. 数与代数- 有理数的运算:包括加、减、乘、除以及它们的混合运算。
- 代数表达式:学习如何使用字母表示数,以及如何进行代数表达式的简化和求值。
- 一元一次方程:解方程的基本步骤,包括移项、合并同类项等。
- 二元一次方程组:通过代入法或加减消元法求解方程组。
- 因式分解:提取公因式、平方差公式和完全平方公式等。
2. 几何- 线段、射线和直线:理解它们的定义和性质。
- 角度:锐角、直角、钝角和周角的概念及其度量。
- 三角形:三角形的分类、内角和定理以及三角形的边长关系。
- 四边形:平行四边形、矩形、菱形和正方形的性质和判定。
- 圆:圆的基本概念,如半径、直径、圆周率等,以及圆的周长和面积的计算。
3. 统计与概率- 数据的收集和整理:学习如何收集数据并将其整理成图表。
- 平均数、中位数和众数:计算数据集的平均数、中位数和众数。
- 概率:理解概率的基本概念,计算简单事件的概率。
4. 函数- 一次函数:学习一次函数的图像和性质,包括斜率和截距。
- 二次函数:掌握二次函数的图像,包括顶点式和标准式。
5. 解题技巧- 数学思维:培养逻辑思维和抽象思维能力,提高解题效率。
- 画图辅助:利用图形来帮助理解和解决数学问题。
- 转化思想:将复杂问题转化为简单问题,或者将不熟悉的问题转化为熟悉的问题。
这些知识点构成了初一到初三数学学习的核心内容,为学生进一步学习高中数学打下坚实的基础。
掌握这些知识点不仅有助于提高数学成绩,还能培养学生的数学思维和解决问题的能力。
初一到初三数学知识点
初一到初三数学知识点初一到初三数学知识点总结:1. 有理数的运算:包括加法、减法、乘法、除法以及它们的混合运算。
掌握有理数的运算规则,如正负数的加减法,以及乘除法的符号变化。
2. 代数初步:学习代数式的基本运算,包括合并同类项、去括号、分配律等。
理解变量和常数的概念,以及如何表示简单的代数表达式。
3. 一元一次方程:学习解一元一次方程的方法,如移项、合并同类项、系数化为1等。
理解方程的解和解方程的概念。
4. 二元一次方程组:掌握二元一次方程组的解法,如代入法和加减消元法。
理解方程组的解和解方程组的概念。
5. 不等式:学习不等式的基本概念,包括不等号的含义、不等式的解集和解不等式的方法。
6. 函数的初步:了解函数的概念,包括自变量、因变量、函数的表达式和函数图像。
学习简单的线性函数和它们的图像。
7. 几何初步:学习点、线、面的基本性质,以及平面几何的基本概念,如角度、线段、平行线、垂线等。
8. 三角形:掌握三角形的分类,如等边、等腰、直角三角形等。
学习三角形的内角和定理、外角定理以及三角形的面积计算。
9. 四边形:了解四边形的基本性质,包括平行四边形、矩形、菱形、正方形等。
学习四边形的性质和面积计算。
10. 圆:学习圆的基本性质,包括圆心、半径、直径、圆周角、弦、弧等。
掌握圆的面积和周长的计算方法。
11. 立体几何:了解立体图形的基本性质,如长方体、正方体、圆柱、圆锥、球等。
学习立体图形的表面积和体积的计算。
12. 概率初步:学习概率的基本概念,包括随机事件、概率的计算方法和简单的概率问题。
13. 统计初步:了解数据的收集、整理和描述方法,包括数据的分类、图表的绘制和基本的统计量计算。
14. 数列:学习数列的基本概念,包括等差数列和等比数列的定义、通项公式和求和公式。
15. 代数方程:学习一元二次方程的解法,如配方法、公式法、因式分解法等。
了解高次方程和方程组的解法。
16. 函数和图象:进一步学习函数的性质,包括函数的单调性、奇偶性、极值和最值。
初一到初三数学知识点
初一到初三数学知识点一、前言本文旨在为初中阶段学生提供一个关于初一至初三数学知识点的概览。
这些知识点将按照年级和主题进行分类,以便学生能够更好地理解和复习。
二、初一数学知识点1. 数与代数- 自然数、整数、有理数的认识和运算- 代数表达式的理解和简化- 一元一次方程及其解法- 不等式及其解集的表示和解法2. 图形与几何- 平面几何图形的基本性质- 直线、射线、线段、角的概念及其性质- 三角形的基本性质和分类- 四边形的基本性质和分类3. 统计与概率- 数据的收集和整理- 基本的统计图表(条形图、折线图、饼图)的绘制和解读- 简单随机事件的概率计算三、初二数学知识点1. 数与代数- 整式的加减乘除运算- 因式分解的技巧- 二元一次方程组的解法- 一元二次方程的基本解法2. 图形与几何- 圆的基本性质和圆的方程- 空间几何图形的认识- 相似三角形的性质和判定- 平行线与平行公理3. 函数- 函数的概念及其表示方法- 线性函数和二次函数的图像和性质 - 函数的基本运算4. 统计与概率- 复杂统计图表的绘制和解读- 概率的进一步理解和计算- 排列组合的基本概念四、初三数学知识点1. 数与代数- 无理数的认识和运算- 绝对值和不等式的深入理解- 二次方程的解法总结- 多项式函数和有理函数的概念2. 图形与几何- 三角形和四边形的面积计算公式- 圆的性质深入和圆的面积计算- 空间几何体的体积和表面积计算- 几何变换(平移、旋转、对称)3. 函数与方程- 高次函数的图像和性质- 指数函数和对数函数的基本概念- 函数方程的解法4. 统计与概率- 统计推断的基本概念- 概率分布和期望值的计算- 条件概率和独立事件的概念五、结语以上概览了初一至初三数学的主要知识点。
学生应根据这些知识点进行系统的学习和复习,以确保对初中数学内容的全面掌握。
教师和家长也应根据这些知识点指导学生,帮助他们建立扎实的数学基础。
初中数学7至九年级知识点
初中数学7至九年级知识点初中数学7至9年级知识点数学是一门重要的学科,也是初中阶段的必修课程之一。
在初中数学的学习过程中,有许多关键的知识点需要掌握。
本文将为您详细介绍初中数学7至9年级的重要知识点。
一、代数与函数在初中数学中,代数与函数是一项重要的内容。
学生需要掌握以下知识点:1. 代数式的计算:包括加减乘除运算、整式的乘法公式与因式分解等。
同时,学生需要掌握有理数的概念与运算规则。
2. 一元一次方程与一元一次不等式:学生需要了解方程与不等式的基本概念,并能利用解方程解不等式。
3. 函数概念与函数的性质:学生需要理解函数的定义、函数的自变量与函数值的概念,并掌握函数的性质与函数图像的画法。
二、几何与图形几何与图形是初中数学的另一个核心内容,涉及到平面图形和立体图形的性质与计算。
学生需要掌握以下知识点:1. 长度、面积与体积的计算:学生需要掌握计算线段、多边形的周长和面积,以及立体图形的体积等计算方法。
2. 几何图形的性质:学生需要了解直线、角、三角形、四边形等图形的性质,并能运用这些性质解题。
3. 平行线与相交线:学生需要掌握平行线与相交线的性质,能够利用平行线性质解题。
4. 同位角与内错角:学生需要理解同位角与内错角的概念,熟练使用它们的性质解题。
三、数据与统计数据与统计是初中数学中的一个重要内容,涉及到数据的收集、整理、展示和分析。
学生需要掌握以下知识点:1. 数据的收集与整理:学生需要了解如何进行数据的收集与整理,包括频数表、条形图、折线图等的制作方法。
2. 数据的展示与分析:学生需要学会利用统计图表对数据进行展示和分析,掌握统计平均数、中位数、众数等的计算方法。
3. 概率的计算:学生需要了解概率的基本概念,并能计算简单的概率问题。
四、函数的应用函数的应用是初中数学中的一个重要部分,学生需要了解函数在实际生活中的应用。
以下是一些应用的知识点:1. 运动问题:学生需要了解匀速运动、变速运动等与函数相关的概念,并能应用函数解决运动问题。
初一到初三数学知识点
初一到初三数学知识点一、初一数学知识点1. 数的性质•自然数和整数的概念•有理数和无理数的区别和性质•相反数和绝对值2. 整式与分式•简单整式的加减乘除运算•分式的概念与运算法则3. 平方根与立方根•平方根的概念与性质•立方根的概念与计算4. 计算•两数四则运算•带括号的四则运算•用珠心算解四则运算5. 图形的认识•点、线、面等基本概念•直线、折线、封闭曲线等的特点和性质•常见图形的名称和特征二、初二数学知识点1. 代数•代数表达式的概念•代数式的化简与展开•一元一次方程的解法•四则运算的应用问题2. 几何•线段、角、三角形的性质•直线、平行线和垂直线的关系•三角形的分类与特征•平面镜形和旋转镜形的基本形状•面积和体积的计算3. 数据统计•数据的整理与统计•直方图、折线图、饼图的绘制与分析•平均数、中位数和众数的计算与应用4. 函数•函数的概念与性质•函数的表示与运算•一次函数和二次函数的图像与性质•函数的应用问题三、初三数学知识点1. 平面几何•直线、线段、角的性质•同位角、内错角、补角、余角的关系•直角三角形、等腰三角形、等边三角形的特征•圆的性质与公式•圆的切线与切点的性质2. 空间几何•立体图形的性质与分类•长方体、正方体、棱柱、棱锥、圆柱、圆锥和球体的特征•空间几何图形的表面积和体积计算3. 概率与统计•事件与概率的概念与计算•试验、样本空间、随机事件的概念•概率与分数、百分数的关系•几何概率与排列组合的应用4. 三角函数•弧度制与角度制的转换•正弦、余弦、正切、余切的定义与计算•三角函数的图像与性质•解三角函数方程的方法与应用以上是初一到初三数学的主要知识点,通过系统的学习和练习,可以帮助学生打下坚实的数学基础,为高中数学的学习奠定良好的基础。
学生在学习过程中,应注重理解和应用,通过练习提高自己的解题能力和思维能力。
希望本文档对您的学习有所帮助!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级到九年级数学必记重要知识点1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果 ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交 d<r②直线L和⊙O相切 d=r③直线L和⊙O相离 d>r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离 d>R+r②两圆外切 d=R+r③两圆相交 R-r<d<R+r(R>r)④两圆内切 d=R-r(R>r)⑤两圆内含 d<R-r(R>r)136、定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长142、正三角形面积√3a/4 a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144、弧长计算公式:L=n兀R/180145、扇形面积公式:S扇形=n兀R^2/360=LR/2146、内公切线长= d-(R-r) 外公切线长= d-(R+r)正弦定理 a/sinA=b/sinB=c/sinC=2R注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB注:角B是边a和边c的夹角基本方法:1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。