我国成功攻克煤焦油全馏分加氢技术
中低温煤焦油加氢制油技术现状
中低温煤焦油加氢制油技术现状煤焦油是煤炭热解、气化等利用过程中产生的副产品,是碳氢化合物的复杂混合物,大部分为价值较高的稀有种类,是石油化工难以获得的宝贵资源。
根据煤热加工过程的不同,所得到的煤焦油通常被分为高温焦油(900℃~1 000℃)、中温焦油(650℃~900℃)和低温焦油(450℃~650℃)。
我国是产煤大国,有着丰富的煤焦油资源,煤焦油作为生产兰炭、焦炭和煤气化的副产品,目前年产约1500万吨,除部分高温煤焦油用于提取化工产品外,多数煤焦油没有得到合理的利用,大部分中低温煤焦油和少量高温煤焦油被作为燃料进行粗放燃烧。
因煤焦油中含有大量的芳香族等环状结构化合物,较难充分燃烧,同时煤焦油含碳量高,含氢量低,燃烧时更容易生成炭黑,致使燃烧不完全并产生大量的烟尘;另外,由于煤焦油中硫和氮的含量较高,燃烧前又没有进行脱硫脱氮处理,所以在燃烧时排放出大量的SOx和NOx,造成严重的环境污染,与当前全球大力提倡的绿色环保能源的潮流背道而驰。
如果将这部分煤焦油通过催化加氢制成高清洁的燃料油(汽油和柴油),不仅能够提高煤焦油的利用价值,大大减少环境污染,还可以每年为国家新增国民生产总值300多亿元。
1 中低温煤焦油概述中低温煤焦油的组成和性质不同于高温煤焦油,中低温煤焦油中含有较多的含氧化合物及链状烃,其中酚及其衍生物质量含量可达10%~30%,烷状烃大约20%,同时重油(焦油沥青)的含量相对较少,比较适合采用加氢技术生产清洁燃料油。
中低温煤焦油(以下“煤焦油”即“中低温煤焦油”)从外观上看,是黑色黏稠液体,密度略小于1000kg/m3,黏度大,具有特殊的气味,其主要组成是芳香族化合物,且大多数是两环以上的稠环芳香族化合物。
不同的热解工艺、不同的原料煤都直接影响煤焦油的性质和组成。
下表列举出了一种典型中低温煤焦油的性质及组成数据。
初步估算,全国低温煤焦油总年产能约为400万吨,生产企业主要分布在晋、陕、蒙、宁四省区交界地带,陕西榆林神府地区和内蒙鄂尔多斯市的伊旗、准旗最多,另外在山西、宁夏、新疆等省区也有部分生产企业。
中低温煤焦油加氢技术
中低温煤焦油加氢技术摘要:中低温煤焦油加氢技术的应用对于提升煤焦油利用率具有重要作用,也是煤焦油成为化工行业重要组成的关键技术。
借助加氢技术将中低温煤焦油转化成优质汽油和柴油作为汽车能源,有效缓解了燃料资源压力。
本文将围绕着中低温煤焦油加氢技术展开论述,对中低温煤焦油进行简单概述,简单分析技术原理和目的,对常见技术类型和优劣做出简单分析,并结合实际情况探索技术优化策略,以期为化工生产实践提供一定思路,促进能源领域健康发展。
关键词:中低温煤焦油;加氢技术;化工生产引言煤焦油作为煤加工过程中的副产品,由于工艺差异分为不同类型,其中中低温煤焦油利用率相对较低。
我国煤焦油企业较为分散,再加上技术的影响,利用一直不够充分,粗放的利用方式未能充分发挥煤焦油的作用,简单地通过燃烧的方式利用中低温煤焦油还会造成严重的污染问题。
因此很有必要对中低温煤焦油加氢技术进行深入研究,以提升中低温煤焦油的利用效率,促进行业发展的同时,缓解能源压力和环境问题。
1中低温煤焦油概述在进行煤炭加工的过程中会产生副产品煤焦油,煤焦油的成分组成较为复杂,通常主要是碳、硫,氮,氢等化学物质以及酚类和芳香烃形成的混合物。
产生煤焦油的环境温度通常为在为500~600℃的范围内,属低温煤焦油;中温煤焦油的温度为700~900℃范围内,温度为900~1100℃的煤焦油属高温煤焦油,中低温煤焦油与高温煤焦油的性能及组成成分存在着很大的差别。
在这些化合物中,苯酚和苯类化合物的组成比例高达10%~30%,烷烃类化合物含量高达20%,并含有少量的焦油沥青。
中低温煤焦油的成分决定了其适宜于工业生产中的加氢转化,从而可以用于实际的化工产品和发动机燃料油。
所以对中低温煤焦油加氢技术进行深入的研究,对于满足市场需求以及对炼厂的发展有着非常重要的现实意义。
2中低温煤焦的加氢原理和目的中低温煤焦油经煤热解后所生成的液体物料,因其组分中存在大量的烯烃、不饱和烃等,这种特性使得该产品会存在光、氧化稳定性差的特性。
煤焦油加氢转化技术_朱豫飞
1. 63 36. 36 27. 05 34. 96
1. 55 41. 58 33. 68 23. 19
元素分析 /% 组分分析 /%
ω( C) ω( H) ω( S) ω( N) ω( O)
饱和烃 芳烃
胶质 + 沥青质
90. 99 5. 61 0. 53 1. 02 1. 85
0. 52 32. 13 67. 35
1 煤焦油的组成和性质
由于原料煤性质和煤热解温度的不同,所得煤 焦油在组成和性质上存在着明显差别,高温煤焦油 和中低温煤焦油的组成和性质见表 1。从组成上 看,中低温煤焦油的氢元素、氧元素、低级酚和饱和 烃的含量明显高于高温煤焦油,高温煤焦油的重馏 分油含量较高,其密度和残炭也大于中低温煤焦油。 反应性能上,中低温煤焦油的加氢裂化活性明显高 于高温煤焦油[1]。
83. 15 7. 96 0. 38 0. 89 7. 62
10. 46 13. 65 75. 89
2 煤焦油加氢转化技术
2. 1 轻馏分油固定床加氢精制技术 轻馏分油固定床加氢精制技术是煤焦油加氢转
化技术中最简单的一种,其基本流程如图 1 所示。 常减压蒸馏装置将煤焦油全馏分切割成 < 350 ℃ 的 轻馏分油和 > 350 ℃ 的重油,其中重油部分直接用 作燃料油或沥青,将 < 350 ℃ 的轻馏分油作为固定 44
第 20 卷第 3 期
2014 年 5 月
洁净煤技术
Clean Coal Technology
Vol. 20 No. 3 May 2014
煤焦油加氢转化技术
朱豫飞
( 北京低碳清洁能源研究所,北京 102209)
摘 要: 分析了国内已经研究开发的煤焦油加氢转化技术,按照各技术的特点和轻油产品收率将现有
煤焦油加氢
煤焦油加氢1. 概述煤焦油是煤炭加工中的一种主要副产品,主要包含苯、甲苯、二甲苯等有机化合物。
煤焦油加氢是一种常用的处理方法,通过加氢反应将煤焦油转化为具有较高附加值和广泛应用领域的产品,如汽油、柴油和润滑油。
2. 加氢工艺煤焦油加氢的工艺主要包括以下几个步骤:2.1 前处理煤焦油经过前处理后,可去除其中的杂质和不稳定成分,提高后续反应的效果。
前处理通常包括升温、加氢气和催化剂的引入等步骤。
2.2 加氢反应在加氢反应器中,将预处理后的煤焦油与氢气在催化剂的存在下进行反应。
加氢反应主要是将煤焦油中的芳香烃和不饱和烃转化为饱和烃,减少其中的硫、氮等杂质含量。
2.3 分离和后处理经过加氢反应后,产物中会产生水、含硫化合物等副产物,需要进行分离和后处理。
分离可以通过蒸馏等方式进行,将不同沸点的产物分离开,得到目标产品。
后处理主要是对分离得到的产品进行进一步的处理,如除硫、脱色等。
3. 加氢催化剂催化剂在煤焦油加氢中起到重要作用,能够加速反应速率,提高产物质量。
常用的加氢催化剂主要有镍基和钼基催化剂。
3.1 镍基催化剂镍基催化剂具有高活性和良好的选择性,在煤焦油加氢中得到广泛应用。
镍基催化剂能够有效催化芳香烃的饱和反应,提高产物的质量。
同时,镍基催化剂的价格相对较低,成本较为优势。
3.2 钼基催化剂钼基催化剂具有较高的催化活性和较好的硫化物抑制能力,在煤焦油加氢中也得到广泛应用。
钼基催化剂能够有效催化煤焦油中的硫化物,降低产品的硫含量,提高产品质量。
4. 应用领域煤焦油加氢产物主要包括汽油、柴油和润滑油等。
这些产品在交通运输、工业生产和农业领域都有广泛的应用。
4.1 汽油经过煤焦油加氢后产生的汽油具有较高的辛烷值和低的硫含量,适用于汽车燃料。
汽油作为交通运输领域的重要能源,具有巨大的市场需求。
4.2 柴油煤焦油加氢产生的柴油具有高的脱硫能力和较低的含硫量,适用于柴油发动机使用。
柴油作为工业生产和农业机械的重要燃料,也有着广泛的市场。
煤焦油加氢技术简介
19
加氢裂化-加氢处理(FHC-FHT) 反序串联工艺
◇该工艺设置两个串联使用的反应段,R1装填高耐水、 抗结焦和高脱氮活性的加氢精制催化剂,用于新鲜原 料和R2反应产物的深度加氢处理,R2反应段装填根 据特定需要优选的加氢裂化催化剂,用于循环油深度 加氢转化。
氮含量/μg·g-1
<1.0
芳潜(C9),% >160℃柴油馏分
>75 -10#柴油调合组分
密度(20℃)/kg·m-3
850.0~880.0
硫含量 μg·g-1
<10
凝点/℃
≯-10
十六烷值(实测)
≮40
18
加氢裂化-加氢处理(FHC-FHT) 反序串联工艺
◇根据煤焦油(包括蒽油)、页岩油等非常规原 料高含氮、含氧的特征,FRIPP开发了具有 自主知识产权的加氢裂化-加氢处理(FHCFHT)反序串联工艺技术,其原则流程图如 图3所示。
量大,价格相应上涨,因此,从煤焦油中生产轻质燃 料油产品,是综合利用煤炭资源,提高企业经济效益 的有效途径之一。
3
煤焦油加氢工艺
◇采用环境友好的加氢法工艺。利用煤焦油中合适 馏分,生汽油调和组分,已经在工业 装置上成功应用,并进行了长期稳定运转,产品 质量达到设计要求。
13
加氢精制-加氢处理两段法加氢工艺
◇该设置加氢精制和加氢处理两个反应段,加氢 处理催化剂含有分子筛组分,低温煤焦油馏分 经过加氢精制过程后,生成油中的水、有机氮 对可使加氢裂化催化剂中毒,很难实现长周期 运转。所以加氢精制生成油需要换热冷却后, 进入高压和低压分离器,分离出的液体物流通 过气提塔分离出生成水,再进入加氢处理反应 段,进一步改质来改善产品质量。原则流程图 见图2。
我国煤焦油加氢产业发展现状与展望
我国煤焦油加氢产业发展现状与展望摘要:煤焦油加氢是以生产清洁燃料油品为主要目的,将煤焦油在高温、高压、临氢和催化剂的条件下,脱除硫、氮、氧和金属等杂原子,饱和芳烃、烯烃等烃类,进而转化为较低分子量的液体燃料,并副产轻烃、沥青焦等的过程,属于煤化工领域。
关键词煤焦油,特性,加氢,产能,产量,制约因素,展望1煤焦油加氢产业规模截至2019年底,煤焦油加氢项目总规模已达839.6万t/a,可生产各类油品约700万t/a。
其中,中低温、中温煤焦油加氢产能已达到495.8万t/a,开发应用了轻馏分加氢、延迟焦化-加氢、全馏分加氢、宽馏分加氢、沸腾床加氢、悬浮床加氢等一系列技术;另外,高温煤焦油加氢,尤其是蒽油加氢产业规模不断扩大。
虽然我国目前已建成煤焦油加氢总产能为839.6万t/a,但由于原料供应、装备技术和生产操作等因素的制约,实际开工率约为80%,则可生产清洁油品约为550万t/a(油品收率按80%计算)。
截至2019年底,我国在建和规划中的煤焦油加氢项目产能达3200万t/a。
若在近五年内拟在建项目可建成30%(约960万t/a),我国煤焦油加氢总产能将达到1800万t/a,将可生产各类油品约1400万t/a。
2制约因素与发展方向2.1制约因素从20世纪90年代以来,我国科研单位根据煤焦油原料的组成及特性,在石油加氢工艺技术及催化剂研究应用的基础上,将其借鉴改进并应用到煤焦油加氢领域,但由于加氢产业发展过快及所处发展阶段影响,在原料、市场、技术、环保等方面仍存在诸多制约。
4.1.1原料供需矛盾将凸显2019年,我国中低温和中温煤焦油产量共有约660万t,相应已投产的加氢项目规模为495.8万t;高温煤焦油产量约为1850万t,其中蒽油馏分产量约为410万t,相应已投产的加氢规模为343.8万t。
若考虑煤焦油在其他深加工应用领域的拓展,加氢产业原料供需基本平衡。
2.1.2产品市场变数较多按照国家汽油、柴油质量指标要求,煤焦油加氢项目所生产的汽油辛烷值和柴油十六烷值均不达标且较低,出厂售价亦低于石油炼制产品。
煤焦油加氢工艺及加氢催化剂浅析
与高温煤焦油相比,中低温煤焦油中各类物质分布相对比较分散,除酚类外,其他物质的含量都很少。
鉴于此,中低温煤焦油的加工路径通常有两种:精细化工和加氢改质。
由于中低温煤焦油中单体组分含量少,这一加工工艺的经济性较差,因此目前国内中低温煤焦油的利用以加氢提质制取燃料油为主。
一、中低温煤焦油加氢工艺1.轻馏分加氢。
轻馏分加氢是指,先将中低温煤焦油原料进行蒸馏切割,得到的轻质馏分进行加氢制取燃料油。
通常采用固定床加氢反应器,对中低温煤焦油中的轻质馏分进行加氢处理,脱除杂原子、饱和烯烃和芳烃,生产出石脑油。
根据中低温煤焦油蒸馏中切割点的不同,相应的工艺也会发生变化。
单段法煤焦油加氢改质工艺,将煤焦油进行常压蒸馏和/或减压蒸馏,切割点为300-380℃,轻质组分中再切除210-230℃的富茶馏分段,剩余的轻质馏分油作为反应原料。
轻质馏分油与氢气混合经加氢精制反应脱硫、氮和部分芳烃饱和,产物直接进入加氢裂化反应器进行深度脱硫和脱芳烃,最终经分离得到目标产物。
为了延长催化剂和反应器的使用寿命,可在两步加氢反应中设置中间闪蒸塔和高压汽提塔,有利于脱除第一步反应生成的气相杂质。
加氢工艺流程如图1所示。
中馏分进入I段加氢保护区反应,得到的产物与氢气混合进入I段加氢精制反应区,流出的产物与轻馏分混合依次进入II段加氢保护区、II段加氢精制区反应,产物经冷却、分离和分馏后得到燃料油产品。
图1煤焦油加氢生产燃料油工艺流程轻馏分加氢工艺流程简单,投资和操作费用相对较低,但是由于燃料油产品的收率取决于煤焦油原料中轻质馏分的含量,因而资源利用率较低。
2.全馏分加氢工艺。
为了提高煤焦油资源的利用率,增加目标产品收率,全馏分加氢工艺引起了大家的广泛关注。
由于中低温煤焦油中含有一部分的沥青、胶质等,如果直接进行加氢,容易造成反应器管道堵塞,催化剂失活等问题,无法保证装置的稳定性,因此,全馏分加氢需要对煤焦油中的重馏分进行特别处理。
二、加氢催化剂根据作用不同,加氢催化剂通常分为加氢精制和加氢裂化催化剂。
全馏分煤焦油固定床加氢技术首次工业级长周期应用
全馏分煤焦油固定床加氢技术首次工业级长周期应用1.宣力项目建设背景及运行概况新疆煤炭预测资源总量2.19万亿吨,占全国煤炭资源总量的40.6%,资源量居全国之首,但新疆地区煤炭以低阶煤为主。
其特点是热值低、燃烧转化效率低,挥发分高、含油率高、活性强、易自燃,公路、铁路运输困难,其开发利用一直受限。
且新疆地区缺水、环境承载能力低。
利用淖毛湖当地廉价氢源,大力发展低阶煤分质利用及煤焦油加氢技术,将煤矿变“油矿”,对于缓解石油供需矛盾,保障国家能源安全具有重要的经济意义和战略意义。
2.全厂工艺流程简述如上图,该项目主要工艺装置包括荒煤气制氢装置、原料油精制预处理装置、煤焦油加氢装置,另外配套相关的公辅装置。
制氢装置:以园区各兰炭厂副产荒煤气为原料,通过变换反应(CO+H2O=CO2+H2)增加原料气中H2含量,变换气再通过PSA变压吸附,以脱除变换气中CO、CO2、CH4、N2等组分,产出纯度>99.9%的氢气,送往加氢装置。
预处理精制单元采用前海新域公司自主研发的技术,以煤焦油为原料,通过添加专用药剂,除掉煤焦油中的大部分杂质,得到总金属<20μg·g -1 的净化煤焦油,送往加氢装置。
加氢装置以预处理所产净化煤焦油和制氢所产氢气为原料,通过脱金属、脱除烯烃,脱除净化煤焦油中的S、O、N等元素后送至加氢裂化反应器,对加氢精制油加氢裂化,使长链烃类以及稠环芳烃裂解变成短链烃类,改质后的油品再通过分馏系统分离,得到1#轻质煤焦油、2#轻质煤焦油、液化气等产品,未转化的尾油返回加氢裂化段进行回炼,实现全馏分加氢。
装置工业运行总结3.1为考核运行初期净化效果、催化剂性能、加工负荷、物料平衡、产品质量、装置能耗以及设备运行状况等,装置于2019年10月12日~10月15日开展为期三天的满负荷标定。
标定期间净化装置加工原料为新疆淖毛湖地区块煤干馏所产中低温煤焦油全馏分。
标定期间装置产品性质轻质煤焦油2#(类石脑油组分)此标定周期,装置已具备“安、稳、长、满、优”运行条件。
煤焦油加氢工艺流程
煤焦油加氢工艺流程煤焦油加氢是一种将煤焦油中的高分子化合物转化为低分子石油产品的工艺。
煤焦油是煤气化和焦化工艺中产生的副产品,含有大量的多环芳烃和杂原子化合物,其高粘度和高残碳含量限制了它们的应用。
煤焦油加氢工艺可以通过加氢作用降低其粘度和残碳含量,从而得到更高品质的石油产品。
煤焦油加氢工艺流程通常包括前处理、加氢反应和产品分离三个步骤。
首先,通过前处理,将煤焦油中的杂质和重金属去除。
前处理可以采用各种方法,如静电沉淀、溶剂抽提和催化热裂解等。
这些方法可以有效地去除煤焦油中的硫、氮、金属等杂质,提高加氢反应的效率。
接下来,经过前处理的煤焦油进入加氢反应器。
加氢反应器通常采用固定床催化剂反应器或流化床反应器。
在加氢反应器中,煤焦油被与氢气混合并加热至高温,通过催化剂的作用,高分子化合物被裂解为低分子化合物。
同时,加氢反应还能将多环芳烃和杂原子化合物转化为单环芳烃和饱和烃。
加氢反应的温度和压力是影响反应效果的重要因素。
较高的温度和压力可以促进裂解反应和饱和反应的进行,但也会增加能耗和催化剂的热稳定性要求。
因此,在确定反应条件时需要综合考虑经济性和工艺可行性。
此外,还需要对催化剂进行定期的再生和替换,以保证反应的稳定性和持续性。
最后,经过加氢反应的产物会进入产品分离装置进行分离和提纯。
产品分离装置通常包括减压蒸馏塔、精馏塔和萃取塔等。
通过不同的分离操作,可以得到不同石油产品,如汽油、柴油、润滑油等。
总的来说,煤焦油加氢工艺是一种将煤焦油转化为高品质石油产品的技术。
通过前处理、加氢反应和产品分离等步骤,可以有效地降低煤焦油中的粘度和残碳含量,得到适用于不同用途的石油产品。
随着石油资源的紧缺和环境污染的增加,煤焦油加氢工艺在能源和环保领域具有广阔的应用前景。
过程装备与控制工程论文
过程装备与控制工程论文题目:煤焦油加氢的工艺条件研究院系:化工学院专业:过程装备与控制工程摘要针对我省陕北地区“富煤缺油少气”的真实现状,本文通过对煤焦油加工国内外发展现状和应用前景的调研,同时借助于现代加氢技术及其工艺条件使用,采用合理的研究思路,科学合理的寻找及制定合理的工艺条件,通过催化加氢技术制取汽柴油。
加氢技术通常是在高温.高压.等苛刻的条件下平稳进行,如何保证整套装置的安全运行一直是从事化工设备行业的重要课题,本文通过对工艺条件的研究及设计,以此来保证实验正常运行以及其工艺的经济型。
本文重点介绍的是加氢装置工艺流程的工艺条件。
它的合理与否直接影响原油加氢性能及最终影响到其收率。
关键字:煤焦油;加氢技术;加氢技术的工艺条件目录第一章文献综述 .......................................................................................................................... 11.1煤焦油加工的现状与前景..................................................................................... 11.1.1 世界能源现状................................................................................................. 11.1.2 煤焦油加工的发展现状................................................................................. 11.1.3 世界煤焦油加工业......................................................................................... 31.2煤焦油深加工的发展现状..................................................................................... 51.2.1 煤焦油加氢技术............................................................................................. 61.2.2 几种典型技术对比分析................................................................................. 71.2.3 几种工艺路线对比......................................................................................... 91.3选题的目的和研究内容..................................................................................... 101.3.1 选题目的..................................................................................................... 101.3.2 选题内容..................................................................................................... 10第二章煤焦油加氢工艺条件................................................................................................... 112.1煤焦油固定床加氢处理的化学反应................................................................. 112.1.1 煤焦油的加氢脱硫反应............................................................................. 112.1.2 煤焦油的加氢脱氮反应............................................................................. 112.1.3 煤焦油的加氢脱金属反应......................................................................... 122.1.4 煤焦油的芳烃加氢饱和反应..................................................................... 132.1.5 加氢脱氧反应(HDO) ................................................................................... 132.2工艺条件对煤焦油加氢处理的影响................................................................. 132.2.1 反应温度对煤焦油加氢处理过程的影响 ................................................. 142.2.2 反应压力对煤焦油加氢过程的影响......................................................... 142.2.3 体积空速对煤焦油加氢过程的影响......................................................... 152.2.4 循环气油比对煤焦油加氢过程的影响..................................................... 16第三章中低温煤焦油加氢改质工艺实验简介................................................................... 183.1实验部分............................................................................................................. 183.1.1 实验原料..................................................................................................... 183.1.2 实验催化剂................................................................................................. 193.1.3 实验装置及方法......................................................................................... 193.2结果和讨论......................................................................................................... 203.2.1 反应条件对加氢结果的影响..................................................................... 203.2.2 加氢产品的性质......................................................................................... 263.3结论................................................................................................................. 28第一章文献综述1.1煤焦油加工的现状与前景1.1.1世界能源现状资料来源:中国国土资源部2007年数据针对上述我国富煤贫油的资源现状和市场对焦炭的大量市场需求,一大批大型、环保型的焦化企业应运而生,正是由于焦化企业存在,生产过程中将副产大量的焦油产品。
煤焦油加氢技术现状和发展趋势
煤焦油加氢技术现状和发展趋势煤焦油加氢技术现状和发展趋势煤焦油加氢技术现状和发展趋势摘要:本文首先对煤焦油加氢技术进行了简要介绍,分析指出该技术目前存在的一些问题,并针对操作和装置上的问题提出了具体的改造办法。
关键词:煤焦油加氢操作装置问题煤焦油组成中硫、氮、氧含量高,多环芳烃含量较高,具有碳氢比大,粘度和密度大,机械杂质含量高,易缩合生焦,较难进行加工等特点。
鉴于国内煤变油的大环境和煤焦油加氢制汽柴油的优点,煤焦油加氢这一技术已经产业化,形成一定规模,替代传统的煤焦油加工工艺,以缓解我国能源压力。
但在技术操作的过程中发现了一些问题,针对这些问题进行有效地技术改造,才能让煤焦油加氢技术越走越远,带来经济效益、社会效益和环保效益。
一、煤焦油加氢技术简介煤焦油加氢生产技术首先将煤焦油全馏分原料采用电脱盐、脱水技术将煤焦油原料脱水至含水量小于0.05%,然后再经过减压蒸馏切割掉含机械杂质的重尾馏分,使机械杂质含量小于0.03%,得到净化的煤焦油原料经换热或加热炉加热到所需的反应温度后进入加氢精制(缓和裂化段)进行脱硫、脱氮、脱氧、烯烃和芳烃饱和、脱胶质和大分子裂化反应等,之后经过进入产品分馏塔,切割分馏出汽油馏分、柴油馏分和未转化油馏分;未转化油馏分经过换热或加热炉加热到反应所需的温度后进入加氢裂化段,进行深度脱硫、脱氮、芳烃饱和大分子加氢裂化反应等,同样进入产品分馏塔,切割分馏出反应产生的汽油馏分、柴油馏分和未转化油馏分。
煤焦油加氢操作存在的问题有:(1)预处理系统减压塔底重油出装置温度过高( 300℃左右) ,造成重油罐温度高,在装车时会出现大量沥青烟,会对操作人员身体构成伤害和污染环境; 而重油罐顶呼吸阀也会溢出沥青烟,遇空气冷凝变成轻质焦油污染油罐和环境卫生。
(2) 采用一段加氢工艺,给其同样的裂解程度,势必造成目的产物的质量差或产率低等问题。
从工业氢的供应来看,如果采用一次加氢,则需要一次供给相当多的氢气,使油中溶有足够的氢量,才能保证催化剂表面上有很高的活化氢的浓度,这样大量的过剩氢气在工业上是无法一次满足的'。
煤焦油加氢技术 7 焦油加氢的工艺过程
7.5 中国的煤焦油加氢技术
7.5.1 抚顺石油三厂煤焦油加氢技术
(2)生产工艺条件
装置处理量对工作原料约为10 m3/h时,由于新氢供应不足及油量变动,通常维持
在5~6 m3/h。
催化剂用量,一般相对工作原料为0.5%~1.0%,
表7-10列出了高压液相加氢
的三个工艺条件。
在液相加氢操作中,最主要的操作控制指标是:维持残渣中含有一定的固体分,依
靠调节反应温度,以保证一定的重质油转化率,并维持高温分离器液面的平稳。当
液面计失灵时,操作人员通常是参照高温分离器残渣出口温度和残渣减压的压力来
维持操作。
7.5 中国的煤焦油加氢技术
7.5.1 抚顺石油三厂煤焦油加氢技术
(3)原料及产品性质 抚顺古城子烟煤低温焦油与液相加氢生成油,按一定比例(恒定期间为5∶6)混合 蒸馏,分成小于230 ℃脱酚原料油;230~325 ℃气相加氢原料油及大于325 ℃重 质油——即液相加氢的工作原料。加氢后得到液相生成油及残渣油,在一部分残渣 中添加一定数量的催化剂后即成为循环残渣,在加氢系统内循环,另一部分排出的 残渣油,经离心机分离后,得到分离油与分离残渣。前者送回系统循环,后者排出 到系统外。
7.3.2 工艺过程和条件
COED法煤焦油加氢的工艺流程如 图7-6所示,工艺条件见表7-5。 煤焦油的加工能力为4.8 m3/d,焦油中所含的固体杂质(半焦细粉、煤粉等)用离心分 离器和预涂层加压过滤器脱除,焦油过滤后要求其固含量达到0.001%~0.002%。
7.3 美国COED法焦油加氢技术
④ 采用工业氢与循环氢及催化剂糊和残 渣油预热后,再分别在换热器和加热炉 中与原料油混合,以降低系统差压。 ⑤ 为了有利于加氢生成油和循环氢气的 分离,采用中温(约200 ℃)和常温( 约40 ℃)两段高压分离,这样既解决了 循环氢压缩机入口气体温度过高的关键 ,也解决了加氢生成油流动困难的问题 。
煤焦油加氢技术在生产实践中的应用
煤焦油加氢技术在生产实践中的应用煤焦油加氢工艺技术属于煤化工领域,涉及一种新型煤焦油加氢工艺和催化剂。
此项目对煤焦油的合理利用尤其对环境保护具有重要意义。
对高温煤焦油进行加氢处理,选择合适的加氢条件,生产汽、柴油调和组分,以提升焦化副产品煤焦油的产品附加值。
我国是世界焦炭生产大国,焦炭年产量约占世界焦炭总产量的近50%左右,在生产焦炭的同时还副产较多的低经济价值的煤焦油和焦炉煤气。
煤焦油作为重要的炼焦副产品,产量约占炼焦煤的4%左右,煤焦油气味较大,燃烧烟气中含有大量的SOx和NOx,对环境造成了严重污染,因此,采用加氢技术,可以大大降低对环境的危害。
煤焦油加氢成套技术将可以满足煤炭行业由煤焦油生产优质汽油、柴油调和馏分油的市场需求。
随着世界经济,特别是发展中国家经济的不断发展,对液体发动机燃料的需求量越来越大。
由于诸多因素的影响和制约,石油资源日趋紧张,这样给以煤为原料制取液体发动机燃料提供了很好的机会和广阔的空间,因此对煤焦油加氢技术的研究日益重要。
煤焦油是煤在干馏和气化过程中获得的液体产品。
按干馏温度和加工方法的不同可以分为高温煤焦油、中温煤焦油和低温煤焦油,它们的组成和性质有很大的不同。
高温煤焦油的组成特点是硫、氮、氧含量高,多环芳烃含量高,碳氢比大、粘度和密度大,机械杂质含量高,易缩成生焦,较难进行加工。
高温煤焦油加氢技术首先是将煤焦油全馏分原料采用电脱盐、脱水技术将煤焦油原料脱水至含水量小于百分之0.05,然后再经过减压蒸馏切割掉含机械杂质的重尾馏分,以除去机械杂质,得到净化的煤焦油原料。
净化后的煤焦油原料经换热或者加热炉加热到所需的反应温度后进入加氢精制进行脱硫、脱氮、脱氧、烯烃和芳烃饱和、脱胶质和大分子裂化反应等,之后经过进入产品分馏塔,切割分馏出汽油馏分、柴油馏分和未转化油馏分;未转化油馏分经过换热或加热炉加热到反应所需的温度后进入加氢裂化段,进行深度脱硫、脱氮、芳烃饱和和大分子加氢裂化反应等,同样进入产品分馏塔,切割分馏出反应产生的汽油馏分、柴油馏分和未转化油馏分。
加氢裂化技术的现状与趋势
加氢裂化技术的现状与趋势摘要:文章以加氢裂化技术的现状为切入点,简单阐述重质、劣化原油常见处理技术,详细分析技术发展情况,以此为基础,提出加氢裂化技术的发展趋势,明确该技术将向装置小型化、工艺简洁化、处理高效化方向发展,从而为相关工作者提供参考。
关键词:加氢裂化技术;发展现状;发展趋势引言:世界原油质量变化以劣质化、重质化为主要趋势,劣质、重质原油总量较大,高效加工利用对炼油工业提出了新的挑战,面对市场变化和环保要求提高,为将重油通过化学反应,改变重油油质,需通过加氢裂化方式,在高氢压、催化剂、加热条件下,让重油产生裂化反应,转化成喷气燃料、汽油和柴油。
加氢裂化不同原料加工难度不同,需合理使用加氢裂化技术,提高液体产物收率,从而满足原油生产需求。
1加氢裂化技术的现状1.1悬浮床加氢裂化该工艺有煤焦油加工、煤-油共炼这几种加工模式,具有投资少、转化率高、氢耗低的特点。
1.1.1 煤焦油加工煤焦油全馏分通过预处理,脱除机械杂质与水分,分离恰当馏分用于生产催化重整原料、柴油馏分或清洁车用汽油,通过加工不同品质和馏分的煤焦油,合理应用悬浮窗加氢裂化技术。
例如,兰炭企业以低温煤焦油为原料,在22MPa、468℃、0.5kg/h空速下,添加0.5%的催化剂,沥青质与重组分接近全转化,500℃以下液体吸收率超过90%。
操作中需要注意以下环节:(1)处理原材料时,需对水含量严格控制,小于1%,固定含量处于1~2%之间。
(2)试验中油水分离罐液位、油水界位初期存在波动,主要是由于煤焦油冷高分底部产物密度接近水,导致部分含有羟基物质发生乳化作用,难以有效分离油水,需经过多次调整,稳定分离曲线。
(3)预热器出口温度控制在260~280℃间。
1.1.2煤-油共炼煤-油共炼是将相应浓度煤按照比例混合重劣质油,在460℃、20MPa及催化剂下,将油煤浆通过反应器,通过加氢裂解为中、轻质油与少量烃类气体,可实现煤的直接液化,提高渣油和重油利用率从,改善了煤直接液化技术。
煤焦油加氢技术简介
煤焦油加氢技术简介10万吨/年煤焦油加氢装置简要说明1煤焦油加氢生产技术概述煤焦油的组成特点是硫、氮、氧含量高,多环芳烃含量较高,碳氢比大,粘度和密度大,机械杂质含量高,易缩合生焦,较难进行加工。
煤焦油加氢生产技术第一将煤焦油全馏分原料采纳电脱盐、脱水技术将煤焦油原料脱水至含水量小于0.05%,然后再通过减压蒸馏切割掉含机械杂质的重尾馏分,以除去机械杂质(与油相不同的相,表现为固相的物质),使机械杂质含量小于0.03%,得到净化的煤焦油原料。
净化后的煤焦油原料经换热或加热炉加热到所需的反应温度后进入加氢精制(缓和裂化段)进行脱硫、脱氮、脱氧、烯烃和芳烃饱和、脱胶质和大分子裂化反应等,之后通过进入产品分馏塔,切割分馏出汽油馏分、柴油馏分和未转化油馏分;未转化油馏分通过换热或加热炉加热到反应所需的温度后进入加氢裂化段,进行深度脱硫、脱氮、芳烃饱和大分子加氢裂化反应等,同样进入产品分馏塔,切割分馏出反应产生的汽油馏分、柴油馏分和未转化油馏分。
氢气自制氢装置来,经压缩机压缩后分两路,一路进入加氢精制(缓和裂化)段,一路进入加氢裂化段。
通过反应的过剩氢气通过冷高分回收后进入氢气压缩机升压后返回加氢精制(缓和裂化)段和加氢裂化段。
2****技术的先进性******是一家按照现代企业制度建立的高新科技企业,要紧从事炼油、石油化工、煤化工、环保和节能等技术领域的新技术工程开发、技术咨询、技术服务和工程设计及工程总包。
****聚拢了国内炼油、石油化工和煤化工行业大、中型科研院所、设计院及生产企业的优秀技术人才,致力于新工艺、新设备、新材料的工程开发,转化移植和优化组合国内外先进技术,将最新科技成果向实际应用转化,为客户提供最优化系统整合、客观完善的技术咨询、完整的解决方案,依照用户的要求进行最优化设计,以提高客户竞争和赢利能力。
公司现在的要紧业务为炼油、化工装置设计、技术方案和催化剂产品提供。
炼油、化工装置设计包括的装置有加氢、制氢、延迟焦化、重油催化裂化、重整、二烯烃选择性加氢、汽油醚化、气分、聚丙烯等。
全馏分中低温煤焦油中压加氢工艺的开发
全馏分中低温煤焦油中压加氢工艺的开发崔鑫;王锐;次东辉;孔德婷;郭小汾;郭屹【摘要】在3×500 mL的固定床中试装置上对神木全馏分低温煤焦油进行中压加氢改质试验.在原料体积空速为0.4 h-1、反应压力为10 MPa、氢/油比为1 000∶1、预加氢催化剂/精制催化剂/裂化催化剂床层平均温度分别为280/380/400℃的试验条件下,该工艺已连续平稳运行超过1 000 h;试验结果表明,获得的石脑油和柴油馏分的硫氮等杂质含量低,石脑油馏分的辛烷值(RON)达到90,芳烃潜含量大于75%,柴油馏分的凝点可达到-21℃,十六烷值高达43,尾油馏分中的胶质质量分数仅为2.77%.【期刊名称】《煤炭加工与综合利用》【年(卷),期】2016(000)002【总页数】4页(P17-20)【关键词】煤焦油;中压;加氢;中试【作者】崔鑫;王锐;次东辉;孔德婷;郭小汾;郭屹【作者单位】北京低碳清洁能源研究所,北京102209;北京低碳清洁能源研究所,北京102209;北京低碳清洁能源研究所,北京102209;北京低碳清洁能源研究所,北京102209;北京低碳清洁能源研究所,北京102209;北京低碳清洁能源研究所,北京102209【正文语种】中文【中图分类】TE626中低温煤焦油是低阶煤提质技术的主要产物之一。
与高温煤焦油相比,中低温煤焦油具有密度低、馏分轻、链状烃多等特点,其链状烃质量分数大约20%[1],而且焦油沥青质的含量相对较少,比较适合用于加氢技术制备汽柴油和化学品。
中低温煤焦油加氢技术通常采用部分馏分的加氢精制技术或者加氢裂化技术[2]。
宋希祥等人采用轻馏分油固定床加氢精制技术[3-5],该工艺流程简单、投资小,但是轻油的收率较低,仅有煤焦油全馏分的40%左右[6];李斌等采用减压馏分油固定床加氢裂化技术,可实现77%以上的裂化率[7-9];延迟焦化—固定床加氢裂化联合技术可以把重质油变成轻质油,但是工艺复杂,一部分焦油变成焦炭,降低焦油利用率[10-11];悬浮床/浆态床加氢裂化技术对原料的要求较低,通常与固定床联用,进行油品二次加工,但技术成熟性有待提高[12-15]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国成功攻克煤焦油全馏分加氢技术
2012年08月01日 16:28 生意社
生意社08月01日讯
7月29日,陕西煤业化工集团神木富油科技有限公司宣布,截至7月27日上午,由富油公司开发的我国首套12万吨/年煤焦油全馏分加氢工业化示范项目,已经连续安全平稳运行264小时。
装置负荷率达81.3%,累计生产柴油2606吨、石脑油馏分496吨。
煤焦油转化率达100%,柴油+石脑油馏分收率96.31%,各项指标达到或优于设计值。
这标志着我国成功攻克了煤焦油全馏分加氢技术难题。
据了解,目前我国运行的数套中低温煤焦油加氢制取清洁燃料油装置,由于要预先分离16%左右的沥青焦,其柴油+石脑油收率最多不超过82%。
富油公司开发的煤焦油全馏分加氢改质技术,以电场净化代替延迟焦化和切分技术,实现了煤焦油的全馏分加氢,柴油+汽油收率高达96.31%,高出现有装置14个百分点。
其加氢过程所需的氢气,全部从煤热解过程副产的尾气中提取,具有投资小、资源利用充分、油品收率高、经济效益好等特点。
专家表示,目前我国在建、拟建的煤中低温干馏项目总产能已经达到1700万吨,若全部采用富油公司技术,每年可获得1650万吨柴油、石脑油及液化气等清洁燃料。
如该技术得到推广应用,未来只需将陕西榆林、内蒙古鄂尔多斯(7.09,0.02,0.28%)、新疆哈密等地适宜热解提取焦油的低阶煤拿出1/10进行加工,即可获得几十亿吨清洁燃料油,并为电力、化工等行业提供数百亿吨发热量高、活性好的清洁原料和燃料(半焦),从而缓解我国石油供应压力,解决电力、化工等行业原料供应与环境污染问题。
据了解,2009年6月,陕煤化集团斥资11亿元,建设2×60万吨/年煤固体热载体快速热解联产12万吨/年中低温煤焦油全馏分加氢综合利用工业化示范项目。
今年7月16日示范装置正式投料试车,打通全流程并生产出合格柴油、石脑油及液化气产品。
由于煤焦油中含有大量难以转化的沥青质,若进入加氢系统,易堵塞、腐蚀设备,影响装置长周期安全稳定运行。
受制于煤焦油全馏分加氢这一世界性难题,现有煤焦油加氢企业只能通过延迟焦化或馏分切割方式,先对煤焦油进行预处理,分离出其中的沥青焦等重质组分后,再对轻质组分催化加氢。